

Editor

The South African
Computer Journal

An official publication of rhe Sourh African
Compurer Sociery and the South African lnslirure of

Compurer Scienlisrs

Die Suid-Afrikaanse
Rekenaartydskrlf

'n Amprelilce publilcasie van die Suid-Afrilcaanse
Relcenaarvereniging en die Suid-Afrilcaanse Jnsli1uu1

vir Relcenaarwelenslcaplilces

Professor Derrick G Kourie
Department of Computer Science
University of Pretoria

Subeditor: Information Systems
Prof John Schochot
University of the Witwatersrand
Private Bag 3

Productio .. ~ Editor
Prof G de V Smit
Department of Computer Science
University of Cape Town
Rondebosch 7700 Hatfield 0083 WITS 2050

Email: dkourie@dos-lan.cs.up.ac.za Email: 035ebrs@witsvma.wits.ac.za Email: gds@cs.uct.ac.m

Editorial Board

Professor Gerhard Barth
Director: German AI Research Institute

Professor Pieter Kritzinger
University of Cape Town

Professor Judy Bishop
University of Pretoria

Professor Donald Cowan
University of Waterloo

Professor Jiirg Gutknecht
ETH, Ziirich

Southern Africa:

Elsewhere

Professor F H Lochovsky
University of Toronto

Professor Stephen R Schach
Vanderbilt University

Professor S H von Solms
Rand Afrikaanse Universiteit

Subscriptions

Annual

R45,00

$45,00

Single copy

R15,00

$15,00
to be sent to:

Computer Society of South Africa
Box 1714 Halfway House 1685

Comp,,ter Sdmce Depan,,,au, lJ,tiW!mty of Pretoria, Pretoria 0002
Phone: (lnt)+(012)+4~2504 F-.· (lnt)+(D12)+"1-6454 ffltt.lll: dkowuo,tw-rf,c.c.r.-,,.ac.z,,

PROCEEDINGS

Guest Editor: Judy M Bishop

PERSETEL
Organised by the SA Institute of Computer Scientists

in association with the Computer Society of SA

Sponsored by Persetel and the FRO

SPECIAL ISSUE - 7th SA COMPUTER SYMPOSIUM

PREFACE

When the first SA Computer Symposium was held at the
CSIR in the early eighties, it was unique. There was no
other forum at the time for the presentation of research in
computer science. In the intervening decade,
conferences, symposia and workshops have sprung up in
response to demand, and now there are several successful
ventures, some into their third or fourth iteration. Each
of ~ these addresses a specific topic - for example,
hypermedia, expert systems, parallel processing or formal
aspects of computing - and attracts a specialised audience,
well versed in the subject and eager to learn more. For
the main part, the proceedings are informal, and certainly
not archival.

SACRS, though, is still unique, in that it deliberately
covers a broad spectrum of research in computing, and in
addition, seeks to provide a lasting record of the
proceedings. To achieve the second aim, we negotiated
with the SA Institute of Computer Scientists for the
proceedings to form a special issue of the SA Computer
Journal, and the copy you have in front of you is the
result. The collaboration between the symposium
committee and the journal's editorial board placed high
standards on the refereeing and final presentation of the
papers, to the symposium's benefit, while we were still
able to maintain a fresh, audience-oriented approach to
the selection of papers.

This is SACJ's· first such special issue, and the
largest issue (at 145 pages) to date. We hope that it is
only the beginning of future such collaborations.

In all 29 papers were received, all were refereed
twice, and 19 were chosen for presentation by the
programme committee. All the papers were thoroughly
revised by the authors on the basis of the referee's
comments, and the committee's suggestions aimed at
making the material more accessible to a broadly-based
audience. Papers had to be new, and not to have been
presented elsewhere, a requirement that is still unusual
within the SA conference round.

