1 | ntroduction

1.1 Introduction and Background

Over the years computer systems have successfully evolved from centralized
monolithic computing devices supporting static applications, into client-server
environment that allow complex forms of distributed computing. Throughout this
evolution limited forms of code mobility have occurred: the earliest being remote job
entry (Boggs, 1973) terminals used to submit programs to a central computer and one
of the latest being Java applets downloaded from web servers into browsers. In the
last few years, a new phase of evolution is underway that takes code mobility one step
further by allowing complete mobility of a whole computational component along
with its state, the code it needs, and some resources to fulfil its tasks, to a remote site
(Fuggetta et al., 1998). Such a system is referred to as mobile agent system with

mobile agents as one of its major component.

For the purpose of this dissertation, the definition of mobile agents as provided by
Karnik and Tripathi (1998) which states that a mobile agent is a program that
represents a user in a computer network and can migrate autonomously from node to
node, to perform some computation on behalf of the user will be used. A mobile agent
system, amongst other things, provides the environment in which an agent operates.
Mobile agents, being an emerging technology, have attracted interests from a wide
spectrum of research fields. For example agents and agent communication in
particular, have attracted attention from the Artificial Intelligence community Berna-
koes et a., 2004). Bettini et a. (2002) have analysed code mobility from
programming language point of view, Johansen et al. (1999) from operating systems
point of view, while Sycara et a. (2003) look at agents from a software engineering
point of view. With all these research activities in various fields, one can easly

conclude that the mobile agents must be offering some benefits.

The fundamental reasoning in favour of using a mobile agent in a distributed system
Is that local method calls are faster than remote procedure call. This is due to the fact
that remote procedure calls have to marshal and unmarsha the arguments passed to
and the value returned from the remote procedures (Wolfgang, 2000). Additionally,
each remote procedure call suffers form the latency of the underlying network.
Keeping this in mind, the following conclusions with respect to the usefulness of

mobile agents can be drawn:

In a system that is bounded by network speed, mobile agents can help reduce
intermediate data transfers by moving across the network to the location where the

resources reside.

Mobile agents provide greater flexibility in deding with network entities and
distributed resources in comparison to the client-server paradigm where a server is
incapable of acting as a client to other servers (Harrison et al., 1995). Mobile agents
are considered to be peer entities and, as such, can adopt whichever communication

stance is most suitable to their current needs.

As reported by Harrison et al. (1995), having agents move between nodes gives it the
ability to “survive” even when the node that launched it fails. This provides for the
improvement in the persistence capability of the system. Furthermore, in a client-
server relationship, the state of the transaction is generally spread over the client and
the server. In an event of a network or server shutdown during request, it is difficult
for the client to reclaim the situation and re-synchronize with the server because the
network connection would have been lost. This problem is generally easier to deal
with as mobile agents do not need to maintain permanent connections and their states

are contained within themselves.

In spite of the numerous benefits obtained by using mobile agents in a distributed
environment, some of which are mentioned in the previous paragraphs, using mobile
code raises a few serious concerns, paramount amongst them being the security
threats to the components of the mobile agent systems. As described in Karjoth et al.
(1997), Farmer et al.(1996), and Jansen (2000) these security threats originate not just
in malicious agents but in malicious hosts as well.

1.2 Theproblem statement

In their article, Schoeman and Cloete (2003) have indicated that in recent times, there
has been a surge in research activity in mobile agent system arena. This has resulted
in an increase in the number of mobile agent systems being developed Gray et al.,
2000) for use in both commercial and research arena. Each of these mobile agent
systems differ from one another, to various degrees, with respect to the architectural
designs, the implementation languages, the mobility mechanisms, communication

related issues, agent management issues and security aspects to name just a few.

As the numerous advantages offered by agents are commonly known (Sierra et al.,
2000), one may be inclined to use an existing mobile agent system when building
large-scale projects involving agents. Having to choose from over 70 different mobile
agent systems (The Mobile agent List http://mole.infomatic.uni-
stuttgard.de/mal/preview.html) is not an elementary task even for an expert in the
field of distributed system as each mobile agent system has its own strengths and
weaknesses. For example, one system may have a better migration capability while
another may offer superior mechanism for interaction amongst agents and yet another

may provide a better solution to the security concerns.

Selecting a suitable mobile agent system from a list such as the above mentioned one
is difficult, as it requires an in-depth study of the various properties of the mobile
agent systems. To facilitate this process, one may ask the question — what are those
properties of a mobile agent system that must be analysed in order to select a desired
one for a particular project? To answer this question, a set of factors based on the
Issues surrounding mobility, communication and security are presented and used for
the evaluation of the mobile agent systems. It is aimed that evaluating the mobile
agent systems against this set of factors will assist in making an informed decision
when choosing a mobile agent system. The reasons for considering only these aspects

of mobile agent systems are discussed in the following section.

1.3 Proposed solution

As mentioned earlier, mobile agents have attracted interest from wide ranging fields
of research. The reasons being that mobile agent systems have an impact on a wide
range of fields of interest to researchers. Considering the vast nature of this field of
research, it is not possible to study all aspects related to mobile agent systems. Hence,

this dissertation concentrates on mobility, communication and security related issues.

The reasons for restricting to these three issues are as follows:

A mobile agent’s primary identifying characteristics, as the name suggests, is the
mobility of the agents (Tripathi et a., 2001), (Horvat, 2000) and @icco, 2001).
Without this property, the advantages obtained by using such a system would not
warrant the research efforts currently taking place and hence forms one of the aspects

to be considered when selecting a mobile agent system.

Probably the most important reason for having the agents to migrate from node to
node is to allow them to perform some task on behalf of their users. In order to
achieve this goal, the agents need to be able to communicate and coordinate their
efforts with one another (Kone et al., 2000). Therefore, for any mobile agent system,
suitable communication mechanism between agents must be supported. It is for this
reason that agent communication is one of the issues considered for evaluating mobile

agent systems (MAS).

According to Farmer et a. (1996), Jansen (2000) and Tripathi et al.(2001), the major
obstacle to the widespread acceptance of mobile agents is the security concerns it
raises. By virtue of an agent’s ability to migrate from host to host increases the threat
of security violations, as it makes it possible for an untrustworthy user to dynamic
inject malicious agents that can compromise hosting node’' s resources in away similar
to that of viruses and worms. On the other hand, a host entrusted with the
responsibility of agent execution could try to tamper with the agent code and state,
with intent to disclose private information and to block agent transfer to successive
execution sites (Johansen, 1999). From the discussions thus far, one can easly

conclude that security is a major concern in a mobile agent system. For a mobile agent

system to be considered as a serious contender for a development project, it must
provide mechanisms to deal with the security concerns adequately. It is for these
reasons that agent security has been selected as one of the aspects to consider when

selecting a mobile agent system.

From the discussions above, the issues related to mobility, communication and
security stands out as being amongst the most important of the issues to be considered
when deciding on a particular mobile agent system. It must be noted that these are by
no means the only aspects that can be considered when selecting a mobile agent
system. Other issues, though not directly influencing the functionality of a mobile
agent, but relevant to the environment in which the mobile agent functions, such as
the effectiveness of a programming language in developing mobile agents and mobile
agent systems could also be considered. Since the focus of this dissertation is at the
implementation level, programming language related aspects for the selection of the
mobile agent system have not been considered. One could also consider other non-
functional related issues such as availability of platform state (alpha, beta or
production release) and Rapid Application Development tools, Operating system
environment supported (windows/UNIX), support for integrated debugging tool etc.

The following paragraph gives an indication of the factors that will be used for the
evaluation of the mobile agent systems.
The type of mobility supported (Strong / Weak).
The nature of the itinerary used (Static / Dynamic).
Is there support for inter-platform messaging?(Y es/No)
What protocols are used for message transport over the network? (SMTP /
TCP/IP/HTTP)
Are there mechanisms in place to provide security for agents while in transit
between various hosts? (Yes/ No)

14 Strategiesfor finding a solution

Many mechanisms have been proposed and implemented by mobile agent system
developers for the three issues being investigated (Lauvset et a., (2001), Karnik et al.
(2001), Jansen (2002), and Gray et a. (2002)). The steps taken to answer the research
guestion were firstly, a critica analysis of the various issues surrounding the three
aspects (mobility, communication, security) were performed. From this analysis, sets
of factors were obtained. As it is not feasible to evaluate all mobile agent systems, a
means of grouping these agent systems are suggested (chapter 6 presents the grouping
process). From each group, a mobile agent system was selected and evaluated against
the factors obtained. Using this evaluation, a mobile agent system with the desired
properties may be selected.

In addition to this, a smple application using the Aglet Software Development
Toolkit (ASDK) was developed and referenced throughout the dissertation to explain

certain concepts of agent mobility, communication and security.

15 Context of Research

Determined by the extensive literature survey conducted regarding the evaluation of

mobile agent systems, very few analysis of this nature exist. Altmann et al. (2000)

consider issues such as availability (legal and financia aspects for deployment of the

platform), documentation (issues for successful use of the agent development

platform), and development (i.e. how efficiently programs for the agent platform in
question can be designed, implemented, and tested). These factors are external to the

mobile agent system. Wittner (1999) has evaluated mobile agent systems from a
network fault management perspective. Dikaiakos et al. (2000) evaluate mobile agent

systems from performance analysis point of view, whereas information about the
agent systems, during their execution, are collected and analysed by Xuhui et al.

(2004). The current study uses criteria that are directly related to the implementation
of the mobile agent systems and hence are complementary to the ones mentioned

above.

1.6 Ddimitation of study field

This research is limited to the study of mobility, communication and security
mechanisms in mobile agent systems at an implementation level with the objective of
developing a set of factors to be applied in evaluating mobile agent systems. The
evauation of the mobile agent systems, against these factors, is limited to just one per
group. It should be kept in mind that these are by no means the only assessment
criteria that can be used for mobile agents. Other criteria such as availability (of an
evauation version, platform state - alpha, beta or production release), operating
system environment supported, how efficient programs for agent platform can be
designed, implemented and tested could all be used.

1.7 Structure of the Dissertation

Chapter 1 presents the objectives, the proposed approach to attain the objectives
together with the limitations of this research. The organizational structure of the

dissertation has a so been presented.

Chapter 2 presents an application using Aglets Software Development kit (ASDK),
which is used in the discussions and demonstrations of certain issues regarding
mobility, communication and security presented in later chapters. Appendix A

presents the source code of this application.

Chapter 3 contains information regarding agent mobility mechanisms, code relocation
strategies, and data space management. Support for agent persistence and types of
agent itinerary have been studied. Evaluating factors for mobile agent systems with
respect to mobility have been developed.

Chapter 4 contains communication mechanisms in mobile agent systems together with

agent naming and name resolution mechanisms. The need for agent communication

language has been discussed. The factors surrounding agent communication against
which the MAS are evaluated is presented.

Chapter 5 presents some of the security concerns and the mechanisms suggested to
aleviate those concerns. Evaluation factors for MAS with respect to security have

been devel oped.

Chapter 6 presents the procedure for the selection of the MAS for evaluation against
the factors. This chapter also presents the evaluation of the selected MAS for their
implemented mechanisms to support mobility, communication and security related

i SSUes.

Chapter 7 concludes the study by briefly highlighting some of its findings and
suggests direction for future research.

A H ands-on L ook At Agents

2.1 Introduction

In this chapter a simple application is developed with the aim to demonstrate how
agents achieve mobility and communication. The scenario of the experiment is as
depicted in figure 1 below. Three PCs namely Jupiter, Venus and Saturn are
connected to each other and have the Java virtual machine and the Tahiti aglet server
installed on them. Jupiter is the base station on which the agents are created. The
stationary agent on Jupiter then creates and dispatches a mobile agent to Venus and
Saturn. Any communication from the stationary agent is sent simultaneously to both
the mobile agents. Each of the mobile agents can communicate independently with
the stationary agent. The stationary agent communicates with the two mobile agents
in a synchronous manner whereas the two mobile agents communicate with each
other asynchronously. As a means to demonstrate basic security, the application
allows for the creation of agents only on one of the hosts - the home base (host from
where the agents begin their journey). The discussion on security aspects of this
application is presented in chapter 5. It must be further noted that the application does
not demonstrate all the features of mobility, communication and security. In the
subsequent chapters, this application is used as basic example. Section 2.2 presents a
brief description of the agent development environment. The details of each agent and
their functioning from atechnical perspective are presented in section 2.3. Section 2.4

presents a brief summary of the chapter.

Stationary agent

Mobile agents

‘ ________ » Agent Migration
| — = =% Synchronous Communication

Sl Asynchronous Communication

Figure 1: The Experimental setup of the application

2.2 TheAgent Development Environment

As the agents are developed using the Aglet Software Development Kit (ASDK), this
section presents a brief description of the development environment. The ASDK is a
Java based mobile agent development toolkit. It supports creation, cloning,
dispatching, retracting, and activation/deactivation of agents and facilitates the
creation of dynamic itineraries (Yap et a., 2004). The main components of the ASDK
are the Aglet APl packages and a customizable agent server called Tahiti. The choice
to develop the application using ASDK was based on its popularity, ease of use (Y ap
et a.,, 2004), (Gschwind et a., 1999) and it being freely avalable (at
http://www.trl.ibm.com/aglets’download11b.htm).

The Aglet API is a set of Java classes and interfaces that allows for the development
of mobile agents. The API uses the Java delegation event model introduced in Java
1.1 (Ta et al., 1999). This model is based on the concept of an “Event Source” and
“Event Listeners’. Any object interested in receiving an event is caled an Event

in

Listener and the object that generates these events is called an Event Source. When an
action is performed on the event source object, the event produced is then propagated
to al event listeners. This is achieved by invoking a method on the event listener
object and passing it an event object. For example, clicking the dispatch button (figure
2) invokes the listener’sonAr r i val method and passes it the “Mobi | i t yEvent ”
object. A detailed explanation of underlying mechanism when such an action is taken

is presented in section 2.3.1 below.

As mentioned above, the other main component of the ASDK is the Tahiti server,
which supports the runtime execution of aglets. It provides the necessary
infrastructure to support, amongst others, the creation and termination of agents,

communication and security facilities. Figure 2 below presents the GUI of the Tahiti

Aglet Server on Jupiter after creating and dispatching one of the mobile agents to
Saturn.

& Tahiti: The Aglet Yiewer [atp://jupiter:4434 {aglet Y] |
Aglet Mobility Wiew Options Tools Help

>=| ECreateEl Dial-:u-gl Aglet!nfui Dispose Clunel Disuatthl Retractl

wy.aglets, GroupCMaster : Mon Oct &5 09:17:35 GMT+02:00 2004

Dispatch : my.aglets GroupCChild2 to atparsaturns
Figure 2: Tahiti aglet server.

2.3 Technical Details of the application

This section makes use of code segments taken from Appendix A to discuss the agent
application. Extending the abstract class Agl et and overriding its onCr eat i on()
method creates the stationary agent represented by the Class G- oupMast er, and

shown by figure 3. The code segment presented below illustrates this. Behind the
scene, creation of an agent involves severa steps. First of al, the class definition is
loaded and the agent object is instantiated. The agent is assigned a unique
identification by the place. In the next step, the agent is given a chance to initidize
itself using any initialization arguments provided to it. Once the initialization has been

completed successful can the agent start is execution independently of any other agent
at that place.

public void onCreation(Object obj){
wi ndow = new G oupW ndow(t hi s);
wi ndow. show() ;
try{
name= get Property("user. nanme");

cat ch(Exception e){
e.printStackTrace();
}

The GUI of the stationary agent consists of a frame with a text field and a text area.
The message to be passed to other agents is entered in the text field and the messages
received from other agents are displayed in the text area. The message handling
mechanism is presented in section 2.3.2. In addition to these two main components,
the GUI also consists of an address field that displays the address of the agent with
which the stationary agent wishes to communicate. Figure 3 shows the GUI of the
stationary agent produced by the class G oupW ndow.

1o > Address
AddressBook |Address: I_atr:-:mfenu524434 <« Field

Hi Kid=s, Howe 1= lite out thhere??

wernusHis cold and lonaely
saturn~ery vwweardl
Set started with what agents do bhest.

saturrml am on my vyl Text Area

Text Field

| ﬂ/

Figure 3: GUI of the stationary agent.

11

2.3.1 Agent Creation and Agent Mobility

The application requires that the stationary agent create two mobile agents and
dispatch one to Saturn and the other to Venus. The two mobile agents that are created
arecaled G oupChi | d1 and G oupChi | d2. Asrequired by Aglet and some other
mobile agent systems, an agent is created at a “place” and moves between places. The
concept of places is discussed further in section 4.4 of chapter 4. Places are known as
“Context” in the Aglet system. Hence before a mobile agent is created, one has to
gan access to the current context. The aglet context is also used to provide
information about its environment, and to send messages to the environment and to
other active agents in that environment. To send an agent to a particular host, for
example to Saturn, the di spat ch() method provided by the Aglet APl is used.
Basically, when an agent is dispatched to a particular host, its state information is
preserved and a sequential byte representation of the agent is made by a technique
known as object serialization (Sutherland, 1997). These bytes are then passed on to
the underlying transfer layer, which carry it over the network. Using Java's reflection
and deserialization techniques on the transferred bytes, the agent is reconstructed on
the destination host (Karjoth et a., 1997). The above discussion is shown in the code
segment below.

Agl et Cont ext acl= get Agl et Context ();
Agl et Proxy apl = ac.createAglet(null,
"my. agl ets. G oupCChil d1", get Proxy());
Agl et Cont ext ac2= get Agl et Cont ext () ;
Agl et Proxy ap2 = ac2.createAglet(null,
"ny.agl ets. GroupCChi | d2", get Proxy());
remot eProxyl = apl. dispatch(url);
remot eProxy2 = ap2. di spatch(new
URL("atp://saturn: 4434/ "));

In accordance with aglet delegation-based event model, upon successful invocation of
the di spat ch() method, the listener’s onArri val () method is called which is
used to initialize the agent once it has arrived at the new destination. On arrival a a
new host, the first thing the mobile agent does is to display its GUI (figure 4). The
code segment shown below represents this discussion.

12

addMobi i tyLi stener (new MobilityAdapter(){
public void onArrival (MbilityEvent ne){
try{
wi ndow = new Gr oupW ndow(G- oupCChi I d1.this);
wi ndow. show() ;
nanme=get Property("user.nanme");

}
}

% Child Frame B =10 =i

AdministratorHi Kids, Haow is life aut there?

Iti=s cold and lonely Text area

Administrator.Get started with what agents do best. to display

Hello brother, How was the journey? received

saturn:Bit Eiurnr:u'g.r!| <
messages
Text fied
for
messages

| < to be sent

Figure 4: GUI of a mobile agent

In addition to being able to create and dispatch agents, agents need to get access to
each other for various reasons, such as, for communication. It is a requirement of the
Aglet system that all access to an agent takes place through a proxy. Proxy is a
representation of an agent. It serves as a shied that protects the agent from malicious
agents and also provides location transparency for the agent. Creating an agent is one
way to get a proxy as shown by the code segment below.

Agl et Proxy ap=ac. createAgl et (null,
"my.agl ets. GoupCChil d1", get Proxy());

2.3.2 Communication between agents

Having the mobile agents dispatched successfully to Venus and Saturn, the agents
begin to communicate. A requirement of this application is that the stationary agent
communicates with the mobile agents by sending and receiving messages in a
synchronous manner whereas the mobile agents communicate with each other in an
asynchronous way. In synchronous messaging the sender of the message suspends its
execution until a reply has been received whereas the sender continues its execution
and retrieves the reply at a later time, in asynchronous communication. These
requirements are placed on the agents purely for demonstrating the different types of

communications that is possible between agents.

The principa way the agents communicate is by message passing. Inter-agent
messaging is based on a simple event scheme that requires an agent to implement
handlers only for the kind of messages that it is supposed to understand (Lange et a.,
1998). For synchronous messaging, the sendMessage() method is invoked. This
method takes a message object as a parameter, serializes the message using the object
seriadization technique explained in section 2.3.1 above and sends it to an agent it
wishes to communicate with. The receiving agent then reconstructs the message using
the deseridization technique. To respond to the message received, an agent makes use
of the message handler handl eMessage() . The code segments provided below
demonstrate how a message is sent to the mobile agents and the mechanisms used by

the receiving agents to handle the message.

if(remteProxy !'= null) {
r enot ePr oxy. sendMessage(hew
Message("text", name+":"+s));
r enot ePr oxy2. sendMessage(new
Message("text", nane+":"+s));

publ i ¢ bool ean handl eMessage(Message nessage) {
i f (message. saneKind("text")) {
String s = (String)nmessage. getArg();
i f(!'w ndow.isVisible())
wi ndow. show() ;
wi ndow. appendText (s);
return true;

(=

Asynchronous messaging is based on the concept of future object. The object is called
“future” because it is returned immediately to the sender of the message, bearing the
promise of a future reply. The future object, which is returned by the
sendFut ur eMessage () method, serves as a handle for the expected reply to the
message (Lange et a., 1998). The code segment provided below shows how the
mobile agents communicate in an asynchronous way.

future= chlProxy. sendFut ureMessage(new
Message("text", name+":"+s));
i f(future.isAvailable()){
String reply = (String) future.getReply();
wi ndow. appendText (reply);

24 Summary

The chapter contains a description of an agent application used to demonstrate some
of the means of achieving mobility and communication using ASDK and the
underlying mechanisms to achieve them. A more comprehensive discussion with

regards to mobility, communication and security are presented in subsequent chapters.

(Wag

Agent M igration

3.1 Introduction

A process is a program in execution. The transfer of an executing program between
machines is termed as process migration. From a low-level (operating systems)
perspective, an agent is just a process, consisting of code and state. The main
governing factor that distinguishes it from other processes is that in an agent not al of
its instructions have to be executed on the same node or location. Just as a mobile
agent is fundamentally different from a process (in this described sense), so too is
agent migration different from process migration. The difference lies in who decides
where to move. In process migration, migration is normally forced upon a process by
the distributed operating system due to factors such as load balancing (Farooq et a.,
2003), (Johansen et al., 1995a). A mobile agent’s primary identifying characteristic is
its ability to autonomously migrate from host to host Picco, 2001), Karnik et al.,
1998). Thus providing support for agent mobility is a fundamental requirement of an

agent infrastructure.

Agent mobility as is known today has evolved over time from simple data mobility as
in the case of file transfer using FTP, to the transfer of execution control (in remote
procedure call), to code transfer (as in remote invocation or code on demand), and
currently to the transfer of execution and data state (as in mobile agents) (Zaslavsky,
2004), (Horvat et al., 2000). In section 3.2, a brief discussion of these paradigms is
presented.

The agent migration process consists of deactivating the agent, capturing of its states,
transporting the agent to the new place. Once the agent has reached its new host, the
agent’s states must be restored and the agent reactivated. Depending on the content of
agent’s state that is transported, different levels of mobility is obtained. This has been

17

discussed in section 3.3. Section 3.4 analyses the ways in which the codes needed by
the agents are rel ocated.

On arriving at a new host, the set of bindings to resources available to the agent must
be rearranged. This may involve removing bindings to resources, re-establishing new
bindings or even migrating some resources to the destination node along with the
agent. The option depends on the type of resources and on the requirements imposed

by the application (Fuggetta et al., 1998). These issues are discussed in section 3.5.

