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Distributed Computer Systems - A Review 
N. J. Peberdy 

Dept. of Electrical Engineering, University of the Witwatersrand, Johannesburg, 
South Africa. 

Abstract 
The past five years have seen a dramatic changeabout in traditional hardware/software relationships: hardware costs have plummeted, and the 

size, environmental requirements and reliability of computing elements have altered drastically. It now becomes feasible to distribute a computing 
system, such that processors may be placed adjacent to the processes they control. These distributed computing modules operate in an essentially 
parallel mode, but are required to communicate in order to co-ordinate their activities. Reliable, secure communication systems must be established to 
ensure correct operation. Such systems are not only functions of the electrical hardware employed, but also of the software support provided. Of vital 
importance are the protocols selected, which define and detail an agreed procedure for the exchange of information. 

This paper reviews the fundamental software considerations in the design of computer networks, with specific relevance for process-control 
applications. It discusses in detail, inter-connection strategies and protocols and briefly examines currently adopted schemes. The implications offully 
decentralized system control are considered. Of particular concern is the question of the production of reliable, fault-tolerant, secure systems. 

1. Introduction 
Interest in multiple-processor systems has been generated by the quest 

for improved system performance. In the past the high cost of processors 
has limited investigation into such systems. However, due to the recent 
dramatic fall in hardware costs and processor costs in particular, distri­
buted systems are becoming increasingly feasible. For example, one finds 
networks of computers being employed in large data-base systems to 
enable pooling o( resources, or permit access to common data-bases. 
State-of-the-art mainframe computers typically consist of a number of 
processors, each dedicated to a particular task such as 1/0, arithmetic 
processing, memory management, etc. In the process-control environ­
ment, the prospect of improved system performance has led to many so­
called distributed control systems. In such a system the plant is 
partitioned into groups of concurrent tasks, each being controlled by a 
separate processor, with interconnection to enable co-ordination on a 
global basis. 

The variety of ways in which computers may be interconnected has 
led to a problem of semantics. Terms such as distributed processing, 
distributed computers, networks, multiprocessors, etc., are being used in 
an almost random fashion to describe fundamentally different systems. 
This is because distributed computers involve new concepts and ideas 
which have yet to be clearly defined and resolved. For the purposes of this 
paper, we define a "distributed system" to be a multiplicity of computers 
that are physically and logically connected together and which co­
ordinate their activities on a global basis under centralized or decen­
tralized system control. The term "fully distributed computer" refers to a 
distributed system in which overall executive control is fully decentralized. 
The significance of these definitions will become apparent as the paper 
progresses. 

We restrict our interest to those systems in which several processors 
are physically separated and connected together by data links. Further, 
we are restricting our area of application to those systems in which the 
various computer nodes co-ordinate so as to exercise overall control of 
some system which is itself complex and physically distributed. 

2. Requirements of Real-Time Control 

sufficient condition for reliability because of the finite probability of hard­
ware malfunction. Reliability, therefore, also encompasses the concept of 
fault-tolerance, whereby the system continues to function in the presence 
of faults. In practice it is not possible to guarantee correctness particularly 
in the case of software. "Survivability" of the system involves confine­
ment of initial errors, detection and diagnosis of failures, and finally re­
covery whereby further damage is prevented and the system is returned to 
a stable, consistent state. 

During design of a plant control system, specifications are often 
changed, possibly due to changes in the plant itself. In addition, changes 
are invariably necessary during the life of a plant. The control system must 
be amenable to such changes. This calls for a highly modular structure 
both in hardware and software, so that changes in one module can be 
made without affecting other modules to any great extent. 

Modularity involves another aspect. In uniprocessor control systems, 
each design tends to be different from others. This is especially true if one 
compares large and small systems. However, in a highly modular dis­
tributed system, large and small systems can be configured with the same 
basic design by varying the number of modules. 

The final criterion is cost any proposed system must be cost effective. 