A third goal of SACRS has been to invite keynote
speakers, usually from overseas. This year, we are
fortunate to present Dr Vinton Cerf, the father of the
Internet and a world-renown expert on computer
networks. Although his paper is not available for this
special issue, it will appear later in SACJ. Through the

good offices of Professor Chris Brink of UCT, we also
have three other speakers from Germany, Canada and the
US adding interest to the event, and two of their papers
appear in this issue.

The programme committee originally devised a theme
for the symposium - "Computing in the New South
Africa". We received several queries as to the meaning
of this theme, but unfortunately few papers that addressed
it directly. One prospective author went as far as to
enquire whether computer research would survive in the
new South Africa. Another felt that his work was
definitely not in the theme, as it was genuine, old world,
basic, theoretical science! Neverthless, there are two
papers that consider one of South Africa's key issues, that
of language. Others look at the success we have achieved
in applying technology to mining, and the future of
low-cost operating systems. In all, the mix of papers
represents a balance between the theoretical and the
practical, the past and the future, all firmly based in the
computing of the present.

Organising the symposium has involved the hard
work of several people, and I would like to thank in
particular
• Derrick Kourie, my co-organiser, and the editor of
SACJ for his invaluable advice and hard work throughout
the planning and implementation stages;
• Riel Smit, the production editor, for attaining such a
high standard in such a short time for so many papers;
• Gerrit Prinsloo and the staff at the CSSA for their
efficeint and quite delightfully unfussy organisation;
• Persetel for their very generous sponsorship of
R25000, and Tim Schumann for taking a genuine interest
in our events;
• the Foundation for Research Development for
sponsoring Vint Cerf's visit;
• and finally the Department of Computer Science of
the University of Pretoria for providing the ideal working
conditions for undertaking ventures of this kind, and.
especially Roelf van den Reever for his unfailing
encouragement and support.

Judy M Bishop
Organising Chairman, SACRS 1992
Guest Editor, SACJ Special Issue

Referees

The journal draws on a wide range of referees. The following were involved in the refereeing of the papers
selected for this special issue. Their role in certifying the papers and their contribution to enhancing the quality of papers
is sincerely appreciated.

John Barrow
Ronnie Becker
Danie Behr
Sonia Berman
Liesbeth Botha
Theo Bothma
Chris Brink
Peter Clayton
Ian Cloete
Antony Cooper
Elise Ehlers
Quintin Gee
Andy Gravell
Wendy Hall
David Harel
Scott Haz.elhurst
Derrick Kourie
Willem Labuschagne
Doug Laing
Dave Levy
Graham. McLeod
Hans Messerschmidt
Deon Oosthuizen
Ben Oosthuysen
Neil Pendock
D Petkov
Martin Rennhackkamp
Cees Roon
Jan Roos
John Shochot
Morris Sloman
Riel Smit
Pat Terry
Walter van den Heever
Lynn van der Vegte
Herman Venter
Hema Viktor

UNI SA
University of Cape Town
University of Pretoria
University of Cape Town
University of Pretoria
University of Pretoria
University of Cape Town
Rhodes University
Stellenbosch University
CSIR
Rand Afrikaanse University
DALSIG
University of Southampton
University. of Southampton
The Weizmann Institute of Science
University of the Witwatersrand
University of Pretoria
UNI SA
ISM
University of Natal
University of Cape Town
University of the Orange Free State
University of Pretoria
University of Pretoria
University of the Witwatersrand
University of Natal
Stellenbosch University
University of Pretoria
University of Pretoria
University of the Witwatersrand
Imperial College, London
University of Cape Town
Rhodes University
University of Pretoria
University of Pretoria
University of Fort Hare
Stellenbosch University

ii

A Multitasking Operating System above MS-DOS

R J Foss GMRehmet R CWatkins
Department of Computer Science, Rhodes University, Grahamstown 6140

email: csrf@giraffuu.ac.za

Abstract

This paper describes the development of a memory resident version of the Xinu operating system for the IBM PC range
of computers. The operating system co-resides with the MS-DOS operating system. The need for the operating system is
motivated in the context of real-time distributed system development. Important features of the Xinu operating system are
discussed. The paper shows how these features are made available to programs developed under the widely used MS-DOS
operating system.
Keywords: Multitasking, MS-DOS, Xinu, Distributed Applications.
Computing Review Categories: D.4.1, C.2.4.

