

Quaestiones lnformaticae
An official publication of the Computer Society of South Africa
'n Amptelike tydskrif van die Rekenaarvereniging van Suid-Afrika

Editor: Prof G. Wiechers
Department of Computer Science and Information Systems
University of South Africa
P.O. Box 392, Pretoria 0001

Editorial Advisory Board
PROFESSOR D. W. BARRON
Department of Mathematics
The University
Southampton S09 5NH
England

PROFESSOR K. GREGOOR
Computer Centre
University of Port Elizabeth
Port Elizabeth 6001
South Africa

PROFESSOR K. MACGREGOR
Department of Computer Science
University of Cape Town
Private Bag
Rondebosch 7700
South Africa

PROFESSOR M. H. WILLIAMS
Department of Computer Science
Herriot-Watt University
Edinburgh
Scotland

Subscriptions

Annual subscriptions are as follows:

Individuals
Institutions

SA
R6
Rl2

us
$7
$14

UK
£3,0
£6,0

MR P. P. ROETS
NRIMS
CSIR
P.O. Box 395
Pretoria 0001
South Africa

PROFESSOR S. H. VON SOLMS
Department of Computer Science
Rand Afrikaans University
Auckland Park
Johannesburg 2001
South Africa

DR H. MESSERSCHMIDT
IBM South Africa
P .0. Box 1419
Johannesburg 2000

MR P. C. PI ROW
Graduate School of Business
Administration
University of the Witwatersrand
P.O. Box 31170
Braamfontein 2017
South Africa

Circulation manager
Mr E Anderssen
Department of Computer Science
Rand Afrikaanse Universiteit
PO Box 524
Johannesburg 2000
Tel.: (011) 726-5000

Quaestiones lnformaticae is prepared for publication by Thomson Publications South Africa (Pty) Ltd for the Computer

Society of South Africa.

NOTE FROM THE EDITOR

Three points must be made by way of introduction to the second issue of Volume
2 of Quaestiones Informaticae.

Firstly, an apology is in order for the mistake in the date (November 1983 instead
of 1982) at the foot of my note introducing the preceding issue. Lacking the services
of a professional proof reader, printing errors are bound to show up from time to
time, but it is hoped that their number will be kept to a minimum!

Secondly, it is a pleasure to announce that this journal will not only serve to publish
papers of a scientific or technical nature on computing matters under the auspices
of the Computer Society of South Africa. An agreement has been reached to share
the facilities of Quaestiones lnformaticae between the CSSA and SAICS, the South
African Institute of Computer Scientists. Henceforth this journal will also be used
to publish the Transactions of this Institute. This implies certain changes to the cover
pages which will be implemented in future issues. I shall continue to serve as editor,
but on behalf of SAICS Prof R. J. van den Heever will share some of my duties
and act as co-editor.

Finally Mr Edwin Anderssen, of Rand Afrikaanse Universiteit, has agreed to serve
as circulation manager for Quaestiones Informaticae. I am grateful indeed that he
is willing to serve the journal in this capacity, and look forward to a long period
of fruitful cooperation.

G WIECHERS

May, 1983

Data Structure Traces
S. R. Schach

University of Cape Town

Abstract
Three levels of traces for data structures (as opposed to simple variables) are defined. A machine-code core dump
is essentially a low level trace. A high level trace reflects the high level language in which the data structure being
traced has been implemented. A very high level trace displays the data structure in the format in which the program­
mer conceptualizes it. Three traces written by the author (a graphical FORTRAN array trace, a portable trace for the
Pascal heap, and a graphical Pascal data structure trace) are described, and the level of each trace is then analyzed.

INTRODUCTION
Just as languages may be described as high level or low level,
so we may classify the level of a trace. For example, suppose
we wish to trace the Pascal statement

total : = total + 50
If the value of total was 1 000 before the statement was ex­

ecuted and the statement itself is at line 123, a high level trace
might print something like

line 123: total = 1000/ 1050
Such a trace may be described as high level because it reflects

the high level language in which the statement being traced was
written.

But if the trace prints the machine-code equivalent of the
original Pascal statement, or the trace takes the form of a core
dump, then such a trace is low level.