3. Uniprocessor Real-Time Control 
Before the advent oflow cost processors, plant control was ( and in the 

majority of cases still is) exercised by a single computer. The computer 
performs all data acquisition, processing, and storage for logging 
purposes. 

It also implements the control function for several processes, which 
must essentially execute in parallel. In order to perform these different 
tasks, the computer requires a large, complex executive to allocate CPU 
time to different tasks. Requests for service are typically asynchronous. If 
these requests are time critical then either polling at regular intervals is re­
quired, or interrupts must be permitted. 

Operating systems are notoriously complex structures. The statement 
by Dijkstra that testing of software can only show the presence of bugs, not 
their absence, unfortunately sums up the situation. The inherent unre­
liability of this large software structure is further complicated by inter-

In real-time control systems, performance is measured more in terms rupts. Such a complex structure can have only very limited reliability. 
of response-time than throughput. Events tend to occur in bursts which At a more abstract level, the software designer constructs a virtual 
cause a large and immediate increase in processing activities. This occurs architecture which consists of a number of processes, each of which 
for example, when the plant moves towards a boundary condition. Failure controls one or more plant processes. However, there is no structural 
to service a time-critical event within a specified time period could correspondence of this virtual multi-purpose- architecture, to the actual 
constitute a system failure. uniprocessor architecture [40]. The mapping from the virtual to the real 

Reliability is one of the most important criteria of plant control. This architecture must invariably introduce implicit relationships between 
involves a number of aspects. The control system hardware and software processes which were not envisaged by the software engineer. Thus inter­
should be correct, that is, error free. However, correctness is not a action may occur at random, causing very obscure errors. 

This paper was presented at the SACAC symposium on Real-time Software for Industrial Applications in Pretoria on 29-30 November, 1978. 
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All-in-all. the multiprogrammed uniprocessor can have only limited 
reliability, regardless of speed or computational power. The solution must 
be found in other areas. 

The reason for the complexity of the uniprocessor software is that in 
the past processors were expensive, and therefore had to be utilized to the 
full. However, hardware costs have plummeted whereas software costs 
are rising. It no longer makes sense to maximise processor efficiency. 
Instead, attempts should be focused on minimising and simplifying soft­
ware, possibly at the expense of hardware. 

4. Distributed Real-Time Control 
Due to cost pressures and the requirement for greater reliability, 

multiple-processor systems have generated considerable attention in the 
xocess-control area. At this stage, the state-of-the-art is undeveloped and 
t will be many years before the potential advantages of distributed 
systems are fully exploited. However, even now, there are advantages in 
choosing such a system. 

Perhaps the most typical distributed system consists of a number of 
,mall processors connected into an hierarchical network under centralized 
:ontrol. The plant is partitioned into a number of concurrent processes. 
;;everal processors are then dispersed around the plant, each controlling a 
irocess, or a group of processes in close physical proximity. The proces­
ors are connected into a network by cables to enable communication. 
fhese localized control processors then perform local data acquisition 
and control. The central computer is freed of the laborious task of data 
1cquisition, and of much of the detailed control function. Its typical 
unction would be to calculate set-points for the other nodes on the basis of 
elected data transmitted to it from the remote nodes. It would also pro­
·ide a centralized data logging facility and serve as an access point to the 
1etwork. Because of the relative simplicity of the tasks it must perform, the 
:entral computer could itself be a small computer. A back-up computer 
could then be economically provided. This would reduce the vulnerability 
,f the system to a fault at the top of the hierarchy. 

There are many advantages to this approach. Reliability is greatly 
improved, due to redundancy of processors, hardware, and communica­
tion paths. The failure of a processor for example, is not catastrophic to 
the system, since the rest of the system may continue to function, possibly 
with slightly degraded performance. Data is potentially more secure than 
in a centralized data base system, since it is fragmented over a number of 
independent memories. Access to each data bank is controlled by its 
processor. This serves to confine errors. Loss or corruption of a data bank 
is not catastrophic to the system as a whole. This is true even in the case of 
the central control computer data, since the data is essentially replicated 
in the remote nodes. 