Received February 1992, Accepted April 1992

1 Introduction

The Xinu operating system is a multitasking operating sys
tem with a layered design. The operating system has a
number of UNIX-like features, but is by no means a UNIX
clone. Indeed, Xinu stands for 'Xinu is not UNIX'! Xinu,
originally developed on LSI-11 based workstations, has
been ported to a number of platforms. Our work has fo-

, cosed on the IBM PC version of the operating system. This
paper describes the conversion of the IBM PC version into
a memory resident format, where it co-resides with the
MS-DOS operating system.

The motivation for the creation of the operating system
stemmed from a particular project within the Computer
Science Department at Rhodes University. However, it
will be apparent that the characteristics required of the
operating system in this project are needed in many other
application areas. The project involves the development
of a large distributed system with real-time characteristics.
The system comprises a network of music workstations
which all access central music studio resources, such as
synthesizers and tape recorders. A major goal of the project
is to make the potential of computer-based studios more
easily and widely accessible to South African musicians.

The music studio resources are all under the control of
a server. The server controls the booking of resources and
the patching of resources to the various workstations. The
workstations need to transmit musical information to the
resources in real time. They must also transmit patching
and audio mixing messages to the server in real-time. The
server must deal with a number of patching and mixing
requests from the various workstations in real time. A
more detailed description of the system can be found in
[8].

The system was analyzed using the real-time structured
analysis tools of Ward and Mellor [13), as well as the object
oriented data analysis tools of Shlaer and Mellor [11). The
initial analysis clearly indicated that the implementation

122

of the system would be difficult without the facilities of a
multitasking operating system with preemptive scheduling.
The operating system should allow for the easy incorpo
ration of drivers for a range of peripheral devices. These
included RS232 compatible tape drives and devices with
the Musical Instrument Digital Interface (MIDI). Commu
nication across an ethernet network was also essential.

The hardware available for implementation was the
IBM-PC range of computers. This included those with
8088 processors. However, it would be most desirable if
the code could be ported to other hardware platforms. It
particular, the server could be replaced by a SUN worksta
tion and the workstations by Apple Macintosh's.

2 Available Operating Systems

There did not appear to be any commercial operating sys
tems which fitted all the ·requirements of the application.
MS-DOS, the original and most widely used IBM-PC op
erating system, does not allow the creation of multiple,
simultaneous tasks. UNIX is a general purpose operating
system, and its designers did not intend it for real time use.
The effects of background processing in the XENIX system
V operating system have been described in [14]. Both OSfl
and Windows 3.0 require at least an 80286 processor with
substantial memory to run effectively. This is also true of
most UNIX systems running on IBM PC's. Windows 3.0
does not perform preemptive rescheduling, and· does not
allow for the spawning of child processes [10].

On a much smaller scale, a number of multitasking
kernels have been developed for IBM PC implementations
of Pascal, C and C++ [9, 12). These kernels tend to provide
only cooperative multitasking facilities. This approach
avoids the reentrancy problem posed by MS-DOS system
routines. Also, these kernels do not typically provide a
complete, congruent 1/0 system, which allows for the easy
incorporation of device drivers. Usually, they are written

SACJ/SART, No 7, 1992

with a specific application in mind.
Commercial, IBM-PC based compilers exist for

Modula-2, a language which incorporates a coroutine fa
cility. Runtime libraries exist for these compilers which
employ coroutines and interrupts for the creation of mul
tiple time-sliced processes. An example is the QuickMod
library set developed for the Stony Brook compiler [6]. The
modules provided are modelled on the 'Processes' module
described by WJ.rth [15]. While the process creation and
synchronization facilities are well-developed, all 1/0 de
pends entirely on DOS. Rather coarse mutual exclusion
primitives have to be applied to get around the lack of
reentrancy in MS-DOS. An 1/0 system would have to be
developed for non-standard devices, or DOS device drivers
would have to be created for them.

