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LOTOS (Language Of Temporal Ordering Specification) is employed to give a partial specification of a system to 
connect RJE devices across an X.25 network. The system's implementation has been described fully elsewhere [5]. 
The present purpose is to introduce LOTOS as a specification language, showing how fairly complex time­
dependencies may be described in an unambiguous fashion, and also pointing to the way in which LOTOS 
specifications may be verified. 

Key concepts ofLOTOS are surveyed, and the underlying model which abstracts the RJE system to be specified is 
presented. The LOTOS specification of this model is given in outline, with particular emphasis on aspects of the 
connection phase. The type of verification to which a LOTOS specification may be subjected is briefly discussed 
and an indication is given of how such verification may be approached. 

1.0VERVIEW OF LOTOS 

1.1 Background 

After several years of development (from 1981 to 1984), a draft proposal for the syntax and 
semantics ofLOTOS [9] was produced by ISO FDT Subgroup C in March 1985. Currently, this 
proposal is undergoing minor revisions. A provisional LOTOS Tutorial has also been provided 
[12]. 

LOTOS derives froin the seminal work of Milner who describes a Calculus for 
Communicating Systems (CCS) [15]. It is based on a modification of this formal mathematical 
calculus, referred to as CCS*. Data structures and value expressions (ie language expressions 
that describe data values) in LOTOS are represented in the same way as in ACT ONE - an 
abstract data type language described by Ehrig et. al. [6]. It should be noted that the currently 
available ISO draft proposal document [9] does not describe ACT ONE, but gives a self­
contained though somewhat turgid description of CCS*. 

An informal introduction to highlight some of the important CCS* concepts now follows in 
· 1.2 to 1.7. This introduction also serves to describe LOTOS, in that the concepts defined in 
CCS* apply directly to LOTOS, and the way in which these concepts are represented in LOTOS 
differs only slightly from the CCS* representations. Some of the main differences are discussed 
in 1.8. 

It should be mentioned that LOTOS bears a strong resembelance to CSP developed by Hoare 
[8], since both are influenced by Milner's work. 

1.2 Processes and Interactions 

In CCS* processes are viewed as abstract entities which may interact with each other at 
abstract shared resources called interaction points. At such points primitive atomic synchronised 
interactions occur which are called events. 

1.3 Behaviour Expressions 

The behaviour of a process in CCS* is described by a so-called behaviour expression. This 
expression is primarily (but not exclusively) aimed at describing the way in which a process 
appears to its external environment. Essentially this means that a behaviour expression describes 
events and their temporal ordering at interaction points shared by a process and its external 
environment 

In general, a behaviour expression is built up by conjoining smaller behaviour expressions 
using operators described below. Hence, if B 1 and B2 are behaviour expressions, and one of the 
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legitimate CCS* operators, denoted by <op> is applied to B 1 and B2 to obtain B 1 <Op> B2, then 
this represents a new behaviour expression, say B3 which may in turn be conjoined by some 
operator to another behaviour expression to obtain yet another behaviour expression, etc. The 
final behaviour expression thus obtained represents the description of some process of interest to 
the specifier, and is shown in CCS* by the notation : 

p(xl, ... ,xn) := B 

Here, p is called a behaviour identifier which gives a name to the process being described. 
xl, ... ,xn are variables which occur in the behaviour expressions used to describe the process, 
and B is the actual behaviour expression which describes the process. The representation 
p(xl, ... ,xn) :=Bis called a process abstraction. 

By substituting value expressions El, ... ,En for xl, ... ,xn in B, a specific instance of the 
behaviour expression B is obtained which is denoted by p(El, ... ,En), and which is called a 
process instantiation. Such a process instantiation is itself a behaviour expression, which may be 
used as a building block in the construction of another, larger behaviour expression as described 
above. 

1.4 'Atomic' Behaviour Expressions 

At the lowest level of the aforementioned essentially recursive procedure to construct 
behaviour expressions, two 'atomic' building blocks for constructing behaviour expression are 
found, namely the behaviour expression stop, and a part of a behaviour expression called an 
action (or event offer) denotation. 

The appearance of stop in a behaviour expression, B, signifies that the process described by 
B terminates at the point where stop is encountered. Of course, B may simply be a behaviour 
expression which has been conjoined into a larger behaviour expression, say B', so that the 
appearance of stop in B need not necessarily denote a point where the process described by B' 
terminates. Whether this is so or not will depend on the operators used to incorporate B into B', 
as well as on the other behaviour expressions which are incorporated into B'. 