Related to the issues of how an agent migrates, is the issue of where to an agent
migrates and the transportation protocols used to support this. This set of sites to be
visited, often called itinerary, can be either statically defined at the time of agent
creation or dynamically built from the information the agent gathers as it migrates
from node-to-node. The concept of agent migrating between hosts implies that the
user is not reliant on the system that launches the agent and is not affected by the host
failure. This implies that persistence is supported by the notion of mobile agents
(Zaslavsky, 2004), (Harrison et al., 1995). However, specific mechanisms have to be
embedded into mobile agent systems to handle situations such as breakdown of hosts,
destruction of agents, or network errors leading the agents off course (Schoeman et
al., 2003). These issues are discussed in sections 3.6, 3.7 and 3.8. Section 3.9 presents
the factors to be considered when selecting mobile agent systems. These factors are
based on issues covered in sections 3.1 to 3.8 and thereafter a summary of the chapter

and conclusions drawn from it are presented in section 3.10.

3.2 Mobility Concept

Mobile agent systems typically identify the agent with a unit of execution running in
an execution environment belonging to the lower level of the virtua machine, e.g. a
thread or aprocess. A unit of execution (EU) is constituted by the code segment (CS)
governing its behaviour, the data state necessary for its computation, and its execution
state, such as program counter and call stack Picco, 2001), (Fuggatta et a., 1998),
(Gray et d., 2002). For instance, using the stationary agent G- oupCMast er of

10

appendix A, the variables shown below form the data state and the rest of the code
form the code segment.

Agl et Proxy renot eProxy;
Agl et Proxy renoteProxy?2;
String nane;

Gr oupW ndow wi ndow;

Agl et Proxy chProxy;
Message nsg3;

In a traditional distributed system, each EU is bound to a single Computational
Environment (CE) i.e. the runtime system for its entire lifetime. Moreover, the
binding between the EU and its code segment is generally static. Even in the
environment that support dynamic linking, the code linked belongs to the local CE. In
Mobile Code Systems (MCSs), on which most of the mobile agent systems are based
(Tripathi et a., 2002), the code segment, the execution state, and the data space of a
EU can be relocated to a different CE. Depending on the constituents of the execution
unit that is relocated, two forms of mobility are identified in the literatures- strong
mobility and weak mobility. Before discussing these two forms of mobility (discussed
in sections 3.3.1 and 3.3.2), mobile code paradigms that provide different strategies
for achieving distributed computing are examined. These paradigms consist of the

following mechanisms:

3.2.1 Codeon Demand (COD): (Refer to figure 5 below) In COD, component
Ca on host Ha has access to resource R. However Ca has no idea of the logic (code)
required to perform the task. Thus Ca requests from component Cs on host Hs for the
logic. Once the logic is received, Ca is then able to perform the task. An example of
this mechanism is the Java applet.

Figure 5: Code-on-Demand paradigm

1N

3.2.2 Remote Evaluation (RE): (See figure 6 below) In RE, component Ca on

host Ha has the necessary logic (code) to perform a particular task, but does not have
the required resources. The necessary resource R is located on host Hg, so Ca

forwards the logic to component G on Hs where it is executed and the result is

returned to Ca.

Host Ha L Host Hg

Component Ca

L

Figure 6: Remote Evaluation paradigm

3.2.3 Mobile Agent (MA): (Figure 7) In this paradigm, component Gy has the
necessary logic to perform the task, but lacks the resource R, which is at host Hg.

Instead of passing the logic around, the entire component Gy is migrates with its
associated data and logic to the new host Hg and interacts locally to access the

resource.

Host Ha

Component Ca
I

Figure 7: Mobile Agent paradigm

3.3 Mohbility Models

Figure 8 below classifies mobility based on the components of mobile agents that is

relocated when an agent migrates.

Mobile Agent

T~

Code
Segment

Weak Mobility

Data State Execution
State

Strong Mobility

Figure 8: Classification of MAS based on agent component mobility

3.3.1 Strong Mobility

In strong mobility, al the three components - code segment, data state, and execution
state (see figure 8 above) are captured and transferred to the destination machine
(Brazier et a., 2002). Having the code to migration means that the code necessary to
build up the agent is available at the destination site. Providing for execution state
migration ensures the execution of the agent to begin at the same point where it had
stopped before migration. Supporting data state migration (vaues of the variables
placed on the stacks) ensures that the results of an agent’s computation are available

to the agent after migration.

As stated by Fuggatta et a., (1998) and Straber et al. (1996), strong mobility is
supported by two mechanisms. migration and remote cloning. In migration
mechanism, once the command to migrate is issued, the execution of the agent at the
current location is stopped; the agent is removed from the source location and
transported to the destination location where the execution continues. In remote
cloning mechanism, a copy of an agent is created at the destination host. Both these
mechanisms could be either proactive or reactive. By proactive migration, it is meant
that the migrating agent autonomously determines the time and the destination for
migration, and reactive migration means that a different agent triggers the migration.

According to Arjav et al.(2003), even though such features are very powerful and
interesting from a programmer’s point of view, few systems implement a complete
strong mobility. One of the reasons for this lack of implementation is due to the
complexity in representing the states of an agent in a manner that is independent of
the interpreter/compiler or heterogeneous platform on which an agent operates.
Another difficulty associated with strong mobility is that if the code is compiled
before migration, the execution state will need to be transformed into an
implementation independent format to cater for different architectures, this may be a
nontrivial task even if the same compiler is used. To overcome the problems

associated with strong mobility, weak mobility is used.

3.3.2 Weak Mobility

Weak mobility is the ability of MAS to alow code transfer across different
computationa environments (CEs); code may be accompanied by some initialisation
data, but no migration of execution state is involved. Mechanisms supporting weak
mobility provide the capability to transfer code across CEs and ether link it
dynamically to a running execution unit (EU) or use it as the code segment for a new
EU. As no execution state of an agent is captured in this mechanism, the agent after
migration must restart its execution from the beginning or from a predetermined point
- usually at a method (Thorn, 1997) and (Tripathi et a., 2002). For example, the
mobile agent G oupCChi | d2 (chapter 2) after migration, begins its execution from

the method onArrival (MobilityEvent nme). Some mobile agent systems
support more than one point from where an agent can begin its execution upon

migration.

According to Fuggetta et al.(1998), weak mobility can be classifies according to:

a) Direction of code transferred — either the code can be pushed or pulled to
another CE.

b) Stand-alone code or code fragment — stand-alone code is self contained and
can be used to instantiate a new EU. Code fragment needs to be linked to a
running code to be executable.

C) Synchronization involved — depending on whether the EU requesting code
transfer is suspended or not until the code is executed, mobility can be either
synchronous or asynchronous.

d) Time of execution of the transferred code — when asynchronous transfer is
used, the execution of the code transferred may take place either immediately
or in adeferred fashion.

In systems using weak form of mobility, if the application requires the ability to retain
the thread of control, extra programming is required in order to capture the execution
state manually. As mentioned earlier and supported by the code segment of figure 9
below, in systems supporting strong migration, migration is completely transparent to
the migrated program, which resumes execution right after the migration instruction.
This has a double advantage of reducing programming efforts of using migration to
the invocation of a single operation, and of requiring a smaller code size of the
migrated code (Picco, 2001).

void main (String () args) { void main (String () args) {

........ [/ some instructions voeeee.d] sonme instructions
go(“ NewHost”, Newwethod”); go(“ NewHost ") ;

........ [l not reached /'l the execution restarts
} // end of main /1 here on mgration
void Newwvethod() { | | ...

/'l execution restarts here } end of main Method

/1 on mgration

} // end of Newwet hod

@ (b)
Figure 9: Code fragment of an agent using (a) weak and (b) strong mobility

34 Strategiesfor Relocating Code Segment

The availability of the code (in Java — normally class files) of an agent at a host is
essential for the execution of the agent at that host (icco, 2001). There are various
approaches adapted by mobile agent systems to the transportation of their classes to
the host on which the agent is to execute (Gray et al., 2002), (Tripathi et al., 2001).
One approach is that all classes required by the agent are transported with the agent
when it is transferred. This prevents any further remote communication with other
hosts while an agent is executing at a particular host. However, this makes the agent
transportation heavyweight, since an agent may consist of large number of classes,
and not al are actually needed for the task at hand on a particular host. The second
approach is to have the classes pre-loaded at the various hosts. This approach is
obvioudly impractical, as it requires a pre-knowledge of al the hosts in the system
where an agent could migrate. The third scheme often adopted by some mobile agent
systems is to migrate only the base class with the agent; additional classes are
downloaded dynamically on need basis from a designated host. This avoids
unnecessary transfer of classes, but imposes runtime overhead on agent’s execution
and it is not suitable in a disconnected environment (Tripathi et al., 2002). Another

drawback of this scheme is its reliance on the assumption that the code repository is

aways available, thus implicitly negating one of the magor advantages of mobile
agents, i.e. the ability to support disconnected operations (Picco, 2001).

Upon relocation of a EU to a new CE, its data space, i.e. the set of bindings to
resources accessible by the EU, must be rearranged. This may involve removing the
current binding to resources, re-establishing new bindings or even migrating some
resources to the destination CE along with the EU. The choice depends on the nature
of the resources, the type of binding to such resources, as well as on the requirements
posed by the application (Fuggetta et al., 1998). In section 3.5 below, data

management mechanisms used by various mobile agent systems are analysed.

3.5 Data space management

According to Fuggetta et al.(1998), the data space management mechanisms that can
be exploited upon migration depends on the type of bindings involved between the
resource and the EU and the nature of resources. Fuggetta et al.(1998) classify
resources into three categories- Free transferrable (resource can be migrated over the
network), Fixed transferrable (resources could be migrated but is not desirable, such
as a huge or crucial file) and fixed not transferrable (Resources cannot be migrated
over the network).

Assuggested by Fuggetta et al.(1998), there are three ways in which resources can be
bound to an EU:

The strongest form of binding is by identifier. In this case, the EU requires that, at
any moment, it must be bound to a given uniquely identified resource. Binding by
identifier is exploited when a EU requires to be bound to a resource that cannot be

substituted by some other equivalent resource.

A binding established by value declares that, at any moment, the resource must be
compliant with a given type and its value cannot change as a consequence of

migration. This kind of binding is usualy exploited when an EU is interested in the

contents of a resource and wants to be able to access them localy. In this case, the
identity of the resource is not relevant; rather, the migrated resource must have the

same type and value as the one present on the source CE.

Binding by type is the weakest form of binding. In this case, the EU requires that, at
any moment, the bound resource is compliant with a given type, no matter what its
actual value or identity are. This type of binding is exploited typicaly to bind

resources that are available on every CE.

From the above discussions, as suggested by Fuggetta et al.(1998), two classes of
problems must be addressed by data space management mechanisms upon migration
of an EU: resource relocation and binding reconfiguration. The manner in which the
existing mechanisms tackle these problems is constrained both by the nature of the

resources involved and the form of binding to such resources.

Consider a migrating executing unit U whose data space contains a binding B to a
resource R. One general mechanism, which is independent of the type of binding or
resource, is binding removal. In this case, when U migrates, B is smply discarded. If

access to bound resources must be preserved, different mechanisms must be looked at.

According to Fuggetta et al.(1998), when U is bound to R by identifier, two data
Space management mechanisms are suitable that can maintain resource identity. The
first mechanism is relocation by move where R is transferred together with U to the
destination CE and the binding is unchanged. Clearly, to exploit this mechanism R
must be a free transferable resource. Otherwise, a network reference mechanism
must be used. In this scenario, R is not transferred and once U reaches its target CE,
modification is made to B to reference R in the source CE. The creation of inter-CE
binding is often not desirable because it exposes U to network problems and makes it
difficult to manage state consistency since data is actually distributed over the
network. On the other hand, moving a resource away from its CE may cause problems

to other EUs that own binding to the moved resource.

If B is by value and R is transferable, a suitable mechanism is data space
management by copy because the identity of the resource is not relevant. In this case,
a copy RO of R is created, the binding of R is modified to refer to R, and then RO is
transferred to the destination CE along with U. Though binding by move aso satisfies
the requirement posed by binding by value, it may be less convenient as other ECs
may be bound to the transferred resources. If R cannot be transferred, network

reference mechanism is the only viable solution, with the drawbacks described above.

If U isbound to R by type, a suitable mechanism to use is re-binding. Re-binding
makes use of the fact that the only requirement posed by the binding is the type of the
resource must be available at the destination, and avoids resource transfers or the
creation of inter-CE bindings In which case B is voided and re-established after
migration of U to another resource R on the destination CE having the same type of
R. (Fuggetta et a., 1998).

In summary, the relationships between the resources relocation, binding

reconfiguration and the associated data space management mechanisms are as shown
in the table below.

H Free Transferable H Fixed Transferable \ Fixed Not
Transferable
By I dentifier | By Move (Network Network reference Network reference
- reference)
By Value By copy (By move, By Copy (network (Network reference)
- Network reference) reference)
By Type Re-binding (Network Re-binding Re-binding (Network
reference, By copy, (Network reference, reference)
By move) By copy)

Table 1. Binding, Resources and Data Space Management Mechanism (Fuggetta et.
al, 1998).

3.6 Agent Transportation Mechanisms

While an agent is executing, it might determine that it needs to visit another site on
the network. The most common way to achieve this is by invoking a migration
primitive. The destination of migration specified by the agent could either be absolute
or relative. In absolute migration the name of the host to which migration is to take
place is specified, whereas in relative migration the name of another agent or resource
is used. Referring back to the example of chapter 2, both mobile agents use the
di spat ch primitive and absolute migration destination to transport itself to a new
host. The code segment below indicates this.

ap2. di spatch(new URL("atp://saturn: 4434/"));
apl. di spatch(new URL("atp://venus: 4434/"));

Irrespective of the manner in which the destination of migration may be defined to
transport the agent, a transport mechanism (protocol) is required. There are a number

of protocols available to achieve this function.

Most of the Java based mobile agent systems make use of programming language
features extensively, such as support for remote method invocation (RMI), object
seridization, and reflection, which is implemented on top of TCP/IP or UDP/IP
(Tripathi et a., 2001). One of the maor drawbacks of this approach is its dependency
on TCP/IP or UDP/IP and also the flat nature of the data that is passed around. On top
of this, the agent must know about the protocol in use, which makes modifications to

it difficult without redeployment of new agents (Papaioannou, 1999).

Some Mobile agent systems use HTTP protocol as a means to transfer agents. This is
achieved by encapsulating agents as MIME contents (Satoh, 2001), (ingnau et a.,
1995). This content type could carry attributes to describe, for instance, the
progranming language used and the agent type. The agent server then uses this
information for choosing the right kind of runtime support. The advantages of using
the widely accepted Internet protocol are platform-independent mechanism, ease in
the use of the agent-based services, and access to future advanced features of the next

generation HTTP such as security services. A few agent systems, for instance
Voyager (Horvat et a., 2000), make use of CORBA'’s Internet Inter-ORB protocol
(INOP) and/or Microsoft’s Distributed Common Object Model (DCOM) for agent
transport. Yet other systems, such as Mole (Uhrmacher et a., 2000) use other
protocols, like FTP and SMTP to get the agents across. In addition to the protocols
mentioned above that are used to transport agents, some mobile agent systems
implement their own agent transfer protocols at an application level to assist in
transportation of the agents. For example, the mobile agent G oupCChi | d1 uses
Aglet’'s Agent Transfer Protocol to transport the agent to Saturn.

apl. di spatch(new URL("atp://saturn:4434/"));

3.7 Agent Persistence M echanisms

In a traditional client-server environment, the state of the computation is distributed
between the client and the server. This kind of system could experience problems due
to failure of either the client or the server components. As mobile agents have their
states centralised within themselves, an improved fault-tolerance can be expected
from this technology. When moving through a large and unreliable network such as
the Internet, mobile agents may fall victim to multiple accidents such as host crashing
or line breakdowns. Explicit persistence mechanisms should be incorporated into the
mobile agent systems to avoid loops and endless waiting for agents to return to their
home base. However, fault tolerance is often neglected by most mobile agent systems
(Picco 2001), (Straber et al., 1998), and (Assis et al., 1998).

Generally, fault-tolerant systems are constructed by providing recovery mechanisms
at two levels. One of them is to perform system level error handling and recovery in a
manner which is largely transparent to the application. The mechanisms at this level
could be based either on creating checkpoint or on replication (Gray et a., 2002),
(Picco 2001), (Tripathi et a., 2001), and (Johansen et al., 1999). In checkpoint

mechanism, the agents state information is checked (i.e. a complete record of its
current internal state, at any time in its execution, are stored on some persistence
media) before and after execution on a host and when the host recovers after a
shutdown. The agent’s states are restored from the saved record. Replication makes
use of replication servers to mask failures (Pleisch et al., 2003).

The second level is at the application level where error conditions in an application
signals the execution of an application-specific exception handler. If an agent
encounters an exception that it cannot handle, its server can take suitable actions to
assist the application with recovery. For example, the server can send a notification to
the agent’s owner, which can recall the agent or terminate it. Alternatively, the server
can smply transfer the agent back to the owner, which lets the owner inspect the
agent’s state locally and restart it with appropriate corrected state (Tripathi et a.,
2002).

3.8 Agent Itinerary

In a typical scenario, a mobile agent has to visit more than one host in a network to
fulfil its task. An important question in this regard is how does an agent pick a host to
move to? In the simplest case, a mobile agent can carry along a “travel plan”,
provided by its programmer/owner, consisting of the places to be visited one after
another while attending to its chores. Referring back to the example of chapter 2, if
the intention was to migrate an agent from Jupiter to Saturn via Venus and not
sending separate agents to Venus and Saturn, addition of the following code segment

would have achieved the objective.

Vector itinerary = new Vector();
itinerary. addEl ement (new URL(“at p://venus: 4434/”);
itinerary.addEl ement (new URL(“atp://saturn:4434/");
Enuneration enum = itinerary.elements();
whi l e (enum hasMor eEl ements()) {

proxy= proxy. di spatch((URL) enum next El ement ());}

However, due to the size and the dynamical nature of network in which the agents
have to operate, migration strategies cannot be derived form a-priori assumptions with
respect to resources and nodes that are available at agent execution time and hence
mobile agents must be developed with the ability to construct and proactively adapt
their own travel plans (often called itsitinerary) (Cabri et al., 2000a).

The itinerary is a data structure composed of multiple destinations, each destination
describes a location to which an agent travels and the task the agent is to perform at
that location. This could be static (fixed at the time of mobile agent initialisation — as
shown in the code segment above), or dynamic (determined by the mobile agent
logic) (Cabri et al., 2000a). To facilitate dynamic adaptability of travel plans, policy-
based approach is adapted by many of the mobile agent systems. Policies are rules
governing choices in the behaviour of a system separated from the components in
charge of ther interpretation (Yen et al., 2004), (Wies, 1995). In the context of
mobility, policies can be specialised to specify choices in the mobility behaviour of
agents in terms of when and where an agent has to migrate. Using policy-based
approach has an advantage that it provides a clear separation between migration rules
and agent codes, thus permitting a change in agent mobility behaviour without re-
implementing agents themselves. The ability to dynamically modify their itinerary at
runtime, provides flexibility whereas static itinerary facilitates ease of

implementation.

Some of the mobile agent systems alow for multiple entry points in ther itinerary
models while others restrict to a single entry point only. According to Wong et
al.(1997), single entry point model unnecessarily presents the agent programmer with
a different programming model than that of the non-mobile programming paradigm.
For complex agent applications, this constraint can require the programmer to
maintain a large amount of state information that can be better encapsulated within

the agent’s itinerary.

Section 3.9 presents the factors, based on the discussions presented in preceding
selections, used in selecting mobile agent systems. Chapter 6 uses these factors to

anayse afew mobile agent systems.

39

1)
2)

3

4)

Evaluation Factors

Mobility Model supported (Strong / Weak):
In systems supporting strong mobility-

a)

b)

Manner in which agent’s mobility is achieved (migration / remote
cloning):

This factor determines whether the MAS migrate the whole agent or
create a clone of the agent at the remote host.

Nature of migration / remote cloning (proactive / reactive):

This factor helps in evaluating the migration mechanisms supported by
the agent systems.

In systems supporting weak mobility-

a)

b)

Direction of code movement (push / pull):
This factor determines whether the code is shipped or fetched from a
remote sSite.

Nature of code migrated (stand-alone code / code fragment):

Synchronisation involved (synchronous / asynchronous):

Time of execution (immediate / deferred):

This factor determines whether the execution of the agent (in the case
of asynchronous transfer) isimmediate or delayed.

Single or multiple entry points (single / multiple):
After an agent migrates to a host, this factor determines whether the
system supports a single or multiple methods as a starting point of

execution.

Strategies used for code relocation (heavyweight / lightweight / preloaded):

This factor determines the strategies for code relocation to determine whether

the mobile agent system carries with is the entire code (heavyweight), only the

5)

6)

8)

9

10)

11)

base classes (lightweight) when it migrates or are the codes preloaded on

various hosts.

Data space management techniques (Binding remova / Network reference /
Re-binding / By copy / By move):
This factor helps evaluates the kinds of data space management mechanisms

supported by the MAS upon migration.

Nature of agent migration (absolute / relative):

Agent transportation mechanism (standard and / or proprietary):
This factor help explore the transport mechanisms for agents to determine

whether a standard or proprietary mechanism is used.

Agent transportation protocols used (list of protocols):

Agent persistence-

a) The level a which the MAS supports persistence (system and/or
application):

b) Mechanisms used for supporting agent persistence (list of mechanisms
used):

Nature of the agent’ sitinerary (static / dynamic):
This factor examines the agent’s itinerary to determine whether the MAS

support itinerary statically defined or dynamically built.

Ability of one mobile agent to migrate another (yes/no)

3.10 Conclusonsand Summary

From the discussions presented in this chapter, the advantages and disadvantages of
strong and weak mobility is quite clear, however deciding on which of these
mechanisms to choose from depends on the application to be developed. For example,
if the application involves solving the problem of distributing the load amongst
severa distributed processes (for load balancing purposes), agent systems providing
strong mobility is an obvious choice. In a load balancing application, it is required
that the application be restored to the exact state before the movement of the agent
and that it be transparent to the application itself. Another application where agents
are considered to be useful is in information retrieval applications, where mobile
agents vigit a set of sites and search for given information. This class of application is
an example of agents applying the same algorithm (in this case a search algorithm) on
each site visited. In such cases mobile agent systems supporting weak mobility would
be sufficient. This is because the agents need not be restored to the exact state before
thelr migration. In majority of applications mobile agent systems supporting weak
mobility is adequate. This is supported by the fact that most of the agent systems are
developed in Java (see agent list at http://mole.infomatic.uni-stuttgard.de/mal/
preview.html). It is to be noted that the standard Java Virtual Machine supports only
weak form of mobility (strong form of mobility is supported by modification of the
NVM).

With respect to agent itinerary, it is recommended that the agent systems support both
static and dynamic itinerary for reasons presented in section 3.8. The support for
agent persistence in mobile agent systems is an important issue to be considered while
deciding on a particular agent system. For agent transportation, it is recommended
that the mobile agent system support severa transportation protocols to make it

applicable to real world scenario.

This chapter presents the various paradigms supporting distributed computing. A
classification of agent mobility based on the components of the agent that is relocated
together with the effect it has on various issues related to MAS has been presented. In

addition, the chapter also presents the types of resources, bindings and the data space

management mechanisms. A study of the transportation mechanism (protocols) for
the agents has been presented. Issues related to supporting fault-tolerance in agent
systems, providing a “travel plan” for mobile agents has also been reported. In section
3.9, a list of factors to be considered when evaluating mobile agent systems are

presented. The next chapter reports on issues surrounding agent communication.