When tracing data structures, rather than simple variables,
a third category of trace may be defined. If the output of the
trace displays a data structure in the format in which the pro­
grammer conceptualizes it then such a trace will be termed very
high level. For example, if tracing an array causes the elements
of that array to be displayed arranged in rows and columns,
or if a tree or doubly-linked list appears as such, then since the
"shape" of the trace output corresponds to the "shape" of that,
data structure within the programmer's mind this is a very high
level trace.

In this paper the above three categories of data structure trace
are analyzed and evaluated. Then three data structure traces
written by the author are described, and the category into which
each falls considered. The traces are:
(1) A FORTRAN array trace [6].
(2) A trace for the Pascal heap [7].
(3) An interactive graphical trace of the Pascal heap [2].

COMPARISON OF DATA STRUCTURE TRACES
Low level data structure traces

Debugging a program written in a high level language by
analyzing a machine-code core dump of a data structure is most
undesirable. In the first place, the programmer is required to
have detailed knowledge of the internal representation of his
program and data, defeating the whole purpose of high level
language programming. Furthermore, the ability to understand
core dumps is becoming increasingly rare as fewer and fewer
programmers are being trained in low level languages. But even
if a programmer does possess this skill, it is strictly non-portable
from machine to machine, and generally from compiler to com­
piler, as there is certainly no guarantee that (say) two Pascal
compilers will store packed records in the same way. Thus low
level data structure traces should be employed only if there is
no alternative form of tracing available.

High level data structure traces
When programming in a high level language such as FOR­

TRAN or Pascal, it should be possible for a user at all times
to "think high level". That is to say, he should almost never

19

have to consider how the machine is handling either his pro­
gram or the data on which it operates. The only occasion when
the high level language programmer should have to descend to
code level is in order to optimize critical loops to speed up pro­
gram execution; this in itself should be very infrequent for the
vast majority of programmers.

The ideal situation is that if a data structure needs to be traced
then the output from the trace should resemble the original high
level source code as closely as possible, For example, the ac­
tual user-defined names of variables should appear (rather than
their addresses); furthermore, the names of fields within records
should be specified. In this way the programmer is freed from
the burden not ony of having to understand the internal machine
representation of his data structure, but also of having to think
in terms of that internal representation, thereby defeating the
whole purpose of programming in a high level language [8].

Very high level data structure traces
It can be very helpful for a user to "see" a data structure

which he has conceived in the format in which he has conceiv­
ed it. For example, if a user has conceptualized a two­
dimensional array in terms of rows and columns, but has for
some reason transposed the elements of such an array, then a
graphical display will quickly show up his mistake. On the other
hand, merely listing the array elements, even in a high level for­
mat, may not solve the problem; the user may simply not ap­
preciate that (say) the first index, rather than the second, cor­
responds to "row number".

At a more advanced level, the fact that a language like Pascal
allows literally an infinite number of different possible data
structures means that very complex structures can arise; presen­
ting a user with graphical output depicting his data in a form
as close as possible to the way he "sees" it is again a quick
and helpful debugging aid. (The reader will no doubt at this
point recall the oft-quoted Confucian proverb relating the com­
parative worth of a picture and lK words of natural language).

EXAMPLES OF DATA STRUCTURE TRACES
A Fortran array trace

The author has constructed an interactive graphical trace for
FORTRAN arrays [6]. The system permits the contents of up
to four arrays (of one or two dimensions) to be displayed
simultaneously on a TEKTRONIX [5] graphics screen. At any
one time no more than a 10 x 10 portion of each array can ap­
pear, but the entire array may be displayed piecewise by choos­
ing the appropriate options. The user may decide how the ar­
rays selected for tracing are to be arranged on the screen by
means of the graphics cursor.

Typical output from the array trace is shown in Figure 1. Four
arrays are being traced, a double-precision array
DUBBLE(50,30), an integer array IARRA Y(50,30), a complex
array COMP(50,30) and a real vector A(lOO). The current value
of any element appears in the top half of the corresponding

''box'', which is labelled by its row and column index; a new
value appears in the lower half. If the value again were to
change, this would result in the entry in the lower half being
overwritten; option 'R'(Refresh) causes the screen to be redrawn
with the latest values once more in the top half of each rec­
tangle, thus obviating the possibility of overwriting values.

The system is implemented in the form of a pre-processor
which transforms the user's FORTRAN program into a FOR­
TRAN program containing the relevant calls on subroutines
which perform the plotting. It is written in FORTRAN IV, and
hence is fully portable. For further details the reader is ref er­
red to Schach [6]; here we are more concerned with the level
of this trace.