An action denotation is used to indicate the potential occurrence of an event. Such a 
denotation consists of a label, representing an interaction point, followed by zero or more value 
expressions, each preceded by an exclamation mark symbol. For example : 

ip !expAl !expA2 

is an action denotation with label ip representing some interaction point and with exp A 1 and 
expA2 being value expressions. The way in which the potential event represented by this action 
denotation actually occurs is now discussed. 

1.5 Process Synchronisation 

Suppose the action denotation given above appears in the behaviour expression of a certain 
process (say A), and that another action denotation : 

ip !expB 1 !expB2 

occurs in the behaviour expression describing another process (say B). If the value of expAl = 
the value of expBl and the value of expA2 = the value of expB2, then a matching (event) offer is 
said to have occurred at the interaction point labelled by ip. The action denotation appearing in 
A's behaviour expression signifies that A will wait at this point until a matching offer is made by 
some other process (ie B in the example at hand). When this occurs, then both processes 
involved continue to function, each possibly waiting at the next point at which an action 
denotation appears in its respective behaviour specification. 
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1.6 Input/Output Representation 

At first sight it may appear that an action denotation as described above is simply a 
mechanism for describing process synchronisation. This is indeed one of its uses, but seen in 
conjunction with CCS* operators, it may also be used to describe more complex interactions. To 
··describe such interactions the action-prefix operatof' (denoted by ;) and the choice operator 
(denoted by[]) are now considered. 

If a is an action denotation and B is a behaviour expression, then a;B is a behaviour 
expression which describes a process behaving exactly like the process which B describes, but 
only after the action denotation a has received a matching offer. 

If Bis the set of behaviour expressions {Bl, B2, ... ,Bn}, then 

Bl [] B2 [] ... [] Bn 

is a behaviour expression which is identical to a non- deterministically chosen element of the set 
B. Note that an alternative way of writing this expression is by using the so-called summation 
operator ( !. ), applied to B to get !.B. 

Suppose now that xis a variable which can assume values over a given domains= {sl, 
s2, ... ,sn}. (in CCS* terminology xis said to have the sorts.) 

The behaviour expression ip!sl;[sl/x]B describes a process which waits for a matching offer 
of value s 1 at interaction point ip, and then behaves as described by the behaviour expression B 
in which all occurrences of x are substituted by sl. (This substitution is expressed by the [sl/x] 
notation.) Suppose that a process is meant to input a value for x at the interaction point ip, and 
then proceeds to function as described by the behaviour expression [si/x]B if the value of x 
turned out to be si (i = 1, ... ,n). This may be expressed in CCS* as: 

ip!sl;[sl/x]B [] ip!s2;[s2/x]B [] ... [] ip!sn;[sn/x]B 

This is clearly a rather cumbersome way of saying that a process must input a value for x, 
substitute this value for all occurrences of x in the behaviour expression B, and then behave as 
described by B. CCS* allows for a neater, but equivalent notation, namely ip?x:s;B. This is an 
example of a so-called extended action-prefix expression. 

1.7 CCS* Operators 

Apart from the action-prefix operator and the choice operator discussed above, CCS* allows 
for the following other operators to be applied to behaviour expressions : parallel composition 
(denoted by I), disabling (denoted by [> ), restriction (denoted by\), relabelling, and guarding. 
These are now informally described. 

Consider two behaviour expressions B 1 and B2. B 1 I B2 is a behaviour expression which 
describes a process where the processes described by B 1 and B2 run independently and in 
parallel to one another. This means that the order in which subexpressions of B 1 and B2 are 
interleaved cannot be stated a priori. However, the alleged independence of the processes 
described by Bl and B2 mentioned above must be qualified by the fact that they also will 
synchronise under the following circumstances : if the behaviour of the processes interleave in 
such a manner that at some point they are both ready to interact with the same event, then it is 
assumed that the interaction takes place (since this state of affairs implies that a matching event 
offer has occured). From the point of view of the environment external to these two processes, 
the interaction is not directly observed, so that the event that occurs is regarded by the 
environment as a so-called internal event (denoted by i). 

B 1 [> B2 is a behaviour expression which describes a 'Process which functions exactly like 
the process described by B 1, unless a matching offer occurs which starts B2 off. If this happens, 
then the process associated with B 1 immediately halts (ie is disabled) and the process described 
by B2 continues to function to its termination. 