I Agent Communication

41 Introduction

A major setback for mobile agent technology apart from a frequently cited absence of
appropriate security mechanism is the lack of interoperability between diverse mobile
agent systems Claessens et al., 2003), Pinsdorf er al., 2002), and Karnik et a.,
2001). More precisely, two mobile agent systems are considered to be interoperable if
a mobile agent of one system can migrate, interact and communicate with the agents
on the second system (Pinsdorf et al., 2002). To accomplish useful tasks, agents often
must communicate and collaborate with each other in an integrated fashion.
According to Gray a a. (2002), there are four important issues regarding
communication to be considered in the design of a mobile agent system. They are as
follows:

Identifying the party with which to communicate.

Delivery of messages between the parties.

Maintenance of communication and

Required communication format

Inherent in mobile agent communication are the issues surrounding agent
identification. A mobile agent, in most cases, has to be uniquely identifiable to
achieve meaningful communication. To achieve this goal of meaningful
communication, besides the agents being identifiable, the agents with which to
communicate need to be located. The issues regarding agent identification and how

they are found are discussed in sections 4.2 and 4.3.

After discussing the various means of identifying and locating agents, in section 4.4, a
model for agent communication has been presented with an intent to study the types

of agent communications. In addition, section 4.4 also presents the manner in which

the communications with these mobile agents are maintained. Here, communication

Issues that need support from the underlying Network layer are dealt with.

Section 4.5 analyzes the format of agent communication from a level above the ones
discussed in the preceding sections, which is concerned with the transmission of bits
and bytes. This issue must be taken into consideration especialy if the agent has to
operate in a heterogeneous environment. According to Rovatsos et a.(2004) and Finin
et a. (1998), an agent communication language (ACL) provides the capabilities to
integrate disparate source of information originating due to differences in the agent’s
operational environment. Section 4.6 presents the factors to be considered when
selecting mobile agent systems and thereafter section 4.7 presents the conclusions and

summary.

4.2 Identification of Agents

To assist in control, communication, coordination and cooperation of agents to take
place, agents must be identified uniquely in the environment in which they operate.

To achieve this, the mobile agent systems need to come up with some means to assign
globally unique identifications to their agents. This is not a new requirement as far as
distributed system paradigm is concerned. In the client-server paradigm, for example,
both Microsoft DCOM components and CORBA objects use unique identifications.
This is usually a sequence of numbers and letters 128 bits long generated by DCOM
or CORBA utilities. The objects in DCOM or CORBA are not referenced directly but
rather make use of proxies or stubs (in the case of CORBA). This mechanism cannot
be used in Mobile agent system, as the agents may need to be directly referenced for
various reasons. For example, an agent may need to be called back by its architect to
its home platform. Remembering a string of unique numbers to do so is not

straightforward for human programmers.

All mobile agent systems make use of some identification scheme that generate
unique identifiers and establish some infrastructure to allow convenient and accurate
access to the agents that carry them (Tripathi et a., 2002), (Plam et al., 1998). Some
agent systems make use of IP address and port number to assign a unique
identification to their agents and use Domain Name Services (DNS) to resolve them.
Others support federated naming service that facilitates linking of directory services
to form alarge logical directory (Domain Name System style). Yet other systems use

simple table look-up to associate name string to URL.

The methods to identify the agents uniquely mentioned thus far introduce location-
dependency. Though, using location dependent naming schemes have the advantage
of being smple to implement, it makes the application’s task of locating its agent
more difficult because as the agent migrates, its name changes (Corradi et a., 2001),
(Karnik et al., 1998).

To provide for location transparent naming at an application level, the mobile agent
systems make use of either local proxies (as in Aglets and Voyager) for remote
entries, which encapsulates their current locations, or use global location independent

names (asin Ajanta) that do not change when the entity rel ocates.

When uses of local proxies are made, support by the runtime environment must be
provided to update the entries in the proxy whenever an agent migrates. It must be
noted that, doing this, creates a strong binding between application level names and
network level names and requires a separate directory service to map various agents
to URLs. Also, this raises the issue of performance if there are a large number of

proxies in the network for an agent (Corradi et a., 2001).

Making use of global location independent naming schemes simplifies the
programmer’s task significantly, because a program can be written without regard to
the current location of a mobile entity. It isimportant that the naming service operates
robustly and securely to prevent tampering with agent’s execution or the name service
database (Tripathi et al., 2002).

Being able to identify the agents uniquely is not enough for communication to take
place; one has to be able to locate the agent with which to communicate. The next
section deals with this aspect.

4.3 Locating Agents

As mentioned in the previous chapter, an agent could be on any of the numerous
nodes in a network due to its ability to migrate autonomoudly. If an agent wishes to
communicate with another agent, it will need to locate the agent. For example, when
an agent wishes to request a service from another agent. Therefore, it is important that
agent systems must provide some mechanisms to locate an agent. There are various

ways in which Mobile agent systems go about achieving this.

Some agent systems make use of preordained migration paths along which an agent
migrates (Baumann 1999), (Chang et al., 1997). Probing at different points along this
path, an agent can be located. This can be done either sequentially (probing one place
a atime) or in paralel (probing more than one place at a time). On the other hand,
when there is no preordained migration path to be followed, i.e. when the mobile
agent is autonomous, then probing is not practical. In Situations such as these, a
variety of logging techniques are used in which information that ultimately leads to
the place on which the agent reside are stored. This information can be stored directly

in a database or in path proxies.

According to Baumann and Rothermel (1998) and Pitoura et al.(2001), when
databases are used to store agent location information, the designers of agent systems
have two choices. The database could be implemented globally or they could be
implemented locally on each node. Using a global database means that the agent can
be located by simply querying this database. An obvious disadvantage of this
approach is that locating an agent depends on the availability of the database
including the availability of the node on which this database resides and the

availability of the communication channel to this node. To overcome the potential

bottleneck problem, the agent information can be stored on different local databases.
This leads to a problem of identifying the right database from which the relevant
information could be retrieved. A further problem is that the agents will need to
negotiate with the loca nodes to store their information. Some nodes may not be
willing to alow its resources to be used in this way for security reasons. In some
agent systems, the agents advertise their location whenever it deems necessary, this
information is then used to update a database.

By storing a pointer to the target place of an agent’s migration on every machine that
it vigits, a path of proxies is created. Following this path will eventualy lead to the
agent. Since the information is stored along the path, no additional communication is
necessary to maintaining the path Fang et al.(2004), (Jul et al., 1988).

In those agent systems that do not provide for logging agents location information,
brute force is used to search for the agents. This search can be done sequentially, one
place at atime, or in parallel where a broadcast is made to every place in the system
(Taha et al., 1999). The agent is located much faster when broadcasting is used but
this leads to a much higher volume of messages being transmitted Corradi et al.,
2001), (Milgjicic et al., 1998).

Aridor and Oshima (1998) suggest two methods for delivery of messages between
entities interest in communicating. First one being the locate-and-transfer process
whereby the agent is located using one of the mechanism discussed above and then
the message is transferred directly to it. The second method being the forwarding
mechanism whereby locating the receiving agent and delivering the message occursin
a single phase. The first process of messaging may have the disadvantage that the
agent may migrate before the start of the second phase and the second has the

disadvantage that it is less efficient for large messages (Schoeman and Cloete, 2003).

It must be noted that most of the mobile agent systems implement a combination of
mechanisms discussed above for identifying and locating agents. In the next section, a
minimalist communication model is presented with the intent of discussing the

different types of communication in which agents could be involved.

AN

44 Typesof Agent Communication

To identify key components of MAS and to facilitate discussons on issues
surrounding agent communication, use of an agent communication model has been
made. For this dissertation, the model (figure 10) as presented by Baumann et
al.(1997) has been used.

Place 1

User Application

> Pece

Mobile Agent
g

- Application

Ej Service Agent System Resources

= | ocal Communication
<4—p Global Communication
Agent Migration

Figure 10: Agent Communication Model

Apart from agents themselves, one of the components of this model is the place.
Places are the habitat of various services offered by the underlying systems
(Fischmeister at a., 2001). Places are uniquely identifiable and serve as destinations
for agent migration. Agents being active entities may move from place to place in
order to meet other agents and to access services provided on those places. Places not
only provide the services but also a safe execution environment for executing local as

well as visiting agents. Security related issues are presented in the next chapter.

Another important component of this model is the so-called service agents Unlike

mobile agents, service agents are stationary and interface the services available at

A1

places. Technically, service agents provide a mapping between the service request
(expressed in “agent language’) and the individua service interface in a manner
similar to the ways in which DCOM or CORBA provide for heterogeneity in
programming language representation of a request (Wolfgang, 2000).

Based on above discussions, agent communication can be broadly divided into the

following categories as depicted by the figure 11 below.

Mobile agent
Systems

— T

One-to-One One-to- Many
Communication Communication

T N

Agent-Agent Agent-Service Agent-to-group
Communication Agent Communication
Communication

/\ /N

Figure 11: Types of Mobile Agent Communication.

4.4.1 Intra-place Communication (Mobile Agent — M obile Agent)

Each mobile agent has its own plans, which it must initiate and control, in order to
fulfil its needs and goals. Agents collocated at a place use this opportunity to provide
references to each other that could be used to invoke the desired operations. The
communication patterns that may occur in this type of interaction are peer-to-peer and
are not limited to only request/response (Cabri et a., 2001), (Rothermel et al., 1998).

The communication mechanisms used by most mobile agent systems are based on

RPC although some systems use message passing and a few use streams as well (Luc,

V.ke)

1999). Streams are a communication mechanism that allows a EU to open a channel

to another EU, and send it a continuous stream of data.

4.4.2 Inter-place Communication (M obile Agent — Mobile Agent)

For agents that are not located at the same place, a common approach to
communication among agents takes place through the exchange of messages. The
messages may be synchronous or asynchronous. With reference to the application of
chapter 2, the stationery agent on host Jupiter communicates with each of the mobile
agents on different hosts in a synchronous manner. This is achieved by using the
primitive sendMessage() to send the message as shown in the code fragment
below.

r enot ePr oxy. sendMessage(new Message("text", name+":"+s));
remot ePr oxy2. sendMessage(new Message("text", name+":"+s));

The code fragment below shows how the agents receive the messages.

publ i c bool ean handl eMessage(Message nessage) {

i f (message. saneKi nd("text")) {
String s = (String)nmessage. getArg();
i f(!w ndow. isVisible())
wi ndow. show() ;
wi ndow. appendText (s);
Agl et Proxy chlProxy = Agl et Proxy) nessage. get Arg();
return true;

}

Asynchronous communication between the mobile agents Gr oupCChi | d1 and
G oupCChi d2 is achieved by using the sendFut ur eMessage() as indicated
below.

chlProxy. sendFut ureMessage(new Message("text", name+":"+s));

Ao

4.4.3 I ntra-place Communication (Mobile Agent — Service Agent)

Since service agents are representatives of services in the agent world, the style of
interaction is typically client-server in which service agents provide operations or
methods that can be requested by other agents. For this purpose an RPC-like
communication mechanism is incorporated in the agent system. If the mobile agent
system is developed and used exclusively in a Java environment, RMI is then used as

the communication mechanism.

4.4.4 |nter-place Communication (Mobile Agent — Service Agent)

To locate or enquire about a particular service, mobile agents use this type of
communication. Direct message passing is the predominant mechanism for this
purpose Fang et al.(2004), (Peine et al., 1997).

4.4.5 Intra-place Communication (Agent-Group)

The previous four types of communication assumes that the communicating partners
know each other when communication takes place i.e. the sender of a message or RPC
Is able to identify the recipient. However, there are situations, where a sender does not
know the identities of the agents that are interested in the sent message. For example,
agiven task is to be performed by a group of agents, each agent taking over a subtask.
In order to perform their subtasks, agents itself may dynamically create subgroups of
agents. In order for an agent to communicate to the entire subgroup, MASs support

severa types of mechanism (discussed below).
Shared memory is often a popular choice in such situations. In order to communicate,

several EUs are given a reference to the same variable or object. Changes in the value

associated with the object are perceived by all the EUs owning areference to it.

AN

Some mobile agent systems use event-based mechanism for this purpose. In this
mechanism, an event bus is defined which forms a logical channel through which
events together with primitives that allow EUs to generate events and to subscribe for
receiving events are dispatched. Upon generation of an event, the communication
systems send a copy of the event description to all EUs that have subscribed to it. It
must be highlighted that using this mechanism has the drawback of the messages
getting lost in the presence of agent mobility (Cabri et a., 2001). Many variants of the
event-based mechanism exist. One such variant combines the notion of events with a
notion of groups. Groups provide a naming scheme that can be used to support
multicast (Cugola et al., 1998).

Another form of implicit communication is provided by an abstraction of a
communication channel called tuple space Cabri et al., 2001). A tuple space is a
shared dataspace with data organized as ordered sets of typed fields called tuples. EUs
communicate by either inserting the tuples containing the information to be
communicated into the shared space, or by searching it for a tuple using some form of
pattern matching. This mechanism provides a very powerful abstraction of a
communication channel Cabri et al., 2000b). According to Tripathi et a. (2002),
tuple space mechanism is not suited for bulk data exchange. A variant of the tuple
space mechanism is the blackboard model. In this model, the agents interact through
shared message repositories at each place, called blackboards, i.e. the sender puts a
message on the blackboard and the receiver can either read or retrieve the message
from the blackboard. In contrast to blackboard concept, tuple space provides
additional access control mechanisms (Omicini et a., 2001), (Rothermel et al., 1998).

4.4.6 Inter-place Communication (Agent-Group)

Although there has been alot of research conducted between agents and agent groups
with respect to inter-place communication (Chang et al., 2003), (Yen et a., 2004),
from the extensive literature survey conducted, it was not possible to conclude if there
are any mechanisms implemented that provides support for this category of

communication.

AC

45 Agent Communication Languages

The previous sections dealt with communication between agents from a low level
perspective where transportation of bits and bytes are considered. Agents need to ask
other agents, to inform them, to request their services and find other agents to assist
them in their tasks, and so on. Such functionality cannot be provided by smple
mechanisms such as message passing or Remote Procedure Call. Agents need an
Agent Communication Language (ACL) in order to achieve this. The main objective
of an ACL is to model a suitable framework that allows heterogeneous agents to
interact, to communicate with meaningful statements that convey information about
their environment (Kone et al. 2000). Providing for agent communication at this level
depends a great deal on the format of communication involved which in turn depends
on the environment in which the agents operate. If an agent is meant to operate only
in a homogeneous environment, then issues related to interoperability does not arise
and hence mechanisms dealing with the ontology (vocabulary for agent
communication and a set of relationship between the vocabulary items) (Fikes et al.,
1999) are easy to implement.

Because mobile agents also operate in heterogeneous environment, interoperability
cannot be achieved if there is not a standardized means through which agents can
understand and communicate with each other and their environment. One such
mechanism is as provided by CORBA/DCOM architecture that makes use of Interface
Definition Language (IDL) to provide mapping for severa languages. ACLs stand a
level above CORBA/DCOM because they handle propositions, rules and actions
instead of simple objects (with no semantics associated with them). ACLs messages

describe a desired state in a declarative language, rather than a procedure or a method.

At a technical level, inter-agent communication can be seen to take place at the
following levels. At the top level, content of messages exchange between the
communicating parties is defined. The level below this is the message transport level,
which contains various protocols that are used to transfer messages between the
communicating peers. This level adso provides for location transparency by mapping
agents identity and physical locations. The lowest level contains the actual network

transportation mechanisms.

A

Communication Language .m .M @

Message Transport

Transport Protocol

()

Figure 12: Agent Communication Layers (based on Helin et a. available at
http://www.cs.helsinki.fi/)

Not all mobile agent systems are based on CORBA architecture, in those cases,
aternate means to support communication amongst heterogeneous agents need to be
used. Sections 4.5.1 to 4.5.3 present some of the ways to achieve communication in a

heterogeneous environment.

45.1 Knowledge Query Manipulation Language (KQML)

One of the earlier results of research to provide a common agent communication
language to describe and process agents collaboration request was KQML
(Wooldridge, 2000). As stated by Labrou et a.(1999), KQOML is a high levd,
message-oriented communication language and protocol for information exchange,
independent of content syntax and application ontology. In other words, KQML is
independent of the transport mechanism (TCP/IP, SMTP, 110P, etc.), independent of
the content language (KIF, SQL, STEP, prolog, etc.) and independent of the ontology

assumed by the content.

A7

4.5.2 Foundation of Intelligent Physical Agents- Agent
Communication Language (FIPA - ACL)

According to Chaib-Draa (2002), a second attempt to support communication
amongst heterogeneous agent produced the FIPA-ACL. The FIPA-ACL, like KQML,
Is based on speech act theory: messages are actions, or communication acts, as they
are intended to perform some action by virtue of being sent. KQML and FIPA-ACL
are amost identical with respect to their basic concepts and the principles they
observe and differ primarily in the details of their semantic framework. The main
distinguishing factors between ACLs like KQML and FIPA-ACL and past such
efforts (RMI or CORBA) are the object of discourse and their semantic complexity
(Rao et al., (2003), (Labrou et a., 1999).

4.5.3 Extensible Markup Language (XML)

ACLs discussed thus far, by no means cover the entire spectrum of what applications
may want to exchange. A third attempt to produce an ACL makes use of XML
(Bradshaw et a., 1999). XML is a language for creating markup languages that
describe data. It is a machine readable and application-independent encoding of a
“document” e.g., of a FIPA-ACL message including its content. XML organizes data
by using tags to classify data into parts created by a document type definition, which
can be authored and interpreted without ambiguity by other agents or by applications
receiving the XML structured data Chaib-Draa (2002), (Grosof et a., 1999).
According to Tauber (1999) and Rao et a., (2003), XML besides being easier to
encode, is more “WWW-friendly” and has a much wider and more flexible way of
defining base ontologies compared to KQML or FIPA-ACL.

The following section presents the evaluation factors that have been developed with
respect to agent communication to be used in evaluating the mobile agent systems.
These criteria are based on the discussions presented in this chapter and are used in

chapter 6 for mobile agent system evaluation.

A0

4.6

1)

2)

3

4)

5)

6)

7)

Evaluation Factors

Nature of message passed (Synchronous / Asynchronous):

In the case of synchronous message passing-
Mechanisms supported (Message passing / RPC / Future reply/ Streams/
Events/ Tuple Space):

In case of asynchronous message passing-
Mechanisms supported (Message passing / RPC / Future reply/ Streams/
Events/ Tuple Space):

Nature of information exchanged (Strings / Objects / Raw-bytes):
This factor helps evauate the format of the information that is exchanged

between the parties.

Manner in which communication parties are addressed (Direct / Indirect):

Mechanisms for Agent - Agent communication:

a) Intra-place: Message passing / RPC / Future reply/ Streams/ Events /
Tuple Space
This factor is used for determining the communication mechanisms
between two agents located at the same place.

b) Inter-place: Message passing / RPC / Future reply/ Streams/ Events /
Tuple Space
This factor is used for determining the communication mechanisms

between two agents located at different places.
Mechanism for Agent - Service Agent communication:

a Intra-place: Message passing / RPC / Future reply/ Streams/ Events /
Tuple Space

AN

8)

9)

10)

b)

This factor helps in determining the communication mechanisms used
between an agent and a service agent when they are located at the same

place.

Inter-place: Message passing / RPC / Future reply/ Streams/ Events /
Tuple Space

This factor helps in determining the communication mechanisms used
between an agent and a service agent when they are located at different

places.

Mechanisms for Agent — Agent group communication:

a)

b)

Intra-place: Tuple Space / Blackboard
This factor determines the communication mechanisms used between
an agent and a group of agents when they are located at the same place.

Inter-place: Tuple Space / Blackboard
This factor determines the communication mechanisms used between
an agent and a group of agents when they are located at different

places.

Agent identification scheme (Global Unique ID / Based on Host Names /
name — arbitrary String)

This factor helps in evaluating the agent identification schemes to determine if

the agent is identified by some globally unique identity generated by the

system itself or is the name given to the agent derived from the name of the

host on which it is executing or isit just a name give to the agent randomly?

Name unchanged during agent’s life (Yes/ No):

This factor helps evaluate the agent-naming schemes to determine whether the

identity of the agent remain constant throughout an agent’s life or does it

change as agents migrate.

11)

12)

13)

14)

15)

16)

17)

Support for location transparency at application layer (Yes/ No):
This factor helps in evauating the location transparency mechanisms to
determine whether the mobile agent systems provide means for abstracting the

agent in alocation independent manner.

Mechanisms for locating agents (Probing / Logging / Advertising / Brute force
/ Path of proxies):

Naming mechanisms for places (DNS/ URL):

Name resolution mechanisms (DNS / Directory services/ Table lookup)
Compliant to ACL (Yes/ No):

This factor helps in evaluating the MAS to determine whether it supports any
of the agent communication language.

Support of communication in heterogeneous languages (Y es/ No):

This factor examines the MAS to determine the possibility of communicating

in a heterogeneous language.

Mechanisms to support heterogeneous in communication language (AIDL /

different interpreters):

4.7 Conclusonsand summary

From the analysis of the information presented in this chapter, it is suggested that the

mobile agent systems should support both synchronous and asynchronous message

passing. The exchange of objects rather than just string is recommended for

information exchange between agents as more meaningful information can be

associated it. When agents address each other for communication purposes, use of

indirect addressing mechanism (e.g. use of a proxy) is recommended as this could

provide an improved security. For communication between agents/service agents on

different places, the suggested mechanism to use is message passing as the overhead
involved is less when compared to, for instance RMI.

With regards to the agent naming mechanisms, globa unique names that remain
constant and independent of the host name is suggested as this improves ease of
locating the agents. Use of distributed database for logging the location of mobile
agents is suggested as this alleviates the problems associated with centralized
databases.

The ability of agents systems to communicate in heterogeneous languages is
recommended, and this can be facilitated by the use of XML. Thus, compliance to an
ACL is suggested.

This chapter contains an overview of the issues involved in agent communication.
Sections 4.2 and 4.3 present mechanisms involved in identification and location of
agents whereas sections 4.4 and 45 presented an analysis of the types of
communication and the mechanisms involved in those types of communications.
Section 4.6 presented the frameworks to facilitate interoperability of agents in
heterogeneous environment. In section 4.7, evaluation factors based on agent
communication issues were developed. The next chapter examines the security related

issues involved in mobile agent systems.

5Agent Security

5.1 Introduction

From the information presented in this dissertation thus far, one can easily conclude
that mobile agent can be a powerful tool, but if adequate security is not in place it
could be a dangerous one too. In fact, security (or rather lack of it) is often quoted as a
major obstacle to the widespread use and adaptation of this new technology
(Johansen 1999), (Farmer et al., 1996), (Jansen 2000), and (Tripathi et a., 2001).

In any distributed system, whenever a request for a certain service is received, the
receiving principal needs to address at least two questions: Is the requesting principal
the one it claims to be, and does the requesting principal have appropriate privileges
for the requested services? These two questions refer to the issues of authentication
and authorization (Lee et al., 2004), (Vigna, 1998). There are other security concerns
such as auditing, secure communication, availability and accountability that need to
be addressed. When it comes to mobile agents, the security issues become further
complicated given that there are greater opportunities for abuse and misuse.
Compared to the client-server model, mobility in mobile agent model increases the
threat of security violations, due to possible dynamic injection of malicious agents by
untrustworthy users that can compromise the hosting node's resources in a way
similar to that of viruses and worms. In addition, there exists new security problems
specific to mobile agents, for instance, a host entrusted with the responsibility of
agent execution could try to tamper with the agent code and state, with an intent to
disclose private information and to block agent transfer to successive execution sites
(Johansen, 1999) and (Orso et d., 2001).