Apart from reliability, the other main advantage is modularity. Since 
the system consists of a number of identical processor-memory pairs, it 
can be constructed to meet the present needs of the user, and system 
performance may be expanded at a later date in relatively small incre­
JJ!ents, with correspondingly small and smooth cost increments. Also, 
changes in one node will have minimal effect on other nodes. 

S. Advantages of Distributed Systems 
Reliability. As stated earlier, reliability results from redundancy of 

processors, memory and communication paths. Failures then tend to 
result in "graceful degradation", whereby the remaining elements may 
take over the functions of the failed module(s). Performance may be 
degraded, but the system continues to function. Obviously the tasks 
performed by many of the processors are not transferable since, for 
example, a section of the plant will usually (but not necessarily) be 
intetfaced to only one processor. In such a case, the malfunctioning sec­
tion could be manually controlled until a repair has been made. 

Another aspect of reliability is that of communication. Because 
communication paths have intelligent hardware at each end, highly re-
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liable methods can be used to reduce the probability of errors. Also, 
because there should always be at least two paths between any two nodes, 
a break in one path would not then terminate communication. 

Response. Response time in a distributed system is potentially faster 
than a multiprogrammed uniprocessor. This is particularly true if a match 
of one process per processor is made, thus eliminating multiprogramming 
and the need for context-switching. A processor could then be dedicated 
to monitoring a time-critical process, to provide an "instant" response. 
Whilst this fast response time is at the expense of processor efficiency, 
software is greatly simplified. 

Modularity. A high degree of modularity of hardware and software 
permits large and small systems to be configured with the same basic 
design. simply by varying the number of modules. Obviously the degree of 
modularity is highly dependent on the interconnection topology: this is 
one of the major considerations in selecting a configuration. A modular 
system can be upgraded in relatively small performance and cost incre­
ments. Also, changes can be made in a module with minimal effect on the 
rest of the system. This is in contrast to a uniprocessor system, where 
modification or expansion demand extensive system changes, perhaps 
even replacement of the computer. 

Homomorphism. This term, introduced by Jensen, describes the 
structural correspondence of the multi-process architecture to the multi­
processor architecture. This aspect is responsible for the relative 
simplicity of the distributed system ( at least from this perspective), since 
software mapping from the virtual to the real architecture is minimal. 
Reliability is greatly benefitted, since errors are confined to a subset of 
system functionality and performance [ 40 J. 

Software. Each processor in a distributed system is controlling one 
process, or a number of processes of which no more than one is active at 
any time. Software for such a system will be far simpler than that of a 
multi-programmed computer. Since system software consists of a number 
of identifiable modules, it is readily amenable to development by a team. 
Testing of each module is facilitated. Finally, simplicity in software 
greatly enhances reliability. 

The programmes and data in any one processing-element are 
relatively isolated from the rest of the system. The probability of illegal 
interference between processes is thus minimized, if not excluded, be­
cause access cannot occur without the knowledge and permission of that 
processing-element. Data and programmes are thus considerably more 
secure than in the uniprocessor. 

Cost. In a uniprocessor system, the vast network of cables is 
expensive. A distributed system offers considerable savings in cable costs 
since all information can be transmitted over a single pair of wires. 
However, this is complicated by the frequent requirement for manual 
back-up control from the control room. Also the saving in cable costs is 
generally a small percentage of total plant cost 

Maintenance. A node can be isolated from the rest of the system in 
order to perform routine testing and maintenance, without interference to 
or from the plant. · 

6. Interconnection Structures 
There are obviously many ways in which a number of processors and 

memory modules can be interconnected. Broadly speaking, multiple­
processor systems can be partitioned into tightly- and loosely-coupled 
systems [18]. 

Tightly-coupled Systems. A tightly-coupled system is one in which 
several processors are in close physical proximity. Interco10munication 
occurs via shared memory or over high-speed parallel buses. 

