
Volume 5 • Number 1

G.R. Finnie

P.S. Kritzinger

S.Berman

P.C. Pirow

C.H. Hoogendoorn

C Levieux

D. Podevyn

J. ·Roos

L.J. van der Vegte

~ ..

ISSN 0254-2757

QU/ESTIONES
INFORMATIC/E

April 1987

On Learning Styles and Novice Computer Use 1

Local Area Networks in Perspective 11

Semantic Information Management 19

Reard1 Computeraey 23

Experience with Teaching Software Engineering 36

FAlucation Rather than Training 41

Decaon·Tables ma~. Representation Formalism 46

The Protocol Specification Language ESTELLE S1

The Development of a Syntax Checker for LOTOS 63

· BOOK REVIEWS 71

QUlESTIONFS INFORMATICtE

An official publlcation of the Computer Society of South Africa and of the
South African Institute of Computer Scientis1s

'n Amptelike tydskrif van die Rekenaarvereniging van Suid-Africa en van die
Suid-Afrikaanse lmtituut van Rekenaarwetenskaplikes

Editor

Professor G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0105

Editorial Advisory Board

Professor D.W. Barron
Department of Mathematics
The University
Southampton S09 5NH, UK

Professor J.M. Bishop
Department of Computer Science
University of the Witwatersrand
1 Jans Smuts Avenue
2050 WITS

Professor K. MacGregor
Department of Computer Science
University of Cape Town
Private Bag
Rondebosch, 7700

Prof H. Messerschmidt
University of the Orange Free State
Bloemfontein, 9301

Dr P.C. Pirow
Graduate School of Bussiness Admin.
University of the Witwatersrand
P.O. Box 31170, Braamfontein, 2017

Professor S.H. von Solms
Department of Computer Science
Rand Afrikaans University
Auckland Park
Johannesburg, 2001

Professor M.H. Williams
Department of Computer Science
Herriot-Watt University, Edinburgh
Scotland

Qrculation and Production

Mr C.S.M. Mueller
Department of Computer Science
University of the Witwatersrand
2050 WITS

Subscriptions

Annual subscription are as follows:
SA US UK

Individuals R 10 $ 7 £ 5
Institutions R15 $14 £10

Qurestiones Informaticre is prepared by the Computer Science Department of the
University of the Witwatersrand and printed by Printed Matter, for the Computer
Society of South Africa and the South African Institute of Computer Scientists.

EDUCATION RATHER THAN TRAINING

ABSTRACT

Craig Levieux
Department of Computer Science
University of the Witwatersrand

The role of teachers in a University Computer Science course is examined. The case for education rather than
training is put. It is argued that current methods of teaching are not as effective as they could be. A case study of a
different approach is presented and the results evaluated.

1. INTRODUCTION

If Computer Science graduates are to provide a lasting contribution to the computing industry
they are going to have to adapt and change with the technology. It is thus vital that they are
educated rather than trained. The current situation is examined and found to be wanting. A case
study where some improvements were attempted is described together with an analysis of the
problems encountered. The conclusion reached is that since it is the students that have to do the
learning it is necessary to gain their confidence and co-operation when changes to the methods of
teaching are attempted.

2. THE NEED FOR EDUCATION

Computer Science departments are often criticised by industry for producing graduates who
'know nothing' or are not useful. This argument is not new [1] nor is it unique to South Africa.
Martin [2] states

I spend much of my time with data processing managers, and its a very frequent
comment from them that they are not getting what they want from the universities.

It is also not surprising. Archer [3], in a survey of what business and industry expected from
Computer Science graduates found that by far the most popular subjects were Systems Analysis,
File Processing, Data Structures, Data Base Processing and Management Information Systems.
These were wanted by over 80% of the respondents. In contrast Discrete Mathematical Structures
was exepected by only 4,8% of respondents.