In section 5.2 a security model to categorize the threats to a mobile agent system is
presented. Thereafter, section 5.3 and 5.4 contains an analysis of these threats as they
apply to various components of the mobile agent system. In addition, the sections
contain an outline of the key features and point out the limitations of the common
protection techniques suggested to protect both agent hosts and the agents against
reciprocal malicious behaviors. In section 5.5, the requirements for providing
protection to MAS are presented. Based on the issues discussed in sections 5.1 to 5.5,
section 5.6 presents the factors to be considered in evaluating the MAS. Section 5.7
presents the conclusions and summary.

52 Security Model

A number of models exist for describing a mobile agent system. One such model is as
described by Vitek and Tschudin (Vitek et a., 1998) which consists of four
components: A host which is a computer with its operating system, a computational
environment (CE) or agent execution environment (AEE) which is the runtime
system, an agent, and the network or the communication subsystem that interconnects
CEs located on different hosts. Another such model is as presented by Jansen (2000).
According to this model, shown in figure 13 below, a mobile agent system consists of
only two components. agent and agent platform that provides the computational
environment in which an agent operates. An agent platform may support multiple

locations or meeting places where agents can interact.

Home
Platform) Platform

Platform

Figure 13: Agent System Model (Jansen, 2000)

To facilitate the discussion on security issues, a slight modification to Jansen’s model
is made. The proposed model consists of agent and the host as its major components.
Since the platform (or platforms) is contained in a host, providing adequate protection
for the host will aso provide protection for the platform. For example, protecting host
from attack by malicious agent will also protect the platform from attack by the agent.
Using this modified model, providing security for mobile agent system could be
divided into two broad categories of providing security for the agent and providing
security for the host. Providing security for the agents can be further subdivided into
protecting the agent while it is at a host and while it is in transit. The agent at a host
could be attacked by the host or by other agents co-located at the host. Meanwhile, the
host security should cater for protection of the host from various forms of attack an
agent can lounge when visiting the host and also attacks from other hosts in the
system. The above discussion is depicted in Figure 14 below.

Mobile Agent Security

Agent Security Host Security

Protecting agent Protecting agent Attack from Attack
at host in trangit agents at from other

l host hosts

Attack from host Attack from
other agents at

host

Figure 14: Mobile Agent System Security.

In addition to the various attacks depicted in figure 14 above, against which adequate
protection must be provided, some researchers also consider attack of the host from
execution environment and vice-versa. According to Pham et a. (1998), protecting
the host from the agent execution environment and the execution environment from
the host is similar to the traditional problem of protecting an operating system from
mishehaving programs and vice-versa. Thisis not a new problem and is less important
in the context of mobile agent security hence it will not be analyzed any further. This
supports the reasoning for the proposed model and hence does not consider the

platform as a component for analyzing security concerns.

53 Agent Security

Providing for agent security involves protecting the agent while it is stationed at a
host as well as when it is migrating from host to host in order to fulfil its tasks. In
order to provide adequate security for the agents, it is important to analyze the kinds
of attack that can be launched against them. In this sub-section and the next, the
threats that agents may be exposed to while at a host are analyzed. It must be noted
that the threats mentioned below, with respect to agent and host security, are by no
means exhaustive. They are intended to show the gravity of the problems faced by the

implementers of mobile agent systems.

5.3.1 Attack from Host

As mentioned earlier, a mobile agent migrates from one host to another with its code,
data and state. As the host provides the necessary execution environment for the
visiting mobile agents, it has almost complete control over the agent. This provides a
malicious host with the necessary opportunities to initiate severa types of security
attacks on the mobile agent. The following section presents the types of attack faced
by agents from their hosts and are based mainly on the works presented by Biermann
& Cloete (2002), Montanari et al., (2001), Jansen (1999), and Jansen (2000).

One of the ways in which an agent can be attacked by its host is by having its privacy
invaded. Thisis generally performed with the aim of gathering or stealing information
in order to benefit from the agents operations Pagnia et al., 2000). A host could
easily corrupt an agent by deleting or altering the agents code, data, flow control or
status. The host can also compromise the agent’s integrity by interfering with its
intended mission or responding falsely to requests for information or services, or
diverting it to another platform not on the agent’s itinerary. In the worst case, the host
may even kidnap the mobile agent and prevent it from ever returning to it home
machine or create its own similar agent for use in an unfair manner by making use of

reverse engineering principles.

A host can masquerade as another host in an effort to lure an unsuspecting mobile
agent to it in order to extract sensitive information from these agents. The
masquerading platform can harm both the visiting agent and the host whose identity it
has assumed. Cloning of an agent together with masquerading creates authentication

problem.

5.3.2 Attack from other agentsat the host

In many mobile agent system architectures, system-level services such as directory
services and inter-platform communication services are provided by components that
are agents themselves (known as stationary agents). A visiting mobile agent, in search
of a particular service could expose itself to various forms of attack from these
stationary agents or other mobile agents sharing the same execution environment. For
example, a stationary agent could delay or prevent a visiting agent from accessing one
or more resources or services avalable at the host. Malicious agents can aso
intentionally distribute false or useless information to prevent other agents from

completing their tasks correctly or in atimely manner.

To accomplish their tasks, agents have to communicate directly with one another. An
agent may attempt to disguise its identity in an effort to deceive the other agent into
releasing sensitive information to which it is not entitled. For example, an agent may
pose as a well-known dealer of particular goods or services and try and convince the
other unsuspecting agent to provide it with credit card numbers.

As described by Xudong et a. (2000), another form of attack which one agent can
perform on another agent is repudiation. Repudiation occurs when an agent
participating in a transaction or communication later claims no knowledge of it ever
having taken place. A proper countermeasure must be in place to resolve this as it

could lead to serious disputes that may not be easy to resolve.

When an agent host has a weak or no control mechanism in place, severa other forms
of attack are possible between the agents. An agent can directly access or modify an
agents' code or date thereby radically changing the agents' behavior or property. An
agent may aso gain information about the other agents activities by using host

services to eavesdrop on their communications.

Having analyzed the security concerns of an agent, the section below present ways for

reducing these concerns.

5.3.3 Protection of the agents

Protecting mobile agents from the host is near impossible task (Lee et a., 2004), and
(Vitek et d., 1997). The host must be able to read the complete agent code and data in
order to execute it. The host is able to inspect - at any time of execution - the
complete run-time stack and may do any modification it wishes to. The agent is at the
mercy of the system. The directions taken in dealing with a hostile host is addressed
by a few proposals, which aims either to prevent or to detect attacks (Sander et a.,
1998), (Vigna 1998).

Prevention mechanisms try to make the spying or tampering of agent code/state
impossible. One of the ways this can be achieved is as suggested by (Lee et al., 2004)
and (Farmer et a., 1996) where mobile agents are only able to circulate in trusted
execution environments. This approach does not support the loose roaming itineraries
necessary in many agent applications. Another way would be to execute the agentsin
a physically sealed environment. This is achieved by exploiting temper-proof
hardware that prevents even the administrator of the device from accessing the agents
(Chan et a., 2002), (Wilhelm et a., 1998). However, their deployment is low, mainly

because of the high costs involved.

Prevention of agent tampering that is software-based, is a relatively new field of
research (Lee et al., 2004). Most of them, as suggested by Hohl (1998) and M ontanari

et a. (2001), make use of either the scrambling techniques to encrypt certain portions

of the agent or the obfuscation techniques. The strategy behind the scrambling
techniques is to scramble the code in such a way that no one is able to gain complete
understanding of its function, or to modify the resulting code without detection. A
serious problem with the general technique is that there is no known agorithm or
approach that provide a Blackbox property Orso et al., 2001), Schelderup et a.,
1999). An agent is said to have a Blackbox property if its code and data cannot be
read or modified. Another solution making use of encryption is as suggested by
Sander et a. (1998). In this case, the agent is not the code that is encrypted but the
function this code executes. The mgor challenge here is to find encryption schemes

for arbitrary functions.

The obfuscation technique approach could be useful in certain occasions where an
agent carries time-limited token-data. However the security of this method cannot be
proven (Montanari et a., 2001) and the technique lacks approach for quantifying the
protection interval provided by the obfuscation algorithm, thus making it difficult to

apply in practice.

Detection mechanisms are employed to assist in the detection of any illega
modification to agent code and/or state that might have occurred while an agent was
executing at a host. They may also assist in identifying illegitimate hosts and prove
their misbehaviour. One such mechanism is the tracing mechanism that was
introduced by Vigna (1998), which records the execution of the agent and its
interaction with the execution environment. Yi et al. (1998) proposed the use of Agent
Service Centre, which traces the itinerary of the agent. In a similar attempt, (Page et
al., 2003), (Kotzanikolaou et a., 1999) make use of multi-agent system that can trace
which mobile agents were victims of malicious behaviour. This approach has a
number of drawbacks, the most obvious being the size and number of logs to be
retained, and the fact that it is possible to detect tampering with agent execution, and
determine which target host was the perpetrator only after the agent has finished its
task and returned to the originator. Other more subtle problems identified include the
lack of accommodating multi-threaded agents and dynamic optimisation techniques
(Jansen et a., 2000). While the goal of this technique is to protect an agent, the
technique does afford some protection for the agent host, provided the host can aso

obtain the relevant trace summaries from the various parties involved.

The most common approach taken for protecting the mobile agent during the period it
is travelling between the hosts is by making use of various techniques of encryption
on agent’s code and data Gray et a., 2002). While encryption attempts to provide
privacy, digital signatures are used to verify that the agent has not been tampered with
during trangit. It must be noted that the actual transportation of the agent is achieved
by making use of transport protocols such as HTTP or TCP/IP. Some agent’s
trangport protocol such as Secure Socket Layer (SSL) and Transport Layer Security
(TLS) also provide security to the agents being transported. A better alternative is to
use the Key Exchange Protocol (KEP) as it offers a lightweight transport security
mechanism (Gray et a., 2002).

54 Host Security

A mobile agent paradigm requires an agent host to accept and execute an agent.
Without adequate defense mechanisms, an agent host is vulnerable to attacks from
malicious agents and other entities such as other malicious hosts in the system. In
order to provide adequate security for the host, one has to consider the types of attack
the entities mentioned above can execute against the host. The following section
contains an analysis of the attacks that a host is vulnerable to from the agents visiting
it and from other hosts in the system.

5.4.1 Attack from agentsat the host

A malicious mobile agent can change or destroy resources or services by modifying,
reconfiguring, or erasing them from memory or disk. When a mobile agent
deliberately damages a mobile agent hogt, it could potentially damage all other mobile
agents executing there at the time Borselius (2002), (Greenburg et al., 1998).

Examples of destruction include deleting or writing randomly into files, ordering an

unscheduled hardware upgrade to a host, or modifying of the system configuration to
change the security policies.

In an environment with inadequate control, an agent can access and stea private
information, for example, secretly recording a host's communication and then
transmitting it over a network to an unauthorized site using covert channels to stea
data in ways that violates a host’s security policy (Jansen, 2000), (Kaufman, 1995).
Another form of attack that an agent can execute against the host is to block one of
the processes by overloading its buffers to create a deadlock and hence preventing its
use Li et a., (2004). Masguerading is yet another form of attack that an agent may
execute on the host. The masquerading agent may assume the identity of another

agent in an effort to gain access to services and resources to which it is not entitled.

5.4.2 Attack from other hostsin the system

Assuming that the agents on a host are well behaved, it is possible for a host to be
attacked from other entities such as another host in the system in an attempt to disrupt,
harm, or subvert the agent system. According to Wallin (2004), this category of attack
is focused largely on exploiting the vulnerabilities of the communications capability
of the host. A host may attack the inter-agent or inter-host communication through
intercept, forgery or replay. For example, a host may intercept a message in transit
between agents or hosts to gain information. This information can then be modified,
substituted with other information or smply replayed at a later stage in an attempt to

disrupt the synchronization or integrity of the agent framework.

Having analyzed the security concerns of a host, the section below present ways for

reducing these concerns.

5.4.3 Protection of the Host

When a host is executing an agent’s instructions it must take precautions so as not to
open itself to hostile attack from malicious agents. Many of the traditional security
techniques used in contemporary distributed applications can be utilised for providing
protection for a host in a mobile agent paradigm. Many of these techniques are based
on information fortress model (Sameh et al., 2002), (Blakley, 1996), where a closed
system accessed through well-defined and regulated interface is maintained.

Another approach to reduce the vulnerability of the host is to load the suspected code
into its own part of address space known as fault domain or sandbox. The code is then
modified to make sure that each load, store, or jump instruction is to an address in the
fault domain (Appel et a., 2000), (Gong 1997). However, the rigidity of this approach
makes it inadequate for complex agent-based application and the code is no longer
platform-independent. A similar approach to sandbox, used by Safe-Tcl is called the
padded cell. Padded cell isolates the agent in a safe interpreter where it cannot interact
directly with the rest of the application. In turn, a trusted master interpreter controls
the execution environment of the safe interpreter. A disadvantage of using interpreters
IS the serious performance overhead involved when compared to a compiled machine

code.

Making use of safe programming languages can also reduce vulnerability of the host.
A safe programming language can enhance safety by enforcing strong typing,
restricted memory-reference manipulations, and runtime-supported memory
allocation and de-allocation (Montanari et a., 2001).

Theft or damage of sensitive data and denial-of-service attacks are prevented by
making use of access control policiesin conjunction with mechanisms to limit the rate
and amount of resource consumable by an agent at a host (Gray et al., 1998), (Feridun
& Krause 2001), (Gray et al., 2002), (Picco 2001), and (Tripathi et a., 2001). In the
application of chapter 2, agent’s access control is implemented by configuring the
agl et s. pol i cy file. Figure 15 below gives a screen shot of a section of the policy

file on host Jupiter.

B sgiets.policy - WordPad
Fa Edt Weed Iremit Fomed Hedp

Ded @& & BB i—'El -S4

8 x]
«l

A—— B R
'} aglet ’ — =
peTEABEIOn DOD. b, egleacs security.dgletPermassion _I

tn, Tdimpatch, disposE, DSATTIVETE; ACtivace,oloas, DATIADCT T

'} pEaEagen
peTEiBEion OOn. b, eglecs semrity.dessagePemii=aion

'/ aglet concawt

pATHiS=I1on cop- i, eglecs security.ConceviPEmil=aion
Ton, "pmlticast, aohecribeTr

PETELIZION EON. 1MW, B3leCs Securicy.ContertPemimaion
¥EM, FrTEACS, TECEITE, CECT&TT!

pATEiS=10T oop- i, eglecs securicy.ConceviPEmil=aion
"JEoperTy. T, Tresd wrice";

'/ TUHLjitee

prredazion jeva.Llang. RuncleePersdssion
roresteClaasloader™;

prrmlasion jewa. Lang. Finc esPecmisslon
FappessllaasIrfackade . jeva. b

prredazion jeva.Llang. RuncleePerndssion
Tarceea.lage Indackass . cob- im. eylaca . util. vy

perhlagion jewa. Lang. Fiac iePaEnizalon N
Yaereeat lagaIndackesd . cohi- dbn. e3lard . AylacPronyInplY; 3

Figure 15: Screen shot of agent s. pol i cy file

It can be seen from the screenshot above that an agent on this host has the permission,
for example, to dispatch, dispose and clone other agents. Similarly, permission has
been assigned to al agents on this host to send al kinds of messages (e.g.

message. show).

The host must be able to authenticate the agent’s owner, assign resources based on
this authentication, and prevent any violation of those resource limits. Authorization
and authentication could be achieved by making use of digital signatures and
cryptographic techniques. To prevent execution of unsafe code, Proof Carrying Code
technique is suggested (Appel et a., 2000), (Necula et al., 1996). In this technique,
the agent’ s code is compiled on the home machine together with a proof that the agent
satisfies a given security policy. The binary code and the proof can then be sent to
host machines. The host machine validates the proof and then can safely execute the
agent. The proofs and the code generated by this technique has the property that if the
code or the proof is tampered, then on arrival at the destination host, either the proof
will not validate the code and be rejected, or it will validate the code but the code will

not be able to compromise the host security (Pleisch et al., 2003), (Lee et a., 1997).
Using Proof Carrying Code, a host can avoid not only the overhead of sandboxing,
but also some of the policy-checking overhead in using Safe-Tcl for achieving system
security. Like the basic sandboxing technique, Proof Carrying Code sacrifices

platform-independence for performance.

In a recent attempt to address the authentication and authorization concern, a XML-
based Security Association Markup Language (OASIS, 2003) makes use of a single
sign-on that permits an authenticated user of one domain to use resources from
another domain without the need for re-authentication. With it, a security
administrator can express advanced security requirements, such as time or event-
based restrictions (Schoeman & Cloete, 2003). It must be noted that authentication

credentials do not guarantee that the mobile agent will be harmless.

55 Requirementsfor protecting the Mobile Agent System

While agents undoubtedly provide many advantages, the design of a secure mobile
agent system has been hampered by the lack in ability of the current systems to
provide adequate protect, in particular, to the mobile agents from being tampered by a
malicious host Biermann et al., 2002). From the various research performed by
researchers such as Weyner (1995), Jansen (1999), Biermann & Cloete (2002) and
from the discussion above, many mobile agent security issues can be identified. These
security issues, in a broader context, can be trandated into a set of security criteria

that a mobile agent system needs to fulfil. This can be summarized as follows:

Confidentiality of the system: The system must provide mechanisms for secure
communication and secure transfer of agent components as it migrates from host to

host in an insecure network.

Integrity of the system: There must be mechanisms in place to detect tampering with
the agent system.

Authentication of the various entities of the system: The entities such as the agents
and hosts participating in the mobile agent applications must be unambiguously
identifiable.

Authorization and access control: The agent system must have some mechanismsin
place to protect their resources by specifying their access control policies and be in a
position to enforce them.

The following section presents the factors that have been developed with respect to
agent security to be used in evaluating the mobile agent systems. These factors are

based on the discussions presented in this chapter and are used in chapter 6 for mobile
agent system evaluation.

5.6 Evaluation factors

1) M echanisms supported for agent confidentiality (Cryptographic techniques):

2) Mechanisms to support agent integrity. (Cryptographic techniques):

3) Mechanisms for authentication of the agent’s owner. (Digital signatures):

4) Mechanisms used for authorization and access control (access list/ policies):

5) Mechanisms to protect host:

a) From attack by the agents collocated at the host.

b) From attack by other hosts in the system

6) Mechanisms to protect agents:

a) From attack by the host.
b) From attack by other agents collocated at the host

57 Conclusonsand Summary

From the discussions presented in this chapter, it is imperative that the agent systems
provide adequate security for agents and the hosts from being attacked by each other.
It can be concluded from discussion thus far that the traditional mechanisms for
providing authentication, integrity, and confidentiality can also be applied to mobile
agent systems with limited successes. When protection for the host from agents is
needed, both padded cell and sandbox mechanism is applicable but their limitations
should be kept in mind when a choice of a mobile agent system is being made.
Padded cell and sandbox mechanism could also be used when protecting collocated
agents from one another. The real problem that mobile agent systems are facing is the
lack of mechanisms to protect an agent from attack by its host. The suggestion in this
regard is to make use of appropriate hardware.

In this chapter, a study of the various kinds of threats that a mobile agent and its hosts
may be exposed to is made. The analysis of these threats was important so that
adequate protections against those threats could be provided. Section 5.3 and section
5.4 dedt with the kinds of attack one component can perform against the other.
Section 5.5 presented the requirements of confidentiality, integrity, authentication and
authorizations of the system. Finally, in section 5.6 the evauation factors were
presented. In chapter 6, MAS are evaluated against the factors presented in the

previous three chapters.

Eval uations Of The Selected M obiIeAgent Systems

6.1 Introduction

Mobile agent systems can be categorized in severa ways. In this dissertation, for the
purpose of evaluating MAS, a small but representative sample of MAS was selected.
The selection of mobile agent systems was facilitated by grouping the MAS based on
the types of mobility, communication and the languages used in their development. It
Is assumed that the mobile agent systems within each group have similar properties.
For example, all mobile agent systems developed in a particular language with similar

type of mobility and communication will have similar properties.

Although this study does not focus on the languages for agent programming, they are
being considered here as they has a bearing on the ways mobility, communication and
security related aspects are supported. For the purpose of this research, the agent
programming languages have been broadly classified as “Java based” or “Non-Java’
based systems. It is worth noting that most non-Java based systems are also multi-
language systems and those multi-language systems that also support Java (such as
D’Agents and Ara) have added this support at a later stage and did not form an
integral part of their original design (Peine, 1997). Hence for the purpose of this
dissertation are not classified as “Java based” systems. From the extensive literature
survey conducted, it was found that all mobile agent systems that provided support for
global communication also supported local communication.

Section 6.2 presents the grouping of the mobile agent systems from which one MAS
is selected for evaluation. In section 6.3 a brief introduction to the selected mobile
agent systems together with the mechanisms for mobility, communication and
security of the selected MAS at implementation level are presented. In Section 6.4 the

analysis of the mobile agent systems against the evaluation factors are presented and

displayed in a tabular form.

6.2 Grouping of Mobile Agent Systems

Using the types of mobility, communication and the languages as the three factors, the

figure below presents a possible grouping scheme.

Strong M obility Weak Maobility

Non-Java

Java Only

ANV TVARVAN

Local Global Local Global Local Global Local Global

Java Only Non-Java

Igure 1o: Groupings of MAS based on Mobility, Communicallon and Language.

From the above figure it is apparent that there are eight possible groups (numbered 1
to 8). Group 1 consists of all Mobile agent systems supporting strong mobility,
developed in Java, and support local communication only. Similarly, group 2
represents mobile agent systems that support strong mobility, developed in Java and
support global communication. By the literature survey conducted for this research no
mobile agent systems satisfying the conditions of group 1 and group 7 were found.
For this reason, the agent systems are grouped in six groups. The subsections 6.2.1 to
6.2.6 present a list of agent systems belonging to these six groups (groups have been
re-ordered). From each group, one agent system was selected for evaluation against
the factors presented in chapters 3, 4 and 5. Since the selected agent systems belong to

a group with similar characteristics, it can be deduced that all mobile agent systems in

that group will have similar properties. The selection of the agent system to represent
the group was based on the popularity of that system (determined by the number of

scientific articles found during the literature survey).

6.2.1 Group One

This group comprises of agent systems that are non-Java based, support loca and
global communications and provide strong mobility. Table 2 lists the agents of this
group. From this group D’ Agents was selected. (It is to be noted that the mobile agent
systems listed in tables 2 to 7 are obtained from he mobile agent list available at

http://mole.infomatic.uni-stuttgard.de/mal/preview.html)

Cborg D’Agents
ffMAIN IMAGO
Jinni MiL og
M obiget Normadic Pict
Planet Telescript

Table 2: Mobile agent systems of Group 1

6.2.2 Group Two

This group represents agent systems that are non-Java based, provide weak mobility
and support local and global communications. TACOMA was selected from this
group. Table 3 lists the agent systems that belong to this group.

Bond Dejay
dynamicTAO Gypsey
Knowbot Operating Environment MO M essenger
TACOMA TextAgent

Table 3: Mobile agent systems of Group 2

6.2.3 Group Three

This group represents agent systems that are developed in Java, provide strong
mobility and support local and global communications. Table 4 lists the agent systems
of this group. WASP was selected to represent this group.

AgentSpace(UK) EAS
JAM Klaim
MATS NOMADS
owchii Plangent
Tagent WASP

Table 4: Mobile agent systems of Group 3

6.2.4 Group Four

Represents agent systems that are developed in Java, provide weak mobility and
support local and global communications. Amongst the groups, this group has the

most number of members as shown by the table 5 below. Aglets are selected to

represent this group.