Loosely-coupled Systems. These are systems in which a number of 
remote computers are connected into a network by data links. There are 
basically two types of networks [ 18]. 



( a) A so-called general purpose network in which each node is capable 
of independent, stand-alone operation. A typical example is the 
ARP A network which consists of a number of remote computers. 
These are linked together into an irregular network to enable 
sharing of resources (55-58]. 

(b) A control network of the type discussed earlier. In this system the 
nodes co-operate in order to achieve overall supervision of a 
physical system, such as an industrial process. 

Interconnection structure is a most important issue in the design of a 
distributed system, since all other issues tend to be highly dependent on it 
In terms of reliability, for example, the question of distribution strategy is 
critical. In, say, a star-connection, all communication is routed via a 
single, centralized switch- the whole system is then highly vulnerable to 
a switch failure. 

Due to the current confusion in distributed systems, there is little 
consensus on the classification of difference topologies. The most widely 
accepted taxonomy ( naming scheme) is that of Anderson and Jensen, 
shown in Figure l. The strategy they have adopted in classifying a system 
is based on the design decisions implicit in the particular configuration [I]. 

The following section describes the features of various topologies with 
particular reference to their suitability to real-time plant control. 

7. Network Configurations 
Fully Connected. Each node is connected to every other node in the 

network. Cost-modularity is very poor since the addition ofone node to an 
n-node network, requires additional n-connections, one to each node. 
Complete interconnection is attractive only for very small systems 
consisting of about three computers. Larger systems are of theoretical in­
terest only. 

Partially Connected. For a large number of geographically distri­
buted computers, a partially connected irregular network is most popular. 
The foremost example is Arpanet which connects over 50 centres spread 
across North America, with satellite links to London and Hawaii. 

Shared Bus. In the shared bus topology, several processing-elements 
(processor-memory pairs) communicate via a shared bus. Since only one 
device may transmit over the bus at any one time, bus allocation is of 
critical importance. Bus control may be centralized by means of some sort 
of central switch. Decentralized bus control is however preferable from 
the point of view ofreliability, since a failure of the central switch would be 
catastrophic. 

Nodes in a shared bus architecture are an "equal distance" from each 
other from the point of view of message transfer time. Also, nodes are not 
distinguished topologically. To increase performance, additional proces­
sing-elements may be connected to the bus. However, bus bandwidth is a 
limiting factor. Unless a fully redundant bus is provided, the system is 
highly vulnerable to a bus-failure. On the other hand, failure of a 
processing-element should have minimal effect on system operation, and 
reconfiguration would simply consist of reallocation of the processes that 
were being executed by the failed processing-element. 

The common bus structure is particularly suited to systems in which 
executive control is fully decentralized. Honeywell's Modular Computer 
System is such an example [ 38, 39]. In the Modular Computer System all 
inter-process communication is in the form of explicit messages which are 
transmitted onto the bus, even if the source and destination processes are 
resident in the same processing-element. This externalization of all inter­
process communication not only greatly simplifies software, but also 
permits all processing-elements to "listen-in" to all conversations. This 
means that from the control aspect all processing-elements will have the 
same "view" of the system. This is particularly significant for detection 
and diagnosis of errors. It also increases the probability that nodes will act 
in co-operation rather than in conflict. This latter possibility is a real 
danger in any system in which control is decentralized. 

Loops. This topology consists of a number of nodes connected into a 
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loop. Due to the complexity of bi-directional loops over uni-directional 
loops, traffic in most cases is uni-directional. Messages are placed onto 
the ring by the source node and circulate around the ring to the destination 
nodes, being buffered by intermediate nodes. In the Distributed Comput­
ing System at the University of California [41-45], a message continues 
around the loop until it reaches the node which sourced it, where it is re­
moved. All messages thus pass through all nodes. A feature of the Distri­
buted Computing System is that messages are addressed to processes, not 
to processors. Each "Ring Interface", which is a hardware unit front­
ending each computer, has an associative store which holds the names of 
all the processes currently active in that node. As the message "passes 
through" the Ring Interface, it checks the message destination name 
against the process names in its associative store. If there is a match, it 
copies the message. This technique allows communication to be inde­
pendent of the number of nodes in the system and allows processes to 
move freely between processors - this migration being transparent to 
other processes. The Distributed Computing System is another of the few 
attempts to decentralise executive control. 