There is obviously some confusion as to what Computer Science is and thus probably a need
for better communication between the universities and industry, but that need not concern us
here. MacGregor [1] points out that that the requirements of commerce for graduates should be
met by Data Processing or Information Systems Departments. He then goes on to describe the
role that qualified Computer Scientists can expect to play, but restricts his remarks to those with a
B.Sc. (Hons) or higher degree.

It is a commonly accepted view that a three year degree does not produce a person
trained in any specific discipline but having been introduced to some topics at an
intermediate level.

When entering arguments of this sort it is easy to become too involved with what we should
or should not be teaching, whilst losing sight of the fact that it is neither the function of, nor
should it be the objective of a Computer Science Department to train anyone for any specific job.
Rather the objective should be to educate scientists. Producing graduates with heads full of facts
but with no real understanding would be creating a wasting asset - these facts will become
irrelevant sooner or later. In a subject that is developing as fast as Computer Science this is likely
to happen sooner rather than later. It should not matter that a graduate is not immedia.tely_ useful in
the job situation, because given a good education it should be possible to learn the Job m a short
time. In addition the graduate should bring new insight and understanding into the job. When
advances are made or the technology changes the graduate would be in a position to assess the

41
Qumstiones lnformaticEe, Vol 5 No 1, PP 41-45, ISSN 0254-2757

consequences of the change. A person trained specifically for a job would not have the
background to do this. Martin [4] complains that "there is such a vast array of analysts,
programmers, and DP managers who are asleep, who are not changing their ways". If we
concentrate on training we are in danger of perpetuating this kind of problem.

3. THE CURRENT SITUATION

There is a growing consensus that there is too much emphasis on teaching and not enough
emphasis on learning at university, and that scientific cources are light on concepts and
overloaded with facts [5, 6, 7, 8]. It would seem that Computer Science is not immune to these
problems. Brookshear [9] writes

... instead of presenting the knowledge of today in the context of a current (and
still imperfect) state in an evolving system, we find ourselves preaching the
methodologies of today as rules that must be followed.

This state of affairs, whilst not desirable, is perfectly understandable. The body of
knowledge in the computing area is expanding at a rapid rate. There is no time to teach all there is
to know about a topic in the time available, so we rush through teaching as much as we can. This
leads to concentration on facts (which are quick to teach) and the avoidance of concepts (which
the student takes time to absorb). The net result is that the student learns this large body of facts
and regurgitates them in the exams. They are then forgotten two weeks later, which is just as
well, because they will probably be out of date within five years.

It is common to find students who are afraid or unable to work things out for themselves.
This attitude can persist to the most ludicrous extremes - some students plague the lecturer about
every last little and trivial detail of an assignment. They are terrified of making a minor mistake.
At the other end of the spectrum there are far too few students who are prepared to explore the
unknown.

It is also not uncommon to find that students are unable to transport knowledge from one
domain to another. For example, when dealing with user input, what percentage of students
make use of their knowledge of lexical analysis and parsing from the compiler course? How
many students are able to take what they know about the running time of algorithms (learnt in a
data structures course) and their knowledge of disk drives (from a machine organisation course)
to deduce that the bottle-neck in a physical database design is likely to lie with disk accesses?
Brookshear [9] gives a reason for this

We work hard to sectionalise the material into digestible units (and this is good),
but in so doing we should realise that we are making it easier for our students to
miss relationships among the topics we cover.

A brief glance at recent examination papers should convince the interested reader that the
majority of questions test the students' recall and comprehension - ie the lowest levels of
Bloom's Taxonomy [10]. Questions that test application, analysis, synthesis and evaluation are
all too often missing.

In order to improve the situation our objective should be to produce graduates who have a
thorough grounding in the principles of the subject and who are able to use these principles to
deduce the required results in any specific situation.

The necessity for teaching principles is argued by Shaw [11], Dertouzos [12] and Strachey
[13], who writes

The premise [is] it is clearly wrong to teach undergraduates the state of the art; one
should teach them things which will still be valid in 20 years time: the fundamental
concepts and underlying principles. Anything else is dishonest.

