

Quaestiones lnformaticae
An official publication of the Computer Society of South Africa

'n Amptelike tydskrif van die Rekenaarvereeniging van Suid-Afrika

Editon: Dr. D. S. Hendenon,
Vice Chancellor, Rhodes University, Grahamstown, 6140, South Africa.
Prof. M. H. William~
Department of Computer Science and Applied Maths,
Rhodes University, Grahamstown, 6140, South Africa

Editorial Advisory Board
PROFESSOR D. W. BARRON
Department of Mathematics
The University
Southampton S09 5NH
England

PROFESSOR K. GREGOOR
Computer Centre
University of Port Elizabeth
Port Elizabeth 600 l
South Africa

PROFESSOR K. MACGREGOR
Department of Computer Science
University of Cape Town
Private Bag
Rondebosch 7700
South Africa

PROFESSOR G. R JOUBERT
Department of Computer Science
University of Natal
King George V A venue
Durban 4001
South Africa

Subscriptions
Annual subscriptions are as follows:

Individuals
Institutions

SA
R2
R4

us
$3
$6

MR. P. P. ROETS
NRIMS
CSIR
P.O. Box 395
PRETORIA 0001

outh Africa

PROFESSOR B. VON SOLMS
Department of Computer Science
Rand Afrikaans University
Auckland Parle
Johannesburg 2001
South Africa

PROFESSOR G. WIECHERS
Department of Computer Science
University of South Africa
P.O. Box 392
Pretoria 000 l
South Africa

MR. P. C. PIROW
Graduate · School of Business Administration,
University of the Witwatersrand
P.O. Box 3ll 70
Braamfontein 2017
South Africa

UK
£1.50
£3.00

Quaeetlones lnformatlcae Is prepared for publlcatlon by SYSTEMS PUBLISHERS (PTV) LTD for the Computer Society of South Africa.

Distributed Computer Systems - A Review
N. J. Peberdy

Dept. of Electrical Engineering, University of the Witwatersrand, Johannesburg,
South Africa.

Abstract
The past five years have seen a dramatic changeabout in traditional hardware/software relationships: hardware costs have plummeted, and the

size, environmental requirements and reliability of computing elements have altered drastically. It now becomes feasible to distribute a computing
system, such that processors may be placed adjacent to the processes they control. These distributed computing modules operate in an essentially
parallel mode, but are required to communicate in order to co-ordinate their activities. Reliable, secure communication systems must be established to
ensure correct operation. Such systems are not only functions of the electrical hardware employed, but also of the software support provided. Of vital
importance are the protocols selected, which define and detail an agreed procedure for the exchange of information.

This paper reviews the fundamental software considerations in the design of computer networks, with specific relevance for process-control
applications. It discusses in detail, inter-connection strategies and protocols and briefly examines currently adopted schemes. The implications offully
decentralized system control are considered. Of particular concern is the question of the production of reliable, fault-tolerant, secure systems.

1. Introduction
Interest in multiple-processor systems has been generated by the quest

for improved system performance. In the past the high cost of processors
has limited investigation into such systems. However, due to the recent
dramatic fall in hardware costs and processor costs in particular, distri­
buted systems are becoming increasingly feasible. For example, one finds
networks of computers being employed in large data-base systems to
enable pooling o(resources, or permit access to common data-bases.
State-of-the-art mainframe computers typically consist of a number of
processors, each dedicated to a particular task such as 1/0, arithmetic
processing, memory management, etc. In the process-control environ­
ment, the prospect of improved system performance has led to many so­
called distributed control systems. In such a system the plant is
partitioned into groups of concurrent tasks, each being controlled by a
separate processor, with interconnection to enable co-ordination on a
global basis.

The variety of ways in which computers may be interconnected has
led to a problem of semantics. Terms such as distributed processing,
distributed computers, networks, multiprocessors, etc., are being used in
an almost random fashion to describe fundamentally different systems.
This is because distributed computers involve new concepts and ideas
which have yet to be clearly defined and resolved. For the purposes of this
paper, we define a "distributed system" to be a multiplicity of computers
that are physically and logically connected together and which co­
ordinate their activities on a global basis under centralized or decen­
tralized system control. The term "fully distributed computer" refers to a
distributed system in which overall executive control is fully decentralized.
The significance of these definitions will become apparent as the paper
progresses.

We restrict our interest to those systems in which several processors
are physically separated and connected together by data links. Further,
we are restricting our area of application to those systems in which the
various computer nodes co-ordinate so as to exercise overall control of
some system which is itself complex and physically distributed.

2. Requirements of Real-Time Control

sufficient condition for reliability because of the finite probability of hard­
ware malfunction. Reliability, therefore, also encompasses the concept of
fault-tolerance, whereby the system continues to function in the presence
of faults. In practice it is not possible to guarantee correctness particularly
in the case of software. "Survivability" of the system involves confine­
ment of initial errors, detection and diagnosis of failures, and finally re­
covery whereby further damage is prevented and the system is returned to
a stable, consistent state.

During design of a plant control system, specifications are often
changed, possibly due to changes in the plant itself. In addition, changes
are invariably necessary during the life of a plant. The control system must
be amenable to such changes. This calls for a highly modular structure
both in hardware and software, so that changes in one module can be
made without affecting other modules to any great extent.

Modularity involves another aspect. In uniprocessor control systems,
each design tends to be different from others. This is especially true if one
compares large and small systems. However, in a highly modular dis­
tributed system, large and small systems can be configured with the same
basic design by varying the number of modules.

