
Volume 5 • Number 1

G.R. Finnie

P.S. Kritzinger

S.Berman

P.C. Pirow

C.H. Hoogendoorn

C Levieux

D. Podevyn

J. ·Roos

L.J. van der Vegte

~ ..

ISSN 0254-2757

QU/ESTIONES
INFORMATIC/E

April 1987

On Learning Styles and Novice Computer Use 1

Local Area Networks in Perspective 11

Semantic Information Management 19

Reard1 Computeraey 23

Experience with Teaching Software Engineering 36

FAlucation Rather than Training 41

Decaon·Tables ma~. Representation Formalism 46

The Protocol Specification Language ESTELLE S1

The Development of a Syntax Checker for LOTOS 63

· BOOK REVIEWS 71

QUlESTIONFS INFORMATICtE

An official publlcation of the Computer Society of South Africa and of the
South African Institute of Computer Scientis1s

'n Amptelike tydskrif van die Rekenaarvereniging van Suid-Africa en van die
Suid-Afrikaanse lmtituut van Rekenaarwetenskaplikes

Editor

Professor G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0105

Editorial Advisory Board

Professor D.W. Barron
Department of Mathematics
The University
Southampton S09 5NH, UK

Professor J.M. Bishop
Department of Computer Science
University of the Witwatersrand
1 Jans Smuts Avenue
2050 WITS

Professor K. MacGregor
Department of Computer Science
University of Cape Town
Private Bag
Rondebosch, 7700

Prof H. Messerschmidt
University of the Orange Free State
Bloemfontein, 9301

Dr P.C. Pirow
Graduate School of Bussiness Admin.
University of the Witwatersrand
P.O. Box 31170, Braamfontein, 2017

Professor S.H. von Solms
Department of Computer Science
Rand Afrikaans University
Auckland Park
Johannesburg, 2001

Professor M.H. Williams
Department of Computer Science
Herriot-Watt University, Edinburgh
Scotland

Qrculation and Production

Mr C.S.M. Mueller
Department of Computer Science
University of the Witwatersrand
2050 WITS

Subscriptions

Annual subscription are as follows:
SA US UK

Individuals R 10 $ 7 £ 5
Institutions R15 $14 £10

Qurestiones Informaticre is prepared by the Computer Science Department of the
University of the Witwatersrand and printed by Printed Matter, for the Computer
Society of South Africa and the South African Institute of Computer Scientists.

EXPERIENCE WITH TEACHING SOFTWARE ENGINEERING

1. INTRODUCTION

C H Hoogendoorn
Department of Computer Science
University of the Witwatersrand

Johannesburg

The term "software engineering" has been in use for nearly 20 years since the so-called
"software crisis" was identified in the late 1960's. However, it is only comparatively recently that
courses in software engineering have begun to be taught in university computer science
departments. Various reasons have been cited for the slow acceptance of software engineering as
a subject in a computer science curriculum, for example the lack of suitable textbooks, the lack of
suitably qualified staff, a perceived conflict between the "scientific" and "engineering"
approaches to computing as well as students' lack of experience with large scale software and
their resulting inability to appreciate the problems.

Fortunately, the situation with respect to textbooks has greatly improved. Moreover, a
number of articles have appeared (Kant [1], Sommerville [2], Collofello and Woodfield [3], Lee
and Frankel [4], Wu [5], Petricig and Freeman [6]) reporting on software engineering courses
introduced at universities at the graduate and undergraduate levels. The general view which
emerges is that such a course should have a very sizeable practical component in the form of
group projects in an attempt to bridge the gap between one-person programs completed in the
space of weeks and larger-scale software development undertaken by teams. Group size and
project duration vary from 5 persons for one semester to 7-10 persons over 4 semesters. The
scope of the projects varied from covering the entire life cycle (incuding maintenance), analysis
and design only, development cycle only (excluding maintenance) or design and implementation
from given requirements.

Encouraged by these reports, the Department of Computer Science at the University of the
Witwatersrand decided to introduce software engineering as a topic in computer science in the
final (3rd) year of undergraduate study. At this stage students will have had two years of
programming experience in Pascal as well as some assembly language programming and will
concurrently be taking topics in programming languages, translators, data bases and theory of
computation. The objectives which we have set ourselves are fairly modest. The aims are to
demonstrate the difficulties of software specification, design, development and testing, to
demonstrate the problems of working in a team and to develop written and oral communication
skills. In common with most authors we do not believe that a university can produce fully-trained
software engineers. However, students should at least become acquainted with the problems of
large-scale software production and become aware of solution approaches. An important side
benefit of such exposure is that it leads to a better appreciation of developments in various areas
of computer science in answer to the software crisis. Examples are modularity and abstract data
types in programming languages, protection in operating systems as well as program verification.

