
ISSN 0254-2757

Volume 4 Number 3 October 1986

J.Mende

S. Bennan and
L. Walker

K.G. van der Poel and
I.R. Bryson

P.J.S. Bruwer and
J.M. Hattingh

P. Machanick

S.P. Byron-Moore

R.F. Ridler

C.W. Carey,
C. Hattingh,
D.G. Kourie,
R.J. van den Heever and
R.F. V erkroost

D.G. Kourie

Laws and Techniques of Information Systems

· A High-Level Interface to a
Relational Database System

Protection of Computerised Private Information:
A Comparative Analysis

Models to Evaluate the State of Computer Facilities
at South African Universities

Low-Cost Artificial Intelligence Research Tools

What's Wrong with CP/M?

In Praise of Solid State Discs

The Development of an RJE/X.25 Pad:
A Case Study

A Partial RJE Pad Specification to Illustrate LOTOS

1

7

13

21

27

33

39

45

59

BOOK REVIEWS 6, 20

An official publication of the Computer Society of South Africa and of
the South African Institute of Computer Scientists

'n Amptelike tydskrif van die Rekenaarvereniging van Suid-Africa en van
die Suid-Afrikaanse Instituut van Rekenaarwetenskapl.kes

Annual subscriptions are as follow~:

Individuals
Institutions

SA US UK ·
RlO $ 7 £ 5
-Rl5 $14 £10 .

Mr P.P. R.oets
NR4M$
CSIR
P ~O. Sox- 39·5
Pertoria, 00·01

Professor S·.H. v,on Solms
Dep.art.ment of Computer Science
Rand Afrikaans University
Auckland Park
Johannesburg, 2001

P.rofessor M.H .. WUUams
Departme;nt of Comput.er Science
Herriot-Watt Univers.ity, Edinburgh
Scotland

Circulation and Production

. Mr C.S~M. Mueller .
Department of Computer Science
Univeirsity of the Witwatersrand ·
1 Jan Smuts Avenue ·

· Johannesburg, 2001 ·

. Quzstfones lnformat.ice is prepared by the Computer Science Dep.a-rtment of the University
of the Witwatersrand and printed by Printed Matter, far the Computer . Society of South

Africa and the South Afri~n Institute of Computer Scientists.

WHAT'S WRONG WITH CP/M?

S.P. Byron-Moore
Department of Computing Science

University of Zimbabwe
Harare

Zimbabwe

Trends in operating systems are examined in the light of advances in computer hardware. Consideration is given to
the desirability of a good, up-to-date single-user operating system. The specification and implementation of such a
system is discussed.

1. INTRODUCTION

1 .1 Software

At the present time, most discussions about operating systems include mention of UNIX, a
multi-user operating system developed by Bell Laboratories in the early 1970's. The aim of its
designers was to "create a computing environment ... where they themselves could comfortably
and effectively pursue their own work - programming research" [1]. Due to the management
policies of Bell Laboratories, UNIX has only recently become commercially available, althougth
it has been widely used by Bell and some universities since 1971. This system is being proposed
by many authors and salesmen as the answer to everyone's dreams - "the operating system of the
future", for both commercial and research usage.

1 .2 Hardware

In the 16 years since UNIX was first conceived, advances in computer hardware have
changed the face of the computer industry. Microcomputers have become common and due to
their low price, many businesses, as well as researchers and hobbyists, have invested in small
and often single-user systems. The introduction of microcomputers opened up new sales markets
and 'price wars' raged as manufacturers competed for this lucrative trade. Consequently prices
for hardware such as random-access memory and fast access, high capacity storage devices such
as Winchester disc drives have been lowered considerably. Increasing miniaturisation of
components and improved technology have allowed computer firms to produce portable (or at
least transportable) computers, which have rapidly gained an expanding market.

1.3 The Future

With the reduction in prices of hardware for microcomputers, many researchers and business
users are now able to have dedicated microcomputers sitting on their desks, which satisfy most
of their computing needs. This is a rapidly expanding market - "Future Computing", a US
research group, predicts that portable computer shipments alone will exceed 1 million units in
1988 [2]. More and more microcomputers are being used as stand-alone machines, with the
capability of communicating with larger computers via networks. Many users have become
accustomed to having a microcomputer for their own personal use, without having to share its
facilities with other users. Given the current and anticipated increase in the number of personal
computers, many for single-user applications, it seems ironical that UNIX, a large multi-user
operating system, born in the age of mainframe and minicomputer dominance, should be coming
to prominence. ·

33

2. SINGLE-USER COMPUTER SYSTEMS

2.1 Advantages

The main advantages of single-user operating systems compared to multi-user operating
systems are:

• small size
• rapid response time
• versatility

A single user operating system does not have to include the security and accounting features
which are necessary in a multi-user system, consequently the operating system is of a smaller
size. This means that operating system loading time is reduced, execution time is lessened and
more memory space is left free for the user.