The final criterion is cost any proposed system must be cost effective.

3. Uniprocessor Real-Time Control
Before the advent oflow cost processors, plant control was (and in the

majority of cases still is) exercised by a single computer. The computer
performs all data acquisition, processing, and storage for logging
purposes.

It also implements the control function for several processes, which
must essentially execute in parallel. In order to perform these different
tasks, the computer requires a large, complex executive to allocate CPU
time to different tasks. Requests for service are typically asynchronous. If
these requests are time critical then either polling at regular intervals is re­
quired, or interrupts must be permitted.

Operating systems are notoriously complex structures. The statement
by Dijkstra that testing of software can only show the presence of bugs, not
their absence, unfortunately sums up the situation. The inherent unre­
liability of this large software structure is further complicated by inter-

In real-time control systems, performance is measured more in terms rupts. Such a complex structure can have only very limited reliability.
of response-time than throughput. Events tend to occur in bursts which At a more abstract level, the software designer constructs a virtual
cause a large and immediate increase in processing activities. This occurs architecture which consists of a number of processes, each of which
for example, when the plant moves towards a boundary condition. Failure controls one or more plant processes. However, there is no structural
to service a time-critical event within a specified time period could correspondence of this virtual multi-purpose- architecture, to the actual
constitute a system failure. uniprocessor architecture [40]. The mapping from the virtual to the real

Reliability is one of the most important criteria of plant control. This architecture must invariably introduce implicit relationships between
involves a number of aspects. The control system hardware and software processes which were not envisaged by the software engineer. Thus inter­
should be correct, that is, error free. However, correctness is not a action may occur at random, causing very obscure errors.

This paper was presented at the SACAC symposium on Real-time Software for Industrial Applications in Pretoria on 29-30 November, 1978.

17

All-in-all. the multiprogrammed uniprocessor can have only limited
reliability, regardless of speed or computational power. The solution must
be found in other areas.

The reason for the complexity of the uniprocessor software is that in
the past processors were expensive, and therefore had to be utilized to the
full. However, hardware costs have plummeted whereas software costs
are rising. It no longer makes sense to maximise processor efficiency.
Instead, attempts should be focused on minimising and simplifying soft­
ware, possibly at the expense of hardware.

4. Distributed Real-Time Control
Due to cost pressures and the requirement for greater reliability,

multiple-processor systems have generated considerable attention in the
xocess-control area. At this stage, the state-of-the-art is undeveloped and
t will be many years before the potential advantages of distributed
systems are fully exploited. However, even now, there are advantages in
choosing such a system.

Perhaps the most typical distributed system consists of a number of
,mall processors connected into an hierarchical network under centralized
:ontrol. The plant is partitioned into a number of concurrent processes.
;;everal processors are then dispersed around the plant, each controlling a
irocess, or a group of processes in close physical proximity. The proces­
ors are connected into a network by cables to enable communication.
fhese localized control processors then perform local data acquisition
and control. The central computer is freed of the laborious task of data
1cquisition, and of much of the detailed control function. Its typical
unction would be to calculate set-points for the other nodes on the basis of
elected data transmitted to it from the remote nodes. It would also pro­
·ide a centralized data logging facility and serve as an access point to the
1etwork. Because of the relative simplicity of the tasks it must perform, the
:entral computer could itself be a small computer. A back-up computer
could then be economically provided. This would reduce the vulnerability
,f the system to a fault at the top of the hierarchy.

There are many advantages to this approach. Reliability is greatly
improved, due to redundancy of processors, hardware, and communica­
tion paths. The failure of a processor for example, is not catastrophic to
the system, since the rest of the system may continue to function, possibly
with slightly degraded performance. Data is potentially more secure than
in a centralized data base system, since it is fragmented over a number of
independent memories. Access to each data bank is controlled by its
processor. This serves to confine errors. Loss or corruption of a data bank
is not catastrophic to the system as a whole. This is true even in the case of
the central control computer data, since the data is essentially replicated
in the remote nodes.

Apart from reliability, the other main advantage is modularity. Since
the system consists of a number of identical processor-memory pairs, it
can be constructed to meet the present needs of the user, and system
performance may be expanded at a later date in relatively small incre­
JJ!ents, with correspondingly small and smooth cost increments. Also,
changes in one node will have minimal effect on other nodes.

S. Advantages of Distributed Systems
Reliability. As stated earlier, reliability results from redundancy of

processors, memory and communication paths. Failures then tend to
result in "graceful degradation", whereby the remaining elements may
take over the functions of the failed module(s). Performance may be
degraded, but the system continues to function. Obviously the tasks
performed by many of the processors are not transferable since, for
example, a section of the plant will usually (but not necessarily) be
intetfaced to only one processor. In such a case, the malfunctioning sec­
tion could be manually controlled until a repair has been made.

Another aspect of reliability is that of communication. Because
communication paths have intelligent hardware at each end, highly re-

18

liable methods can be used to reduce the probability of errors. Also,
because there should always be at least two paths between any two nodes,
a break in one path would not then terminate communication.

Response. Response time in a distributed system is potentially faster
than a multiprogrammed uniprocessor. This is particularly true if a match
of one process per processor is made, thus eliminating multiprogramming
and the need for context-switching. A processor could then be dedicated
to monitoring a time-critical process, to provide an "instant" response.
Whilst this fast response time is at the expense of processor efficiency,
software is greatly simplified.