The fact that each array is specifically labelled on the screen
with its name as given by the user in his or her FORTRAN
source code, and that each element bears the appropriate row
and column number means that we are dealing with a high level
trace; the output is in a format closely resembling the original
high level language source program. But further, since the data
structures (arrays) are displayed in terms of their rows and col­
umns as the user visualizes them means that this is in fact a
very high level trace.

A trace for the Pascal heap
, The package HEAPTRACE [7] is a precompiler for Pascal

programs which enables the user to trace the heap, selectively
dumping dynamically created records in a high level format.
Each field of the record is named, and its value given in a form
as close as possible to the original source code. Each record to
be traced is assigned a sequence number as it is created on the
heap, and these numbers not only provide unique identifica­
tion during program execution, but are used when tracing
pointer (e.g. POINTER P POINTS TO NODE - 456).

Figure 2 shows the output produced when HEAPTRACE was
applied to the example on pages 44-46 of the Pascal User Manual
[4]. When HEAPTRACE intervenes, the user is informed of
the line number in his original Pascal program. When a node
is dumped, its type identifier (in this case person) as named by
the user is given. Then each component field is named, and its
value given.

Integers, reals and characters are output in the conventional
way, while the values of types defined by enumeration (including
Boolean) are explicitly printed out. The user is informed if a
field is of type set, and the contents of the set (if any) are printed
out as above. For arrays, the indices and values of the first and
last elements are printed. For example, if the program includes
the declaration

specimen : array [-4 .. 9,false .. true,34 . .45] of real,
then the output from HEAPTRACE would include

specimen : array
specimen [-4,false,34] : 72.96
specimen [9,true,45] : -7 .52

For packed arrays of char, the first and last character strings
are given.

A record field within a record is identified as such, and its
fields are in turn indented a further four spaces (see birth and
ddate in Figure 2). Indentation is also used for tagfields (ms
in the figure), and for the fields of variant parts.

But despite the fact that the underlying structure of each
record is reflected through indentation, HEAPTRACE is not a
very high level trace. The reason is that while the contents of
any one individual record of the data structure are provided,
the user is not given the overall picture of his data structure
in the format in which he conceptualizes it. In terms of the ter­
minology of this paper, HEAPTRACE is thus a strictly high
level trace.

20

An interactive trace for the Pascal Heap
The Pascal pre-processor HEAPTRACE described in the sec­

tion above provides information as to the contents of selected
Pascal dynamic records. GRAPHTRACE, on the other hand,
allows the user to "see" the overall shape of his data structures
at a graphics screen. Each record is represented as a node, and
the nodes are interconnected by directed links representing the
pointers of the data structure. However, the contents of the in­
dividual fields do not appear on the screen.

Typical GRAPHTRACE output is shown in Figure 3a. Each
record to be traced is assigned a number, as before. There are
nodes of two distinct types, represented here by circles and
diamonds respectively, corresponding to the two record types
in the user's program. The three types of pointer defined in the
program being traced are also distinguishable. The user is pro­
vided with a key to enable him to match the node or pointer
to the name he gave it in his Pascal source.

The user specifies which subset of the records he wishes to
see displayed in the current plot (or all of them), and may also
select the root of the graph to be drawn. He may specify that
certain links are to be drawn horizontally or drawn vertically,
or are to be ignored. On the other hand, if he is unsure of the
exact shape of his data structure he may simply allow the
package to draw it as it sees fit, and the user will then refine
his instructions stepwise, indicating that a particular record is
the root of a tree, and so on. Figure 3b shows the same data
structure as before, but with node 10 specified to be the root
of a tree.

Figures 3c and 3d again show the identical data structure,
but the user has specified various choices of directions for draw­
ing his three types of pointer (or has chosen to suppress one
type).

The method used for displaying the graph is used on the
UDRL algorithm of Becker and Schach[ll, but modified to
allow for links which are neither horizontal nor vertical to be
superimposed on the basic structure. For further details see Getz
et al [2].

With regard to the level of GRAPHTRACE, the fact that
the data structures may be displayed precisely as the user con­
ceives them means that this is a very high level trace. But at
the same time, GRAPHTRACE is not a high level trace.