System versatility is an important advantage of a single-user system. The user of a dedicated
microcomputer can tailor his system to his own requirements and preferences. Like the owner of
a bicycle, who adjusts his machine for his personal use, the user of a single-user system can
adapt this system for efficiency and ease of use. For example, the user may devote part of the
machine's memory space for usage as a disc emulator [4]. He may rename operating system
commands to provide the type of operating system interface he prefers [5]. He may set up a
menu-driven interface to the operating system. Such personalisation would be banned or
seriously frowned upon in a multi-user operating system. Here several users may have differing
requirements, so a user cannot be permitted to adapt the system for his own needs. Furthermore ,
users of a multi-user system, very reasonably, expect consistency from the system they are
using. Thus this type of system cannot be easily adapted.

When a computer is to be utilised in a single-user environment, a single-user operating
system is highly desirable since it can be more efficient than a multi-user operating system and is
far more easily adaptable to its user's tastes and needs.

2.2 Current Operating Systems

Most single-user operating systems currently available have their deficiencies. Perhaps the
most well known, CP/M 2.2 [6] is almost as old as UNIX. Its speed of disc access is painfully
slow and its directory structure does not accomodate high capacity discs. CP/M Plus [13]
supports bank switching to exploit extra memory and facilitates multi-record reads to speed disc
access, but it still has a single-level directory structure and is fairly difficult to implement.
MS-DOS 2.0 has a hierarchical directory structure and multiple sector buffers to speed disc
access but has a strange set of system calls, because it is a compromise between CP/M and
XENIX. It provides only a print spooler and not full concurrency.

Most operating system development work seems to be focused on multi-user systems.
UNIX, for example, has many nice features [9], which are desirable in an operating system.
Although UNIX is now being put on to microcomputers, albeit in a reduced form, it is still a
multi-user system, not appropriate to small single-user systems. Digital Research has recently
released Concurrent PC-DOS, a multi-user, multi-tasking operating system for 16-bit
microcomputers, but this occupies 156KB of memory and is fairly slow [7].

3. PROPOSED SYSTEM

3.1 General

Given that there is now, and will be in the future, an increasing number of single user
computer systems, we must consider what facilities are required in a modem single-user
operating system.

34

3.2 Structured Directory System

Owners of single-user machines have traditionally had limited disc storage available and have
been content to use a single level directory structure like that of CP/M 2.2. However, with the
price of mass storage devices dropping, users are tending to keep many more filenames on a
particular device. Since no user wants to see a hundred or more files displayed on the screen
when he requests a directory listing, the operating system needs to support a suitably structured
directory system in order to provide for fast and efficient location and retrieval of files.

A popular method for structuring the directory allows the user to set up a hierarchical file
system. This system has great advantages in a multi-user operating system since it facilitates easy
separation of different user's files. However, a hierarchical system can be rather confusing to
new or inexperienced users, who have some difficulty in navigating the tree structure.

An alternative method is to allow the user to divide a physical disc into a number of logical
discs, each with its own directory. This is conceptually easier for a non-professional computerist
to understand, but is not suitable for a user who wishes to store a number of long files. There is
also a tendency for space to be wasted, due to the fragmentation of the disc. Should our proposed
operating system include both of the above methods, and allow the user to set up his directories
as he prefers or is there some other structure which is ideally suited to a single-user environment?

3.3 Faster Disc Access

Slow speed of disc access is one of the major disadvantages of current operating systems.
Many systems read small blocks of information from disc in order to conserve memory space.
CP/M 2.2, for example, reads/writes one 128 byte record at a time. Many users have increased
their disc access speed under CP/M by adding code to their BIOS (the user configurable part of
CP/M) to perform multi-record reads/writes. CP/M Plus [14] includes a new operating system
function to do just this. As memory space is becoming less crucial, a modern operating system
should be able to transfer large amounts of data, in one go. Many modern floppy disc controllers,
for example, allow an entire track read/write. The operating system should also be able to cope
with the transfer of this amount of information.