2. COURSE ORGANISATION

The software engineering course extends over the entire academic year, starting in late
February and terminating in late October. During this period the students, working in project
groups, are expected to take a software system through the entire development cycle, i.e.
requirements analysis, design, implementation (coding), testing and integration as well as
delivery and demonstration of the final product. The project really serves as a means to an end:
while workingon the project students will be confronted with the problems of developing larger
software systems and will be exposed to software engineering principles, methods and
techniques for dealing with these problems.

As mentioned in the introduction, students will be taking other topics in Computer Science
apart from software engineering. Moreover, a student will typically be registered for another
third-year course as well as a first year course. A realistic time budget per student for the course,
taking into account examinations, mid-term breaks etc.,_is between 160 and 200 hours per
student. Assuming 5 students per project group, this leads to a typical project size of between 5

36
Quoostiones lnformaticoo, Vol 5 No 1, PP 36-40, ISSN 0254-2757

and 6 man-months. While small by "real-world" standards, it is still large enough for scaling up
effects to become visible and certainly much too large to be completed by a single individual. The
scope of the projects, i.e. the entire development cycle, was chosen in order that the
consequences of decisions taken in the analysis and design phases could be experienced during
implementation, testing and integration. However, as Sommerville [2] points out, a disadvantage
of this choice is that the size of the project must be smaller (and therefore perhaps less
representative of real-world problems) compared to an approach which only includes analysis
and design.

Students are offered a choice of projects to work on. Typical projects that have been offered
include the following:

(i) An office diary and calendar system, including facilities for the scheduling of
group meetings.

(ii) A lecture room reservation system for a University.
(iii) An interactive text formatting system.
(iv) A simple computer-aided instruction system for teaching nurses to reason about

diseases and symptoms.

A common feature of most projects is that they call for the development of a substantial
man-machine interface, thus exposing students to this most critical design area. It is endeavoured
to choose project topics which minimize the amount of "outside" (non-sofware-engineering)
knowledge to be acquired. All projects are open-ended to some degree; this avoids the difficulty
of choosing a project of exactly the right size.

At the beginning of the year students are asked to rank the projects in order of preference.
They are then allocated to groups according to the following criteria:

(i) Project preference.
(ii) Commonality of free timetable slots (essential for group work!)
(iii) Performance in previous computer sience courses. A mix of high and average

achievers is aimed for in each group.

It is expected that all group members participate in all aspects of development, i.e. analysis,
design, coding, testing, documentation etc. Although no fixed group structure is imposed,
groups are very strongly urged to choose a leader who can be responsible for allocating tasks and
monitoring their completion, making sure that deadlines are met and so forth. Group leadership
can either remain fixed or can be rotated between group members. However, in spite of advice to
the contrary, some groups choose to function as a democratic team without a leader and almost
invariably report later that this was a big mistake! Very similar experiences have been reported by
Kant [1]. Groups are encouraged to keep minutes of meetings held amongst themselves,
recording decisions which were made, problems which were identified, the allocation of specific
tasks etc. Each student is also encouraged to keep a log book in which all time spent on project
activities is recorded, along with the type of activity. These log books are intended to provide
students with more insight into the development process and are not intended to be scrutinized by
staff. No incentive for falsification therefore exists.

For each project a staff member is appointed as supervisor, which implies acting both as a
customer and a consultant. Regular meetings are scheduled with the supervisor throughout the
year. In addition the lecturer in charge of the course (the projects coordinator) also has regular
meetings with each group throughout the year, usually addressing general software engineering
issues rather than project-specific ones.

No formal lectures are given. A book on software engineering (Sommerville [7]) is
prescribed, which students are expected to read in their own time. In addition, a series of project
notes are issued by the projects coordinator throughout the year. These notes contain inter alia
some practical hints for the applicable phases of the development cycle, as well as suggestions
for further reading. This material is often used as a basis for discussion in the group meetings
with the projects coordinator.