A further factor in the choice of operating system was
the cost of the software. Each workstation on the network
would have to have a copy of the operating system. An
expensive operating system requiring expensive hardware
resources would make the computer music network out
of reach for most school, college, and university music
departments.

3 The Xinu Operating System

For some years, the Xinu operating system has been used
in the Computer Science Department at Rhodes University
as a vehicle for teaching operating systems [7]. Xinu was
created by Douglas Comer, who was working at the time
with Bell Laboratories. The original version of Xinu was
developed for a number of diskless, networked, LSI-11
workstations. The source code for this version of the oper
ating system appeared in text book form [2]. Xinu has now
been ported to a number of other platforms, including SUN
workstations and the Apple Macintosh. Timothy Fossum
of the University of Wisconsin ported it to the IBM PC
and described this version of the operating system in a text
book written in collaboration with Douglas Comer [5].

The Xinu operating system is designed in layers and
has all the essential features of a multitasking operating
system. It allows for the creation of processes with varying
priorities. These processes run concurrently, with the high
est priority, eligible process always having control of the
hardware processor. Equal priority processes are scheduled
on a round-robin basis. Process coordination primitives are
provided in the form of semaphores. There are two types
of message passing schemes, with associated primitives.
The first allows for the transmission and receipt of single
messages, the second for the creation of ports with associ
ated message queues. A memory manager allows for the
creation and freeing of memory blocks. Memory can also
be retrieved from buffer pools.

Input and output to devices is performed via a small
set of high level system calls. Device switch tables, es
tablished at configuration time, map these calls to specific
device drivers. The input/output system is conceptually
simple and it is easy to incorporate drivers for new de
vices. A simple non-overlapping window system has been

SACJ/SART, No 7, 1992

developed for PC-Xinu, and is described in [5].
Comer has written two further books which describe

the implementation of internetworking facilities in the con
text of the Xinu operating system [3, 4]. Code which im
plements the User Datagram Protocol suite has been added
to the IBM PC version of Xinu.

4 The Development of Programs for PC-Xinu

The PC-Xinu operating system, as developed by Fos
sum [5], comprises a library of functions which can be
linked to a user program. The user program is written
as a Xinu program and is developed using tools which
run under MS-DOS. In our case, these tools comprise the
Borland Turbo C editor and compiler and the Microsoft
'make', 'link', and assembler utilities. An MS-DOS ex
ecutable program file is created. When run, this program
initializes the Xinu operating system and starts up the main
user process. This process can then spawn a number of
other processes using Xinu system calls. Effectively, the
user program runs under Xinu. The MS-DOS loader is used
to load up a combination of the Xinu operating system and
user program.

Under this system, every Xinu program comprises a
copy of the operating system together with the user pro
gram running 'under' the operating system. This has a
number of disadvantages. Firstly, linking can be time con
suming and this is not conducive to quick development.
The operating system occupies the same memory space as
the user program. If the user is developing under the small
memory model, where only 16 bit offset addresses are used
for data and function access, Xinu will occupy a substan
tial proportion of the overall memory space. The small
memory model provides speed advantages over the large
memory model, where both segment and offset addresses
are used for function and data access. A more debatable
disadvantage stems from the fact that all operating system
data structures are available for manipulation by user pro
cesses. Sometimes, there are advantages to viewing these
structures, but generally user processes should simply be
presented with a 'system call' interface to the operating
systel)l. Lastly, all Xinu programs developed under this en
vironment will have large executable files associated with
them, since every program file comprises the user program
and the Xinu operating system.