With the increasing availability of memory, cache buffering is also a useful feature. One of
the good points of MS-DOS, is the provision of a user-specifiable number of buffers for disc
cacheing [15].

A disc track is normally divided into a number of sectors. The disc controller can only
read/write a complete sector. Due to the speed of rotation of the disc, after the controller carries
out a sector read/write, several more sectors may pass the disc head before the controller is ready
to carry out more I/0. For this reason, many operating systems provide for a "skew" factor for
disc I/0. CP/M, for example, has a standard skew of 6 sectors - this means that after reading
sector one, sector seven will be read, followed by sector 13, etc .. The size of the skew factor
depends on the capabilities of the han;lware and the operating system overhead. Normally, when
a skew factor is used, adjacent sectors on disc have contiguous numbering. With CP/M for
example, a file of length 3 sectors, may be stored in physical sectors 2,8 and 14. The operating
system has to map the logical sectors making up the file to the physical sectors on disc. This
transformation can be avoided by renumbering the sectors on the disc so that the controller reads
sectors numbered sequentially (i.e 1,2,3,4, ...), although sector n-1 and sector n will not be
physically adjacent on the disc. By renumbering in this way, operating system overhead is
reduced and the transfer of the discs to another computer system is made more straightforward,
since there is no need to know with what skew factor the disc was recorded.

3.4 Improved User Interface

The majority of operating systems now in use were written at a time when most computer
users were professionals and there was little emphasis on user-friendliness. Ritchie, for example,
states "Both input and output of UNIX programs tend to be very terse. This can be very

35

disconcerting, especially to the beginner" [10]. Menu systems are being written as add-ons to
many operating systems, for example NCR's menu driven interface to UNIX [3]. In the
department of computing science at the University of Zimbabwe, we have a menu-driven
interface to CP/M, which has been in use for three years for research work and for eighteen
months for teaching purposes. We have found it extremly useful as it removes the burden of
remembering a command set, reduces the amount of typing required and facilitates rapid
familiarisation with the system. All modem operating systems should provide support for a
menu-system as well as providing a command entry mode for experts who wish to avoid the
menu-system or carry out special tasks. There should also be an operating system utility to enable
the user to tailor his menus, to take full advantage of the single-user system's versatility.

3.5 1/0 Redirection

This is one of the strong points of UNIX - it allows the user to change easily the source of
input and destination of output of a process. This means that program writing can be made more
general, without concern for the final 1/0 devices. It is certainly a desirable feature in a modern
single-user operating system and is not too much of a problem to implement.

3.6 Pipelines

Pipes are another UNIX feature . They allow a process to communicate with another process
without having to set up and manage one or more temporary files. To implement pipes, the
operating system should include a protected buffer for the transfer of data and a scanning routine
to insert/remove data from this buffer. Pipes are invaluable if concurrency is allowed.

3. 7 Concurrency

The frustration of waiting for one job to finish before getting on with the next job is common
to most users of single-tasking systems. Concurrency is a desirable feature, but not if it
noticeably degrades system performance. Awalt [7], for example, claims a 29 percent
performance penalty when running two tasks concurrently (instead of sequentially), under
Concurrent PC-DOS.

By forcing the user, not the operating system, to specify the priority and/or weighting of any
processes that he runs concurrently, it seems likely that we can minimise the visibility of any
performance degradation. Possibly we should also limit the number of concurrent processes to
two, to avoid serious degradation.

Providing for concurrency inevitably imposes an added burden on the operating system,
which must protect one process from another and perform complex memory management
functions. A concurrent operating system will be much larger and more complicated than a
single-tasking system. However, this should not prove to be major problem with the continuing
reduction in the price of memory. We will probably see more and more users moving to a banked
memory system, which would allow transient parts of the operating system to be rapidly moved
to main memory.

Is it worth paying the penalty of supporting concurrency? A user may only want to run
concurrent processes on an occasional basis. He may never want concurrency or he may require
its use frequently. It seems that the best solution is to provide a separate operating system module
to handle concurrency. The user must specifically invoke this module if it is required, otherwise
the operating system acts as a single-tasking system.

3.8 Virtual Memory Handling

This is a very old idea, first used on mainframes in the early 1960's. The user sees no
limitation on the memory space available to him and if a program is too large for memory the
operating system is responsible for rolling-in and rolling-out code or data as it is required. From

36

the programmer's point of view this removes unnecessary limits on program size. It reduces
problems regarding the number of concurrent processes that memory can hold at one time. But it
does have its cost - a larger operating system size. Is virtual memory a desirable feature of a
single-user operating system for microcomputers now that more memory is becoming available
or does its processing overhead outweigh its advantages?