Projects are implemented on a wide variety of equipment, ranging from the university
mainframe to departmental minicomputers and personal computers. The choice of equipmen.t is
usually tied up with the project choice. Students are urged to familiarize themselves at the earliest
opportunity with the editors, language translators, data base systems, word processo1:5 and other
software tools available on each type of equipment. It is required that all documentation be done
on-line. Fortunately, the introduction of the course coincided with the acquisition of some very

37

good facilities for word processing, text formatting and printing (laser), so that the insistence on
on-line documentation by now seems superfluous.

Although students are made aware of various methodologies for analysis, design and so
forth, we do not insist on the use of any particular methodology. This is in line with our objective
of exposing students to software engineering problems before introducing specific solutions. In
any event, such an insistence would be hard to adhere to in practice, given the fairly diverse
nature of projects and equipment, as well as our lack of support tools for specific methodologies.

A number of project milestones are set throughout the year, corresponding with the various
phases of the development cycle, i.e. analysis, design, coding, test and integration and delivery
and demonstration of the final product. The design stage is further subdivided into overall and
detailed design. A deliverable item (e.g. a specification) is due for each project milestone. Two
copies of all documents are required, one of which is marked by both the project supervisor and
projects coordinator. This copy is returned to the group and discussed with them as soon as
possible, in order to provide the necessary feedback for the next phase.

The most intensive interaction between groups and their supervisors and the projects
coordinator occurs in the requirements analysis phase. During this phase the supervisor acts
mostly as customer, while at the same time ensuring that groups not only address the most
obvious functional requirements but also pay attention to non-functional requirements such as
reliability and performance. Much emphasis is placed on the overall organization of the SRD
(Software Requirements Document), with good use of numbering schemes and indexing to allow
easy future identification of specific requirements. It seems good practice to let one group
member assume overall responsibility for the SRD (and its timely delivery), in order to ensure a
uniform notation. Review meetings are encouraged in order to achieve consistency and
completeness.

A similar emphasis is placed on the Overall and Detailed Design Documents. The preferred
notation for the former is some form of structure diagrams augmented by structured descriptive
paragraphs, while for the detailed design pseudo-code is normally employed. Considerable
guidance is usually necessary for system decomposition and the definition of interfaces between
subsystems, while the need for supervisor and coordinator interaction decreases once detailed
design and coding commences. At this stage the regular meetings are most useful to monitor
progress and to identify technical and non-technical problems as early as possible.

Shortly after the detailed design has been completed, a Test and Integration Document is due.
The intention here is to force students to think about testing strategies and methods. The use of
code reviews and design walkthroughs is highly encouraged. As part of this document an
integration plan is required, which in tum will determine the order in which modules are
developed and tested. Before the final delivery milestone an informal interim milestone is usually
defined. At this stage a working system which demonstrates at least the main system functions is
expected.

For final delivery, a complete copy of the software system on some suitable medium (tape,
floppy disk) as well as complete documentation, including an installation guide, user manual,
operator/system administrators guide (where relevant) is expected. Shortly afterwards, live
project presentations are held, using screen projection equipment, in front of the entire class,
departmental staff and selected guests.

All group deliverables and presentations contribute 50% towards the mark for each student.
Half of this in tum, i.e. 25% of the total, is accounted for by the delivered final product and its
presentation, the bulk of the remainder being accounted for by the SRD and Design Documents.
A further 25% of each student's mark is for individual contribution to the group effort. This
assessment is based on observations by the supervisor and projects coordinator, as well as a
statement of contributions provided by each student. The remaining 25% is for an individual
essay on software engineering which is due two weeks after the final product deadline. The
structure and format of this essay is entirely open-ended, the idea being that it should reflect what
the student learnt about software engineering in the course of doing the project, including
managerial issues, problems of working in a group etc. Comments on the course and suggestions
for the future are also invited.

3. EXPERIENCE WITH THE COURSE

Generally the feedback which is received indicates that students find the course very
worthwhile, some going as far as claiming that they learnt more from it than any other course!
Initially a few students expressed some misgivings about being assessed on a group basis rather

38

than individually. However, the even balance between group and individual assessment, as well
as the generally high marks which are obtained have served to allay these fears. The high marks
in tum reflect the generally high standard achieved in the final product, documentation and
demonstration. Many students seem prepared to put in large amounts of work, in some cases
much more than could reasonably be expected (and, one suspects, more than they would have
done if they had been working as individuals).