5 The creation of a 'memory resident' PC
Xinu

In order to overcome the above problems associated with
PC-Xinu development, it was decided to separate the op
erating system from the user program. The MS-DOS op
erating system incorporates a system call which allows a
program to remain resident in memory after it terminates
execution. A number of commercial packages have utilized
this system call to provide a multi-program desktop envi
ronment under MS-DOS. Turbo C provides an easy-to-use

123

interface to this system call. Functions in such a resident
program can later be accessed via hardware or software
interrupts.

In order to create the memory resident operating sys
tem, a small program has been written and linked to the
Xinu library. This program incorporates the system call
dispatcher, a revised Xinu initiali7.ation function, and code
to make both itself and the operating system resident in
memory. The code below provides the essentials for mak
ing the operating system resident and accessible to user
programs.
setvect(Userlnt, Syscall); /• dispatcher vector•/
sizeprograa • _DS-_psp+Ox1000; I• linu size •I
keep(O, sizeprograa); I• aake resident •/

In the first line of the above code, Userlnt is a software
interrupt number, and Syscall is the address of a dispatcher
function which will dispatch control to any one of a number
of system functions. The setvect call allows a user to call
the dispatcher via a software interrupt. The second line
calculates the size of the Xinu operating system in terms
of 16-byte paragraphs. _Ds is the 80x86 data segment
register, and _psp is the program segment prefix, indicating
the start of the MS-DOS program in memory. The third
line contains the Turbo C library function call to make the
operating system resident.

On the user side, every user program running under
the Xinu operating system must be linked to a small library
which converts standard Xinu system calls into correspond
ing software interrupts. Thus, for example, the Xinu system
call to create a new process would typically be used in the
following way:
create(procaddr,ssize,priority,naaep,

nargs,arg1,arg2, ..);

where procaddr is the code to be executed by the new
process, ssize is the stack size allocated to the new process,
priority is the priority of the new process, na11ep is a
symbolic name for the process, nargs is the number of
arguments to be passed to the process, arg t , arg2, .. could
be one or more arguments passed to the process.

This function is coded in the small Xinu user library
as:
create()
{

}

asa aov ax,5
asm int Userlnt

I• the 'create' systea call•/
I• dispatcher interrupt •I

The code makes use of the in-line assembly features of
the Turbo C compiler. The 80x86 AX register is assigned
an indicator value. The dispatcher in the memory resident
Xinu operating system will use this value to call the create
system function.

It is clear from the above code that none of the pa
rameters for the create system call are placed in registers.
These parameters reside on the stack of the calling process.
The resident operating system functions have been coded
in such a way that they pick these parameters up from
the stack. This prevents any speed degradation resulting
from the loading of parameters into registers. Of course

124

the parameters must be pushed on to the stack according
to C language conventions. If the resident Xinu system
functions are to be utilized via a different language, the C
parameter passing conventions will have to be adhered to.
A similar sort of convention must be applied under Mi
crosoft Windows, where MS-DOS compilers are also used
for development. Under Windows, however, the Pascal
parameter passing conventions are used [10].

Before the main user process is executed, the operating
system is initialized. The initiali7.ation process involves
firing up various important system processes, particularly
those that handle input/output, and then handing control
over to the main user process. This initiali7.ation process
is activated via a software interrupt and is hidden from the
application programmer.

6 Proble~ ~iated with the resident Xinu

Most of the problems associated with creating the resident
Xinu had to do with the segmented memory of the IBM
PC. This, in turn, stems from the architecture of the 80x86
processors. The Xinu source code as written by Comer and
Fossum assumes that operating system and program share
the same address space. In the IBM PC resident version,
the operating system resides in code and data segments
which are quite separate from the user program's segments.
These problems are compounded by the fact that both user
programs and operating system are written using the small
memory model compiler of Turbo C. Under this compiler,
all code and data access is via offset addresses. If these
offset addresses are passed as parameters to the resident
operating system, it will not be able to access the address
contents, unless it also knows the associated segment. To
complicate matters further, each process has its own stack
area on which parameters and local variables are stored.
This stack area is allocated from the operating system's
data area.