AgentSpace Ajanta
Aglets AMASE
alsland AMETAS

Anchor Toolkit ARCA
aZIMAS Bee-gent
Concardia DIAT Agent
erwerywer FarGo

Grasshopper Hive
IMAJ J-SEAL2

JAE JAMES
JavaNetAgents JavaSeal
JCAFE Jumping Beans

Kaariboga MAgNET
MAP MILLENNIUM
MIPLACE MOA
MobiliTools M ogent
Mole MuCode
Odyssey Pathfinder
SeM oA SOMA
Tracy Voyager ORB

Table 5: Mobile agent systems of Group 4

6.2.5 Group Five

This group comprises of non-Java based mobile agents that support strong mobility

and implement local communications only. This group has just two members with

ARA representing the group.

ARA

MESSENGERS

Table 6: Mobile agent systems of Group 5

6.2.6 Group Six

This group comprises of MAS that are developed in Java, support weak mobility and

implements local communications only. This group has only one member as indicated

by table 7 below.

RM164

Table 7: Mobile agent systems of Group 6

RMI64 is a ssmple mobile agent system consisting of just 3 java classes. The sole

purpose of this system was to show how simple it is to write a minimalist mobile

agent system using Java. The only capability of an agent in this system isits ability to

migrate (weak migration) to another host and begin its execution there. The RM164
mobile agent system does not provide any kind of security whatsoever nor does it
have any mechanisms in place to deal with issues such as agent naming, name
resolution or providing support for agent persistence. It only supports local
communications with RMI being its only mechanism for communication and
transportation (Gschwind, 1999). Based on the discussion presented in this paragraph,
RMI64 is not considered as a full-fledged mobile agent system and being the only one
in this group, the group is not considered for further evaluation. This leaves five
groups of mobile agent systems for evaluation against the factors. Section 6.3 below

presents an analysis of the agent systems.

6.3 Analysisof the Selected Mobile Agent Systems

A Dbrief introduction to the selected mobile agent systems together with the
mechanisms for mobility, communication and security of the selected MAS at

implementation level are presented below.

6.3.1 D’Agents(Version 2.1)

D’Agents (formally known as Agent Tcl) was developed at Dartmouth Collage to
address the weaknesses of then existing mobile agent systems, such as insufficient
security mechanisms, difficult or nonexistent communication facilities and inadequate
migration facilities (Gray, 1995). It is developed on Unix and can be written in
multiple languages such as Tool command language (Tcl), Java or Schema. One of
the design goals of this system has been the support for strong mobility (Gray et a.,
2002). In order to support strong mobility in Java means that the VM has to be
modified, leading to a situation where this modified JVM run the risk of soon

becoming incompatible with the later versions of the JVM.

In D’ Agents, a EU (called agent) is a Unix process having its own separate address

space and share only resources, considered to be non-transferrable, provided by the

underlying operating system. The CE abstraction is implemented by the operating
system and the language run-time support Fuggetta et al., 1998). One of the key
components of D’ Agents architecture is the agent server that runs on each host. The
server provides communication, migration and bookkeeping services to the agents
residing on its host. The server is multi-threaded; each agent (Tcl and Schema) is
executed in a separate process, which simplifies the implementation considerably, but
adds the overhead of inter-process communication (Gray et al., 2002). Java agents are
executed as separate threads inside a single Java process. More specifically, the server
starts a small number of Java Virtual Machines (JVMs), and executes multiple agents
inside each. D’Agents approach of multi-threaded server, but separate interpreter
processes for the agents, allows both high performance and straightforward support

for multiple languages.

In D’ Agents, the site to which an agent migrates is addressed by their DNS names and
utilizes TCP/IP as the primary agent transportation mechanism, athough other
mechanisms such as e-mails are supported. According to Gray (2002), D’ Agents do
not have any mechanism to support agent persistence when the host machine crashes.

D’ Agents support both static and dynamic itinerary.

6.3.1.1 M obility

As mentioned previously, D’Agents support strong mobility for Tcl and Java with
significant modification to their interpreters. There are three migration related

commands supported by this system (Gray, 1996).

Theagent _subm t function pushes the code component of an EC to another CE.
This function takes as arguments the machine name and the code. Additional
parameters such as variables and procedures of the parent agent that a child agent may
need are also passed. The variables are passed by copy.

agent _subm t machine (-procs proc_name) (-var var_name) -script script

Theagent _j unp function migrates the EU to another CE. This function takes the
machine name as a parameter and optionally a time indicating the maximum number

of seconds to wait for a response from the destination CE to indicate its success.

agent _j unmp machine (-time sec)

The third command is the agent _f or k function, which is analogous to Unix fork.
The command creates a copy of the agent on the specified machine. The child and the
parent continue their execution from the point at which fork occurred. As in the
agent _j unp command, this command too takes time as on optional parameter.

agent _f or k machine (-time sec)

Bothagent _j unp and agent _f or k are proactive migration mechanism enabling
strong migration and the bindings in the data space of the migrating EU are removed.
agent _subm t migration mechanism is asynchronous and immediate with only the
code being migrated. The strategy used for code relocation is heavyweight, with all
the classes needed by the agent are moved at the time of agents migration. In al the
three migration primitives mentioned above, the migration is absolute - name of the
destination machine is essentia for the migration. D’Agents do not have any
mechanism to allow one agent to migrate another (Gray et al., 1998).

6.3.1.2 Communication

D’ Agents server provides a per-host namespace for agent communication. Each agent
is identified by a combination of the network address of the machine on which the
agent is currently residing, a unique integer that the machine’s server assigns to the
agent when it first arrives and optionally a string name. The last two are unique only
to the current machine (Gray et al., 2001). In a similar fashion, the places identity is
derived from the host address. For the purpose of name resolution, DNS services are
utilized. Within this namespace, the following mechanisms for both local and remote
communication could be used (Gray et al., 2001).

6.3.1.2a Message passing

In this mechanism, agents exchange arbitrary strings or binary data with standard

agent _send andagent _r ecei ve primitives. The format is as shown below:

agent _send machine integer string (-time sec)

integer is numeric code, string is the message, machine is the destination machine,
and sec is an optional parameter indicating the time in seconds to wait for a response

from the destination machine.

agent _receive is used to receive a message. The command has blocking,
nonblocking and timed forms. The blocked form waits until a message is available
and then sets the variable code _var to the message code, sets the variable string_var

to message string, and returns the identity of the sender.

agent _recei ve code var string var (-blocking | -time sec | -nonblocking)

The nonblocking form returns -1 if no message is available. Otherwise, it sets the
code var and string_var to the message code and string respectively and returns the

identity of the sender.

6.3.1.2b Streams

Using the streams mechanism, agents establish a direct connection with a target agent
and then send string or binary messages across the connection.

6.3.1.2.c Events

Events are used for asynchronous notification of an occurrence of a particular
incident. Using the events mechanism, an agent sends events to another agent, which

catches and processes the events with registered event handlers.

6.3.1.2d Restricted form of RPC

D’ Agents provides its own variant of RPC called ARPC (Agent RPC), with its own
Agent Interface Definition Language (AIDL), an IDL compiler and directory agents
where interfaces to the services can be registered. ARPC is available only to agents
and server agents written in Tcl language, so that no parameter marshaling and
related interface conversions are necessary (since all data are ssimple text strings in
Tcl). It is for this restriction that ARPC are generaly used for communication
between agents on the same host (Gray et al., 2001).

All these mechanisms are implemented on top of TCP/IP. As the agents migrate from
one host to another in order to fulfil their tasks, they leave behind a pointer to the next
destination, which is used to locate an agent. In addition to leaving behind a list of
pointers, D’ Agents also have facility for logging an agent’s location on databases that
can be quarried to determine the agent’s location. D’ Agents make use of the Agent
Interface Definition Language to allow agents created in different languages to

communicate using approach similar to CORBA IDL (Hooda et al., 1998)

6.3.1.3 Security

Thedesign of D’ Agents, focuses mainly on providing protection for the host machine.
Each D’Agents server distinguishes between two kinds of agents. owned and
autonomous. An owned agent is an agent whose owner could be authenticated and is
on the server's list of authorized users whereas an autonomous agent is one that
cannot be authenticated or is not on the server’s list of authorized users. Based on this

distinction an agent is assigned access to the resources (Gray et a., 2002).

Agent authorization functionality in this mobile agent system is distributed between
the respective language interpreters and language-independent system components
(eg. resource management agent). The interpreter uses its native language
mechanisms to manage and enforce access rights that are implemented as lists,
mapping the requested resource types to available quantities. The interpreter in
consultation with resource management agents obtains the access rights for a specific
agent. The resource manager agents are a standard part of D’ Agents system and are
associated with specific resources through a list of access rights for each agent (Gray
et al., 2001)

The D’Agents servers make use of public key cryptography to authenticate the
identities of incoming agent’s owners as each machine and owner has its own public-
private key pair. Pretty Good Privacy (PGP) is used for digitally signatures and
encryption. An agent may choose to use encryption and signatures when it migrates or
sends a message to another agent. If interception is of no concern then encryption may
be turned off. If an agent is not concerned with tampering during migration and can
accomplish its task as an autonomous agent, it turns off signatures. Similar decisions
may be taken when sending messages. Turing off either signature or encryption
improves performance due to the slowness of public-key cryptography (Gray et 4.,
1998).

Like many other MAS, such as Mole and Voyager, D’ Agents do not as yet have any
means of protecting agents from attacks by malicious hosts. By executing each agent
in its own interpreter, a mobile agent can be protected from attack by another agent on

the same host.

6.3.2 TACOMA 2.0 (Tromsg And COrnell Moving Agents)

TACOMA 2.0 (also referred to as TAX 2.0) is one of the later versions of TACOMA
with a drastically different architecture from the earlier versions. For discussion
purposes in this dissertation, it will be referred to smply as TACOMA from this point
on. The TACOMA project focuses on operating systems support for agents and the
way agents can be used to solve problems traditionally addressed by other distributed
computing paradigms, e.g. the client/server model. In TACOMA the agents are
modelled as a migrating process that moves through the network to satisfy client
requests (Johansen et a., 2002b). TACOMA, like D’Agents, is also developed on
Unix platform and can be written in multiple interpreted languages such as Tdl,
Schema, Python, Perl and C. A TACOMA agent is considered to be a set of modules
conceptually interchangeable and reusable (Lauvset et a., 2002).

TACOMA is a MAS providing weak mobility and supporting severa different
languages through the notion of virtual machines (VMs). Different virtua machines
runs as separate processes and are protected from each other through memory
protection provided by the operating system. It is the responsibility of the virtual
machines (VMs) to execute the code in a safe and secure manner. In TACOMA, aEU
is called an agent and is implemented as Unix processor running the interpreter. The
Unix operating system and interpreters implement the functionality of CE (Sudmann
et al., 2000).

Entities such as agents, service agents and places where the agents meet bear a
globally unique identity derived from DNS names of their hosts, optionally extended
by alocal name to distinguish more than one place on a host. TACOMA makes use of
briefcase for transporting code segments. A briefcase is essentially a collection of
folders, each containing an ordered lists of elements. An element is an un-interpreted

sequence of bits and forms the most basic data type in TACOMA.

Agents running on different virtual machines need to be able to communicate. The
basic TACOMA library and the briefcases produced by it assure that agents can send

data and receive data in a heterogeneous environment. Apart from this, it is the

function of the firewall, which is a multi-threaded process, to assist an agent to obtain
knowledge of other agents running on different VM locally. The VMs may manage
some resources by themselves, like CPU and memory, subject to constraints imposed
by the firewall. However, to manage arbitrary resources properly, TACOMA makes
use of service agents. This alows resource allocation mechanisms to handle requests

regardless of which VM the requesting agent is running on (Lauvset et al., 2001a).

6.3.2.1 Mobility

TACOMA supports shipping of stand-alone codes to a destination CE by mechanisms
providing both synchronous and asynchronous immediate execution. Mobility in

TACOMA are achieved by the following two primitives:

Thego() primitive communicates with a remote virtual machine and arranges for it
to be built and execute the agent. If the remote virtual machine was successful in
building the agent, the go() terminates the local agent. The go() command names

among its parameters an agent on the destination host and the briefcase.

The span() primitive does the same, except that it creates a new agent with a
different instance number, which is then reported back to the calling agent in a similar
fashion to Unix f or k() system call.

The strategy used in TACOMA for code relocation is lightweight, with only the base
classes moved at the time of agents migration and the rest are obtained as the need
arises (Lauvset et a., 2001b). Upon migration, data space management by copy can
be used to provide the new EC with the resources present within the source CE
cabinet. For the transportation of the agents, protocols such as TCP, HTTP and SMTP
are supported. TACOMA agents have the ability to dynamically decide, based on its
current state, the next host to be visited or follow the path assigned to it at the time of
its creation. Agents use rearguard or replication and voting mechanism for saving
their internal states to disk for potential later restoration. Provision for persistence is
done at the system level. Like D’ Agents, TACOMA agents do not have the ability to
request migration of another agent (Sudmann et a., 2001).

6.3.2.2 Communication

Communications between different virtual machines pass through a local firewall.
The firewall acts as a reference monitor and mediates al local communication
between agents, as well as communication to remote firewalls and agents on remote
machines. TACOMA provides two basic communication primitives, called
bcSend() and bcRecv(), which are used by virtua machines to communicate
with the firewall. On top of these functions the TACOMA library offers functions like
activate(), anai t() and nmeet (), which are used for synchronization and
communication. Basically, activate() is equivaent to a agent_send,
awai t () isequivalent to blocked agent recei ve and neet () isaRPC of the
D’ Agents mobile agent system presented earlier (Sudmann et al., 2000). Firewalls are
aso used for the purpose of locating agents, since the virtual machines need to

register and deregister agents running inside them with the firewalls.

6.3.2.3 Security

TACOMA uses operating system features to encapsulate agents and provides
additional security using language specific features. TACOMA also provides access
control on a per agent basis. This access control is based upon the authentication of
the principa whom the agent is working for (the owner of the agent). The access
control in the form of vector of access right to the resources is enforced by the
firewalls in conjunction with virtual machine service agents. The virtual machine
service agents ensure that the agents that they execute only interact with the
underlying operating system and remainder of the site’'s environment through
primitives they provide. TACOMA adlows agents to be accompanied by digita
certificates stored in their xCODE-SIG folder. These certificates are interpreted by
service agents as defining accesses permitted by the signed code (Johansen et a.,
2002b).

In addition to providing protection for the host, TACOMA aso caters, in a limited
way, for agent integrity — computations must be protected from faulty or malicious

hosts. Thisis achieved using replication and voting (Johansen et a., 2002a).

6.3.3 WASP (Web Agent-based Service Providing) version 2.0

The WASP project is an initiative of Darmstadt University of Technology with the
goal of providing services on web data using mobile agents to implement these
services (Funfrocken, 1997). The WASP system is built upon the idea of using agent
technology in conjunction with the WWW- by extending (and not just using) the
WWW to provide a ubiquitous mobile agent system. WASP agents rely not only on
Java's distributed computing concepts but integrate agent environments into WWW
servers with the help of server extenson modules to achieve its functionalities.
Though WASP operates on a standard Java platform, it supports strong mobility.
Other systems such as D’ Agents and JAM had to modify the Java Virtua Machine
(JVM) in order to capture and restore the Java thread state as is necessary for strong
migration. WASP achieves thread level state capture, in a manner similar to that used
by Arafor capturing thread state in C language, by using a pre-compiler (Funfrocken,
1999) and (Cabri et a., 2000a).

In WASP, the EUs called agents are threads in Java interpreter. The interpreter
representing the CE forms the environment for the execution of agents called the
Server Agent Environment (SAE). The WASP systems achieve their functionality and
seamless integrates of SAE into web servers with the help of server extension
modules, making use of CGI and Servlets interfaces (Flinfrocken, 1998). In keeping
with this, the standard web transport protocol - HTTP is used for agent transfer.
WASP uses location dependent URL-style naming convention for naming its agents

and SAEs, and resolves them using DNS.

6.3.3.1 Mobility

Being based on Java, WASP implements mobility using Java's object serialization
with the potential to migrate to another CE. It makes use of a single primitive to

achieve this.

go()

This method initiates a HTTP post request to the target destination specified as a
parameter to the method. Insde the post request, the agent is transported as
Multipurpose Internet Mail Extensions (MIME) message (Funfrocken et al., 1999).
The go() primitive offers a proactive migration mechanism enabling strong
migration and the bindings in the data space of the migrating EU are removed. The
strategy used by WASP for code relocation is lightweight, with only the base classes
moved at the time of agents migration and the rest are obtained as the need arises.
Both static and dynamic itineraries are supported in WASP. For supporting agent
persistence, its internal states are saved on disk for potential later restoration by
checkpoint mechanism. This is done at the system level (Flinfrocken, 1998).

6.3.3.2 Communications

Keeping inline with its quest for seamless integration and extension of agent
functionalities to the web services, WASP makes use of a modular approach to
integrating communication infrastructure to its core architecture. According to
Finfrocken et a. (1999), WASP supports the following mechanisms for agent

communication:

6.3.3.2a Message passing

This method is used for both synchronous and asynchronous communication whether
the agents are local or on another SAE. Message passing process entails the exchange
of objects between agents.

6.3.3.2.b Stream

Using streams, agents establish a direct connection with a target agent and then send
messages across the connection. On migration of the agents the streams are
reconnected (if this feature is enabled by the agents on stream creation).

6.3.3.2.Cc Remote M ethod | nvocation

This is a modular communication mechanism that allows agents to register
communication objects that can be connected to by other agents. Any distributed
communication mechanisms can be used in this standardized way though currently
only CORBA and Java-RMI are supported.

6.3.3.2d Local Method I nvocation

In this mechanism, agents export and import references to Java objects that are
accessible at the local SAE.

6.3.3.3 Security

Like most MAS, WASP aso provides the basic security mechanisms to protect a host
from malicious agents. Data security is provided by means of protection domain
called realms. A realm consists of a set of data, specified by local URLS, to which
access is restricted. For every ream there is an owner (human or agent) who can
define rights for the realm (read, write, execute, etc.) Based on the identities of the

agent / user, access to the realm is assigned (Funfrocken, 1998).

For the purpose of authentication and authorization of agents, WASP makes use of
Java Card — a smart card containing Java byte code interpreter. The Java Card in
conjunction with SAE is aso used as trusted computing base for mobile agents. All
such cards have their own private key that is used for decryption of agents and used as
a means for authentication of parties involved. Unauthorized access to agent’s data
during transit is protected by the use of encryption (Funfrocken, 1999).

6.3.4 Aglets(version 2.0)

Aglets, developed by IBM, is one of the more popular systems developed in Java on
Windows platform. The mobile agents are referred to as ‘aglets and migrate between
agent servers known as aglet context. The aglet context is the execution environment
in which aglets operate. It provides an interface to the underlying operating system
through which the aglets are able to access the core facilities and gain reference to
other aglets. Aglets make extensive use of event handling methods that can be
customized by the programmer to deal with important events in the life cycle of an
aglet (Aridor et al., 1998). Aglets, like most Java based systems, implements mobility
using Java s object serialization and does not capture thread-level execution state. In

other words, aglets supports weak form of mobility.

In Aglets, a EU (called aglet) is athread in Javainterpreter - which constitutes the CE.
The aglet context, an abstraction for CE, is the execution environment in which the
aglets operate. The aglet context provides an interface to the underlying operating
system through which aglets are able to access the core facilities and gain reference to
other aglets (Lange et al., 1998). Contexts providing similar services are grouped to
form domains. Each aglet runsin its own thread of execution. A distinguishing feature
of Adglets is its callback-based programming model. The system invokes certain
methods on the agent when certain events in its life cycle occur. Every aglet is
assigned a globally unique identity that it keeps throughout its lifetime and is
independent of the context in which it executes. The context identity is the URL of the
host together with a quaifier if there is more than one context at a host (Kiniry, et al.,

1997). The aglet and context names are resolved using DNS services.

6341 Mobility

Aglets, like most Java based systems such as Ajanta and Concardia, implement
mobility using Java's object serialization and do not capture thread-level execution

state. Aglets support weak form of mobility with the potential to push and pull stand-

alone code between the hosts. Aglets provide two primitives to achieve this form of

mobility:

di spat ch (destination)

Execution of di spat ch (destination) performs code shipping to a different context

specified by its URL in asynchronous and immediate fashion.

retract Agl et (destination, agentlD)

Performs code pulling of the agent with identity agentID in a synchronous immediate
fashion from the destination.

In both cases the aglet is re-executed from a predefined point after migration and
retains the values of its objects attribute that are used to provide an initial state for its
computation (Lange et al., 1998). The strategy used for code relocation is lightweight,
with only the base classes moved at the time of agents migration and the rest are
obtained on demand. The attribute values may contain references to resources, which
are aways managed by copy. Aglets define their own transport protocol — Agent
Transfer Protocol (ATP) modeled on top of HTTP for aglet transfers. Agent migration
Is absolute, as it requires specifying location-dependent URLS for destination servers
(using the dispatch primitive). In most of the MAS such as D’Agents, a migration
invocation implicitly refers to the current agent; Aglets, however, also support
migrating another agent, an operation that can be easily accommodated in the event-
based execution model of Aglets. Both static and dynamic itinerary are supported by
Adglets architecture. For supporting agent persistence, its internal states are saved on
disk for potential later restoration by checkpoint mechanism. Aglets support
persistence at both the system and application levels (Karjoth et a., 1997).

6.34.2 Communication

Aglets communicate by passing messages between themselves via the context. This

process entails the exchange of message objects between aglets, and allows for both

synchronous and asynchronous message passing. Aglets also support “future reply”
mechanism where a sender agent of a message does not block until it receives areply,
but rather receives a “future” object and continues with other activities and may poll
later to see if the reply has come in. In addition, an aglet can also multicast a message
to all aglets within the same context that have subscribed to that message (Karjoth et
a., 1997). The primitives used by aglets to achieve the different styles of
communication are indicated below.

sendMessage() isused to send messages in a synchronous way.

sendAsyncMessage() send message in asynchronous way.

sendOnewayMessage() sends a one-way message to the aglet. The message is
sent asynchronously without the receiver sending a reply.

sendFut ur eMessage() sends a message to the aglet. The message aglet does not
block but returns a FutureReply that the sender can poll to see if the message has

comein.

mul ti cast Message() isused to multicast a message to all aglets running on the
same context.

6.3.4.3 Security

As mentioned earlier, aglets are Java objects and have access to potentialy all Java
class files on the host; they also relay on the security of the Java interpreter for their
proper execution. Thus, aglet security and Java security go hand in hand. The Aglets
model features the agent, the host (context), and the host domain, each split into three
independent principals as the entity itself, the entity’s owner and its manufacturer.
The exception being the host domain as it does not have its manufacturer (in total
eight principals). To alow fine-grained control, a security policy consists of a set of
named privileges and a mapping from the principals to the privileges are used
(Fischmeister et a., 2001).

For aglets transportation, a secure channel is established. The sending context protects
the integrity of aglet data by computing a secure hash value that alows the receiving
context to perform after-the-fact detection of tampering. Unauthorized access to aglets
data during transit is protected by the use of encryption Fischmeister et al., 2001).
Aglets, like Ara implements authentication base on Secure Socket Layer (SSL)
protocol. Asin most other MAS, Aglets too fall short when considering host attack on
its agents (Gong, 1998).

6.3.5 ARA (Agent for Remote Action) version 1.0a

Developed at the University of Kaiserslautern, Arais a multilanguage Mobile Agent
System written in C, C++, Tcl or Java, for portable and secure execution of mobile
agents in heterogeneous environment (Peine, 1997). Ara’'s main design aims are to
provide full mobile agent functionality while retaining as much as possible of
established programming models and languages- mobility should be integrates as
seamlessly as possible with existing programming concepts and avoid remote
communication atogether (Peine, 2002). Mobile agents in Ara have the ability to
change their host machine during execution while preserving their internal state. This
enabled them to handle interactions locally which otherwise would have to be
performed remotely. Ara offers full migration of agents, i.e. orthogona to he
conventional program execution, which relieves the programmer of all details

involved with remote communication and state transfer.