Most students considered the requirements analysis phase, leading up to the production of
the SRD, one of the most valuable project experiences. Groups which produced a high-quality
SRD generally saw this as a key to their success on the entire project. On the other hand, groups
which did less well here of ten found that it required much time-consuming effort to recover from
the effects of a bad SRD. However, even in those cases where a high-quality SRD was
produced, it was often found later in the development cycle that requirements needed to be
modified due to over-optimistic time estimates, unanticipated problems with systems software,
insufficient understanding of the system to be developed, machine performance problems and
similar causes. While some of these pitfalls would have been avoided by more experienced
analysts, others could only have been detected through prior experimentation. For this reason, as
of this year the project development cycle has been modified to include prototyping. The project
is now kicked off with a small feasibility study, after which a prototype, demonstrating some
aspects of system functionality and man-machine interfacing, is developed. The SRD, which
remains the first formal document to be submitted, is now due a few weeks after prototype
demonstration. As the total time for the project remains inelastic, this change implies that less
time is available for design, implementation and testing. However, it is felt that the experience
gained in prototyping will compensate for this loss.

The overall design phase was also considered to be a very valuable learning experience.
Many groups found the partitioning of a system into subsystems with well-defined interfaces a
non-trivial task, requiring perhaps a number of iterations as well as guidance from staff
members. On the other hand, the detailed design seemed to be far less problematic (and less
valuable), often descending to a level not far removed from executable code. As it did seem to be
somewhat of an overkill for the given size of project, it was therefore decided to do away with
detailed design as a separate milestone. Somewhat more detail is now required from the Overall
Design (now simply Design) Document, after which implementation commences.

While some groups seemed to derive real benefit from producing a Test and Integration
Document, others seemed to regard it as little more than a nuisance; the actual development order
and test methods bearing little resemblance to those described in the document. At this stage
students became very conscious of the pressure to complete the work by the final deadline. As a
result, testing and integration became rather ad hoc, sometimes with disastrous consequences,
requiring extreme effort to recover. Although much advocated, code reviews became the
exception rather than the rule. It is therefore planned that the project supervisors and coordinator
shall play a more active role here, for example by conducting code reviews with a group.

With the increasing diversity and complexity of university computer facilities, it was
observed that some groups required a long time to become familiar with the hardware and
software available for project implementation (including documentation). This in tum led to
decisions being taken during the analysis and design stages which subsequently had to be
overturned (with much loss of effort) as more experience and information became available. The
change to include prototyping, thus getting hands dirty at an early stage, is expected to alleviate
this problem. It was also decided, in the course of restructuring the undergraduate Computer
Science syllabus, to offer a series of lectures on "Software Tools" in the first semester of the 3rd
year of study. These lectures are given by staff members as well as experts from elsewhere (e.g.
Computer Centre, industry) and cover a wide variety of topics, for example:

1. Specific programming languages (Fortran, APL, Cobol, LISP etc)
2. Specific documentation facilities (e.g. DCF)
3. Project management
4. Specific database systems and packages (e.g. SAS)
5. Writing skills.

None of this material is formally examined, although assignments may be set in some areas,
e.g. programming exercises in specific languages. In addition to providing useful input for the
software engineering project, the material is a prerequisite for some other courses. For example,
the Programming Languages course (offered in the second semester) can now concentrate on
language principles in the knowledge that students will have had prior exposure to a number of

39

than individually. However, the even balance between group and individual assessment, as well
as the generally high marks which are obtained have served to allay these fears. The high marks
in turn reflect the generally high standard achieved in the final product, documentation and
demonstration. Many students seem prepared to put in large amounts of work, in some cases
much more than could reasonably be expected (and, one suspects, more than they would have
done if they had been working as individuals).

Most students considered the requirements analysis phase, leading up to the production of
the SRD, one of the most valuable project experiences. Groups which produced a high-quality
SRD generally saw this as a key to their success on the entire project. On the other hand, groups
which did less well here of ten found that it required much time-consuming effort to recover from
the effects of a bad SRD. However, even in those cases where a high-quality SRD was
produced, it was often found later in the development cycle that requirements needed to be
modified due to over-optimistic time estimates, unanticipated problems with systems software,
insufficient understanding of the system to be developed, machine performance problems and
similar causes. While some of these pitfalls would have been avoided by more experienced
analysts, others could only have been detected through prior experimentation. For this reason, as
of this year the project development cycle has been modified to include prototyping. The project
is now kicked off with a small feasibility study, after which a prototype, demonstrating some
aspects of system functionality and man-machine interfacing, is developed. The SRD, which
remains the first formal document to be submitted, is now due a few weeks after prototype
demonstration. As the total time for the project remains inelastic, this change implies that less
time is available for design, implementation and testing. However, it is felt that the experience
gained in prototyping will compensate for this loss.