3.9 Other Considerations

The above discussion lists only the major design considerations for a new single-user
operating system. There are many other lesser features that are worth considering for inclusion.
For example, is it worth while providing an on-line help facility to explain the usage of operating
system commands; a type ahead buffer for the terminal input and a command line editor to
facilitate rapid command entry. Split-screen viewing is useful when a user wishes to perform a
subsidiary task. Discussion with a number of users would help to identify which additional
features are required.

No program should crash, but this is particularly important for an operating system. There
must be good error trapping and reporting facilities.

4. IMPLEMENTATION

4.1 Alternatives

It seems desirable that our proposed single-user operating system should be compatible with
CP/M 2.2, a well established and widely used single-user system, because:

• a large number of varied utilities have been developed for use under CP/M 2.2, many of
them in the public domain [11, 12J.

• many other CP/M utilities are available for moderate costs.
• there are many users of CP/M compatible operating systems(e.g. ConIX [18], RP/M [16],

MRS/OS [17], C/NIX [19]), as well as users of Digital Research CP/M. The source code
of CP/M 2.2, or a CP/M look-alike such as RP/M, MRS/OS can be obtained.

To maintain compatibility with CP/M 2.2 our alternatives are

• to enhance CP/M 2.2
• to write a new operating system compatible with CP/M 2.2

4.2 Enhancements to CP/M 2.2

Many of the enhancements, discussed in section 3, can be made to CP/M 2.2 without a great
amount of difficulty. However, this technique is rather like building a house and than adding
numerous extensions - the result is never as good as building the whole house in one operation.
It seems preferable to carefully design a new efficient operating system.

4.3 New operating system.

Since the source code of CP/M is available it is possible to write a new operating system,
which retains compatibility with CP/M by using the same system calls.

This new system should be written in a modular form, to make it portable to computers
having different processors and make it suitable for use on machines with either small or large
addressable memory. Advantages of this modular form include

• the straight forward selection of a subset of the operating system's facilities, depending on
the size and capabilities of the computer system and the needs and preferences of that

37

system's user. For example, the type ahead buffer mentioned in section 3.8, can only be
implemented in a machine with a hardware interrupt capability.

• the easy amendment of a module for a particular user's software requirements and
hardware configuration.

• the operating system may easily be separated into transient and resident portions for a
banked memory system.

Ideally, the new operating system should be written in a middle-level language. Assembly
code is unsuitable since it is processor dependent and we require our system to be easily
transportable. High-level language programs, although transportable, tend to produce
unnecessarily large code files, so a high level language should not be used. The writers of UNIX
attempted to avoid this problem by creating the language "C". Unfortunately UNIX is still not as
easily transportable as would be liked [8]. We propose that the new operating system should be
written in a macro language so that only individual small macros have to be rewritten to
implement the system on a machine with a different processor.

5. CONCLUSION

There is an increasing need for a good single-user operating system. Although there are a
number of sound multi-user operating systems available, most single-user systems are relatively
old and outdated. A modem single-user system is needed to fill this gap in the market. In section
3, we discussed some of the main design considerations for this new system. It is important that
the system be transportable to different processors, with small or large amounts of memory.
Ideally it should be available in the public domain.

REFERENCES

1. MD Mcilroy, EN Pinson, B A Tague, UNIX Time-Sharing System: Foreword, pp 1899-1904. The Bell
System Technical Journal., Vol 57 No 6 part 2 July-Aug 1978.

2. 0 Tucker, Joining a market on the move. pp6-8, Computing The Magazine, Dec 13 1984.
3. Tower System, Administration manual., NCR, Vols 1 and 2 Release 1.0 July 1983.
4. E Nisley, Spinning your own VDISK., pp 100-109, PC Tech Journal, Vol 3 No 3 Mar 1985.
5. D Fielder, the UNIX tutorial, pp 257-278, Byte magazine, Vol 8 No 9 Sept 1984.
6. CP/M 2.2 manual., Digital Research Inc 1979.
7. D Awalt, Concurrent PC-DOS, pp 45-54, PC Tech Journal, Vol 3 No 3 Mar 1985.
8. M Tilson, Moving UNIX to new machines, pp 266-276, Byte magazine, Vol 8 No 10 Oct 1983.
9. D M Ritchie K Thompson, The UNIX Time-Sharing System, pp 1905-1929, The Bell System Technical