There does not seem to be much evidence of support in the Computer Science community,
with the notable exception of Papert [14], for the idea of getting the students to develop their
powers of conceptual thought. Other authors [5, 15] have addressed the problem. This should
be the most important part of a university Science course. Graduates should have the ability to
analyse, synthesise and evaluate. These abilities will stand them in good stead not for one or
two years or even twenty years, but rather a whole lifetime. It is far more important to develop

42

in students a hunger for knowledge and the ability to obtain it for themselves by reading,
questioning and thinking than it is to teach them anything at all.

4. AN ATTEMPT AT SOME IMPROVEMENTS

In order to address some of the problems described above a number of changes were made to
the topic Programming Languages given to third year undergraduate students at the University of
the Witwatersrand in 1985.

• The course was carefully examined to try and determine the fundamental principles
of the subject. Based upon this examination the amount of material covered was
reduced.

• Small group discussions were introduced. It is now widely accepted that lecturing,
whilst it has its place, is often a poor way to transmit knowledge. In the small
group discussions it was hoped that the students would learn to work together and
to perceive the benefits of doing so especially where it came to problem solving. It
was also hoped that the students would get to discover things for themselves.

• The students had to complete three programming assignments during the year,
each of which was in a different langauage. In an effort to reduce the
compartmentalisation of knowledge the assignments were all related to the
Translators topic that the students were covering concurrently. Thus the
assignments consisted of writing a simple interpreter, parser and lexical analyser.
These were often written before the requisite material had been covered in class.
Thus students were allowed to struggle with a problem before a technique for
dealing with it was taught. It was hoped that they would then appreciate the
usefulness of the technique.

• The assignments were carefully matched to the languages in order to try and bring
out their strong and their weak points.

• The students were required to mark each other's assignments, after which they
were marked by the lecturer. Marks were awarded for both the assignment and the
marking. This idea had first been introduced the previous year with encouraging
results (Figure 1). In order to do the marking students were forced to read
programs and thus accrued the benefits thereof [16]. In addition the students
gained a clearer understanding of what was expected of them in the assignments
and also how to distinguish between good and bad programs.

• In previous years the students had been required to submit a single long
comparative essay. It had been found that the topic was too general and thus the
amount of material to be covered was too large. The result was that the essays
were often a regurgitation of the textbook and contained no original thought. The
students were now required to hand in three short essays (each one linked to the
assignment) that required extra reading and original thought. An additional benefit
of this was that they received feedback and were thus able to improve their essay
writing skills through the year.

• The exam questions required more thinking and less writing than those of
previous years. To the uninformed reader the exam would have appeared easier
than the previous year's, but since the subject material had not been covered
directly in class, it was, if anything, more difficult.

43

Frequency Relative
Frequency

Strongly Agree 13 54%

Agree 10 42%

Neither Agree Nor Disagree 1 4%

Disagree 0 0%

Strongly Disagree 0 0%

figure 1

Student assesment of lecturer performance. Responses of 24 students to the statement
"Marking other students' assignments is a valuable aid to learning".

5. THE RESULTS

Great care was taken to explain to the students that a different approach was being taken and
why they should benefit from it in the long run. A small minority of students thrived on the
approach taken. Comments such as "The best course I have done" and "The only really
worthwhile course I have ever done at university" were heard from this group. The majority, in
contrast, were very unhappy with the course. The Head of Department received numerous
complaints. The lecturer received lower scores on the voluntary student assesment than he had
the previous year, even though he was giving the course for the second time and personally felt
that he had done a much better job.