In the resident PC-Xinu all address parameters are
passed as far pointers. This means that both offset and
segment addresses are passed. System functions have been
prototyped in such a way that this happens automatically.
System functions in the resident operating system have
been altered to expect these far pointers.
, The Xinu context switcher must be able to start up

either operating system processes in the current code seg
ment, or user processes in a different code segment. This
difficulty has been overcome by setting up the new process'
stack in such a way that the context switcher switches to
an operating system function. This function reloads the
user data segment and performs a far return to the new user
process. This implies that the operating system 'knows'
what the user data and code segments are. The code for
this function comprises a single line and is given below.
void far getback()
{

asa pop ds
}

A number of the above segmentation problems have been

SACJ/SART, No 7, 1992

overcome by using a large memory model for the cre
ation of both operating system and user programs. Un
der this model, address parameters automatically comprise
segment and offset values. This model also allows for the
complete utilization of the IBM-PC 640k usable address
space by the operating system and user program. There
will, of course, be some speed degradation under the large
memory model. ·

7 Development under the resident PC-Xinu
operating system

The Xinu operating system is loaded by executing the mem
ory resident program described above. A Xinu program is
edited and compiled using standard MS-DOS tools. It
is then linked to the required language-specific standard
libraries, and a small Xinu library which furnishes the nec
essary -software interrupts. Using Turbo C, this can all be
done within the Turbo C 'integrated environment' [1]. The
Xinu operating system can be removed from memory by
running the same memory resident program and requesting
removal.

8 Future Developments

Currently, the resident Xinu operating system comprises
a process manager, a memory manager, process coordina
tion and message passing facilities, a Xinu file system, an
MS-DOS file system, and a text-based, non-overlapping
window system. Programs can be developed under the
small or large memory model of Turbo C. Of course, de
velopment can take place in other environments, as long as
the parameter passing conventions of the operating system
are adhered to.

A basic overlapped windowing system has been de
veloped and this is being extended to provide a Microsoft
Windows-like programming environment. Thus, the oper
ating system will capture user-generated events, typically
mouse button and keypress selections, and will send them
to an associated process.

As mentioned above, Comer has provided the complete
source code for a suite of UDP and TCP/IP functions. This
code will be added to the memory resident operating system
on top of low-level ethernet drivers, which have already
been developed in the Computer Science Department at
Rhodes.

9 Conclusion

The IBM PC in its various forms is an inexpensive and
easily available hardware platform. A vast range of devel
opment tools have been developed for use under its original
operating system, MS-DOS. A large number of program
mers are familiar with these tools, particularly in South
Africa where IBM PC's pervade the universities and tech
nikons. However, the o~rating system with its lack of

SACJ/SART, No 7, 1992

process management and coordination facilities does not
easily lend itself to the development of real-time or dis
tributed systems.

This paper has described how the multi-process facil
ities of the Xinu operating system have been made easily
accessible to programmers developing programs within the
MS-DOS environment. Source code for the operating sys
tem is available, enabling a thorough understanding of the
various system functions. A clean, congruent input/output
system provides a template for the addition of further device
drivers. There is a complete, well-documented UDP and
TCP/IP implementation for Xinu. All this means that pro
grammers can develop sophisticated real-time distributed
applications for the IBM PC range of computers without
investing the time and capital for a new development envi
ronment.