The overall design phase was also considered to be a very valuable learning experience.
Many groups found the partitioning of a system into subsystems with well-defined interfaces a
non-trivial task, requiring perhaps a number of iterations as well as guidance from staff
members. On the other hand, the detailed design seemed to be far less problematic (and less
valuable), often descending to a level not far removed from executable code. As it did seem to be
somewhat of an overkill for the given size of project, it was therefore decided to do away with
detailed design as a separate milestone. Somewhat more detail is now required from the Overall
Design (now simply Design) Document, after which implementation commences.

While some groups seemed to derive real benefit from producing a Test and Integration
Document, others seemed to regard it as little more than a nuisance; the actual development order
and test methods bearing little resemblance to those described in the document. At this stage
students became very conscious of the pressure to complete the work by the final deadline. As a
result, testing and integration became rather ad hoc, sometimes with disastrous consequences,
requiring extreme effort to recover. Although much advocated, code reviews became the
exception rather than the rule. It is therefore planned that the project supervisors and coordinator
shall play a more active role here, for example by conducting code reviews with a group.

With the increasing diversity and complexity of university computer facilities, it was
observed that some groups required a long time to become familiar with the hardware and
software available for project implementation (including documentation). This in tum led to
decisions being taken during the analysis and design stages which subsequently had to be
overturned (with much loss of effort) as more experience and information became available. The
change to include prototyping, thus getting hands dirty at an early stage, is expected to alleviate
this problem. It was also decided, in the course of restructuring the undergraduate Computer
Science syllabus, to offer a series of lectures on "Software Tools" in the first semester of the 3rd
year of study. These lectures are given by staff members as well as experts from elsewhere (e.g.
Computer Centre, industry) and cover a wide variety of topics, for example:

1. Specific programming languages (Fortran, APL, Cobol, LISP etc)
2. Specific documentation facilities (e.g. DCF)
3. Project management
4. Specific database systems and packages (e.g. SAS)
5. Writing skills.

None of this material is formally examined, although assignments may be set in some areas,
e.g. programming exercises in specific languages. In addition to providing useful input for the
software engineering project, the material is a prerequisite for some other courses. For example,
the Programming Languages course (offered in the second semester) can now concentrate on
language principles in the knowledge that students will have had prior exposure to a number of

39

languages.
Although students have no say in the choice of group members, it is very rare to experience

problems in this area. If strong personality conflicts exist, a reallocation can be made before
groups get down to serious work. Although it is to be expected that not all group members
contribute equally, intervention may be necessary if serious distortions occur. Such problems are
most easily detected in the weekly meetings with the project supervisor.

In the allocation of groups, it appeared that project preference was far less important than
timetable commonality and a good mixture of high and average achievers in determining group
performance. In fact, some of the best results were achieved by groups working on projects
which were nobody's first choice. For that reason students are no longer given a project choice
but are allocated in groups which have as much free time in common as possible. The value of
this becomes particularly apparent as each deadline approaches!

4. CONCLUSIONS

The general feedback obtained from students' essays indicate that the course objectives of
demonstrating the problems of large-scale software development are being achieved. It appears to
have made the students far more appreciative of both the need for sound methodologies for
analysis, design, testing and integration, as well as developments in the general field of computer
science aimed at making software development more productive and less error-prone. It is
perhaps most appropriate to let a student have the final word:

"You mean that's AU it does ? !"
The biggest surprise is just how little work appears to have been done after a

mammmoth amount has been done. There is no way the final product can reflect the
array of emotions we have all encountered: joy, relief, anguish, helplessness,
frustration,fear; the sleepless nights; the comradeship; the disagreements.

The experience gained on working on a system that someone is actually going to
use, has required a new approach to the whole concept of programming. The old
techniques of "hacking" and spontaneous programming may not have disappeared yet,
but they are certainly a lot less evident than they ever were before. As a look at the real
world/or the first time, the course has been a revelation.