The experiment gave dissapointing results, as have many before it [7], because the abilities
and attitudes of the students were not taken into account

It is obvious that before one starts a course one should discover how much the students
know and what their capabilities are. It was assumed that the class would be similar to the
previous year's. This was not the case. Two years previously the Maths Department had failed a
large number of second year students. Since Maths II is a pre-requisite for Computer Science III
this resulted in the 1984 class being some 25% smaller than expected. As the missing students
were the marginal ones, the 1984 class was considerably better than average. In contrast, the
1985 class was nearly 100% bigger and almost half the class was made up of students who were
weaker than all but one or two from the previous year. Failing to take the abilities of the class into
account meant that a significant proportion of the class was unable to cope with the work and
thus became negative about the course.

Adams [17] writes that the majority of students want two things from university

• the illusion of learning - the students wants to feel that he learnt a great deal at
university but wants this learning to take place with minimum effort on his part.

• a competitive economic advantage - this is perceived as being the degree certificate
(which will allow the graduate to obtain a more highly-paid job than the
non-graduate) and not the learning that went into obtaining the degree.

These wants manifest themselves in a number of ways

• students are comfortable with the rote learning and regurgitation model. In a course
they are introduced to a whole lot of new terminology and facts which they learn and
reproduce in an exam. They perceive that they have learnt a lot and the effort has not
been large.

• students are preoccupied with marks. Not only passing, but the awards of bursaries

44

and prizes and also possibly plum jobs depend on them. Marks become important
for their own sake rather than being a reflection of how well the student understands
the subject.

By the time a student reaches third year, university life has fallen into a fixed pattern and the
student fully expects to complete the degree at the end of the year - the rules of the game are well
known and understood. By introducing too many new ideas into the course we were breaking the
rules. This upset and alienated the students and undermined the success of the course.

6. CONCLUSION

There are ways of producing better-quality graduates than we are doing at the moment. New
models of teaching and learning have shown promise but require the co-operation of the students
if they are to succeed Student attitudes are formed in many ways - in the way they were taught at
school, the matric examination system and by society itself. This does not mean to say that these
attitudes cannot be changed, but third year is the wrong place to try. It may not be a bad idea to
throw the student slightly off-balance but it should not be taken to extremes. It is not our aim to
create psychological wrecks. It would be far better to introduce new ideas to first year students.
They are in any case expecting university to be different from school and would be more
receptive to new ideas. This should also incorporate an overhaul of the curriculum [9].

ACKNOWLEDGEMENTS

I would like to thank Conrad Mueller for his contribution to the course. Philip Machanick
and Kees Hoogendoorn read the paper and provided helpful suggestions. Richard Rodseth, Paul
Dadswell, Philip Green and Sally Benn pointed out numerous errors.

REFERENCES

1. MacGregor, K.J., (1985), Quo Vadis, Computer Science?, Quaetiones Informaticae, 3(3),pp 2-8.
2. Martin, J., (1985), DP and Academia: The Communication Gap, Panel Discussion, CACM, 28(3),

pp 256-262.
3. Archer, C.B., (1983), What does Business and Industry Expect from Computer Science Graduates Today, in

Proceedings of Fourteenth SIGCSE Technical Symposium on Computer Science Education, SIGCSE
Bulletin, 15(1), pp 82-84.

4. Martin, J., (1985), An Information Systems Manifesto, CACM, 28(3), pp 252-255.
5. Beard, R.M., (1972), Teaching and Learning in Higher Education, Penguin (2nd ed.), Harmondsworth.
6. Fletcher, B.A., (1968), The Aims of University Teaching, in University Teaching in Transition, Layton, D.

(ed.), Oliver and Boyd, Edinburgh.
7. Gerrans, G.C., (1985), Teaching Within the Faculty of Science, Memorandum for Discussion and Feedback,

Faculty of Science, University of the Witwatersrand.
8. Gerrans, G.C. et al, (1986), First Report of the Committee on Teaching, Faculty of Science, University of

the Witwatersrand.
9. Brookshear, J.G., (1985), The University Computer Science Curriculum: Education Versus Training, in

Proceedings of Sixteenth SIGCSE Technical Symposium on Computer Science Education, SIGCSE Bulletin,
17(1), pp 23-30.