Suppose Bl is a subexpression in a larger behaviour expression B2. Suppose too that A is a 
set of labels denoting interaction points where interactions to B 1 's external enviromnent occur, 
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but which are not part ofB2's external environment. These interaction points and their associ~ted 
labels are said to be hidden from B2. Such hiding is shown by means of the restriction operator 
applied to B2 and A thus : B2\A. 

Frequently it is necessary to relabel the interaction points labelled within a behaviour 
expression. Suppose S is the relabelling function. Then Bl[S] is the behaviour expression 
obtained from B 1 by relabelling each label as per S. 

Finally, suppose Eis some boolean expression. The behaviour expression [E] -> Bl means 
that the associated process stops if E is false, and is described by B 1 if E is true. 

Parentheses are used to associate behaviour expressions with their appropriate operators, but 
may be omitted if allowed by a priority ordering defined on operators as follows : (The ordering 
is from highest to lowest priority) restriction and relabelling, action-prefix, guarding, 
choice-composition, parallel-composition, and finally disabling. 

Hence, for behaviour expressions Bl, ... ,Bn, the following holds : (Bl I B2) [> (B3 [] B4) 
is equivalent to B 1 I B2 [> B3 [] B4. 

1.8 LOTOS 

The LOTOS syntax is described in [9] in terms of BNF notation. Syntactically and 
semantically the language constructs closely parallel representations used in CCS*. Some 
important differences are now described. 

The enable operator (denoted by >>) is introduced at a lower priority than disabling. If 
applied to two behaviour expressions B 1 and B2, then B 1 >> B2 means that once the process 
that Bl describes has terminated successfully (which is denoted by the special process 'exit'), 
then the process that B2 describes will begin. 

The equivalent of the CCS* I operator is a II symbol in LOTOS. However, LOTOS also 
allows for operators which lock out the possibility of synchronisation at selective gates. If these 
gates are al,a2, ... ,an, then the operator l[al,a2, ... ,an]I may be used. If synchronisation is 
excluded at all gates then the operator Ill is allowed. Note that these latter two operators imply 
non-determinism in the following sense : if two processes are in a potentially synchronising 
position (ie both prepared to interact through a mutually shared gate with the same event) and the 
environment offers that event at that gate, then one of the processes (chosen 
non-deterministically) will interact, and the other will not 

Interaction points in LOTOS are referred to as gates. One of the syntactically admissible 
forms of a process abstraction in LOTOS appears as follows : 

p[al, ... ,an](xl:tl, ... ,xm:tm) := B 

where al, ... ,an are gates at which interactions occur, and xl, ... ,xm are variables occurring in the 
associated behaviour expression indicated above by B. The variables xl, ... ,xm have sorts 
tl, ... ,tm respectively. A process instantiation for this process is p[al, ... ,an](El, ... ,Em), where 
El, ... ,Em represent value expressions replacing corresponding occurrences of xl, ... ,xm in the 
associated behaviour expression. Hence LOTOS differs slightly froJD CCS* in its representation 
of process abstraction and process instantiation, in that the gates are explicitly shown in LOTOS, 
while the corresponding labels do not appear explicitly in the equivalent CCS* expression. 

Note that the parenthesised parts of the above representations are optional so that a process 
abstraction may also appear as p[al, ... ,an] := B, with the corresponding process instantiation 
being p[al, ... ,an]. Process abstractions and process instantiations may also be more complex 
than those given above, but these forms are not discussed here. 

LOTOS requires that all sorts, operations, equations be rigorously 'declared'. Loosely 
speaking LOTOS may be said to be 'strongly typed', in that the sort of all variables must be 
declared, together with operations which may be performed on these sorts. These matters are not 
dealt with in detail here, and while they are fully specified syntactically in the relevant draft 
proposal [9], the semantic explanation is given in [4]. However, earlier LOTOS proposals 
[10,11] will provide an informal insight as to how typing proceeds. 

Other syntax requirements in LOTOS should be deducible from the example specification in 
3. below. Note, for example, the occurrences of so-called local definition expressions, which 
are in actual fact process abstractions preceded by the keyword 'where'. These process 
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abstractions define the process instantiations which occur 'locally' in a higher level process 
abstraction. 