References

1. Borland International Inc. The Turbo CIC++ User's
Guide, 1987-1990.

2. D Comer. Operating System Design, the Xinu Ap
proach. Prentice-Hall, 1983.

3. D Comer. Operating System Design, Volume 2, lnter
networking with Xinu. Prentice-Hall, 1987.

4. D Comer. lnternetworking with TCP/IP, Volume 2,
Design Implementation and Internals. Prentice-Hall,
1991.

5. D Comer and T Fossum. Operating System Design,
Volume 1, the Xinu Approach. Prentice-Hall, IBM PC
edition, 1988.

6. D Cooper. Using QuiclcMod. W W Norton & Com
pany, New York and London, 1990.

7. R J Foss. 'Teaching operating systems using the IBM
PC'. In Proceedings of the 17th SACLA Conference,
Pretoria, (1987).

8. R J Foss and A Wilks. 'A network approach to the
sharing of music studio resources'. In Proceedings of
the 1990 International Computer Music Conference,
Glasgow, (1990).

9. CA Lindley. 'Multitasking with Turbo Pascal'. Dr.
Dobb's Journal, p. 129, (1987).

10. C Petzold. Programming Windows. Microsoft Press,
1990.

11. S Shlaer and S Mellor. Object Oriented Systems Anal
ysis - Modeling the World in Data. Prentice-Hall,
1988.

12. M Tarpenning. 'Cooperative multitasking in C++'.
Dr. Dobb's Journal, (1991).

13. P Ward and S Mellor. Structured Development for
Real-Time Systems, volume l,2and3. YourdonPress,
1986.

14. G C Wells. 'An evaluation of Xenix System Vas
a real-time operating system'. Microprocessing and
Microprogramming, 33:57-66, (1991).

15. N Wirth. Programming in Modula-2. Springer-Verlag,
New York, 1983.

125

Notes for Contributors

The prime purpose of the journal is to publish original
research papers in the fields of Computer Scien~e and In
formation Systems, as well as shorter technical research
papers. However, non-refereed review and exploratory ar
ticles of interest to the journal's readers will be considered
for publication under sections marked as Communications
or Viewpoints. While English is the preferred language
of the journal, papers in Afrikaans will also be accepted.
Typed manuscripts for review should be submitted in trip
licate to the editor.

form of Manuscript
. Manuscripts for review should be prepared according to the
following guidelines.

• Use wide margins and 1 ! or double spacing.
• The first page should include:

- title (as brief as possible);

- author's initials and surname;
- author's affiliation and address;

- an abstract of less than 200 words;

- an appropriate keyword list;

- a list of relevant Computing Review Categories.

• Tables and figures should be numbered and titled.
Figures should be submitted as original line draw
ings/printouts, and not photocopies.

• References should be listed at the end of the text in
alphabetic order of the (first) author's surname, and
should be cited in the text in square brackets (1, 2, 3].
References should take the form shown at. the end of
these notes.

Manuscripts accepted for publication should comply with
the above guidelines (except for the spacing requirements),
and may be provided in one of the following formats (listed
in order of preference):

1. As (a) ~TE'{ file(s), either on a diskette, or via e
maiVftp - a It.TEX style file is available from the pro
duction editor;

2. In camera-ready format - a detailed page specification
is available from the production editor;

3. As an ASCII file accompanied by a hard-copy showing
formatting intentions:

• Tables and figures should be on separate sheets of
paper, clearly numbered on the back and ready for
cutting and pasting. Figure titles should appear
in the text where the figures are to be placed.

• Mathematical and other symbols may be either
handwritten or typed. Greek letters and unusual
symbols should be identified in the margin, if
they are not clear in the text.

Further instructions on how to reduce page charges can
be obtained from the production editor.

4. In a typed form, suitable for scanning.

Charges
Charges per final page will be levied on papers accepted
for publication. They will be scaled to reflect scanning,
typesetting, reproduction and other costs. Currently, the
minimum rate is R20-00 per final page for It.TEX or camera
ready contributions and the maximum is Rl00-00 per page
for contributions in typed format.

These charges may be waived upon request of the au
thor and at the discretion of the editor.