Journal., Vol 57 No 6 Part 2 July-Aug 1978.
10. D M Ritchie, UNIX Time-Sharing System: A Retrospective, pp 1947-1969, The Bell System Technical

Journal., Vol 57 No 6 Part 2 July-Aug 1978.
11. SIG/M (Special Interest Group for Microcomputers, Amateur Computer Group of New Jersey), Inc. Box 97

Iselin NJ 08830. USA.
12. CPMUG (CP/M User's Group) 1651 3rd Avenue NYI0028. USA.
13. BR Ratoff, Implementing the Advanced Features of CP/M Plus, pp 26-29, Microsystems, Feb 1983
14. BR Ratoff, Implementing the Advanced Features of CP/M Plus: Part2, pp 70-72, Microsystems, Apr 1983.
15. W G Wong, MS/DOS : An Overview Part 1, pp 47-52, Microsystems, Mar 1984.
16. RP/M. Micro Methods. Box G Warrenton OR 97146. USA.
17. MRS/OS. OCCO inc. 16 Bowman lane Westboro, MA 01581, USA.
18. ConIX. Computer Helper Industries Inc. P.O. Box 680 Parkchester Station NY 10462. USA.

D Lunsford, Software review ConIX, pp 83-86, Computer language, Jun 1985.
20. C/NIX. The Software Toolworks 15233 Ventura Boulevard Suite 1118 Sherman Oaks California 91403.

USA.

38

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to
publish original papers in any field of
computing. Papers submitted may be
research articles, review artilces and
exploratory articles of gen~al interest to
readers of the journal. The preferred
languages of the journal will be the congress
languages of IFIP although papers in other
languages will not be precluded.

Manuscripts should be submitted in
triplicate to:

Prof~ G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0106
South Africa

Form of maJuscript
Manuscripts should be .in double-space

typing on one side only of sheets of A4 siu,
with wide margins. Manuscripts produced
using the Apple Macintosh will be
welcomed. Authors should write concisely.

The first page should include the article
title (which should be brief), the author's
name and affiliation and address. Each
paper must be accompanied by an abstract
less than 200 words which will be printed at
the beginning of the paper, together with an
appropriate key word list and a list of
relevant Computing Review categories.

Tables -and figures ·
Tables and figures should not be

included m the text, although tables and
figures sliould be referred. to in the printed
text Tables should be typed on separate
sheets . and _should b,e numbered
consecu.tively and titled.

Fi~es should ~lso be supplied on
~epar~c sheet&, and eac~ should be clearly
identified on the back m ~ncil and the
authors name and ftgu:re number .. -Original.
line drawings {nob photocopies) -should be
submitted arid shoold include all the relevant
details. Drawings etc., should be submitted
and should include all rielevant details.
Photogra1;1hs as illustrations should be
avoided · 1f possib-le. If this cannot be
avoided, glossy bromide prints are required.

Symbols
. Mathematic~ and other symbols may be

either handwntten or typewritten. Greek
letters and unusual symbols should be
identified in the margin. Distinction should

· be made bt!tween capital and lower case
letters; between the letter O and zero;
between the letter I, the number one and
prime; between K and kappa

References
References· should be listed at the end of

the manuscript in alphabetic order of the
author's name, ·and cited in the text in
square brackets. Journal references should
be.arranged thus:

1. Ashcroft E. and Manna Z The
Translation of 'GOTO' PropnlS to
'WHILE' programs., Proceedings
of IFJP Congress 71,
Nortb ... HolJand, Amsterdam,
250-255, 1972. .

2. Bohm C. and Jacopini G., Flow
Diagrams, Turing Machines and
Languages with only Two
Formation ~ules., Comm. ACM,
9, 366-371, 1966.

3. Ginsburg S., Mathematical Theory of
Context-free Languages, McGraw
Hill, NewYork, 196'.

Proofs and reprints
Pro.ofs will be sent to the author to

ensure- that the papexs have· been co.ncetly
typeset and nm for. the ad4itian m new
materi~l or major amendment to tlie-tcx.-ts,
Exce$5~ alter.anons may be disallowed.
Cor.rected proofs mpst be returned to. th&
production manager witbin three days to
minimize the risk of the authors
~ontri.bution baring tO be he1d ovei:to-a..J.alcr.
issue.

DP.J.y orginal papers wilrbea~a
copyright in published J)8peJS will-be v6ifm:
in the publisher.