Note that comments in LOTOS are contained within the symbols (* and *). 

2. A MODEL OF THE RJE SYSTEM 

The RJE system to be specified is described by a process abstraction with behaviour 
identifier RTX. RTX consists of a number of communicating processes physically located in a 
hardware device known as an RPAD. The RPAD operates in under control of a (possibly remote) 
device called the network administrator (NA), which configures each RPAD in an X.25 network, 
gathers statistical data, enables and disables ports, etc. For the present purposes, a process within 
RTX will be posited which deals with most of the messages from the Network Administrator. It 
will be described by the process abstraction with behaviour identifier NA. 

Two other processes within RTX are relevant to the present specification. The first is device 
manager which interfaces to a so-called X780 device. (Such a device may be any IBM 2770, 
2780, 3770, 3780, 3740 or equivalent device emulating the BSC transmission protocol.) This 
process will be described by a process abstraction with behaviour identifier RDM. The second 
process is a 3305 transport handler, which is described by a behaviour abstraction with 
behaviour identifier RTH. (cf. [7] for a description of the 3305 protocol.) 

The specification identified as RTX _ SPEC describes how the processes NA, RDM and RTH 
interact with each other, as well as with their external environments. The single gate through 
which RDM and RTH interact is designated by b in the specification. RDM interacts with RTX's 
external environment through two gates designated a and na. RTH interacts with RTX's external 
environment through the single gate designated by c. NA also communicates with RTX's 
external environment through gate na. These gates and their environments are schematically 
shown in figure 1. Note that the fact that the NA interacts with other RTX processes in the actual 
implementation does not materially affect the present specification. 

~a 

I 

RTX 

NA 

RDM b~c 

figure 1 

XPH 

X.25 Network 

RDM interaction through gate a is to the X780 device which communicates with a (remote) 
peer across an X.25 network using the BSC interface provided by the RPAD. Hence, the 
specification of the interactions at gate a amounts to a specification of the BSC protocol. Note that 
from an implementation point of view, a process is needed to assemble the serial incoming 
message-stream from the device into data structures which RDM accepts and, conversely, to 
serialise RDM's output to the device. This process is not relevant in the present specification. 

RDM interaction through gate na only concerns two Network Administrator commands, 
namely those which enable and disable communication through gate a. Other interactions through 
this gate (relating for example to requests for billing or statistical data) do not impinge on the 
overall communication process, and may essentially be viewed as being handled independently 
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and in parallel to interactions at other gates. These interactions are dealt with by the process NA. 
RTH interaction through gate c is to the so-called XPH process, the X.25 packet handler 

process which ensures that messages received from RTH are appropriately translated into X.25 
packets and sent to the X.25 network, and that X.25 messages received from the network are 
passed appropriately to RTH. XPH therefore provides the usual network services to the 3305 
transport handler, RTH, and is not further specified below. 

It should be noted that when the specification mentioned below is implemented, several 
implementation issues will need to be addressed. In particular, the set of peer X780 devices to 
which a given device can connect across the X.25 network has to be decided upon, and 
parameters which characterise the way in which communication is to take place may also have to 
be provided. 

Hence, a device may be configured to connect in a so-called autocall mode, meaning that it 
always uses the same connection parameters relating to such matters as which application is to be 
accessed, whether the call will be reverse-charged or not, etc. Alternatively, the device may be 
configured to send a so-called Call Request Block (CRB) which prescribes what these parameters 
should be for a specific connection. The temporal ordering of messages between processes in 
general, and through gate a during connection establishment in particular, will differ according to 
which configuration option is used. In the specification below, an autocall configuration for the 
device is presumed. 

Furthermore, the way in which a device connects to an application may vary. In some cases, 
the connection will always be to the same remote port address which offers the application. In 
this case, the application is designated as a mapped application. On the other hand, a device may 
be connected to any one of a set of ports offering the desired application. In the latter case the 
application is referred to as a session application. Which applications are to be characterised as 
mapped and which are to be considered as session applications is a configuration issue. Part of 
the function of RTH is to implement a reasonable algorithm to select an initial port offering a 
desired session application during connection set-up phase, and to re-select a port if a previous 
connection attempt was unsuccessful. Since RTH is not specified at a detailed level below, the 
matter of whether the application requested by the autocall device is of type session or mapped is 
not relevant in the present partial specification of RTX. A full specification of K(H would, 
however, have to accommodate these alternative application categories. 