Modularity. A high degree of modularity of hardware and software
permits large and small systems to be configured with the same basic
design. simply by varying the number of modules. Obviously the degree of
modularity is highly dependent on the interconnection topology: this is
one of the major considerations in selecting a configuration. A modular
system can be upgraded in relatively small performance and cost incre­
ments. Also, changes can be made in a module with minimal effect on the
rest of the system. This is in contrast to a uniprocessor system, where
modification or expansion demand extensive system changes, perhaps
even replacement of the computer.

Homomorphism. This term, introduced by Jensen, describes the
structural correspondence of the multi-process architecture to the multi­
processor architecture. This aspect is responsible for the relative
simplicity of the distributed system (at least from this perspective), since
software mapping from the virtual to the real architecture is minimal.
Reliability is greatly benefitted, since errors are confined to a subset of
system functionality and performance [40 J.

Software. Each processor in a distributed system is controlling one
process, or a number of processes of which no more than one is active at
any time. Software for such a system will be far simpler than that of a
multi-programmed computer. Since system software consists of a number
of identifiable modules, it is readily amenable to development by a team.
Testing of each module is facilitated. Finally, simplicity in software
greatly enhances reliability.

The programmes and data in any one processing-element are
relatively isolated from the rest of the system. The probability of illegal
interference between processes is thus minimized, if not excluded, be­
cause access cannot occur without the knowledge and permission of that
processing-element. Data and programmes are thus considerably more
secure than in the uniprocessor.

Cost. In a uniprocessor system, the vast network of cables is
expensive. A distributed system offers considerable savings in cable costs
since all information can be transmitted over a single pair of wires.
However, this is complicated by the frequent requirement for manual
back-up control from the control room. Also the saving in cable costs is
generally a small percentage of total plant cost

Maintenance. A node can be isolated from the rest of the system in
order to perform routine testing and maintenance, without interference to
or from the plant. ·

6. Interconnection Structures
There are obviously many ways in which a number of processors and

memory modules can be interconnected. Broadly speaking, multiple­
processor systems can be partitioned into tightly- and loosely-coupled
systems [18].

Tightly-coupled Systems. A tightly-coupled system is one in which
several processors are in close physical proximity. Interco10munication
occurs via shared memory or over high-speed parallel buses.

Loosely-coupled Systems. These are systems in which a number of
remote computers are connected into a network by data links. There are
basically two types of networks [18].

(a) A so-called general purpose network in which each node is capable
of independent, stand-alone operation. A typical example is the
ARP A network which consists of a number of remote computers.
These are linked together into an irregular network to enable
sharing of resources (55-58].

(b) A control network of the type discussed earlier. In this system the
nodes co-operate in order to achieve overall supervision of a
physical system, such as an industrial process.

Interconnection structure is a most important issue in the design of a
distributed system, since all other issues tend to be highly dependent on it
In terms of reliability, for example, the question of distribution strategy is
critical. In, say, a star-connection, all communication is routed via a
single, centralized switch- the whole system is then highly vulnerable to
a switch failure.

Due to the current confusion in distributed systems, there is little
consensus on the classification of difference topologies. The most widely
accepted taxonomy (naming scheme) is that of Anderson and Jensen,
shown in Figure l. The strategy they have adopted in classifying a system
is based on the design decisions implicit in the particular configuration [I].

The following section describes the features of various topologies with
particular reference to their suitability to real-time plant control.

7. Network Configurations
Fully Connected. Each node is connected to every other node in the

network. Cost-modularity is very poor since the addition ofone node to an
n-node network, requires additional n-connections, one to each node.
Complete interconnection is attractive only for very small systems
consisting of about three computers. Larger systems are of theoretical in­
terest only.

Partially Connected. For a large number of geographically distri­
buted computers, a partially connected irregular network is most popular.
The foremost example is Arpanet which connects over 50 centres spread
across North America, with satellite links to London and Hawaii.

Shared Bus. In the shared bus topology, several processing-elements
(processor-memory pairs) communicate via a shared bus. Since only one
device may transmit over the bus at any one time, bus allocation is of
critical importance. Bus control may be centralized by means of some sort
of central switch. Decentralized bus control is however preferable from
the point of view ofreliability, since a failure of the central switch would be
catastrophic.

Nodes in a shared bus architecture are an "equal distance" from each
other from the point of view of message transfer time. Also, nodes are not
distinguished topologically. To increase performance, additional proces­
sing-elements may be connected to the bus. However, bus bandwidth is a
limiting factor. Unless a fully redundant bus is provided, the system is
highly vulnerable to a bus-failure. On the other hand, failure of a
processing-element should have minimal effect on system operation, and
reconfiguration would simply consist of reallocation of the processes that
were being executed by the failed processing-element.

The common bus structure is particularly suited to systems in which
executive control is fully decentralized. Honeywell's Modular Computer
System is such an example [38, 39]. In the Modular Computer System all
inter-process communication is in the form of explicit messages which are
transmitted onto the bus, even if the source and destination processes are
resident in the same processing-element. This externalization of all inter­
process communication not only greatly simplifies software, but also
permits all processing-elements to "listen-in" to all conversations. This
means that from the control aspect all processing-elements will have the
same "view" of the system. This is particularly significant for detection
and diagnosis of errors. It also increases the probability that nodes will act
in co-operation rather than in conflict. This latter possibility is a real
danger in any system in which control is decentralized.