Star. Each processing-element is connected by a bi-directional data 
link to a central switch. The switch accepts a message, performs address 
translation, and routes the message to its destination. The system is vul­
nerable to a switch failure; the switch is also a potential bottleneck. 

Shared Memory. A system in which two or more processors share 
access to common memory is termed a "multiprocessor" [4]. Because a 
single memory constitutes a potential bandwidth problem, it is often frag­
mented into a number of independent memory modules, to permit several 
processor-memory accesses to take place simultaneously. There are 
basically three methods of interconnecting several processors to several 
memory modules, namely, via a cross-bar switch, or over one or more 
time shared buses, or by using multi-port memory modules. [3]. 

The main problem of shared memory structures, is the fact that a 
processor can access common memory without the knowledge of the 
other processors. It is possible for a processor to corrupt programmes and 
data and thereby interfere with the rest of the system. Error confinement is 
thus a major problem. Complicated protection structures have been 
devised in an attempt to take care of the problem [30, 35, 36, 49, 52]. 

8. Communication Concepts 
In this section, some basic communication concepts are discussed. 

A message is a logical unit of information such as a file, a program or an 
hourly report, which is transferred from one process to another. A 
message is of variable length, usually with a maximum length which is 
fairly long (approximately 8k words in Arpanet). 

A packet is the basic unit of information in the communication subnet­
work. Packets may have fixed length, or variable length with a maximum 
length which is relatively short ( approximately 1 000 bits in Arpanet). 

A circuit-switched network is one in which a complete connection is 
made between source and ultimate destination before transmission 
begins. This is the case in a typical telephone network. 

A packet-switched network is one in which packets are transmitted into 
the network. The packet contains routing information such as source and 
destination addresses, as well as error-detection information. 

Store-and-Forward. In most packet-switched networks, direct links 
between all possible senders and receivers do not exist Packets must 
therefore pass through intermediate nodes, where they are stored and then 
forwarded to the next node in the general direction of the destination. 

Broadcast Message. A concept that is of considerable value in certain 
network structures is that of the broadcast message whereby a message is 
broadcast to all nodes. It is then the responsibility of each node to deter­
mine whether the message applies to them. This has the advantagethatno 
routing is required. 



Protocol. Protocol is the procedure for the exchange of information 
between processes. There are four levels of protocol: the process 
level at which processes communicate; the message level; the packet 
level; and the hardware level [I 8). Here, we are not concerned with the 
content of messages, only with providing a certain level of confidence that 
messages will be reliably transported from sender to receiver, with no 
errors introduced. 

Levels of Protocol 

( a) Process Level. A number of application-orientated processes re­
side at each node. To enable overall plant control, information such 
as setpoints. hourly report data,etc., is passed between processes. 
The information is passed in the form of messages. Messages may 
also consist of programmes and files which may be transferred to 
other processors during reconfiguration or to achieve load balanc­
ing. 

(b) Message Level. The message level interfaces between the process 
level and the communication sub-network. It is the responsibility of 
the message level to break down long messages into packets. Each 
packet is then independently routed to the destination node. The 
message level is then responsible for re-formatting the incoming 
packets into the original message. which is then passed up to the 
process level. An error-check field is appended to the message by 
the sender. If the receiver detects an error in the message, it ignores 
it. and typically will send off a request to the sender to retransmit 
the message. If no errors are detected. an "acknowledge message" 
is sent to the source. This handshake technique gives positive con­
firmation to the source that the message has reached its destination. 
The source will retransmit the message if it does not receive a 
response within a time-out period, with a maximum of about three 
transmissions. If possible, the retransmissions should take a differ­
ent route to optimise the chances of the message reaching its desti­
nation. The message protocol must be able to cope with error con­
ditions. This involves detection, diagnosis, and recovery. For 
example, an acknowledge message could get lost, resulting in two 
identical messages being received by a process. An error in a desti­
nation address could send the message to a wrong process. 
Generally the message header is protected by a separate error­
check field, to reduce the probability of undetected errors in the 
important routing information. If an error is detected in the header 
then the message is ignored. 