AraEU is caled agents. Arasystems are similar to D’ Agents in a sense that it too has
a core service layer supporting multiple languages through interpreters, which in this
case forms the CE. The Ara agents move between and stay at places where it uses
services provided by the host or other agents (Peine, 1997). The language dependent
features, such as state capturing and correctness checking, are the responsibilities of
the interpreter, whereas providing access to the underlying operating system services

and other mobile agent specific services are the responsibilities of the core. Ara agents

are executed in parallel threads, while some of the internal core functions, for instance

the naming service, can be executed as separate processes (Tripathi et al., 2002).

All core objects visible to the programmer such as agents, service points (discussed

later in this chapter), and places bear globally unique identities and are used to name
the entities when invoking a core function. Places as destinations of migration have
names derived from DNS names of their host, optionally extended by a local name to
distinguish more than one place on a host. In addition, an Ara place establishes a
domain of logically related services under a common security policy governing all

agents at that place. For the purpose of name resolution, DNS services are utilized

(Peine et al., 1997). Agents may checkpoint their internal states to disk for potential

later restoration. Provision for persistence is done at the system level. Ara platform
provides for both static and dynamic itinerary. For transportation of agents, Ara
supports TCP, SMTP, HTTP, FTP and AX.25 transport protocols (Peine, 1998).

Ara agents make use of path proxies to indicate the path they have followed; by
following this path an agent may be located. Unlike D’ Agents, which uses an Agent
Interface Definition Language to allow agents in different languages to communicate,
Ara supports communication is a heterogeneous environment by using different

interpreters for each language (Peine et al., 1997).

6.35.1 Mobility

Like D’ Agents, Ara agents can migrate at any point in their execution carrying along
its code, data and execution state, however Ara makes use of a single core call namely
ar a_go to achieve this. In addition to capturing the agents states, the ar a_go cal,
aso abstracts the complexity of extracting the agent from the local system,
marshaling it to another, possibly heterogeneous, machine and reinstalling it there
(Peine, 2002).

The syntax of this primitive is as shown below.

ara_go place

Where place is the place name on a particular host to be visited. Ara agents move
with all the codes needed at the time of migration. ar a_go provides a proactive
mobility mechanism and the bindings in the data space of the migrating EU are
removed. Ara together with Aglets is probably the only MAS that allow one agent to
request the migration of another.

6.35.2 Communication

Two of Ara's design goals; language independence and avoidance of remote coupling
directly influence the choice of its agent communication mechanisms. The latter goal
has resulted in avoiding remote communication atogether (Peine, 1997). Ara supports
two simple and efficient mechanisms for this - synchronous RPC and tuple space. For
message passing, the core uses service points. These mechanisms are discussed
below.

6.35.2a ServicePoints

A service point is a meeting point at a certain place with a unique name where agents
collocated at the place can interact in a client-server fashion. An agent creating a
service point implicitly becomes its (one and only) server, and any number of agents
meeting this service point, become its clients. A client may submit a request (some
arbitrary data) to a service point, and the server may fetch that request, processit, and
reply with some arbitrary data to this request (Peine et a., 1997). Submitting a request
is a synchronous blocked operation, quite analogous to RPC call. Each request is
tagged with the name of the client agent, which the server may use when deciding on
the reply. The service point implementation handles all cases of unexpected client or
server agent migration by terminating gracefully, or arranging for suitable error

results to be displayed.

6.3.5.2b Tuple Space

The tuple space is a means of communication for agents that are, in contrast to service
points, not necessarily collocated at the same place at a given moment in time. Ara
utilizes the tuple space mechanism for quick access to shared data implemented in
main memory. The tuple space is data storage local to a place where shared data is
stored in key-value pair (collectively called a tuple). Tuples are indexed by their keys
and provide simple operations to read, write, and delete a tuple. In addition to simple
read and write operations, a tuple may also be locked in order to synchronize

concurrent accesses.

Both mechanisms operate at the level of unstructured byte array data. While this
allows easy definition of application dependent interaction, it does offer less

programming convenience than e.g. an RPC interface (Peine, 2002).

6.3.5.3 Security

Security in Ara, like in D’Agents, is implemented by executing agents within an
interpreter, which controls their resource accesses, and enforces authorization policy
expressed in the form of allowances; agents and hosts may be authenticated, agent
transfers may be encrypted, and any resource consumption is accounted. In addition to
establishing a domain of logically related services under a common security policy, a
place's central function is to decide on the condition of admission, if at al, of an agent
applying to enter that place. These conditions are expressed in the form of an
allowance, a vector of access rights to the resources, approved for the agent for the
duration of its stay at that place. It is the function of the Ara core to ensure that an

agent never oversteps its allowance (Peine, 1998).

The Ara security model builds in authentication of agents and hosts by using digital
signatures and public key certificates. Ara supports authentication base on Secure
Socket Layer (SSL) protocol (Peine, 1998). SSL is a connection-oriented, bi-

directional point-to-point data transfer protocol offering authentication of both end

points as well as encryption and authentication of the data transferred, offering
various cipher suites and certificates (Tan et al., 2002), (Wagner et a., 1996). Like
most other MAS, Ara too has as yet not implemented any mechanism for agent

protection from malicious hosts.

The next section presents the evaluation of the selected mobile agent systems against

the selection factors developed in chapters 3, 4 and 5.

6.4 Evaluation against the selection factors

The evaluations of the above MASs against the criteria are shown in a tabular form
bel ow.

6.4.1 Evaluation of the selected MAS against the mobility factors

D’Agents TACOMA WASP Aglets ARA
(Group 1) (Group 2) (Group 3) (Group 4) (Group 5)
Mobility Model Strong Weak Strong Weak Strong
In the case of strong Migration and N/A Migration N/A Migration
mobility: Remote Cloning
How arethe agents
mobility achieved
In the case of strong Proactive N/A Proactive N/A Proactive
mobility:
Nature of migration /
remote cloning
In the case of weak N/A Push N/A Push and Pull N/A
mobility:
Direction of code
movement
In the case of weak N/A Stand-alone N/A Stand-alone N/A
mobility:
Nature of code
migrated
In the case of weak N/A Asynchronous N/A Asynchronous and N/A
mobility: Synchronous

Synchronisation
involved

93

In the case of weak N/A Immediate N/A Immediate N/A
mobility:

Time of execution

Single or multiple N/A Single N/A Single N/A
entry points

Strategies used for Heavyweight Preloaded Lightweight Lightweight Heavyweight
coderelocation

Data space Binding removal By copy Binding removal By copy Binding removal
management and By copy

techniques

Nature of agent Absolute only Absolute and Absolute only Absolute only Absolute only
migration Relative

Agent transportation Standard Standard Standard Standard and Standard
mechanisms proprietary

Agent transportation TCP, eemall TCP,HTTP, SMTP HTTP ATP, HTTP TCP, SMTP,
protocols HTTP, FTP, AX.25
The level at which None System level System level System level and System level
the MAS supports Application level

persistence

M echanisms used for None Rearguard, Checkpoint Checkpoint Checkpoint
supporting agent Replication and

persistence voting

94

Nature of theagent’'s
itinerary

Static and Dynamic

Static and Dynamic

Static and Dynamic

Static and Dynamic

Static and Dynamic

Ability of one mobile
agent to migrate
another

No

No

No

Yes

Yes

Table 8: Evaluation of the selected MAS against the mobility factors

95

6.4.2 Evaluation of the selected MAS against the communication factors

D’Agents TACOMA WASP Aglets ARA

(Group 1) (Group 2) (Group 3) (Group 4) (Group 5)
Nature of Message | Synchronous & Synchronous & Synchronous & Synchronous & Synchronous &
passed Asynchronous Asynchronous Asynchronous Asynchronous Asynchronous
Mechanismsto Message passing, Message passing Message passing, M essage passing RPC like (via Service
achieve Streams Streams, Local method point)

synchronous invocation (LMI)

comm.

Mechanismsto Messages, Events, RPC (viaexchange of | Message passing, Future-reply, message | Tuple space
achieve ARPC briefcase) CORBA/RMI passing

asynchronous

comm.

Type of String messages String messages Objects Objects Unstructured byte
information array
passed between

agents

Manner in which | Direct Direct Direct Indirect Direct

communicating
partiesare
addressed

96

Mechanismsfor: Intra- Inter-place | Intra- Inter- Intra- Inter-place | Intra- Inter-place | Intra- Inter-
Agent — Agent place place place place place place place
Comm. Message | Message Message | Message | Message | Message | Message | Message RPC Not
passing, | passing, passing passing passing, passing, passing | passing permitted
streams, | streams, Streams, Streams
Events, Events, LMI
ARPC ARPC
Mechanismsfor: Intra- Inter-place | Intra- Inter- Intra- Inter-place | Intra- Inter-place | Intra- Inter-
Agent — Service place place place place place place place
agent comm. ARPC Message RPC Message Message Message RMI Message Message | Not
passing passing passing, passing passing passing | Allowed
RMI
Mechanismsfor: Intra- Inter-place | Intra- Inter- Intra- Inter-place | Intra- Inter-place | Intra- Inter-
Agent — Agent place place place place place place place
Group comm. Tuple Not Wrappers | Not Not Not Event Not Tuple Not
Space Supported Supported | supported | Supported | based Supported | Space Supported
Naming Global Unique ID Global Unique ID Global Unique ID Global Unique ID Global Unique ID
mechanisms for Based on host name Based on Host name | Based on Host name independent of host Based on Host name
agents name
Names constant No No No Yes No
throughout agent
life-cycle
Namesdependant | Yes Yes Yes No Yes
on location of
execution

97

Support location Yes Yes Yes Yes Yes
transparency at
application layer?
M echanisms for Logging: Database Peth proxies (via Logging: Database Logging: Database Logging: Path proxy
locating agents (decentralized) & path Rearguard) (decentralized) (decentralized), path

proxies (navigational proxies,

agents) Advertising
Naming DNS based names DNS based names Host URL + other Host URL + other DNS based names
M echanisms for quantifier quantifier (if more than
place one places on a host)
Name resolution DNS DNS DNS DNS DNS
mechanisms
I nter oper ability None None None MASIF None
standard supported
Compliant to ACL Not supported Not supported Not supported Not supported Not supported
Supportscomm.in | Yes Yes No No Yes
heter ogeneous
language?
Mechanismsto AIDL Interpreters for the JavaOnly JavaOnly Interpreters for the
support supported language supported language
communication in
heter ogeneous
language

Table 9: Evauation of the selected MAS against the communication factors

98

6.4.3 Evaluation of the selected MAS against the security factors

D’Agents TACOMA WASP Aglets ARA

(Group 1) (Group 2) (Group 3) (Group 4) (Group 5)
M echanisms Encryption using Encryption Using hardware Encryption using Encryption using
supported for agent PGP (algorithm could (Java Card) SSL SSL
confidentiality not be determined)
M echanismsto Digital signature Digital signature Using hardware Digita signature Digita signature
support agent using PGP (Java Card) using SSL using SSL
integrity
M echanisms for Digital signature Digital signature Using Hardware Digital signature Digital signature
authentication of the | using PGP (encryption using SSL using SSL
agent’sowner algorithm could not

be determined)

Mechanismsused for | Resource Virtual machine SAE via Access Context via policies | Places via
authorization and Management agent | service agent via right list allowances
access control viaaccessright list | access right list
M echanismsto Padded cells Padded cells Sandbox Sandbox Padded cells
protect host: From
attack by the agents
located at the host
M echanismsto Encryption of Firewall & Encryption of Encryption of Encryption of
protect host: From messages or agents | Encryption of messages or agents | messages or agents | messages or agents
attack by other hosts | before transmission | messages or agents | before transmission | before transmission | before transmission
in the system before transmission
M echanismsto None None Using Hardware None None
protect agents. From (Java Card)

attack by the host

99

M echanismsto
protect agents: From
attack by other
agents co-located at
the host

Padded cdlls

Padded cells

Sandbox

Sandbox

Padded célls

Table 10: Evaluation of the selected MAS against the security factors

100

; Conclusions

7.1 Introduction

The main objective of this dissertation was to establish means that could be used for
selecting mobile agent systems. This was necessitated by the fact that there are many
mobile agent systems performing similar functions. To achieve this objective, the
anaysis of the fundamental requirements of mobile agent systems, which were
identified (in section 1.3 of chapter 1) to be mobility, communication and security,
was performed. Based on this analysis, factors for evaluating mobile agent systems
were proposed (sections 3.9, 4.6 and 5.6 of chapters 3, 4 and 5 respectively). These

factors were then used to evaluate mobile agent systems (section 6.4 of chapter 6).

As it was not feasible to evaluate all mobile agent systems, mobile agent systems with
common properties were grouped together (in other words, if a statement is true for
one agent system of the group then it is probably true for all members of that group).
An agent system from each of the groups was selected and evaluated. This evaluation
provides a means to compare various agent systems. From this comparison, presented
in section 6.4 of chapter 6, selection of mobile agent systems with desired properties
can be made. Although this dissertation evauates only five mobile agent systems, the
evaluation holds true for all other agent systems belonging to those groups as each

selected agent system belonged to a group with similar fundamental properties.

7.2 Interpretation of Results

This section presents some deductions on the findings presented in the previous

chapter (chapter 6).

With respect to agent mobility, the following deductions can be made:
In agent systems that support strong mobility (groups 1, 3 and 5), both
migration and remote cloning is used as mechanisms for achieving mobility in
agents and the nature of migration is predominantly proactive. In these
systems, strategies supported for code relocation is heavyweight except in
cases of agent systems developed using Java. In agent systems supporting
weak form of mobility (groups 2, and 4), code is normaly pushed to the
remote host in an asynchronous manner athough some systems may support

synchronous and pull code mechanism as well (section 6.4.1).

The data space management techniques used for agents systems supporting
strong mobility is largely by binding removal whereas in systems supporting
weak forms of mobility it is chiefly by copy. In al groups of agent systems,
the nature of agent’s itinerary support is both static and dynamic, the nature of
agent migration is predominantly absolute athough some agent systems also
support relative migration. In addition most of the agent systems make use of

standard agent transportation mechanism (section 6.4.1).

Agent systems that support persistence, implement it mainly at system level

and use checkpoint as the chief mechanism (section 6.4.1).

From the information presented in this study, the following conclusions can be drawn

with regards to issues related to agent communication:

All the groups support communication in both synchronous and asynchronous
manner and the predominant mechanism to achieve this is message passing. In

majority of the agent systems, the types of information passed between agents

1NN

are either just strings (groups 1 & 2) or are in the form of objects (groups 3 &

4) and the communicating parties address each other directly (section 6.4.2).

Of the many mechanisms to support agent-to-agent and agent-to-service agent
(intra-place and inter-place) communication, the most common one is message
passing. When considering mechanisms for agent-to-group (intra-place)
communication, a common approach adopted is tuple space. It must be noted
that not all agent systems provide mechanisms for this (intra-place) type of
communication and none of the agent systems support communication
between agents and groups of agents when they are situated on different places
(section 6.4.2).

For agent naming purposes, most of the agent systems use globally unique 1D
that is based on host names. Because these names are based on current host the
agent is at, they are not constant throughout the agent’s life. In spite of the fact
that the agent names are based on its location, al groups of agent systems
provide for location transparency at application layer. The naming of placesis
based mainly on DNS names and the host URLS. In all cases they are resolved

by making use of domain name services (section 6.4.2).

With respect to interoperability, none of the groups are compliant to an agent
communication language and most do not support any interoperability
standards. Agent systems belonging to groups 1, 2 and 5 support
communications in heterogeneous languages by making use of interpreters for
the various languages or using agent interface definition languages. Groups 2
and 4 support communications in a homogeneous language (Java)(section
6.4.2).

From the analysis of agent systems security, the following deductions can be made:
Magjority of the agent systems support agent confidentiality by making use of

encryption algorithms. Agent integrity and authentication is provided by
making use of digital signatures and digital certificates. In most agent systems,

1ND

the authorizations to access resources are managed either by specia agents or
the places themselves and access control lists provide control to resources
(section 6.4.3).

Majority of agent systems use padded cells or sandbox technique to protect the
host from attack by agents located at the host. These techniques are also used
to protect agents from attack by other agents co-located at the host. A host
protects itself from attack by other hosts in the system, predominantly by
encryption of messages or agents before transmission. The only way available
to agents to protect itself from attack by the host is by making use of hardware
(section 6.4.3).

7.3 Further Research

For the selection of mobile agent systems, this study focused on the implementation
aspects of the systems, in particular the issues surrounding mobility, communication
and security. For this reason the study did not include the following aspects. A

possible extension pertaining to this study could include:

A study could be made to select agent systems based on their performances

such as time taken to achieve certain tasks.
Selection of mobile agent systems could aso include the operating systems
supported and the nature of support provided by the operating systems for the

core functions of the agent systems.

Selection criteria based on the design, implementation and testing of agents
and agent platforms could also be used.

1NA

In addition to the extensions suggested above, agent selection criteria based on the
structure and other related issues of the agent / execution environment

programming languages could also be used.

1N

ppendix A

A.1 Introduction

This appendix presents the source code of the application presented in chapter 2. To
recap, this application was developed to show how agents move from one host to
another and achieve mobility and how they communication with one another. This
application makes use of three agents one of which is a stationary agent and the other
two are mobile agents. Once created, the mobile agents move to two different hosts
and then initiate their communication with each other. Any communication from the
stationary agent is sent simultaneously to both the mobile agents. Each of the mobile
agents can communicate independently with the stationary agent. The stationary agent
communicates with the two mobile agents in a synchronous manner whereas the two
mobile agents communicate with each other asynchronously. As a means to
demonstrate basic security, the application alows for the creation of agents only on
one of the hosts - the home base.

It is to be noted that the application has been developed using the Aglet Software
Development Toolkit (ASDK) version 2.0.1.

1N

A.2 TheSourceCode

e i
/1 The class responsible for creating the GU

/'l for the three aglets.
I R i e R

package ny. agl et s;

i mport comibmaglet.util.AddressChooser;
i mport javax.sw ng. *;

i mport java.awt.event.*;

i mport java.util.*;

i mport java.awt.*;

public class G oupW ndow extends JFrane inplenments ActionListener{
JText Area textArea;
JText Field inputField;
Addr essChooser dest;
String address;
JPanel panel;
G oupChMaster master;
GroupCChi I d1 chil d1;
G oupCChi I d2 chi |l d2;

/'l The constructor for the naster frane.

/1l initilizes the global variales,

/1l creates and adds the conponents and the action |istener.

e R

public G oupW ndow GroupCMaster cm{

setTitle("Master Frane");

set Si ze(300, 300);

address ="";

dest = nul|;

mast er =nul | ;

chil dl=nul | ;

chil d2=nul | ;

master = cm

t ext Area= new JText Area();

i nput Fi el d= new JTextFi el d();

panel = new JPanel ();

dest = new AddressChooser();

panel . set Layout (new Border Layout ());
panel . add(text Area, "Center");

panel . add(i nput Fi el d, " Sout h") ;

panel . add(dest, "North");

get Cont ent Pane() . add(panel) ;
t ext Area. set Edi t abl e(f al se);
i nput Fi el d. addActi onLi stener(this);
addW ndowLi st ener (new W ndowAdapt er () {
public void w ndowCl osi ng(W ndowEvent we){
set Vi si bl e(fal se);
}
P

1N77

/'l The constructor for the first child frane.

/1l initilizes the global variales,

/'l creates and adds the conponents and the action |istener.

I e R

public G oupW ndow(GroupCChi | d1 cd){
setTitle("Child Frame");
set Si ze(300, 300) ;
t ext Area= new JText Area();
i nput Fi el d= new JText Fiel d();
address ="";
dest = null;
master = null;
childl=nulI;
chil d2=nul I ;
childl = cd;
panel = new JPanel ();
panel . set Layout (new Border Layout ());

panel . add(text Area, "Center");
panel . add(i nput Fi el d, "Sout h");
get Cont ent Pane() . add(panel);

t ext Area. set Edi t abl e(fal se);
i nput Fi el d. addActi onLi st ener(this);

/'l The constructor for the second child frane.

/1l initilizes the global varial es,

/1l creates and adds the conponents and the action |istener.
e i

public G oupW ndow(G- oupCChi | d2 cd2){
setTitle("Child2 Frane");
set Si ze(300, 300) ;
t ext Area= new JText Area();
i nput Fi el d= new JText Fi el d();
address ="";
dest = null;
master = null;
childl=nulI;
child2 = cdz;
panel = new JPanel ();
panel . set Layout (new Bor der Layout ());

panel . add(text Area, "Center");
panel . add(i nput Fi el d, " Sout h");
get Cont ent Pane() . add(panel);

t ext Area. set Edi t abl e(fal se);
i nput Fi el d. addActi onLi st ener(this);

1NO

/1 This method deals with the events generated by the text field.
e i

public void actionPerformed(Acti onEvent ae){
Obj ect source = ae. get Source();
i f(source==inputField){
String s = inputField.getText();
t ext Area. append(s+ "\r\n");
i f(master !'=null){
i f(!address. equal s(dest. get Address()))
mast er. di spat chChi | d(addr ess=dest . get Address());
mast er . sendText (S);

}

if(childl !'= null){
chil dl. sendText (s);

if(child2 I'= null){
chil d2. sendText (s);

}
i nput Field. setText("");

public void appendText(String s){
t ext Area. append(s+ "\r\n");
}

1NN

/1 The GroupCnaster aglet class responsible for creating
/'l the two children aglets. The master is a stationary
/1 agent and the two children are nobile agents.