Proofs
Proofs of accepted papers in categories 3 and 4 above will
be sent to the a .. ,.thor to ensure that typesetting is correct,
and not for addition of new material or major amendments
to the text. Corrected proofs should be returned to the
production editor within three days.

Note that, in the case of camera-ready submissions, it
is the author's responsibility to ensure that such submis
sions are error-free. However, the editor may recommend
minor typesetting changes to be made before publication.

Letters and Communications
, Letters to the editor are welcomed. They should be signed,

and should be limited to less than about 500 words.
Announcements and communications of interest to the

readership will be considered for publication in a separate
section of the journal. Communications may also reflect
minor research contributions. However, such communi
cations will not be refereed and will not be deemed as
fully-fledged publications for state subsidy purposes.

Book reviews
Contributions in this regard will be welcomed. Views and
opinions expressed in such reviews should, however, be
regarded as those of the reviewer alone.

Advertisement
Placement of advertisements at R 1000-00 per full page per
issue and R500-00 per half page per issue will be consid
ered. These charges exclude specialized production costs
which will be borne by the advertiser. Enquiries should be
directed to the editor.

References

1. E Ashcroft and Z Manna. 'The translation of 'goto'
programs to 'while' programs'. In Proceedings of 1FIP
Congress 71, pp. 250-255, Amsterdam, (1972). North
Holland.

2. C Boh!Jl and G Jacopini. 'Flow diagrams, turing ma
chines and languages with only two formation rules'.
Communications of the ACM, 9:366-371, (1966).

3. S Ginsburg. Mathematical theory of context free lan
guages. McGraw Hill, New York, 1966.

South African
Computer
Journal

Nwnber 7, July 1992
ISSN 101 S-7999

Contents

Suid-Afrikaanse
Rekenaar

tydskrif

N001mer 7, Julie 1992
ISSN 1015-7999

Forward
Referees .. , , . , . , .. , ... , , . , . II

Machine Translation from African Languages to English
DG Kourie, W J vd Heever and GD Oosthuizen . 1

Automatically Linking Words and Concepts in an Afrikaans Dictionary
PZ Theron and I Cloete . 9

A Lattice-Theoretic Model for Relatio,1al Database Security
A Melton and S Shenoi .. lS

Network Partitions in Distributed Databases
HL Viktor and MH Rennhackkamp . 22

A Model for Object-Oriented Databases _
MM Brand and Pf Wood . 27

Quantifier Elimination in Second Order Predicate Logic
D Gabbay and HJ Ohlbach ·. 3S

Animating Neural Network Training
E van der Poel and I Cloete . 44

HiLOG - a Higher Order Logic Programming Language
RA Paterson-Jones and Pf Wood ... S3

ESML - A Validation Language for Concurrent Systems
PJA de Villiers and WC Vi~er ... 59

Semantic Constructs for a Persistent Programming Language
SB Sparg and S Berman . 6S

The Multiserver Station with Dynamic Concurrency Constraints
CF Kriel and AE Krzesinski . 1S

Mechanizing Execution Sequence Semantics in HOL
G Tredoux .. 81

Statenets - an Alternative Modelling Mechanism for Performance Analysis
L Lewis .. 87

From Batch to Distributed Image Processing: Remote Sensing for Mineral Exploration 1972-1992
N Pendock . 95

Galileo: Experimenting with Graphical User Interfaces
R Apteker and JM Bishop .. 99

Placing Processes in a Transputer-based Linda Programming Environment
PG Clayton, FK de-Heer-Menlah, EP Wentworth 109

Accessing Subroutine Libraries on a Network
PH Greenwood and PH Nash . 117

A Multi-Tasking Operating System Above MS-DOS
R Fo~, GM Rehmet and RC Watkins : 122

Using Information Systems Methodology to Design an Instructional System
BC O'Donovan . 126

Managing Methods Creatively
G Mcl.A!od ... 131

A General Building Block for Distributed System Management
P Putter and JD Roos . 141