( c) Packet Level. Due to the difficulty of dealing with long variable 
length messages ( for example, in a forward-and-store network it 
would be difficult to estimate buffer requirements, and to estimate 
delays across the network), messages are usually broken up into a 
number of packets which the network can handle more easily. In a 
store-and-forward network, each packet is contains its source 
and destination node. A packet is routed to a node which examines 
its destination address. If it is not for that node. it is routed to the 
next node in the general direction of the destination node. This 
implies a fair degree of intelligence and storage in each node. It also 
implies that many packets may be circulating at one time. Also, if a 
message is broken up into a number of packets, these will have to be 
numbered so that they can be reassembled at their destination into 
the original message. Each packet might take a different route, so 
they might arrive out of sequence. As in the case of messages, 
packets are acknowledged or retransmitted either on request or 
after a time-out period. 

Problems experienced at the message level are also reflected at 
the packet level. An additional problem can arise - that of dead­
lock. As there is a finite amount of buffer space at each node, a 
situation could arise that all buffer space is filled, so that no node 
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can accept another packet. Thus each may wait indefinitely for the 
others to empty a buffer. 

( d) The Hardware Transmission Level. This level deals with connec­
tion, transmission and signalling methods. 

Discussion. Each level interfaces with the level above and below. 
Provided these interface specifications are adhered to, changes may be 
made at any level without effect on other levels. Each level must obviously 
reflect the overall system philosophy. 

In certain applications, messages will not be very long and will not 
need to be broken into shorter packets. The distinction between message 
and packet levels then falls away. The software/hardware ratio as 
described here is not necessarily true for all systems. For example, in the 
Distributed Computing System, the routing function of a node ( which 
consists of copying messages which are destined for local processes, as 
the message passes through the node), is implemented in hardware. So is 
the error-checking and acknowledgement of messages. In the Modular 
Computer System, the hardware is responsible for even more; in fact 
everything from the message level down. As hardware becomes more 
powerful and flexible, it is very likely that it will take over much of what 
has traditionally been done in software. 

9. Design Issues 
Introduction 

It is impossible to consider any single design issue in isolation, since all 
issues impact on each other. Ultimately, the single criterion is cost- the 
minimum cost to achieve certain specifications. Because of the present 
shifting balance of hardware/ software costs, it is becoming necessary to 
reconsider previous decisions. Also, new technology has made possible 
designs which in the past were not cost-effective. The falling cost of pro­
cessors in particular has led to fundamental changes in the approach to 
system architecture in certain application areas. It is no longer necessary 
to optimise processor usage; a requirement which, in the past, led to large, 
complicated operating systems. 

The most important design decisions are: how to partition the compu­
tational load across many processors; how the resulting processes are to 
communicate; and what interconnection structure is required to support 
this co~unication [5]. 

Load Partitioning 

• The decomposition of a system into individual. autonomous processes 
is critical to a successful design. The theoretical approach is oflittle value 
at this stage, especially ifoptimization is attempted f 19]. It would appear 
that the best approach is one based on experience and intuition. 
Fortunately, most dedicated real-time systems can fairly easily be sub-­
divided into a number of relatively loosely-coupled, well defined sections. 
Broadly speaking, the objectives of partitioning should be [14]. 
(a) To segment the system into separate, distinct, autonomous 

modules; 
(b) To minimise interference between modules; 
(c) To minimise communication between modules; 
(d) To maximise parallelism and concurrency; 
(e) To minimise multiprogramming. 