There is a distinct difference between a computer scientist and a software engineer
that I never knew existed. And somewhere in it all is an art - where there is no apparent
justification for doing a thing one way, it just ''feels right".

Although I was far from happy with my own personal performance, because I have
made a lot of mistakes in the past few months, I feel that I have learnt from these
mistakes. Hopefully I will not make the same mistakes again (I suppose I will make
others). I can (almost) guarantee far better performance next time round.

REFERENCES

1. Kant, E.,[1981) A Semester Course in Software Engineering, ACM SIGSOFT SoftwareEngineering Notes, 6,
4, pp 52-76.

2 Sommerville, I., [1983], Software Engineering - An Educational Challenge, IFIP 83, pp 193-197, Amsterdam:
North-Holland.

3 Collofello, J.S. and Woodfield, S.N., [1982] A Project-Unified Software Engineering Course Sequence, ACM
SIGCSE Bulletin, 14, 1, pp 13-19.

4 Lee, K.Y. and Frankel, E.C., [1983], Real-Life Software Projects as Software Engineering Laboratory
Exercises, ACM SIGSOFT Software Engineering Notes, 8, 3, pp 39-43.

5 Wu, B.F., [1983], A Practical Training in Software Engineering Methodology, ACM SIGCSE Bulletin, 15, 3,
pp 2-9.

6 Petricig, M. and Freeman, P.,[1984], Software Engineering Education - A Survey, ACM SIG CSE Bulletin, 16,
4, pp 18-22.

7. Sommerville, I.,[1985], Software En,:ineering (2nd Ed.), Addison Wes,ley, Wokingham, England.

40

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to pub­
lish original papers in any field of computing.
Papers submitted may be research articles,
review artilces and exploratory articles of gen­
eral interest to readers of the journal. The pre­
f erred languages of the journal will be the
congress languages of IFIP although papers in
other languages will not be precluded.

Manuscripts should be submitted in tripli-
cate to:

Prof. G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0105
South Africa

Form of manuscript
Manuscripts should be in double-space typ­

ing on one side only of sheets of A4 size with
wide margins. Manuscripts produced using
the Apple Macintosh will be welcomed.
Authors should write concisely.

The first page should include the article title
(which should be brief), the author's name
and affiliation and address. Each paper must
be accompanied by an abstract less than 200
words which will be printed at the beginning
of the paper, together with an appropriate key
word list and a list of relevant Computing Re­
view categories.

Tables and figures
Tables and figures should not be included

in the text, although tables and figures should
be referred to in the printed text Tables should
be typed on separate sheets and should be
numbered consecutively and titled.

Figures should also be supplied on separate
sheets, and each should be clearly identified
on the back in pencil and the authors name and
figure number. Original line drawings (not
photocopies) should be submitted and should
include all the relevant details. Drawings etc.,
should be submitted and should include all rel­
evant details. Photographs as illustrations
should be avoided if possible. If this cannot be

avoided, glossy bromide prints are required.

Symbols
Mathematical and other symbols may be ei­

ther handwritten or typewritten. Greek letters
and unusual symbols should be identified in
the margin. Distinction should be made be­
tween capital and lower case letters; between
the letter O and zero; between the letter I, the
number one and prime; between K and kappa.

References
References should be listed at the end of the

manuscript in alphabetic order of the author's
name, and cited in the text in square brackets.
Journal references should be arranged thus:

1. Ashcroft E. and Manna Z., The Trans­
lation of 'GOTO' Programs to 'WHILE'
programs., Proceedings of IFIP Con­
gress 71, North-Holland, Amsterdam,
250-255, 1972.

2. Bohm C. and Jacopini G., Flow Dia­
grams, Turing Machines and Languages
with only Two Formation Rules.,
Comm. ACM, 9, 366-371, 1966.

3. Ginsburg S., Mathematical Theory of
Context-free Languages, McGraw Hill,
NewYork, 1966.

Proofs
Proofs will be sent to the author to ensure

that the papers have been correctly typeset and
not for the addition of new material or major
amendment to the texts. Excessive alterations
may be disallowed. Corrected proofs must be
returned to the production manager within
three days to minimize the risk of the author's
contribution having to be held over to a later
issue.

Only orginal papers will be accepted, and
copyright in published papen w.m. be vested in
the publisher.

Letters
A section -0f "Letters to the EditDr" (each

limited to about 500 words) 'Will prcwide a for­
um for discussion of recent pioblems.