/1 On creation, the nobile agents are dispatched to

/1 two different host.

package my. agl et s;

i mport comibm aglet.*;
i nport javax.sw ng. *;

i mport java.awt.?*;

i mport java.io.*;

i mport java.net.?*;

public class G oupCMVaster extends Aglet{
transi ent Agl et Proxy renoteProxy;
transi ent Agl et Proxy renpteProxy2;
String nane;
G oupW ndow wi ndow;
Agl et Proxy chProxy;
Message nsg3;

/1 The constructor of the stationary agent
/'l responsible for initialization of the global variables.

public GroupCMaster(){
renot eProxy = null;
renot eProxy2 = nul|;
wi ndow = nul | ;
name ="Unknown";
msg3=nul | ;

/1 The nethod responsible for creating and di spatching
/1 the mobile agents to other hosts in the system

e e e
public void dispatchChild(String s){
try{
URL url = new URL(S);
i f(remoteProxy!=null && renmoteProxy2 !'= null){

r enot ePr oxy. sendMessage(new Message("bye"));
r enot ePr oxy2. sendMessage(new Message("bye"));

}

i f(s.equals("atp://venus: 4434")){
Agl et Cont ext ac= get Agl et Cont ext () ;
Agl et Proxy ap = ac.createAglet(null,
"ny.agl ets. GoupCChil d1", get Proxy());
Agl et Cont ext ac2= get Agl et Cont ext ();
Agl et Proxy ap2 = ac2.createAglet(null,
"ny.agl ets. GroupCChi | d2", get Proxy());
renot eProxy = ap. di spatch(url);
renot eProxy2 = ap2. di spatch(new
URL("atp://saturn: 4434/"));

11N

}
el se
i f(s.equal s("atp://saturn:4434")){

Agl et Cont ext ac= get Agl et Cont ext () ;

Agl et Proxy ap = ac. createAgl et (null

"ny.agl ets. GroupCChi | d1", get Proxy());
Agl et Cont ext ac2= get Agl et Cont ext () ;
Agl et Proxy ap2 = ac2.createAglet(null,
"ny.agl ets. GroupCChi | d2", get Proxy());

remot eProxy = ap.dispatch(url);
renot eProxy2 = ap2.di spatch(new
URL("atp://venus: 4434/ ")) ;

}

} catch(InvalidAgl et Exception iae){
i ae. printStackTrace();
} catch(Exception e){
e.printStackTrace();

/1 The method responsible for getting the system property.
e R

private String getProperty(String s){
return System get Property(s, "Unknown");

/1 The method responsible for handling nessages sent
/1l to the stationary agent.
R e R
publ i ¢ bool ean handl eMessage(Message nessage) {
i f (message. saneKi nd("di al 0g"))
wi ndow. show() ;
el se
i f (message. saneKind("text")){
i f(!w ndow. isVisible())
wi ndow. show() ;

wi ndow. appendText ((Stri ng) message. get Arg());
return true;
}
i f (message. saneKi nd("nmsg")) {
try{
Agl et Proxy chProxy =
(Agl et Proxy) nessage. get Arg();
chProxy.toString();
r emot ePr oxy2. sendMessage(new
Message(" msg3", chProxy));
}cat ch(Exception e){
e.printStackTrace();
}

return true;

}

return false;

111

/1 This method creates and shows the GUI for the stationary
/1l agent upon the agents creation.
A i e

public void onCreation(Object obj){
wi ndow = new G oupW ndow(t hi s);
wi ndow. show() ;
try{
name= get Property("user. nanme");
} catch(Exception e){
e.printStackTrace();

/1 This method is called when the agent is being disposed.
/1 1t disposes off the GU and sends a nmessage to the nobile
/1l agents at the rempte hosts.

publ i c void onDi sposing(){
i f(window != null){
wi ndow. di spose();
wi ndow=nul | ;

}

if(remteProxy !'= null){
try{
r enot ePr oxy. sendMessage(new Message("bye"));
} catch(Agl et Exception ae){
ae. print StackTrace();
}
}

if(renmoteProxy2 !'= null){
try{
renot ePr oxy2. sendMessage(hew Message("bye"));
} catch(Agl et Exception ae){
ae. printStackTrace();

/1 This nmethod sends nessages to the nobile agents at renote hosts
R e R R R

public void sendText(String s){
try{
i f(remoteProxy !'= null)
r enot ePr oxy. sendMessage(hew
Message("text", nane+":"+s));
renot ePr oxy2. sendMessage(new
Message("text”, nane+":"+s));
} catch(Exception e){
e.printStackTrace();
}

119

/1l This class is responsible for handling comrunication
/'l between the first nmobile agent (childl) and the other agents in
/1l the system

package my. agl et s;

i mport comibm aglet.*;

i nport comibm agl et.event. *;
i mport javax.sw ng. *;

i mport java.awt.?*;

i mport java.io.*;

i mport java.awt.event.?*;

public class G oupCChildl extends Aglet{

transient String nane;

transi ent G oupW ndow wi ndow,
Agl et Proxy nmast er Proxy, apcl;
String sapcl;

Message nsg;

R e R
/'l constructor to initialize the global variables
e i
public G oupCChildi(){
nanme="Unknown" ;
wi ndow= nul | ;
mast er Proxy = nul | ;
sapcl="";
msg=nul | ;
}
A i e

/1 The nmethod responsible for getting the system property.

private String getProperty(String s){
return System getProperty(s, "Unknown");

/1 The nmethod responsi ble for handling communi cati on sent
/1 to it and establishing a |link between the other npbile agent
/1 and itself for asynchronous conmuni cati on.

publ i ¢ bool ean handl eMessage(Message nmessage) {

i f (message. saneKi nd("di al 0g")){
wi ndow. show() ;
} else {
i f (message. sanmeKind("text")) {
String s = (String)nmessage. getArg();
i f(!w ndow.isVisible())

1192

wi ndow. show() ;
wi ndow. appendText (s);
return true;
}
i f (message. sameKi nd("nsg")) {
try{
Agl et Proxy chilProxy =
(Agl et Proxy) nessage. get Arg();
mast er Proxy. sendMessage(" nmsg", chlProxy);
future= chlProxy. sendFutureMessage(new
Message("text”, nane+":"+s));
if(future.isAvail able()){
String reply = (String)
future. getReply();
wi ndow. appendText (reply);
}

}catch(Exception e){
e.printStackTrace();
}

return true;

}

i f (message. sanmeKi nd("bye")){
wi ndow. appendText (" Bye Bye...");

try{
Thread. current Thread() ;
Thr ead. sl eep(3000L);

} catch(Exception e){

e.printStackTrace();
}

message. sendRepl y() ;
di spose();

}

return fal se;

/1 On creation of the agent, this nethod adds the
/1 mobility capabilities to the agent and displ ays the
I GaUl .

public void onCreation(Object obj){
mast er Proxy = (Agl et Proxy) obj ;
Agl et Proxy apcl = getProxy();
try{
mast er Proxy. sendMessage(new Message("nsg", apcl));
}cat ch(Exception e){
e.printStackTrace();
}

addMobi i tyLi stener (new MobilityAdapter(){
public void onArrival (MbilityEvent ne){
try{
wi ndow = new Gr oupW ndow(G- oupCChi | d1.this);
wi ndow. show() ;
nanme=get Property("user.nanme");

111

}cat ch(Exception e){
e.printStackTrace();

}
).

/1 This method is called when the agent is being disposed.
/1 1t disposes off the GU

e i
publ i c void onDi sposi ng() {
i f(wi ndow != null){
wi ndow. di spose();
wi ndow=nul | ;
}
}
e i

/1 This nmethod sends messages to both the stationary and
/1 the nobil e agent.
e R

public void sendText (String s){
try{
if(masterProxy !'= null)
mast er Proxy. sendMessage(new Message("text", name+":"+s));
mast er Proxy. sendMessage(new Message("nsg", apcl));
} catch(Exception e){
e.printStackTrace();
}

11C

/1 This class is responsible for handling comunication
/'l between the second nobile agent (child2)and the other agents in
/1l the system

package my. agl et s;

i mport comibm aglet.*;

i mport comibm aglet. event.*;
i mport javax.sw ng.*;

i nport java.awt.*;

i mport java.io.*;

public class G oupCChil d2 extends Aglet{

transient String nane;

transi ent G oupW ndow w ndow;
Agl et Proxy mast er Proxy, ch1Proxy;
Fut ureReply future;

e i
/1l constructor to initialize the global variables
e e
public G oupCChil d2()({
nane="Unknown" ;
wi ndow= nul | ;
mast er Proxy = null;
chlProxy = null;
future = null;
}
R e R

/'l The met hod responsi ble for getting the system property.

private String getProperty(String s){
return System getProperty(s, "Unknown");

/1 The method responsible for handling communi cati on sent
/1 to it and establishing a |link between the other nobile agent
/1l and itself for asynchronous conmuni cati on.

publ i ¢ bool ean handl eMessage(Message nmessage) {
i f (message. saneKi nd("di al og")){
wi ndow. show() ;
} else {
i f (message. saneKind("text")) {
String s = (String)nmessage. getArg();
i f(!'w ndow.isVisible())
wi ndow. show() ;
wi ndow. appendText (s);
Agl et Proxy chlProxy =
(Agl et Proxy) nessage. get Arg();

110

return true;

}

i f (message. saneKi nd("nsg3")){
try{
Agl et Proxy chilProxy =
(Agl et Proxy) nessage. get Arg();

mast er Proxy. sendMessage(" nmsg", chlProxy);
future= chlProxy. sendFut ur eMessage(new
Message("text", name+":"+s));
i f(future.isAvailable()){
String reply = (String) future.getReply();
wi ndow. appendText (reply);
}

}catch(Exception e){
e.printStackTrace();

}

return true;

i f (message. sanmeKi nd("bye")){
wi ndow. appendText (" Bye Bye...");

try{
Thread. current Thread() ;

Thr ead. sl eep(3000L);

} catch(Exception e){
e.printStackTrace();
}

message. sendRepl y();
di spose();
}
}

return fal se;

/1 On creation of the agent, this nethod adds the
/1 mobility capabilities to the agent and displ ays the
I GaUl .

public void onCreation(Object obj){
mast er Proxy = (Agl et Proxy) obj ;
addMobi lityLi stener (new MbilityAdapter(){
public void onArrival (MbilityEvent ne){
wi ndow = new G oupW ndow(Gr oupCChi | d2. t hi s);
wi ndow. show() ;

try{
nane=get Property("user. name");

}catch(Exception e){
e.printStackTrace();
}

).

1177

/1 This nmethod is called when the agent is being disposed.
/1 1t disposes off the GU

A i e
publ i c void onDi sposing(){
i f(wi ndow != null){
wi ndow. di spose();
wi ndow=nul | ;
}
}
e i

/1 This nmethod sends nessages to both the stationary and
/1 the mobile agent.

e I e
public void sendText(String s){
try{
i f(masterProxy !'= null){
mast er Proxy. sendMessage(hew
Message("text", name+":"+s));
ch1Proxy. sendFut ur eMessage(new
Message("text", nane+":"+s));
} catch(Exception e){
e.printStackTrace();
}
}
}

110

eferences

ALTMANN, J., GRUBER, F., KLUG, L., STOCKNER, W. & WEIPPL E. 2000.
Evaluation of Agent Platforms, Technical Report 0064/2000, Software Competence
Center, Hagenberg Available at http://www.scch.at/index.jsp [Accessed on 12/2/04].

APPEL, A. W., AND MICHAEL, N. G. 2000. Machine Instruction Syntax and
Semantics in Higher Order Logic. InProceedings of 17th International Conference on
Automated Deduction (CADE-17), Lecture Notes in Artificial Intelligence. Springer-
Verlag.

ARIDOR, Y., AND OSHIMA, M. 1998. Infrastructure for Mobile Agents.
Requirements and Design, In Proceedings of the Second International Workshop on
Mobile Agents (MA'98), LNCS, Vol. 1477, pp. 38-49, Stuttgart, Germany.

ARNOLD, K., O'SULLIVAN. B., SCHEIFFLER, RW., WALDO, J, AND
WOLLRATH, A. 1999. The Jini Specification, Addison-Wesley, Reading, Mass.

ASSIS, S. F. M., POPESCU-ZELETIN, R. 1998. An approach for providing mobile
agent fault tolerance, In Proceedings of the 2' International Workshop on Mobile
Agents (MA’'98), LNCS, Vol. 1477, pp. 14-25, Stuttgart, Germany.

BERNA-KOES, M., NOURBAKHSH, I., AND SYCARA, K. 2004. Communication
Efficiency in Multi-agent Systems, In Proceedings of ICRA 2004. New Orleans, LA.

BETTINI, L., FERRARI, G., PUGLISE, R. 2002. Global programming and mobile

code, Technical report 05/2002. Available at http://music.dsi.unifi.it/papers.ntml,
[Accesses on 13/1/2005]

110N

BAUMANN, J. 1999. A Comparison of Mechanisms for Locating Mobile Agents.
Available at ftp://ftp.informatik.uni-stuttgart.de/pub/library/ ncstrl.ustuttgart_fi /TR-
1999-11/TR-1999-11.pdf. [Accessed on 2/3/2004].

BAUMANN, J., AND ROTHERMEL, K. 1998. The Shadow Approach: An Orphan
Detection Protocol for Mobile Agents, In Proceedings of the 2% Int. Workshop on
Mobile Agents (MA'98), LNCS, Vol. 1477, pp. 2-13, Springer-Verlag, Berlin.

BAUMANN, J.,, HOHL, F., RADOUNIKIS, N., ROTHERMEL K., STRAbER, M.
1997. Communication Concepts for Mobile Agent Systems, In Proceedings of the
First International Workshop on Mobile Agents (MA'97), LNCS, Vol. 1219, pp. 16-
25, Springer-Verlag, Berlin.

BIERMANN, E., CLOETE, E. 2002. Classification of Malicious Host Threats in
Mobile Agent Computing, In Proceedings of SAICSIT, pp. 141-148.

BLAKLEY, B. 1996. The Emperor's Old Armor. In Proceeding of the New Security
Paradigms Workshop, pp. 2-16, ACM Press.

BOGGS, JK. 1973. IBM Remote Job Entry Facility: Generalised Subsystem Remote
Job Entry Facility, IBM Technical Disclosure Bulletin, 752.

BORSELIUS, B. 2002. Mobhile Agent Security, Electronics and Communication
Engineering Journal, Vol. 14, No. 5, pp 211-218.

BRADSHAW J M., GREAVES M, HOLMBACK H, KARYGIANNIS T,
SILVERMAN B, SURI N AND WONG A. 1999. Agents for the masses? |IEEE
Intelligent System, Vol. 14, No. 2, pp. 53-63.

BRAZIER, F. M. T., OVEREINDER, B. J, VAN STEEN, M., AND
WIINGAARDS, N. J. E. 2002. Agent Factory: Generative Migration of Mobile
Agents in Heterogeneous Environments, In Proceedings of the 17" ACM Symposium
on Applied Computing, pp. 101 —106, Spain.

17N

CABRI, G., LEANARDI, L., ZAMBONELLI, F. 2001. Coordination infrastructures
for mobile agents, Microprocessor and Microsystems Vol. 25, pp. 85-92.

CABRI, G., LEANARDI, L., ZAMBONELLI, F. 2000a. Mobile-agent coordination
models for Internet applications, IEEE Computer, Vol. 33, No. 2, pp. 82-89.

CABRI, G., LEONARDI, L., ZAMBONELLI, F. 2000b. Weak and Strong Mobility
in Mobile Agent Applications, In Proceedings of the 2" International Conference and
Exhibition on The Practical Application of Java, Manchester, U.K. Available at

http://polaris.ing.unimo.it/M OON/papers/ pdf/pajava00.pdf [Accessed on 2/3/04].

CHAKRAVARTI, A. J, WANG, X. JASON O. HALLSTROM, J O,
BAUMGARTNER, G. 2003. Implementation of Strong Mobility for Multi-Threaded
Agentsin Java, |EEE International Conference on Parallel Processing, pp. 321

CHAN, P. C., WEI, V. K. 2002. Preemptive Distributed Intrusion Detection Using
Mobile Agents, Eleventh IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE'02), pp103-108.

CHEN, W. S. E AND LENG, C. W. R. 1997. A Novel Mobile Agent Search
Algorithm, In Proceedings of the First International Workshop on Mobile Agents
(MA'97), LNCS, Vol. 1219, pp. 162-173, Springer-Verlag, Berlin.

CHUNG F., CHYI N. C. 2003. A Sliding-agent-group Communication Model for
Constructing a Robust Roaming Environment Over Internet, Mobile Network and
Applications, Vol. 8, No. 1, pp. 61-74

CLAESSENS, J, PRENEEL, B., VANDEWALLE, J 2003. (How) can mobile
agents do secure electronic transactions on untrusted hosts? A survey of the security
Issues and the current solutions, ACM Transactions on Internet Technology (TOIT)
Vol. 3, No. 1 pp. 28 — 48.

1M1

CORRADI, A., MONTANARI, R., AND STEFANNELLI, C. 2001. Security of
mobile agents on the Internet, Internet Research: Electronic Networking Applications
and Policy, Val. 11, No. 1, pp. 84-95.

CUGOLA, G,, DI NITTO, E., FUGGETTA, A. 1998. Exploring an Event-based
Infrastructure to Develop Complex Distributed Systems, In Proceeding of the 20"
International Conference on Software Engineering, pp. 261-270, Kyoto, Japan.

CUGOLA, G., GHEZZI, C., PICCO, G.P., AND VIGNA G. 1997. Analyzing Mobile
Code Languages. J. Vitek and C Tschudin, (Eds.), Mobile object Systems. Towards
the programmable Internet, LNCS, Vol. 1222, pp. 123-132, Springer. Germany.

DIKAIAKOS, M. D., SAMARAS, G. 2000, Workshop on infrastructure for scalable
Multi-Agent systems, 4" international conference on Autonomous agents, Available
a http://www.cs.ucy.ac.cy/mdd/talks/agents2000.pdf [Accessed on 22/1/2005].

FANG, Q., GAOQ, J.,, GUIBAS, L. J. 2004. Locating and bypassing Routing Holes in
Sensor Networks, |EEE Infocom, Avadiable at http://www.ieee-infocom.org/
2004/Papers/51_3.PDF [Accessed on 20/5/05]

FARMER, W.M., GUTTMAN, JD., AND SWARUP, V. 1996. Security for mobile
agents. Issues and requirements, Nat'l. Info.Sys. Security Conf., NISSC. Available at
http://csrc.nist.gov/nissc/1996/papers/NI SSC96/paper033/ SWARUPI6. pdf

FAROOK, A. H., HIROKI, S. 2003. Dynamic Information Allocation through Mobile
Agents to Achieve Load Balancing in Evolving Environment, In IEEE proceedings of
the 6" International Symposium on Autonomous Decentralized Systems (ISADS 03),
pp 25-33.

FIKES, R., AND FARQUHAR, A. 1999. Distributed Repositories of Highly
Expressive Reusable Ontologies, |EEE Intelligent Systems Vol.14, No. 2, pp. 73-79.

11N

FININ, T., LABROU, Y., AND PENG, Y. 1998. Mobile Agents can Benefit from
Standards Efforts on Interagent Communication, IEEE Communication Magazine,
Voal. 36, No. 7, pp. 50-56.

FISCHMEISTER, S., VIGNA G., KEMMERER, R. A. 2001. Evauating the Security
of Three Java-Based Mobile Agent Systems, In G. P. Picco (Ed.), LNCS 2240, pp.
31-44.

FUGGETTA A.,PICCO G. P, VIGNA G. 1998. Understanding Code Mobility, |IEEE
transactions on software Engineering, Vol. 24, No. 5, pp. 342-361.

FUNFROCKEN, S. AND MATTERN, F. 1999. Mobile Agents as an Architectural
Concept for Internet-based Distributed Applications - The WASP Project Approach,
In: Steinmetz (ed.) Proc. Kommunikation in Verteilten Systemen (KiVS 99), pp. 32-43,
Springer-Verlag. Germany.

FUNFROCKEN, S. 1997. How to Integrate Mobile Agents into Web Servers, In
Proceedings of 6" IEEE Workshop in Enabling Technologies: Infrastructure for
Collaborative Enterprises, pp. 94-99, Boston, USA.

FUNFROCKEN, S. 1999. Protecting Mobile Web Commerce Agents with
Smartcards, In Proceedings of the First International Symposium on Agent Systems
and Applications and the Third International Symposium on Mobile Agent Systems
(ASA/MA’99), pp. 90-102.

FUNFROCKEN, S. 1998. Transparent Migration of Java-based Mobile Agents
(Capturing and Reestablishing the State of Java Programs), In: Kurt Rothermel, Fritz
Hohl (Eds.), Proceedings of Second International Workshop on Mobile Agents
(MA'98), LNCS 1477, pp. 26-37, Springer-Verlag, Berlin, Germany.

GENESERETH, M. R. & KETCHPEL, S.P. 1994. Software Agents. Communication
of the ACM. Vol. 37 No. 7, pp. 48-53.

119D

GONG, L. 1998. Secure Java Class Loading. |EEE Internet Computing, Val. 2, No. 6,
pp. 56-61.

GONG, L. 1997. Java Security: present and near future. IEEE Micro, Val. 17, No. 3,
pp. 14-19.

GRAY, R S, CYBENKO, G., KOTZ, D.,, PETERSON, RA., RUS, D. 2002.
D’Agents. Applications and performance of a mobile agent system. Software:
Practice and Experience, Vol. 35, No. 6, pp. 534-573.

GRAY, R. S, KOTZ, D., CYBENKO, G., RUS, D. 1998. D’Agents. Security in a
multiple-language, mobile-agent system. In Giovanni Vigna Ed., Mobile Agents and
Security, LNCS, Vol. 1419, pp. 154-187, Springer-Verlag.

GRAY, R. S, KOTZ, D., CYBENKO, G., RUS, D. 2001. Mobile agents: Motivations
and state-of-the-art systems, In Jeffrey Bradshaw (Ed). Handbook of Agent
Technology, AAAI/MIT press.

GRAY, R.S. 1996. Agent Tcl: A flexible and secure mobile-agent system, In
Proceedings of the Fourth Annual Tcl/Tk Workshop (TCL 96), pp 9-23.

GRAY, R.S. 1995. Agent Tcl: A transportable agent system, In Proceedings of the
CIKM Workshop on Intelligent Information Agents Fourth International Conference
on Information and Knowledge Management (CIKM 95), Batimore, Maryland.
Available at http://agent.cd.Dartmouth.edu/papers gray:agenttcl.pdf [Accessed on
23/2/04].

GREENBERG, M.S.,, BYINGTON, JC., HOLDING, T., HARPER, D.G. 1998.
Mobile agents and Security, IEEE Communication Magazine, Vol. 36, Issue 7, pp. 76-
85.

GROSOF, B.N., LABROU, Y. 1999. An approach to using XML and a Rule-based
Content Language with an Agent Communication Language, In Proceedings of the
International Joint Conference on Artificial Intelligence (1JCAI) workshop on Agent

1M1

Communication Languages, Stockholm. Germany. Available at
www.research.ibm.com/rules/paps/rc21491.ps [Accessed on 1/5/04].

GSCHWIND T., FERIDUN, M., AND PLEISCH S. 1999. ADK- Building Mobile
Agents for Network and Systems management from Reusable Components. In
Proceedings of the First International Symposium in Agent Systems and Applications
and Third International Symposium on Mobile Agents

GSCHWIND, T., RMI164, 1999 http://www.infosys.tuwien.ac.at/Staff/Tom/Projects/rmi64,
[Accessed on 12 August 2004].

HARRISON, C.G., CHESS, D. M., KERSHENBAUM, A.1995. Mobile Agents: Are
they a good idea? IBM Research Report, IBM T. J. Watson Research Center.

HOHL, F. 1998. Time Limited Blackbox Security: Protecting Mobile Agents from
Malicious Hosts, Mobile Agent Security, LNCS Vol. 1419, pp. 92-113, Springer-
Verlag.

HOODA, A., KARMOUCH, A., AND ABU-HAKIMA, S. 1998. Nomadic Support
Using Agent-level Communication, In Proceedings of the 4" Symposium of

Inter networking, Canada.

HORVAT, H., CVETKOVI, D., MILUTNOVI, D., KOVI, P., AND KOVAEVI, V.
2000. Mobile Agents and Java Mobile Agent Toolkits, In Proceedings of the 33"
Hawaii International Conference on System Sciences, |EEE Computing Society, Vol.
8, pp. 8029-8037.

IBM. 1999. Aglet Software Development Kit, Avalable at
http://www.trl.ibm.co.jp/aglets/

JANSEN, W. & KARYGIANNIS, T. 2000. Mobile Agent Security, NIST Special

Publication 800-19. Available at http://csrl.nist.gov/mobilesecurity / publications/sp
800-19.pdf [Accessed on 22/4/04].

11C

JANSEN, W.A. 2000. Countermeasures for Mobile Agent Security, Computer
Communications, Vol. 23, No. 17, pp. 1667-1676, Special issues on advance security

techniques for network protection, Elsevier Science.

JANSEN, W.A. 1999. Mobhile Agents and Security, Web Report. Available at:
http://csrc.nist.gov/staff/Jensen/pp-agentsecurityfin.pdf. [Accessed on 12/3/04].