Resource Allocation 

In terms of hardware, it is obviously preferable that it be composed of 
identical modules, particularly in the case of processing-elements. Apart 
from the obvious cost advantages, software would be fully transferable. 
This considerably facilitates resource allocation, especially if it is to be 
done dynamically to achieve load balancing or reconfiguration after a 
fault Unfortunately, the partitioning procedure is unlikely to yield 
similarly sized software modules 'naturally'. The larger modules could be 



further decomposed, but this procedure will necessarily increase inter­
module communication and further increase the problems of synchroniz­
ing modules. 

Alternatively, the processing-element can be selected so that it could 
execute the largest software module. This would result in greatly 
simplified software, at the expense of hardware efficiency. The most cost­
effective solution would probably lie somewhere in between. In an 
hierarchical structure, the requirement for software transpo1iability would 
be reduced, since higher level software could not normally be executed by 
lower level hardware, and vice versa. 

Process Intercommunication 
Processes must communicate in order to achieve overall control of the 

plant The first.question to ask is: "What do processors in a real-time 
control plant say to each other"" Hewlett-Packard propose the following 
answers [7]: 

- Deposit and extract data into and out of a distributed or centralized file 
system; 

- Exchange messages directly between executive-level modules in 
different nodes: 

- Share centralized peripherals for reduced overall system cost; 
- Share storage of common executable modules for down line loading 

and execution: 
- Dyarnically share computing resources as work loads vary. 

In a centralized uniprocessor there are many 'protocols', all of them 
different Synchronization is achieved by semaphores or flags. Interrupts 
provide fast response to time-critical service requests. Data is transferred 
via (common) memory. Device 1/0 employs its own protocol. This 
proliferation of techniques complicates things enormously. In a distri­
buted environment, it could easily be even more complex, due to the 
relative isolation of processing-elements and the resulting time delays in 
communication. 

In a loosely-coupled system there is a strong argument for adopting a 
uniform approach to all interprocess communication. This is achieved by 
means of a message-orientated communication system. Input/Output, 
synchronization. data transfers, etc., all occur by means of explicit 
messages between the respective processes. Interrupts could be handled 
directly by hardware where possible or scheduled hy hardware together 
with other messages. 

System Control 
The resources of any system must be controlled. So far, very little has 

been said concerning system-wide executive control and yet this is prob­
ably the most important issue in distributed systems, especially in the 
process-control area. Here we discuss this subject only briefly. due to the 
fact that very little of a practical nature is known regarding fully decen­
tralized control. 

There are four elements that can be distributed: hardware (including 
processors), processing, data and system control [9]. The hierarchical 
control system, as described above, distributes hardware, processing and 
data but control of the system is centralized in a single processor. There is 
no reason, theoretically speaking. why control too, should not be fully 
decentralized. There are also very good reasons why we should attempt to 
decentralize control. 

In any system in wqjch processors and data are dispersed, consider­
able problems arise due to the inevitable time lags in transmitting data 
from one point to another. The system state as seen by the central control 
processor ( in an hierarchical network) will thus always be out of date and 
therefore inaccurate or even in error. However, in order to make 
decisions, it must assume that its state information is valid. Thus it may 
happen that invalid directives are transmitted to processors lower in the 

*'extensibility' is approximately equivalent to 'modularity' 
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hierarchy. These processors which, on the basis of their more up-to-date 
information, could determine the directive to be faulty, even dangerous, 
are powerless to refuse it However, the main weakness of an hierarchical 
structure is the fact that the whole system is vulnerable to a fault or failure 
of the central controlling processor or its software. There is thus an upper 
bound to the reliability of systems in which there is any degree of centrali­
zation of control. 

The advantages of fully decentralized control are summarized by 
Jensen [40]. 