3. A PARTIAL LOTOS SPECIFICATION OF RTX 

(***************************************************************) 
(* Two type definitions are given below. Each conform strictly*) 
(* to LOTOS syntax. *) 
(* The first (process_messages) defines five groups of *) 
(* messages which may occur during interactions. *) 
(* The second (process operations) defines the various *) 
(* messages which may occur, categorised by sort-group to which*) 
(* these messages belong. *) 

(* Note : LOTOS type syntax also provides for the 
(* 

( * 
(* 
(* 

(* 
(* 
(* 

semantic definition of operators, using the 

type definition for equations. Hence one could 
define operations such as PUSH and POP on various 
sort categories. This is part of ACT ONE. However, 
no such definitions have been attempted here, 
since such operations were not required for the 
present specification. 

*) 

*) 
*) 

*) 
*) 

*) 

*) 

*) 

(***************************************************************) 
type process_messages 

is sorts dev_msg, 

rth_msg, 
xph_msg, 

na_msg, 

dev_int_msg 
endtype 
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type process_operations 

is opns 
eat, enq, 

ackO : -> dev_msg 

connect request, 
connect_confirm, 

disc_ind, 

disc_req : -> rth_msg 

clear_ind, 

clear_req -> xph_msg 

bill_req, 

bill_respond, 

stats_req, 
stats_ respond, 

disable, 
enable : -> na_msg 

finish_enq, 

finish_eot, 

finish error 

endtype 

-> dev_int_msg 

(***************************************************************) 

(* Abstract : RTX 

(* This process allows for the interleaving of two major 

*) 
*) 

(*subprocesses.The first (NA) deals with all routine messages*) 

(* from the network administrator. The second reponds *) 
(* appropriately to 'stray' messages at gates a and c, *) 

(* recursively returning to process RTX. However, it is also *) 

(* prepared to engage in an enable or disable event at gate na,*) 

(* thereby transforming to an corresponding enabled or disabled*) 

(* state. *) 

(***************************************************************) 
process RTX[a,c,na] 

:= 
NA[na] 

111 

( ((XPH_EVENT[c] [] DEV_EVENT[a]) >> RTX[a,c,na)) 
[] 

(na!disable; RTX_DISABLED[a,c,na]) 
[] 

(na!enable; RTX_ENABLED[a,c,na]) 

where 
(**************************************************************) 
(* Abstract : NA *) 

(* This process is partially specified. *) 

(* It suggests how responses would be made for billing and *) 

(* statistics information, requested at the na gate. *) 

(**************************************************************) 
process NA(na] 

:= 

( (na!bill_req; na!bill repond; exit) 
(] 

(na!stats_req; na!stats respond; exit) 
(] 

» NA [na] 
endproc (*NA*) 
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(***************************************************************) 
(* Abstract : XPH_EVENT *) 

(* This process deals with xph messages which occur before *) 
(* RTX is ready to connect. *) 

(***************************************************************} 
process XPH EVENT[c] 

c?xph:xph_msg; 
([xph clear_ind] -> exit 
[] 

[xph <> clear ind] -> c!clear_req; exit 

endproc (* XPH_EVENT *) 

(***************************************************************) 
(* Abstract : DEV EVENT *) 

(* This process deals with device messages which occur before *) 
(* RTX is ready to connect. *) 
(***************************************************************) 
process DEV_EVENT[a]) 

:= 
a?dev:dev_msg; 

([dev = eot] -> exit 
[) 

[dev <> eot] -> a!eot; exit 

endproc (* DEV_EVENT *) 

(***************************************************************) 
(* Abstract : RTX DISABLED 
(* When RTX has been disabled, it must receive an enable 
(* message from the gate na before any connection may be 
(* established. Messages from gates a and c which arrive 
(* before this point are dealt with appropriately. 