The reason is that the only Pascal variable names with which
GRAPHTRACE is concerned are the names of the types of the
records, and of the pointers. As mentioned above, the contents
of the nodes themselves are not displayed on the screen. Thus,
strictly speaking, GRAPHTRACE is not a high level trace.
However, GRAPHTRACE does allow the user to interact with
the HEAPTRACE routines at any time. The user is permitted
to dump selectively the contents.of the heap at a printer or VDU
screen.

By combining GRAPHTRACE with HEAPTRACE we thus
have both a high level and a very high level trace, which together
provide the user with maximal information for tracing the Pascal
heap.

CONCLUSION
High level languages like Pascal or Ada[7] support powerful

and flexible variable types, thus permitting highly sophisticated
and complex data structures to be constructed. The price that
must be paid for this is that if there is an error within a com­
plicated data structure, then it is often not easy to detect and
correct it. Use of a low level trace is entirely unsatisfactory, and
at the very least a high level trace should be employed, and
preferably a very high level one. Such traces do not exist for
the new language Ada, but as soon as Ada compilers become
available it would be advantageous for high level and very high
level traces to be written.

•

N -

-

OPTIONS? <D,I,N ORR>
>N

DUBBLE

LINE NUMBER 38
52

38 38 52 52

.., 5 ..,6 -n I ARRAY

411 .000¢0 II .¢¢00¢ l'l .¢000¢ I
2
[:] [!] [!]

421 .000¢0 II .¢¢¢¢0 II .¢¢0~0 I {~~JGG
43I .000¢¢ I I .0000¢ II .00000 I {£] [i]QJ
COMP

3 4 5 6

1,13.¢~ ltu01114.¢~0l~EJBl!6.¢¢0JE3
2123.0¢¢ 1/ 123.¢01/24.¢¢0, 1124.¢¢ IE:Jl12s.c0 J126.¢¢~1126.¢0 ·

3l33.¢00 ll 133.¢¢1l 34.¢0¢
11

134.¢0 I E:J El El 136.00

4 1~~~:: I~ I~:~::: 11;~~~:: 11 ~:~:::J ! ;::~~: I ~6·.;~: I ;~:~:;J

Figure 1: Sample FORTRAN Array Trace Output

A
l

36
4 I 4.¢¢00 l
s I 5 .¢¢¢¢ I

6B

52

***** HEAPTRl\CE Cl\LLCD l\'I' LINE 44

NODE# 1

NAME
FIRST

LAST

ss
SEX
UIRTH

MO
DAY
YEAR

DEPTDS
MS

INDEPDT

NODE# 2

NAME
FIRST

LAST

ss
SEX
BIRTH

MO
DAY
YEAR

DCPTDS
MS

DDATE
MO
DAY
YEAR

FIRSTD

TYPE - PERSON

RECORD
ARRJ\Y

STRING : ELHJARD
ARRAY

STRING: WOODYARD

TYPE

845680539
MALE

1

RECOHD
AUG
30
i941

SINGLE
TRUE

PERSON

RECORD

ARRAY
STRING: NICOLAS

.Z\RRAY
STRING: ROBERTSMAN

6:?7259003
Ml\LE

4

RECORD
~11\R
15
1932

DI vORCED
RECORD

FEB
23
1972

F.7\LSE

Figure 2: Sample HEAPTRACE Output.

22

•

7 9 -<----

:<----- ~----- -6-(-----
8 10 ~------

(a)

r~-- 3 -+---

2 4 -<---- • ~--- 6
-(----

(c)

1
0 <

ii~---...... ····---~-
; 9 •••• 8

(b)

li,.2
... ._.

~ ...
"'

.... 4

_ ..
03<--;.-_-_Y!.•• <> -----, .. -....

,,,-"-
6 ,,

~----t~o: ,-... ._.

(d)

-... -...

----10 _ .. --~-

~--- 8
07(··:::-r.~
.. - ---'"'? .. -

Figure 3: The same data structure drawn by GRAPHTRACE with various choices of the direction for the 3 types of pointers .

•
23

REFERENCES
[11 R. I. Becker & S. R. Schach, Drawing labelled binary graphs on

a grid. Submitted to Networks. ·
[2] S. L. Getz, G. Kalligiannis & S. R. Schach, A very high-level in­

teractive graphical trace for the Pascal heap. To appear in IEE
Trans. on Software Engineering.

[3] J. D. lchbiah et al, Preliminary Ada reference manua, ACM
SIGPLAN Notices, Vol. 14, Number 6, 1979.