"We hypothesize thatthere is a positive correlation between 
the amount of decentralized system-wide executive control, 
and the extent to which the system can achieve certain attri­
butes. Foremost amongst these attributes are - 'exten­
sibility',* 'integrity', and 'performance·:· 

The concepts of fully decentralized computers have certain funda­
mental differences to partially decentralized systems. These concepts are 
briefly discussed in the following section. 

10. Fully Distributed Computers 
Jensen defines a fully distributed computer to be a ''multiplicity of 

processors that are physically and logically interconnected to form a 
single system, in which overall executive control is exercised through the 
co-operation of decentralized system elements" f 40]. 

There are essentially five components to this definition 19]: 
(a) The system consists of a multiplicity of physical and logical com­

ponents that can undertake specific tasks on a dynamic basis to 
achieve load balancing, or to permit reconfiguration of the system 
after failure of a subset of its elements. 

(b) These resources are physically distributed. Each processor has its 
own operating system and acts as an autonomous entity. The 
system components interact via a communication network. which 
employs a two-party co-operative protocol (as opposed to a two­
party master-slave protocol) to achieve transfer of information. 

( c) The distributed components are integrated into a single. logical, 
cohesive entity by means of a high-level operating system, which 
manages all of the system's physical and logical resources. Each 
processor may have its own operating system which may be 
unique. Alternatively, as in the Modular Computer System, each 
processor may have a copy of kernel logic. These copies execute in 
parallel in a non-hierarchical fashion. Taken as a whole, these 
kernel copies constitute the high-level operating system. 

( d) System structure is transparent to the user. Services are requested 
from the high-level operating system by name only and the server 
does not have to be identified. The user may use any of the physical 
or logical resources of the system. as if these resources were locally 
available. 

(e) The interaction of all physical and logical resources is that of co­
operating, autonomous elements. Master·slave relationships are 
excluded. This is for the obvious reason that a slave is powerless to 
refuse directives which it could determine to be faulty or undesir­
able by virtue of its better knowledge of local conditions. It is thus 
important that the destination resource should be able to refuse a 
message or reject a request for service based on the knowledge ofits 
own status. 

Fully distributed computers are beyond the current state-of-the-art. 
Nevertheless, there is intense interest in the possibilities of such systems. 

Operating Systems 

In any multiple-processor configuration, up-to-date status informa­
tion is never available at one point. This is due to the inevitable time 
delays that occur when data is transmitted from one point to another. The 
operating system must therefore be designed to work with inaccurate or 
even erroneous status information. This is in contrast to a centralized 



system where the operating system is assumed to have access to complete 
and accurate information about the overall system status. 

The high-level operating system should exercise control over all of the 
system's resources. This task is greatly simplified if the system is 
hierarchical. However. the requirement for strictly non-hierarchical 
control (that is. there are no master-slave relationships) greatly exacer­
bates the control problems. Even if the multiple autonomous processes 
are designed to co-operate. the likelihood of conflicting action is much 
higher than in an hierarchy. 

Synchronization of the system as a whole is complicated by the time 
lags which are inevitable when two autonomous processes attempt to 
communicate. The conventional methods used in uniprocessors to syn­
chronize two processes such as flags, semaphores, wake-ups, etc .. cannot 
directly be used. although for example, a message carrying the semaphore 
can be passed between the processes. This consumes a great deal of 
processing time quite apart from communication delays. A hardware 
mechanism of some sort might feasibly reduce delay. 

Management of resources is a complex problem. For the system to 
function successfully, efficient control must be exercised over each and 
every element of the system. Each component of the system cannot be 
viewed as an isolated entity, but its relationship with the rest of the system 
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must be carefully considered. Dynamic allocation of resources is thus a 
complex task, particularly if this is being done as a result of failure of some 
elements of system. This then impacts on the underlying control 
algorithm for the plant since changes in the overall control strategy would 
be required. 

11. Conclusion 
The field of distributed processing is one of considerable activity at the 

present time. However, we should not expect immediate, dramatic 
changes. It will be many years before the full potential of distributed 
systems is exploited. 
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