*) 
*) 
*) 
*) 
*) 

(***************************************************************) 
process RTX_DISABLED[a,c,na] 

:= 
(na!enable; RTX_ENABLED[a,c,na)) 
[] 

(XPH_EVENT[c) [] DEV_EVENT[a]) >> RTX_DISABLED[a,c,na] 
endproc (* RTX_DISABLED *) 

(***************************************************************) 
(* Abstract : RTX ENABLED *) 
(* Once RTX has been enabled its future description is given *) 
(* by the processes ROM and RTH functioning in parallel and *) 
(* sychronising with each other at gate b (which is hidden *) 

(* from the envirnoment of RTX). However, a disable event *) 

(* at gate na interrupts these processes, and places RTX back *) 
(* into a disabled state. *) 
(***************************************************************) 

process RTX_ENABLED[a,c,na] 

(RDM[a,b,na] I [bl I RTH[b,c])\[b] 
[> (na!disable; RTX_DISABLED[a,c,na]) 

where 
(**************************************************************) 

(* Abstract : ROM *) 

(* RDM applies the choice operator to the two processes *) 

(* ROM CALLING (which deals with calls issued at gate a) *) 

(* and RDM CALLED (which deals with a call to gate a *) 

( * from gate b) . ) 
(**************************************************************} 
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process RDM[a,b,na] 
:= 
RDM_CALLING[a,b,na] [] RDM_CALLED[a,b,na] 

where 
(**************************************************************) 
(* Abstract : RDM_CALLING *) 
(* Here the first message at gate a is rejected (eot *) 
(* at gate a if appropriate), and control is passed back to *l 
(* ROM, unless an enq is issued at gate a. *l 
(* In the latter case, a connect_request command is issued *) 
(* at gate b, and CONNECT is in_voked. *l 
(**************************************************************) 
process RDM_CALLING[a,b,na] 

a?dev:dev_msg; 
( 

) 

[dev eot] -> RDM[a,b,na] 
[] 

[dev enq] -> b!connect_request;CONNECT[a,b] 
[] 

[dev <> enq and dev <> eot] -> a!eot; RDM[a,b,na] 

where 
(**************************************************************) 
(* Abstract : CONNECT 
(* 
(* 

This process consists of two subprocesses which 
synchronise through an internal gate (hidden from the 

*) 
*) 
*) 

(* environment) called int. The first subprocess is called *) 
(* DEV_MSG and is described below. The second subprocess *) 
(* may either interact with an event at gate band some *) 
(* time later synchronise with an internal message from *) 
(* DEV_MSG sent through gate int, its subsequent behaviour *) 

(* then being described by CONNECT_RESPOND; *) 

(* However, the second subprocess might (alternatively) *) 
(* be informed via gate int (before interaction through *) 
(* gate bl that an error condition has occured. It then *) 
(* rejects the next message from RTH (passed through gate *) 

( * bl and returns to RD_M. *) 

(**************************************************************) 
process CONNECT[a,b] 

:-
( DEV_MSG[a,int] I [int] I 

( (b?rth:rth_msg; 
int?fin:dev_int_msg; 
CONNECT_RESPOND[a,b] (rth,fin) 

) 

[] 

(int!finish_error; 
b?rth:rth_msg; 
([rth <> disc_ind] -> b!disc_req; RDM[a,b,na]\[na] 
[] 

[rth disc_ind] -> RDM[a,b,na]\[na] 

) \[int] 
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where 
(***********************************************~**************) 
(* Abstract : DEV_MSG *) 
(* This process describes the generation of an arbitrary *) 
(* string of enq and eot messages of arbitrary length. *) 

(* The string describes the sequence of interactions at *) 
(* gate a which occur before synchroni,ation at gate int *) 
(* becomes possible. *) 

(* If the string length is O, or if the string ends in an *) 
(* enq, then a finish_enq message is used to synchronise at *) 
( * gate int • *) 

(* If the string ends in an eot, then a finish_eot message *) 
(* is used to synchronise at gate int. *) 
(* If, at any point, a message·other than eot or enq is *) 
(* issued at gate a, then the string generation process *) 
(* stops and a message finish_error is used to synchronise *) 
(* at gate int. *) 

(* Note that a subprocess DEV_MSGl accounts for most of the *) 
(* description of DEV_MSG. *) 
(* Note also that after interaction at gate int, this *) 
(* process deadlocks. *) 
(**************************************************************) 
process DEV_MSG[a,int] 

(int!finish_enq;stop) 
[] 

DEV_MSGl[a,int] 

where 
process DEV_MSGl[a,int] 

:= 
a?dev:dev_msg; 
([dev = eot] -> (DEV_MSGl[a,int] 

[] 

(int!finish_eot;stop) 
[] 

[dev enq] -> (DEV_MSGl[a,int] 
[] 

(int!finish_enq;stop) ) 
[] 