[4] K. Jensen & N. Wirth Pascal User Manual and Report, 2nd Edi­
tion, Lecutre notes in Computer Science 18, Springer-Verlag,
Berlin, 1974.

24

[5] PLOT-10 Terminal Control System, User's Manual No.
062-1474-00, Tektronix, Inc., Beaverton, Oregon, 1974.

[6] S. R. Schach, An interactive graphical array trace. Quaest. In­
form. Vol. 2, No. 1, pp 23-26.

[7] S. R. Schach, A portable trace of the Pascal heap, Software -
Practice and Experience, Vol. 10, 1980, pp. 421-426.

[8] D. A. Watt & W. Findlay, A Pascal diagnostics system. In: Pascal:
The Language and its Implementation, D. W. Barron, Editor,
Wiley, Chichester, 1981.

Notes for Contributors
The purpose of this Journal will be to publish original papers. in

any field of computing. Papers submitted may be research articles,
review articles, exploratory articles of general interest to readers of
the Journal. The preferred languages of the Journal will be the con­
gress languages of IFIP although papers in other languages will not
be precluded .

Manuscripts should be submjtted in triplicate to: Prof. G. Wiechers
at:

Department of Computer Science
University of South Africa
P .O. Box 392
Pretorja 0001
South Africa

Form of manuscript
Manuscripts should be in double-space typing on one side only of

sheets of A4 size with wide margins . The original ribbon copy of the
typed manuscript should be submitted. Authors should write concisely.

The first page should include the article title (which should be brief),
the author's name, and the affiliation and address. Each paper must
be accompanied by a summary of less than 200 words which will be
printed immediately below the title at the beginning of the paper,
together with an appropriate key word list and a list of relevant Com­
puting Review categories.

Tables and figures
Illustrations and tables should not be included in the text, although

the author should indicate the desired location of each in the printed
text. Tables should be typed on separate sheets and should be
numbered consecutively and titled.

Illustrations should also be supplied on separate sheets, and each
should be clearly identified on the back in pencil with the Author's
name and figure number. Original line drawings (not photopriilts)
should be submitted and should include all relevant details . Draw­
ings, etc., should be submitted and should include all relevant details.
Drawings, etc., should be about twice the final size required and let­
tering must be clear and "open" and sufficiently large to permit the
necessary reduction of size in block-making .

Where photographs are submitted, glossy bromide prints are re­
quired. If words or numbers are to appear on a photograph, two prints
should be sent, the lettering tieing clearly indjcated on one print on­
ly. Computer programs or output should be given on clear original
printouts and preferably not on ljned paper so that they can be
reproduced photographically.

Figure legends should be typed on a separate sheet and placed at
the end of the manuscript.

Symbols
Mathematical and other symbols may be either handwritten or

typewritten . Greek letters and unusual symbols should be identified
in the margin. Distinction should be made between capital and lower
c;ase letters between the letter O and zero; between the letter 1, the
number one and prime; bet:"l'een K and kappa .

References
References should be listed at the end of the manuscript in

alphabetical order of author's name, and cited in the text by number
in square brackets. Journal references should be arranged thus:

I.

2.

3.

ASHCROFT, E. and MANNA, Z. (1972). The Translation of
'GOTO' Programs to 'WHILE ' Programs, in Proceedings of
!PIP Congress 71, North-Holland, Amsterdam, 250-255 .
BOHM, C . and JACOPINI, G. (1966) . Flow Diagrams, Tur­
ing Machines and Languages with only Two Formation Rules,
Comm. ACM, 9, 366-371.
GINS.BURG, S. (1966) . Mathematical Theory of context-free
Languages, McGraw Hill, New York .

Proofs and reprints
Galley proofs will be sent to the author to ensure that the papers

have been correctly set up in type and not for the addition of new
material or amendment of texts. Excessive alterations may have to
be disallowed or the cost charged against the author. Corrected galley
proofs, together with the original typescript, must be returned to the
editor within three days to minimize the risk of the author's contribu­
tion having to be held over to a later issue.

Fifty reprints of each article will be supplied free of charge. Addi­
tional copies may be purchased on a reprint order form which will
accompany the proofs.

Only original papers will be accepted, and copyright in published
papers will be vested in the publisher.

Letters
A section of "Letters to the Editor" (each limited to about 500

words) will provide a forum for discussion of recent problems.

Hierdie notas is ook in Afrikaans verkrygbaar.