Loops. This topology consists of a number of nodes connected into a

19

loop. Due to the complexity of bi-directional loops over uni-directional
loops, traffic in most cases is uni-directional. Messages are placed onto
the ring by the source node and circulate around the ring to the destination
nodes, being buffered by intermediate nodes. In the Distributed Comput­
ing System at the University of California [41-45], a message continues
around the loop until it reaches the node which sourced it, where it is re­
moved. All messages thus pass through all nodes. A feature of the Distri­
buted Computing System is that messages are addressed to processes, not
to processors. Each "Ring Interface", which is a hardware unit front­
ending each computer, has an associative store which holds the names of
all the processes currently active in that node. As the message "passes
through" the Ring Interface, it checks the message destination name
against the process names in its associative store. If there is a match, it
copies the message. This technique allows communication to be inde­
pendent of the number of nodes in the system and allows processes to
move freely between processors - this migration being transparent to
other processes. The Distributed Computing System is another of the few
attempts to decentralise executive control.

Star. Each processing-element is connected by a bi-directional data
link to a central switch. The switch accepts a message, performs address
translation, and routes the message to its destination. The system is vul­
nerable to a switch failure; the switch is also a potential bottleneck.

Shared Memory. A system in which two or more processors share
access to common memory is termed a "multiprocessor" [4]. Because a
single memory constitutes a potential bandwidth problem, it is often frag­
mented into a number of independent memory modules, to permit several
processor-memory accesses to take place simultaneously. There are
basically three methods of interconnecting several processors to several
memory modules, namely, via a cross-bar switch, or over one or more
time shared buses, or by using multi-port memory modules. [3].

The main problem of shared memory structures, is the fact that a
processor can access common memory without the knowledge of the
other processors. It is possible for a processor to corrupt programmes and
data and thereby interfere with the rest of the system. Error confinement is
thus a major problem. Complicated protection structures have been
devised in an attempt to take care of the problem [30, 35, 36, 49, 52].

8. Communication Concepts
In this section, some basic communication concepts are discussed.

A message is a logical unit of information such as a file, a program or an
hourly report, which is transferred from one process to another. A
message is of variable length, usually with a maximum length which is
fairly long (approximately 8k words in Arpanet).

A packet is the basic unit of information in the communication subnet­
work. Packets may have fixed length, or variable length with a maximum
length which is relatively short (approximately 1 000 bits in Arpanet).

A circuit-switched network is one in which a complete connection is
made between source and ultimate destination before transmission
begins. This is the case in a typical telephone network.

A packet-switched network is one in which packets are transmitted into
the network. The packet contains routing information such as source and
destination addresses, as well as error-detection information.

Store-and-Forward. In most packet-switched networks, direct links
between all possible senders and receivers do not exist Packets must
therefore pass through intermediate nodes, where they are stored and then
forwarded to the next node in the general direction of the destination.

Broadcast Message. A concept that is of considerable value in certain
network structures is that of the broadcast message whereby a message is
broadcast to all nodes. It is then the responsibility of each node to deter­
mine whether the message applies to them. This has the advantagethatno
routing is required.

Protocol. Protocol is the procedure for the exchange of information
between processes. There are four levels of protocol: the process
level at which processes communicate; the message level; the packet
level; and the hardware level [I 8). Here, we are not concerned with the
content of messages, only with providing a certain level of confidence that
messages will be reliably transported from sender to receiver, with no
errors introduced.

Levels of Protocol

(a) Process Level. A number of application-orientated processes re­
side at each node. To enable overall plant control, information such
as setpoints. hourly report data,etc., is passed between processes.
The information is passed in the form of messages. Messages may
also consist of programmes and files which may be transferred to
other processors during reconfiguration or to achieve load balanc­
ing.

(b) Message Level. The message level interfaces between the process
level and the communication sub-network. It is the responsibility of
the message level to break down long messages into packets. Each
packet is then independently routed to the destination node. The
message level is then responsible for re-formatting the incoming
packets into the original message. which is then passed up to the
process level. An error-check field is appended to the message by
the sender. If the receiver detects an error in the message, it ignores
it. and typically will send off a request to the sender to retransmit
the message. If no errors are detected. an "acknowledge message"
is sent to the source. This handshake technique gives positive con­
firmation to the source that the message has reached its destination.
The source will retransmit the message if it does not receive a
response within a time-out period, with a maximum of about three
transmissions. If possible, the retransmissions should take a differ­
ent route to optimise the chances of the message reaching its desti­
nation. The message protocol must be able to cope with error con­
ditions. This involves detection, diagnosis, and recovery. For
example, an acknowledge message could get lost, resulting in two
identical messages being received by a process. An error in a desti­
nation address could send the message to a wrong process.
Generally the message header is protected by a separate error­
check field, to reduce the probability of undetected errors in the
important routing information. If an error is detected in the header
then the message is ignored.

(c) Packet Level. Due to the difficulty of dealing with long variable
length messages (for example, in a forward-and-store network it
would be difficult to estimate buffer requirements, and to estimate
delays across the network), messages are usually broken up into a
number of packets which the network can handle more easily. In a
store-and-forward network, each packet is contains its source
and destination node. A packet is routed to a node which examines
its destination address. If it is not for that node. it is routed to the
next node in the general direction of the destination node. This
implies a fair degree of intelligence and storage in each node. It also
implies that many packets may be circulating at one time. Also, if a
message is broken up into a number of packets, these will have to be
numbered so that they can be reassembled at their destination into
the original message. Each packet might take a different route, so
they might arrive out of sequence. As in the case of messages,
packets are acknowledged or retransmitted either on request or
after a time-out period.