[dev <> eot and dev <> enq] -> (a!eot;int!finish_error;stop) 
endproc (* DEV_MSGl *) 

endproc (* DEV_MSG *) 

(***************************************************************) 
(* Abstract : CONNECT_RESPOND *) 
(* This parameterised process must be invoked with specific *) 
(* values for rth and fin of the specified sort. If fin has *) 
(* value finish~enq, and rth has value connect_confirm then *) 
(* an ackO is issued at gate a and the process is further *) 
(* described by DATA __ TX. In all other cases, appropriate *) 

(* disconnection action is taken before returning to RDM. *) 

(***************************************************************) 
process CONNECT_RESPOND[a,b) (rth:rth_msg,fin:dev_int_msg) 

:= 
([fin= finish_enq) -> 
([rth connect_confirm) -> a!ackO;DATA_TX[a,b] 
[) 

[rth = disc_ind) -> a!eot;RDM[a,b,na)\[na) 
[) 

[rth <> connect confirm and rth <> disc_ind) -> 
((a!eot;exit) 111 (b!disc_req;exit))>> RDM[a,b,na]\[na] 
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) 

[] 

([fin= finish_eot or fin= finish_error] 
([rth <> disc_ind) -> b!disc_req; RDM[a,b,na]\[na) 
[] 

[rth 
) 

disc_ind] -> RDM[a,b,na]\[na] 

where 
(**************************************************************) 
(* Abstract : DATA_TX 
(* This process is not specified. 

*) 

*) 

(* It should describe the interactions which occur during *) 
(* the data transfer phase once a connection has been *) 
(* established. *) 
(**************************************************************) 
process DATA_TX[a,b] 

:= 
.......... 

endproc (* DATA TX *) 
endproc (* CONNECT RESPOND *) 
endproc (* CONNECT *) 
endproc (* RDM_CALLING *) 

(**************************************************************) 
(* Abstract : RDM CALLED *) 
(* This process is not specified. *) 
(* It should describe the interactions which occur in order *) 
(* to deal with an incoming call to the device. *) 
(**************************************************************) 
pr~cess RDM_CALLED[a,b,na] 

:= 

endproc (* RDM CALLED*) 
endproc (* RDM *) 

(**************************************************************) 
(* Abstract : RTH *) 

(* This process is not specified. *) 
(* It should describe the interactions which occur at gates *) 
(* band c - ie the inputs and outputs to the transport *) 
(* handler. *) 

(* Note that any action denotation of the form b!rth *) 
(* which occurs in this process should have a counterpart *) 
(* action denotation of the form b?rth:rth msg, or b!rth *) 
(* in the above RDM processes. *) 

(**************************************************************) 
process RTH[b,c] 

:= .......... 
endproc (* RTH *) 
endproc (* RTH *) 
endproc (* RTX_ENABLED *) 
endproc (* RTX *) 
endspec 
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4. VERIFICATION l·SSUES 

Verification is generally understood to mean the procedure of proving that some predicate 
(called a post-condition) will hold at the end of a program given that some other predicate (called 
a pre-condition) holds at the start. Indeed, if this proof can be carried out successfully, then an 
enunciation of the pre-condition and post-condition, together with a qualifying statement about 
conditions under which the program terminates, can be regarded as a correct specification of the 
program. These matters represent some of the most challenging aspects of Computer Science, 
and have been intensively studied, resulting in several systems which automate the proof 
procedure to prove sequential programs correct. (cf. [13,17]) The proof procedure becomes 
considerably more difficult in the case of concurrent programming, but studies of how 
verification may take place, and even be automated, in these cases have proceeded apace. (cf. 
[14,1]) 

However, a specification of a system in LOTOS is clearly different from a specification in the 
aforementioned sense, even if at some philosophical level the two types of specification are 
equivalent. (There seems, for example, to be some underlying commonality between the Modal 
Logic described by Manna and Pnueli [3] and the semantics of a LOTOS specification.) A 
LOTOS specification is in fact a specification of the temporal ordering of events at gates within a 
system, together with a description of what these events are. If a system is implemented in such a 
way that it exhibits the same behaviour towards its external environment (ie at its gates) as is 
prescribed by a LOTOS specification of the system, then the implementation may be deemed to 
be correct. Mechanisms for proving correctness at this level is not what is meant by verification 
in the present context. Rather, what is sought is a means of verifying that a LOTOS specification 
itself actually specifies what was intended. Indeed, the terminology used by Hoare [8] is perhaps 
somewhat clearer. He distinguishes between the definition of a system, (for example a CSP or 
LOTOS definition) the specification of the defintion (in terms of pre- and post- conditions) and 
the verification that the definition conforms to the specification. Of ten the specification is in terms 
of a statement about the nature of the so-called derivations (Hoare calls them traces) which 
characterise the system. 