10. Bloom, B.S. et al, (1954), Taxonomy of Educational Objectives. Handbook I: Cognitive Domain, McKay,
New York.

11. Shaw, M., (1984), Goals for Computer Science Education in the 1980's, in Proceedings of Fifteenth
SIGCSE Technical Symposium on Computer Science Education, SIGCSE Bulletin, 16(1), pp 1.

12. Dertouzos, M., (1985), DP and Academia: The Communication Gap, Panel Discussion, CACM, 28(3),
pp 256-262.

13. Strachey, C., (1969), Software Engineering Techniques, Buxton, J.N. and Randell, B. (eds.), NATO Science
Committee, Rome, pp 65.

14. Papert, S., (1980), Mindstorms- Children, Computers and Powerful Ideas, The Harvester Press, Brighton.
15. Novak, J. and Gowin, D., (1984), Learning How to Learn, Cambridge University Press.
16. Weinberg, G.M., (1971), The Psychology of Computer Programming, Van Nostrand Reinhold, New York.
17. Adams, W.A., (1980), The Experience of Teaching and Learning - A Phenomenology of Education,

Psychological Press, Seattle.

45

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to pub­
lish original papers in any field of computing.
Papers submitted may be research articles,
review artilces and exploratory articles of gen­
eral interest to readers of the journal. The pre­
f erred languages of the journal will be the
congress languages of IFIP although papers in
other languages will not be precluded.

Manuscripts should be submitted in tripli-
cate to:

Prof. G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0105
South Africa

Form of manuscript
Manuscripts should be in double-space typ­

ing on one side only of sheets of A4 size with
wide margins. Manuscripts produced using
the Apple Macintosh will be welcomed.
Authors should write concisely.

The first page should include the article title
(which should be brief), the author's name
and affiliation and address. Each paper must
be accompanied by an abstract less than 200
words which will be printed at the beginning
of the paper, together with an appropriate key
word list and a list of relevant Computing Re­
view categories.

Tables and figures
Tables and figures should not be included

in the text, although tables and figures should
be referred to in the printed text Tables should
be typed on separate sheets and should be
numbered consecutively and titled.

Figures should also be supplied on separate
sheets, and each should be clearly identified
on the back in pencil and the authors name and
figure number. Original line drawings (not
photocopies) should be submitted and should
include all the relevant details. Drawings etc.,
should be submitted and should include all rel­
evant details. Photographs as illustrations
should be avoided if possible. If this cannot be

avoided, glossy bromide prints are required.

Symbols
Mathematical and other symbols may be ei­

ther handwritten or typewritten. Greek letters
and unusual symbols should be identified in
the margin. Distinction should be made be­
tween capital and lower case letters; between
the letter O and zero; between the letter I, the
number one and prime; between K and kappa.

References
References should be listed at the end of the

manuscript in alphabetic order of the author's
name, and cited in the text in square brackets.
Journal references should be arranged thus:

1. Ashcroft E. and Manna Z., The Trans­
lation of 'GOTO' Programs to 'WHILE'
programs., Proceedings of IFIP Con­
gress 71, North-Holland, Amsterdam,
250-255, 1972.

2. Bohm C. and Jacopini G., Flow Dia­
grams, Turing Machines and Languages
with only Two Formation Rules.,
Comm. ACM, 9, 366-371, 1966.

3. Ginsburg S., Mathematical Theory of
Context-free Languages, McGraw Hill,
NewYork, 1966.

Proofs
Proofs will be sent to the author to ensure

that the papers have been correctly typeset and
not for the addition of new material or major
amendment to the texts. Excessive alterations
may be disallowed. Corrected proofs must be
returned to the production manager within
three days to minimize the risk of the author's
contribution having to be held over to a later
issue.

Only orginal papers will be accepted, and
copyright in published papen w.m. be vested in
the publisher.

Letters
A section -0f "Letters to the EditDr" (each

limited to about 500 words) 'Will prcwide a for­
um for discussion of recent pioblems.