Problems experienced at the message level are also reflected at
the packet level. An additional problem can arise - that of dead­
lock. As there is a finite amount of buffer space at each node, a
situation could arise that all buffer space is filled, so that no node

20

can accept another packet. Thus each may wait indefinitely for the
others to empty a buffer.

(d) The Hardware Transmission Level. This level deals with connec­
tion, transmission and signalling methods.

Discussion. Each level interfaces with the level above and below.
Provided these interface specifications are adhered to, changes may be
made at any level without effect on other levels. Each level must obviously
reflect the overall system philosophy.

In certain applications, messages will not be very long and will not
need to be broken into shorter packets. The distinction between message
and packet levels then falls away. The software/hardware ratio as
described here is not necessarily true for all systems. For example, in the
Distributed Computing System, the routing function of a node (which
consists of copying messages which are destined for local processes, as
the message passes through the node), is implemented in hardware. So is
the error-checking and acknowledgement of messages. In the Modular
Computer System, the hardware is responsible for even more; in fact
everything from the message level down. As hardware becomes more
powerful and flexible, it is very likely that it will take over much of what
has traditionally been done in software.

9. Design Issues
Introduction

It is impossible to consider any single design issue in isolation, since all
issues impact on each other. Ultimately, the single criterion is cost- the
minimum cost to achieve certain specifications. Because of the present
shifting balance of hardware/ software costs, it is becoming necessary to
reconsider previous decisions. Also, new technology has made possible
designs which in the past were not cost-effective. The falling cost of pro­
cessors in particular has led to fundamental changes in the approach to
system architecture in certain application areas. It is no longer necessary
to optimise processor usage; a requirement which, in the past, led to large,
complicated operating systems.

The most important design decisions are: how to partition the compu­
tational load across many processors; how the resulting processes are to
communicate; and what interconnection structure is required to support
this co~unication [5].

Load Partitioning

• The decomposition of a system into individual. autonomous processes
is critical to a successful design. The theoretical approach is oflittle value
at this stage, especially ifoptimization is attempted f 19]. It would appear
that the best approach is one based on experience and intuition.
Fortunately, most dedicated real-time systems can fairly easily be sub-­
divided into a number of relatively loosely-coupled, well defined sections.
Broadly speaking, the objectives of partitioning should be [14].
(a) To segment the system into separate, distinct, autonomous

modules;
(b) To minimise interference between modules;
(c) To minimise communication between modules;
(d) To maximise parallelism and concurrency;
(e) To minimise multiprogramming.

Resource Allocation

In terms of hardware, it is obviously preferable that it be composed of
identical modules, particularly in the case of processing-elements. Apart
from the obvious cost advantages, software would be fully transferable.
This considerably facilitates resource allocation, especially if it is to be
done dynamically to achieve load balancing or reconfiguration after a
fault Unfortunately, the partitioning procedure is unlikely to yield
similarly sized software modules 'naturally'. The larger modules could be

further decomposed, but this procedure will necessarily increase inter­
module communication and further increase the problems of synchroniz­
ing modules.

Alternatively, the processing-element can be selected so that it could
execute the largest software module. This would result in greatly
simplified software, at the expense of hardware efficiency. The most cost­
effective solution would probably lie somewhere in between. In an
hierarchical structure, the requirement for software transpo1iability would
be reduced, since higher level software could not normally be executed by
lower level hardware, and vice versa.

Process Intercommunication
Processes must communicate in order to achieve overall control of the

plant The first.question to ask is: "What do processors in a real-time
control plant say to each other"" Hewlett-Packard propose the following
answers [7]:

- Deposit and extract data into and out of a distributed or centralized file
system;

- Exchange messages directly between executive-level modules in
different nodes:

- Share centralized peripherals for reduced overall system cost;
- Share storage of common executable modules for down line loading

and execution:
- Dyarnically share computing resources as work loads vary.

In a centralized uniprocessor there are many 'protocols', all of them
different Synchronization is achieved by semaphores or flags. Interrupts
provide fast response to time-critical service requests. Data is transferred
via (common) memory. Device 1/0 employs its own protocol. This
proliferation of techniques complicates things enormously. In a distri­
buted environment, it could easily be even more complex, due to the
relative isolation of processing-elements and the resulting time delays in
communication.

In a loosely-coupled system there is a strong argument for adopting a
uniform approach to all interprocess communication. This is achieved by
means of a message-orientated communication system. Input/Output,
synchronization. data transfers, etc., all occur by means of explicit
messages between the respective processes. Interrupts could be handled
directly by hardware where possible or scheduled hy hardware together
with other messages.

System Control
The resources of any system must be controlled. So far, very little has

been said concerning system-wide executive control and yet this is prob­
ably the most important issue in distributed systems, especially in the
process-control area. Here we discuss this subject only briefly. due to the
fact that very little of a practical nature is known regarding fully decen­
tralized control.

There are four elements that can be distributed: hardware (including
processors), processing, data and system control [9]. The hierarchical
control system, as described above, distributes hardware, processing and
data but control of the system is centralized in a single processor. There is
no reason, theoretically speaking. why control too, should not be fully
decentralized. There are also very good reasons why we should attempt to
decentralize control.