A system of inference rules are proposed in CCS* based on so-called action predicates. This 
provides an approach to identifying and generating derivations of a system defined in LOTOS. 
An example of an action predicate is the following statement : 

The process described by Bl (a behaviour expression) interacts at an interaction point 
labelled g by virtue of a matching offer g!vl , .. . ,vn arising at the interaction point, and 
then subsequently behaves as prescribed by the behaviour expression B2. 

This action predicate may clearly be true or false, and is abbreviated to the notation : 

Bl -gvl. .. vn-> B2 

Note that vl, ... ,vn are values (eg 8, 10, 'string' etc.) and not value expressions (eg 4*2, x+5, 
etc.). gvl.. .. vn is called an experiment. 

An example of a CCS* inference rule, where a denotes some experiment and Bl, B2 and 
B2' are behaviour expressions, is the following : 

B2 -a-> B2' 
B 1 [> B2 -a-> B2' 

This states that if the action predicate B2 -a-> B2' is true, then the action predicate Bl [> B2 -a-> 
B2' is true. The inference rule in effect defines the semantics of the interrupt operator, [>. As an 
example of how this inference rule may be used, consider the behaviour abstraction 
RDM _ ENABLED[a,b,na] given in the LOTOS specification in 3. above, where the interrupt 
operator is utilised. Appropriate translation of this LOTOS specification to CCS* (the translation 
procedure is described in [9]) will show that ROM ENABLED describes a process which is 
always prepared to interact at the na gate with the event 'disable'. Should such an interaction be 
offered, the specification states that ROM ENABLE will henceforth be described by the 
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behaviour abstraction RDM DISABLED, ie (using the notation [[BJ] to designate the translation 
of the LOTOS expression Bto its corresponding CCS* expression) : 

[[ROM _ENABLED]] -na!disable-> [[ROM_ DISABLED]] 
since: 

[[na!disable;RDM _ DISABLED]] -na!disable-> [[RDM _ DISABLED]] 

This verification procedure may be forward-propagated by submitting another experiment to 
[[RDM _ DISABLED]], deriving the resulting behaviour expression, and using the inference rules 
to draw further conclusions about what holds by virtue of the sequence of experiments. The 
sequence of experiments is referred to as a derivation. Hence, by examining a variety of 
derivations one may investigate whether they lead to legitimate (ie expected) behaviour 
expressions or not. 

Because all concepts and inference rules in CCS* have been formally defined and because 
there is a formal relationship between CCS* and LOTOS, there appears to be a firm basis for 
formal verification of systems defined in LOTOS. Such verification would seek to establish that 
the set of derivations for a given definition conforms to expectations. 

Note, however, that these are basically reachability properties which have also been studied 
from the finite state-machine point of view [18]. LOTOS does not currently provide for the 
expression and verification of fairness and liveliness properties ( expressible in modal logic [3]), 
but these issues are being researched [16]. However, LOTOS does provide for the expression of 
non-determinism, a theme not emphasised in this paper. Verification of non-deterministic 
systems defined in LOTOS would involve examining not only the set of possible derivations, but 
also the set of those derivations which could also be refused by the system, by virtue of some 
non-deterministically chosen action. 

5. CONCLUSION 

It is interesting to note that, to date, LOTOS has been primarily used as a specification 
mechanism. (cf. [2] for a specification of the OSI Transport Service, and [4] for a specification 
of a Presentation Service.) These studies demonstrate the language's expressive power, its 
modularity and conciseness, all of which properties were specifically aimed for by LOTOS' 
designers. 

In [2], mention is made of a project at Twente University to develop a number of LOTOS 
tools, including a syntax checker, single-step simulator, trace checker, specification integrator, 
test generator and possibly a specification compiler. At Pretoria University a syntax checker has 
been written [19] and progress is being made towards a trace generator. 

It is to be anticipated that the future availability of such tools will stimulate a shift in the 
research focus from specification to verification issues, in which the formal well-defined 
character of LOTOS will play a central role. 
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