In any system in wqjch processors and data are dispersed, consider­
able problems arise due to the inevitable time lags in transmitting data
from one point to another. The system state as seen by the central control
processor (in an hierarchical network) will thus always be out of date and
therefore inaccurate or even in error. However, in order to make
decisions, it must assume that its state information is valid. Thus it may
happen that invalid directives are transmitted to processors lower in the

*'extensibility' is approximately equivalent to 'modularity'
21

hierarchy. These processors which, on the basis of their more up-to-date
information, could determine the directive to be faulty, even dangerous,
are powerless to refuse it However, the main weakness of an hierarchical
structure is the fact that the whole system is vulnerable to a fault or failure
of the central controlling processor or its software. There is thus an upper
bound to the reliability of systems in which there is any degree of centrali­
zation of control.

The advantages of fully decentralized control are summarized by
Jensen [40].

"We hypothesize thatthere is a positive correlation between
the amount of decentralized system-wide executive control,
and the extent to which the system can achieve certain attri­
butes. Foremost amongst these attributes are - 'exten­
sibility',* 'integrity', and 'performance·:·

The concepts of fully decentralized computers have certain funda­
mental differences to partially decentralized systems. These concepts are
briefly discussed in the following section.

10. Fully Distributed Computers
Jensen defines a fully distributed computer to be a ''multiplicity of

processors that are physically and logically interconnected to form a
single system, in which overall executive control is exercised through the
co-operation of decentralized system elements" f 40].

There are essentially five components to this definition 19]:
(a) The system consists of a multiplicity of physical and logical com­

ponents that can undertake specific tasks on a dynamic basis to
achieve load balancing, or to permit reconfiguration of the system
after failure of a subset of its elements.

(b) These resources are physically distributed. Each processor has its
own operating system and acts as an autonomous entity. The
system components interact via a communication network. which
employs a two-party co-operative protocol (as opposed to a two­
party master-slave protocol) to achieve transfer of information.

(c) The distributed components are integrated into a single. logical,
cohesive entity by means of a high-level operating system, which
manages all of the system's physical and logical resources. Each
processor may have its own operating system which may be
unique. Alternatively, as in the Modular Computer System, each
processor may have a copy of kernel logic. These copies execute in
parallel in a non-hierarchical fashion. Taken as a whole, these
kernel copies constitute the high-level operating system.

(d) System structure is transparent to the user. Services are requested
from the high-level operating system by name only and the server
does not have to be identified. The user may use any of the physical
or logical resources of the system. as if these resources were locally
available.

(e) The interaction of all physical and logical resources is that of co­
operating, autonomous elements. Master·slave relationships are
excluded. This is for the obvious reason that a slave is powerless to
refuse directives which it could determine to be faulty or undesir­
able by virtue of its better knowledge of local conditions. It is thus
important that the destination resource should be able to refuse a
message or reject a request for service based on the knowledge ofits
own status.

Fully distributed computers are beyond the current state-of-the-art.
Nevertheless, there is intense interest in the possibilities of such systems.

Operating Systems

In any multiple-processor configuration, up-to-date status informa­
tion is never available at one point. This is due to the inevitable time
delays that occur when data is transmitted from one point to another. The
operating system must therefore be designed to work with inaccurate or
even erroneous status information. This is in contrast to a centralized

system where the operating system is assumed to have access to complete
and accurate information about the overall system status.

The high-level operating system should exercise control over all of the
system's resources. This task is greatly simplified if the system is
hierarchical. However. the requirement for strictly non-hierarchical
control (that is. there are no master-slave relationships) greatly exacer­
bates the control problems. Even if the multiple autonomous processes
are designed to co-operate. the likelihood of conflicting action is much
higher than in an hierarchy.

Synchronization of the system as a whole is complicated by the time
lags which are inevitable when two autonomous processes attempt to
communicate. The conventional methods used in uniprocessors to syn­
chronize two processes such as flags, semaphores, wake-ups, etc .. cannot
directly be used. although for example, a message carrying the semaphore
can be passed between the processes. This consumes a great deal of
processing time quite apart from communication delays. A hardware
mechanism of some sort might feasibly reduce delay.

Management of resources is a complex problem. For the system to
function successfully, efficient control must be exercised over each and
every element of the system. Each component of the system cannot be
viewed as an isolated entity, but its relationship with the rest of the system

22

must be carefully considered. Dynamic allocation of resources is thus a
complex task, particularly if this is being done as a result of failure of some
elements of system. This then impacts on the underlying control
algorithm for the plant since changes in the overall control strategy would
be required.

11. Conclusion
The field of distributed processing is one of considerable activity at the

present time. However, we should not expect immediate, dramatic
changes. It will be many years before the full potential of distributed
systems is exploited.

12. Acknowledgements
The author wishes to acknowledge the many writers who are

responsible for the ideas expressed in the text, Douglas Jensen in
particular. He also expresses his sincere appreciation to Ken Behr for his
assistance in production of the diagram, and to Mike Rodd for editing the
article and tor many ot the ideas expressed therein. l he support of the
National Institute for Metallurgy and the University of Cape Town is
gratefully acknowledged.

N

11
w

ii .,, -

LOOP

NETWORK

0
DDL

DIRECT COMMUNICATION
I.E. NO SWITCHING

SHARED
MEMORY

?????9
MEMORY

DSM

COMPLETELY
INTERCONNECTED

GLOBAL BUS

NETWORK

@ ~
0
9

CJ
9

c5
[]J

INTERCONNECTION
far

COMMUNICATION

INDIRECT COMMUNICATJON
IE VIA SWITCHING IJ

FIGURE 1
COMPUTER
INTERCONNECTION
STRUCTURES -THE
TAX0No..1Y

0-PROCESSOR

Q-SW!TCH

CENTRALIZED DECENTRALIZED
ROUTING C ROUTING D

DEDICATED SHARED
PATH PATH s

BUS WITH STAR WITH
CENTRAL SWITCH CENTRAL SWITCH

* ~
!CDS ICS

LOOP WITH IRREGULAR

CENTRAL SWITCH NETWORK

Q i

REGULAR

NETWORK

BUS

WINDOW

~ I DOC I osa

References
Reviews

I.

2.

3.

4.

6.

ANDERSON, G.A. and JENSEN. E.D. (1975). Computer
Interconnection Structures : Taxonomy. Characteristics. and
Examples, ACM Comp111i11g S111wys, 7, 197-213.

CASAGLIA, G.F. (1976). Distributed Computing Systems: A
Biased Review, in E11m111icro, North Holland, Amsterdam. 5-18.

ENSLOW, P.H. (1977). Multiprocessor Organization - A
Survey, A CM Compllling Smvt'.vs, 9, 103-129.

HOOGENDOORN. C.H. (1977). Multiprocessor Systems :
Potentials and Problems, paper presented at Program 77 Con­
ference.

JENSEN. E.D. (1975). The Influence of Microprocessors on
Computer Architecture - Distributed Processing, in Proc. ACW.
,Vat. Co11f. 125-128.

RODD. M.G. (1977) A Survey of Distributed Computer Sys­
tems with special reference to Industrial Control Applications.
Internal Report, University of Cape Town.

Design Issues
7. DICKEY. S. (1976). Distributed Computer Systems Inter­

faces. Internals and Inferences in li1fo1cch Sta1c-1!flheA rt Repor/
011 Dis1rihu1ed Pmcessing, 225-242.

8. DIJKSTRA. E.W. (1974). Self-Stabilizing Systems in spite of
Distributed Control. Comm. 4 CM, 17, 643-644.

9. ENSLOW. P.H. (1976). What does 'Distributed Processing'
Mean''. in h1fo1ech Stale (1(/he .1n Repon on Dis1n'b111ed Pron°1·
si11g, 259-272.

IO LAMPSON. B. W. (1973). A Note on the Confinement Problem.
Comm AC'vf. 16,613 615.

11. LE LANN. G. (1977). Dist1ibuted Systems- Towards a Formal
Approach. in !11/imna1io11 Proee1.1i11g 77, North Holland. Amster­
dam. I 55-160.

12. METCALF. RM. (1972). Strategies for Interprocess Communi­
cation in a Dist1ibuted Computing System, Proc. Symp. Compu­
/er Cumm1111icatio11s, Networks and Te!e-Traj]ic. Polytechnic
Institute of Brooklyn.

13. PARNAS. D.L. (1972). On the Criteria to be used in Decompos­
ing Systems into l\fodules. Comm. ACM, 15, 1053-1058.

14. RAMAMOORTHY. C.V. and KRISHNAROO. T. (1976). The
Design Issues in Distributed Computer Systems, in!nfotcch Statc­
ofthe-Arl Report on Distributed Processing, 377-399.

15. ROBERTS, L.G. (1977). Packet Network Design - The Third
Generation in hfonna1io11 P•·oce1·sin;;; 77, North-Holland.
Amsterdam.

16. SIEWIOREK D.P. Modularity and Multi-Microprocessor
Structures. Dept. of Computer Science and Electrical Engineer­
ing, Carnegie-Mellon University. Pittsburgh.

17. SIEWJOREK. D.P. and BARBACCI, M.R. (1976). Modularity
and Multi-processor Structures Some Open Problems in the
Construction and Utilization of Mini- and Micro-Processor Net­
works. in 111fotech State-ofthe-A11 Rep011 on Distributed 5)s­
lems, 403-418.

18. SLOMAN, M.S. and PENNEY. B.K. (1977). Communication
Requirements for Microcomputer Networks in Process Control
Applications. internal report, Dept. of Computing and Control.
Imperial College. London.

24

19 WHITE, G.N.T. and SIMMONS, M.D. (1977). Analysis of
Complex Systems, University nf Cambridge, England.

Software
20. ABRAMSON. N. and KUO. F.F. (1973). ComputerComm1111i­

cation Networks, Prentice-Hal}, Englewood Cliffs.

21. ANDERSON. G.A. Interconnecting a Distributed Processor
System for Avionics, in Proc. !st Annual Symp. on Computer
Architecture, 11-16.

22. BRIN CH-HANSEN, P. (1970). The Nucleus of a Multi­
programming System, Comm ACM. 13, 238-250.

23. DAGLESS. E.L. A Multimicroprocessor: CYBA-M. Dept. of
Electrical and Electronic Engineering. Univ. College of Swansea.

24. DA VIES. D.W. and BARBER, D.L.A (1973). Communication
Networks for Computers, John Wiley and Sons.

25. DIJKSTRA. E.W. (1968). The Structure of 'THE' Multi­
programming System. Comm ACM, II, 341 346.

26. DIJKSTRA. E.W. (1970). Notes on Structured Programming.
Report 70 - WSK - 03. Technical University. Eindhoven.

27. FARBER. D.J. (1974). Software Considerations in Distributed
Architectures. Computer, March 1974, 31-35.

28. HARMALA. A.O. (1975). Benefits of Localized Control with
microcomputers, Computer Design, May 197 5.

29. HEWLETT-PACKARD JOURNAL (1978). Articles on the
HP Distributed System Network, March 1978.

30. LAMPSON, B.W. (1969). Dynamic Protection Structures. in
Proc. AFIPS FJCC, 27-38.

31. McFADYEN. J.H. (1976). Systems Network Architecture: an
Overview. IBM- Systems Journal, 15, I, 4 - 22.

32. METCALF. R.M. and BOGGS, D.R. (1976). Ethernet: Distri­
buted Packet Switching for Local Computer Networks. Comm
ACM, 19. 395-403.

33. MOORE, M.J. (1974). A Distributed Microprocessor System for
Avionics. 8th Asilomar Conference on Circuits, Systems and
Computers. Dec. 3-5 1974. Calif IEEE, 92-96.

34. MORGAN. D.E. and TAYLOR, D.J. (1977). A Survey of
Methods of Achieving Reliable Software, Computer, Feb. 1977,
44-53.

35. POPEK, G.J. (1974). Protection Structures, Compurer, June
I 974, 22-23.

36. WULF, W.A. (1975). Reliable Hardware/Software Architecture,
IEEE Trans. 011 Software Engineering, SE-I, No. 2.

37. YAN. G. and L'ARCHEVEQUE. J.V.R. (1976). On Distribut­
ed Control and Instrumentation Svstems for Future Nuclear
Power Plants, IEEE Trans. Nude;,. Science, NS-23, 431-435.

The Modular Computer System

38. JENSEN, E.D., A Distributed Function--Computer for Real-time
Control, in Proc. 2nd Annual C01!f on Computer Architeclure,
ACM. 176-182.

39. JENSEN, E.D. (1976). Distributed Processing in a Real-time
Environment, in h1fotech s·1ate-of-1he An Rcpo!1 on Distn'buted
Processing, 305-318.

40. JENSEN, E.D. (1978). The Honeywell Experimental Distribut­
ed Processor - An Overview, Computer fan. 1978, 23-38.

The Distributed Computing System
41. FARBER. D.J. (1975). A Ring Network, Datamation, Feb.

1975, 44-46.

42. FARBER, DJ. and HEINRICH. F.R. (1972). The Structure of a
Distributed Computing System - The Distributed File System, in
1st lnternational Conj. of Computer Co111111u11icatio11s, ACM/
IEEE. Oct. 24 26.

43. FARBER. D.J. and LARSON, K.C. (1972). The System Archi­
tecture of the Distributed Computer System - The Communica­
tions System, in Proc. Symp 011 Computer-Communications
Networks and Teletraffic, Polytechnic Institute of Brooklyn. 21-
27.

44. FARBER, D.J. and LARSON, K.C. (1972). The Structure ofa
Distributed Computing System - Software. in Proc. Symp. on
Computer-Communications Networks crnd Teletraffic, Polytech­
nic Institute of Brooklyn, 539 545.

45. ROWE, L.A. et. al. Software methods for Achieving Fail-Soft
Behaviour in the Distributed Computing System. Dept. of Infor­
mation and Computer Science. Univ. of California, Irvine.

C.mmp
46. BELL, C.G. and FREEMAN, P. (1972). C.ai - A Computer

Architecture for AI Research, in Proc. AF/PS FJCC, 779-790.

47. FULLER, S.H. (1976). Price Performance Comparison of
C.mmp and the PDP-10, in 3rd Annual Symp. on Computer
Architecture, Jan. 19-21, 1976, ACM.

48. WULF. W.A. andBELL,C.G.(1972). C.mmp-AMulti-Mini­
Processor, in Pmc. AFIPS FJCC, 765-777.

25

49. WULF, W., COHEN. E., CORWIN, W., JONES, A .. LEVlf\
R, PIERSON, C. and POLLACK, F. (1974), HYDRA - Th
Kernel of a Multiprocessor Operating System, Comm ACM, Ii
337-345.

50. WULF. W. and LEVIN. R. (1975). A Local Network, Dula
mat ion, 4 7-50.

CM*

51.

52.

53.

54.

FULLER, S.H. el al. Computer Modules -- An Architecture fo
Large Digital Modules, in Proc. !st Annual Symp. 011 Compllle
Architecture, ACM, 231-237.

JONES, A.K. et al. (1977). Software Management of CM* -- j
Distributed Multiproce&sor, in Proc. AFIPS NCC', 657-663.

SWAN, R.J. et al. (1977). CM* -- A Modular. Multimicro
processor, in Proc. AFIPS NCC, 637-644.

SWAN, R. J. et al. (1977). The IMplementation of the C!vl'
Multimicroprocessor, in Proc AF/PS NCC, 645-655.

Arpanet

55. CARR, C.S. et al (1970). Host-Host Communication Protocol i1
the ARPA network, in Proc. AFIPS SJCC, 589-597.

56. HEART, F.E. et al (1970). The Interface Message Processor fo
the ARPA Computer Network, in Proc. AF/PS SJCC, 551-567

57. ORNSTEIN, S.M. et al (1975) Pluribus - A Reliable Multi
processor, in Proc NCC, 5 51 5 5 9.

58. THOMAS, R.H. (1973). A Resource Sharing Executive for tht
Arpanet in Proc. NCC, 155-163.