JOHANSEN D. 1999. Trend Wars: Mobile Agent Applications. IEEE Concurrency.
Vol. 7, No. 3, pp 80-90.

JOHANSEN, D., LAUVSET, K. J, AND MARZULLO. K. 2002a. An Extensible
Software Architecture for Mobile Components, In Proceedings of the 9th IEEE
Conference and Workshops on Engineering of Computer-Based Systems pp. 231-237,
Lund, Sweden.

JOHANSEN, D., LAUVSET, K. J, RENESSE, R. V., SCHNEIDER, F. B.,
SUDMANN, N. P., JACOBSEN, K. 2002b. A TACOMA retrospective, Software-
Practice and Experience, Vol. 32, No. 6, pp. 605-619.

JOHANSEN, D., MARZULLO, K., SCHNEIDER, F., JACOBSEN, K. 1999. NAP:
Practical Fault-tolerant for Itinerant Computations, In Proceedings of the 19"
International Conference on Distributed Computing Systems pp. 180-189.

JOHANSEN, D., VAN RENESSE, R., AND SCHNEIDER, F. B. 1995a. Operating
System Support for Mobile agents, In Proceedings of the 5" Workshop on Hot Topics
in Operating Systems (HOTOS-V), pp. 42-45, |EEE press.

JOHANSEN, D., VAN RENESSE, R., SCHNEIDER, F. B. 1995bh. An Introduction to
the TACOMA Distributed System, Computer Science Technical Report: 95-23.

Available at www.cs.uit.no/forskning/rapporter/Reports/9523.html

JUL, E., LEVY, H., HUTCHINSON, N., BLACK, A. 1988. Fine-grained mobility in
the Emerald system, ACM Transactions on Computer Systems Val. 6, pp. 109-133.

1100

KARJOTH, G., LANGE, D.B., AND OSHIMA M. 1997. The Aglet Security Model,
|EEE Internet Computing. Vol. 1, No. 4, pp 68-77.

KARNIK, N., TRIPAHTI, A. 2001. Security in the Ajanta Mobile Agent
System, Software - Practice and Experience, Vol. 31, No. 4, pp. 301-329.

KARNIK, N.M., AND TRIPATHI, A. 1998. Design Issues in Mobile-Agent
Programming Systems, |EEE Concurrency. Vol. 6, No. 6, pp. 52-61.

KAUFMAN, C., PERLMAN, R., AND SPECINER, M. 1995. Network Security:
Private Communication in a Public World, Englewood Cliffs, NJ. Prentice Hall, PTR.

KINIRY, J, AND ZIMMERMANN, D. 1997. A Hands-on Look at Java Mobile
Agents, |EEE Internet Computing, Vol.1, No. 4, pp. 21-33.

KONE, M.T., SHIMAZU, A., NAKAJMA, T. 2000. The state of the art in agent
communication languages, Knowledge and Information Systems Vol. 2, pp. 258-284.

KOTZANIKOLAOU, P., KATSIRELOS, G., AND CHRISSIKOPOULOQOS, V. 1999.
Mobile Agents for Secure Electronic Transactions. Recent Advances in Sgnal
Processing and Communications, pp. 363-368, World Scientific and Engineering
Society Press.

LABROU, Y., FININ, T., AND PENG, Y. 1999. The current landscape of Agent
Communication language, |EEE Intelligent Systems, Vol. 14, No. 2, pp. 45-52.

LANGE, D. B., OSHIMA, M. 1998. Programming and Deploying Java Mobile
Agents with Aglets Addison-Wesley, Reading, MA.

LAUVSET, K. J, JOHANSEN, D. AND MARZULLO, K. 2002. Factoring mobile

agents. In Proceedings of the 9th IEEE Conference and Workshops on Engineering of
Computer-Based Systems, pp. 253-257, Alamitos, CA, USA.

1077

LAUVSET, K. J, JOHANSEN, D., MARZULLO, K. 200la. Separating Mobility
from Mobile Agents, Available at http://www.cs.uit.no/forskning/rapporter/Reports
/200139.ps. [Accessed on 2 September 2004].

LAUVSET, K. J., JOHANSEN, D., MARZULLO, K. 2001b. TOS: Kernel Support
for Distributed Systems Management. In Proceedings of the 2001 ACM Symposium
on Applied Computing, pp. 412-419. Las Vegas.

LEE, H., ALVES-FOSS, J., HARRISON, S. 2004. The Use of Encrypted Functions
for Mobile Agent Security, Proceedings of the 37" Annual Hawaii International
Conference on System Sciences (HICSS' 04).

LEE, P., NECULA, G. 1997. Research on Proof-Carrying Code for Mobile-Code
Security. Proceedings of the Workshop on Foundations of Mobile Code Security,
Monterey. Available a www.cs.cmu.edu/~necula/ffmcs 97.ps.gz. [Accessed on
14/2/2004].

LI, C.,, SONG, Q., AND ZHANG, C. 2004. MA-IDS Architecture for Distributed
Intrusion Detection using Mobile Agents, In Proceedings of the 2" International
Conference on Information Technology for Application (ICITA 2004) pp. 451-455.
Available at http://attend.it.uts.edu.au/icita05/CDROM-ICI TA04/papers/39-8.pdf
[Accessed on 13/5/05].

LUC, M. 1999. Distributed directory service and message routing for mobile agents.
Technical Report ECSTR M99/3, Department of Electronics and Computer Science,
University of Southampton. Available a www.iam.ecs.solon.ac.uk/publications/
papers/paper3482.html [Accessed on 24/8/04].

MILOJCIC, D., BREUGST, M., BUSSE, I., CAMPBELL, J, COVACI, S,
FRIEDMAN, B., KOSAKA, K., LANGE, D., OSHIMA, M. THAM, C,
VIRDHAGRISWARAN, S., WHITE, J. 1998. MASIF: the OMG mobile gent system
interoperability facility, In Proceedings of the Second International Workshop on
Mobile Agents Lecture Notes in Computer Science, Vol. 1477, pp. 50-67, Springer-
Verlag, Berlin.

1170

MONTANARI, R., STEFANELLI, C., AND NARANKER, D. 2001. Flexible
security policies for mobile agent systems. Microprocessors and Microsystems, Vol.
25, pp. 93-99.

NECULA, G., AND LEE, P. 1996. Safe Kernel Extensions without Run-Time
Checking”, In Proceedings of 2" Symposium on Operating System Design and
Implementation (OSDI *96), pp. 229-243, Seattle, Washington.

OMICINI, A., AND DENTI, E. 2001. From tuple space to tuple centers, Science of
Computer Programming, Vol. 41, pp 277-294, Elsevier.

ORGANIZATION FOR ADVANCEMENT OF STRUCTURED INFORMATION
STANDARDS (OASIS). 2003. Assertion and Protocol for the OASIS Security
Assertion Markup Language 3 (SAML) V1.14, Available a http://www.oasis-
open.org/ committees/download.pdf/1894/sstc-saml-core-1.1-draft-10.pdf. [Accessed
on 27/3/04].

Orso, A., Vigna, G., Harrold, M. 2001. MASSA: Mobile Agents Security through
Static/Dynamic Analysis, In Proceedings of the ICSE Workshop on Software
Engineering and Mobility, Ontario Canada. Available at http://www.cc.gatech.edu/

~0orso/papers/orso.vigna.harrold.IWSEMOL.pdf [Accessed on 2/5/05].

PAGE, A., ZASLAVSKY, A., INDRAWAN, M. 2003. Evauating Security in
Software Agent Systems using a Secure Analysis Tool, In Proceedings of the £

Australian Information Security Management Conference,

PAGNIA, H., VOGT, H., GARTNER, F., WILHELM, U. 2000. Solving Fair
Exchange with Mobile Agents In: Kotz, D.; Mattern, F. (Eds): Agent Systems,
Mobile Agents, and Applications. Proceedings of the Second International
Symposium on Agent Systems and Applications and Fourth International Symposium
on Mobile Agents, ASA/MA 2000, LNCS 1882, pp. 57-72. Springer-Verlag.

17N

PAPAIOANNOU T. 1999. Mobile Agents. Are They Useful for Establishing a
Virtual Presence in Space? In Agents with Adjustable Autonomy Symposium, part of
the AAAI 1999 Spring Symposium Series. Avalable at
http://www.luckyspin.org/Docs [Accessed on 22/7/04].

PEINE, H. 1997. An Introduction to Mobile Agent Programming And The Ara
System, Technical report ZRI-Report 1/97, Department of Computer Science,
University of Kaiserslautern, Germany. Available at http://wwwagss.informatik. uni-
kl.de/ projekte/Ara/Doc/intro-prog.ps.gz. [Accessed on 2/6/04].

PEINE, H., AND STOLPMANN, T. 1997. The Architecture of the Ara Platform for
Mobile Agents, Mobile Agents, In K. Rothermel and R. Popescu-Zeletin edition,
Mobile Agents: First International workshop MA’'97, Vol. 1219, pp. 50-61, Springer.
Berlin.

PEINE, H. 2002. Application and Programming Experience with the Ara Mobile
Agent System, Software- Practice and Experience. Vol. 32, No. 6, pp. 515-541.

PEINE, H. 1997. Ara - Agents for Remote Acton, In Itinerant Agents. Explanations
and Examples with CD-ROM, W. Cockayne and M. Zyda (ed), Manning/Prentice
Hall.

PEINE, H. 1998. Security concepts and Implementations on the Ara Mobile Agent
System, In Proceedings of the seventh IEEE Workshop on Enabling Technologies:
Infrastructure for the Collaborative Enterprises, WETICE' 98. California, USA.
Available at http://wwwagss.informatik.uni-kl.de/ projekte/Ara/Doc/ara-security.ps.gz

PHAM V. A., KARMOUCH A. 1998. “Mobile Software Agents. An Overview”,
|EEE Communications Magazine. Vol. 36, No. 7, pp. 26-37.

PICCO, G P, 2001. Mobile agents. an introduction, Microprocessor and
Microsystems Vol. 2, No. 2, pp. 65-74.

12N

PINSDORF, U., AND ROTH, V. 2002. Mobile Agent Interoperability Patterns and
Practices, In Proceedings of Ninth IEEE International Conference and Workshop on
the Engineering of Computer-Based Systems, pp. 238-244, Sweden.

PITOURA, E. AND FUDQOS, 1., 2001. Distributed Location Databases for Tracking
Highly Mobile Objects, The Computer Journal, Vol. 44, No. 2 pp. 75-91.

PLEISCH, S., AND SCHIPER, A. 2003. Fault-tolerant mobile agent execution, |EEE
Transactions on Computers, Vol. 52, No. 2, pp 209-222.

RAO, J, MIHHAIL S. X. 2003. Implementation Explanation Ontology for Agent
Systems, In Proceedings of the IEEE/WIC International Conference on Web
Intelligence, Canada.

ROTHERMEL, K., AND SCHWEHM, M. 1998. Mobile Agents, Encyclopaedia for
Computer Science and Technology, New Y ork: M. Dekker Inc.

ROVATSOS, M. AND NICKLES, M. AND WEIR, G. 2004. An empirical model of

communication in multiagent systems. Lecture Notes in Computer Science, 2922.

SAMEH A., AND FAKHRY, D. 2002. Security in Mobile Agent Systems,
Proceedings of the 2002 symposium on Applications and the Internet (SAINI ’02)
Available a http://csdl.computer.org/comp/proceedi ngs/saint/2002/1447/00/
14470004.pdf [Accessed on 28/1/2005].

SANDER, T. AND TSCHUDIN, C.F. 1998. Protecting Mobile agents against
Malicious Hosts, Mobile agent security, LNCS V0l.1419, pp. 44-60, Springer-Verlag.

SATOH 1. 2001. Adaptive Protocols for Agent Migration, Proceeding of the 21%
International Conference on Distributes Systems (ICDCS-21), pp. 711-714. Available
a http://research.nii.ac.jp/~ichiro/papers/satoh-icdcs2001.pdf ~ [Accessed on
28/1/2005]

1921

SCHELDERUP, K., AND OLNES, J. 1999. Mobhile Agents Security- Issues and
Directions, Lecture Notes in Computer Science, Vol. 1579, pp. 155-167.

SCHOEMAN, M., CLOETE, E. 2003. Architectura Components for the Efficient
Design of Mobile Agent Systems, In Proceedings of SAICS T, pp. 48-58.

SIERRA, WOODRIDGE, ADEH. 2000. Agent Research and Development in Europe.
|EEE Internet Computing, pp.81-83.

STALLING, W. 1995. Network and Internetwork security: Principle and Practice,
Prentice-Hall, Englewood Cliffs, NJ.

STRAbER, M., BAUMANN, J.,, HOHL, F. 1996. Mole-A Java Based Mobile Agent
Systems, Special Issue Object-Oriented Programming: Workshop Reader of the 10"
European Conference Object-Oriented Programming ECOOP’ 96, pp. 327-334.

STRAbER, M., ROTHERMEL, K. 1998. A Fault- tolerance protocol for providing
the exactly-once property of mobile agents, In Proceedings of the 17" IEEE
Symposium on Reliable Distributed Systems (SRDS 98), pp. 100-108, Los Alamitos,
CA, USA.

SUDMANN, N. P. AND JOHANSEN, D. 2000. Adding Mohility to Non-mobile
Web Robots. In Proceedings of the workshop on Knowledge Discovery and Data
Mining in the World-Wide Web at the 20" IEEE International Conference on
Distributed Computing Systems Taiwan. Available at http://www.cs.uit.no/forskning/
rapporter/Reports/200036.ps [Accessed on 2/9/04)].

SUDMANN, N. P, JOHANSEN D. 2001. Building agent applications using
wrappers. Available at http://www.cs.uit.no/forskning/rapporter /Reports/200138.ps.
[Accessed on 2/9/04].

SUTHERLAND, D. 1997. RMI and Java Distributed Computing. Available at
http: //java.sun.comv/features/1997/nov/rmi.html. [Accessed on 15/4/2005].

19N

SYCARA, K., GIAMPAPA, JA., LANGLEY, B. K., AND PAOLUCCI, M. 2003.
"The RETSINA MAS, a Case Study," Software Engineering for Large-Scale Multi-
Agent Systems: Research Issues and Practical Applications LNCS 2603, pp. 232-
250, Springer-Verlag, Berlin.

TAHA, K., AND PILIOURA, T., Agent Naming and Locating: Impact on Agent
Design. Available at http://cui.unigr.ch/OSG/publications/OO-articles/
Technical Reports/99/A gentNamingL ocatin.pdf [Accessed on 22/6/04].

TAI, H., KOSAKA, K. 1999. The Aglet Project, Communications of the ACM, Vol.
42, No. 3, pp. 100-101.

TAN, H. K., MOREAU, L., 2002. Certificates for Mobile Code Security, ACM
Symposium on Applied Computing, pp. 76-81.

TAUBER, J. 1999. “XML After 1.0: You Ain't Seen Nothing Yet,” |EEE Internet
Computing, Vol. 3, No. 3, pp. 100-102.

THORN, T. 1997. Programming language for mobile code, ACM Computing Surveys,
Vol. 29, No. 3, pp. 213-239.

TRIPATHI, A.R.,, AHMED, T. & KARNIK N. M. 2001. Experiences and future
challenges in mobile agent programming. Microprocessor and Microsystems, Vol. 25,
pp.121-129.

TRIPATHI, A.R., KARNIK, N.M., AHMED, T., SINGH, R.D., PRAKASH, A,
KAKANI, V., VORA, M K., PATHAK, M. 2002. Design of the Ajanta System for
Mobile Agent Programming, The Journal of System and Software, Vol. 62, pp.123-
140.

UHRMACHER, A. M., KULLICK, G. B. 2000. Plug and Test - Software Agents in
Virtua Environment, Proceedings of the 2000 Winter simulation Conference, pp
1722-1729.

1929

VIGNA, G. 1998. Cryptographic traces for Mobile agents, G. Vigna edition, Mobile
Agents and Security, LNCS 1419, Springer-Verlag, Berlin.

VITEK J.,, TSCHUDIN C. 1997. Security and communication in Mobile Objects
Systems. J. Vitek and C Tschudin, Eds, Mobile object Systems. Towards the
programmable Internet, LNCS, Vol. 1222, Springer.

WAGNER, D. AND SCHNEIER, B. 1996 Anaysis of the SSL 3.0 protocol, In
Proceedings of the 2nd USENIX Workshop on Electronic Commerce, Oakland, USA,
November, pp. 29-40. Avallable at: http://www.usenix.org/publications
/library/proceedings/ec96/wagner.html [Accesses on 10/5/04].

WALLIN, A. 2004. Secure Auction for mobile agents, ESPOO Avalable at
http://www.vtt.fi/inf/pdf/publications/2004/P538.pdf [accesses on 12/5/05] .

WAYNER, P. 1995. Free Agents. Byte (March Edition).

WHITE J. E. 1996. Telescript Technology: Mobile Agents, J.Bradshaw (ed.) Software
Agents AAAI PresssMIT Press.

WIES, R. 1995. Using a Classification of Management Policies for Policy
Specification and Policy transformation, In Proceedings of ISSNM’95, pp. 44-56,
Chapman & Hall.

WILHELM, U., STAAMANN, S., AND BUTTYAN, L. 1998. On the problem of
trust in mobile agent systems, Network and Distributed System Security Symposium,
San Diego, CA. Available a http://citeseer.ist.psu.edu/ wilhelm98problem.html
[Accessed on 5/5/04].

WITTNER, O., 1999. Evaluation of Mobile agent systems with respect to failure
semantics, Available at http://www.item.ntun.no/~witner/papers/failsemMA Sreport. pdf
[Accessed on 18/1/2005]

121

WOLFGANG, E. 2000. Engineering Distributed Objects. John Wiley & Sons.

WONG D., PACIONREK N., WALSH T., DICELIA J, YOUNG M., PEET B. 1997.
Concordia: An Infrastructure for Collaborating Mobile Agents, In Proceedings of the
first International Workshop Mobile Agents, LNCS 1219, pp. 86-97, Springer-Verlag.

WOOLDRIDGE, M. J., AND JENNINGS N R. 1999. Software Engineering with
Agents: Pitfals and Pratfalls, IEEE Internet Computing, Vol. 3, pp. 20-27.

WOOLDRIDGE, M. J 2000. Semantic issues in the verification of agent
communication languages, Journal of Autonomous Agents and Multi-Agent Systems,
Voal. 3, No. 1, pp 9-31.

XUDONG G, YILING Y., JNYUAN Y. 2000. POM - A Mobile Agent Security
Model against Malicious Hosts The Fourth International Conference on High-
Performance Computing in the Asia-Pacific Region, Vol. 2, No. 5 pp 14 — 05.

XUHUI, L., JANNONG, C., YANXIANG, H. 2004. A direct Execution approach to
simulating Mobile agent Algorithms, The Journal of Supercomputing, Vol. 29, No. 2,
pp. 171-184.

YAP, M. T., HENG, C. K., WONG, K. K., LEONG, P. C. 2004. Subject Bidding
Through Mobile Agents, Proceedings of the 2™ International Conference on
Information Technology for Application (ICITA 2004), pp56-60.

YEN, J,, FAN, X., VOLZ, R. 2004. Proactive Communications on Agent Teamwork,
Advances in Agent Communication: International workshop on Agent Communication
languages, ACL , LNAI, Vol. 2922, pp 271-290.

Y1, X., WANG, X. F., AND LAM K. Y. 1998. A secure Intelligent Trade Agent

System. In Proceedings of the International IFIP/GI Working Conference, TREC' 98,
LNCSVol. 1402, pp. 218-228, Springer-Verlag.

12C

ZASLAVSKY, A. 2004. Mobile Agents. Can They Assist with Context Awareness?
Proceedings of the IEEE International Conference on Mobile Data Management

(MDM’'04), Available at http://csdl.computer.org/comp/proceedings/mdm/2004/
2070/00/20700304.pdf [Accesses on 27/1/2005]

1202

able Of Content

| NEFOAUCTION ..ottt 1

1.1 Introduction and Background...........cccceererieeneennneeseeseeseese e see e sneeeens 1
1.2 Theproblem StalEMENL........cccocieiie e 3
1.3 Prop0SEd SOIULION.......ceeeireecieecireectee et e see et e steeereesreesreesreesareesbeesnneenreesaneenns 4
1.4 Strategies for finding @ SOIULTON........ccveeiuiiienieeie e 6
15 Context Of RESEAICN.......cccv i 6
1.6 Delimitation of Study fIeldcoeoeiiiieieiciece e e 7
1.7 Structure of the DISSErMaliON.......ccceeieeieeeiieesie e e 7
A Hands-on L ook At Agents .. 9

22 A 1 1 oo (8 (o USRS 9
2.2 The Agent Development ENVIrONMENtccceeveeiieevieccee e 10
2.3 Technical Details of the appliCation...........cocevvveeeeecieeiee e 11
2.3.1 Agent Creation and Agent Mobility.........cceevveeieeiieciiee e 13
2.3.2 Communication between agents..........cccceeceeveerieecee s 15
24 Bl 0101002 R PR 16
Agent M FOFAHION ...t 17

20 R 1 | 1o (8 ox (o TSROSO 17
3.2 MODIITY CONCEPL.....cccuveeirieitecitie ettt see b s reeree 18
12 T |V o) o] 11 Y20 1Y/ o (= S 21
331 (0] 110 111/ o o1 1 2 21
3.3.2 WEAK MODITIEY.....eeveeiecieese et 22
3.4 Strategiesfor Relocating Code SEgMENLt.........coveereereererrenneeseeee e 24
3.5 [DF E2 S 072 L 10721720 =1 1| SR 25
3.6 Agent Transportation MeChaniSMScceevveeiveeceieiree e 28
3.7 Agent Persistence MEChaNiSIMS.......ccoveerierienieenieeie e 29
3.8 J o (<0 U= =) 30
3.9 EVAUAION FACLOIS......cviecieeeiee ettt ettt et re e sare e ennes 32

w

10 CoNClUSIONS AN SUMIMIBIY. ... eeeeeeneesesemnnemnnnnnns 34

I Agent Communicati ONlcoee ettt 36

0 R 1 9| 10 (8 ox (o TSROSO 36
4.2 1dentification Of AQENES......cociiieiirie et s 37
4.3 [0 Torz 1] Lo N0 (< 1 39
4.4 Typesof Agent COMMUNICELION........cccccveieeeieeieeeiree e eereesre e sreereesanes 41
44.1 Intra-place Communication (Mobile Agent — Mobile Agent) 42
4.4.2 I nter-place Communication (Mobile Agent — Mobile Agent) 43
443 I ntra-place Communication (Mobile Agent — Service Agent)................. 44
4.4.4 I nter-place Communication (Mobile Agent — Service Agent).......cue..... 44
4.4.5 Intra-place Communication (Agent-Group)coeeeeieivereeesieeesesseeeeeens 44
4.4.6 I nter-place Communication (Agent-Group)cccveeeeeereiveeesiveeesveeennes 45
45 Agent Communication LAnQUBOES........cceeiueeeireeiereireesreeireesressseesaneesreesnnes 46
45.1 Knowledge Query Manipulation Language (KOML)........covveeeeiiiveeeeens 47
45.2 Foundation of Intelligent Physical Agents - Agent Communication
LanQuage (FIPA = ACL) ettt s s 48
453 Extensible Markup Language (XMLeoooeeeeiiciiiee e 48
4.6 EvaUSON FACIOrS.......cieeiieieieesie ettt s 49
4.7 Conclusions and SUMMEANYcceeeeueeieeeireeieeeireeseeeereesseesseesssessseesssesssesssnes 51
Agent Security ... 53
L5700 A 1 1 o [o o S 53
5.2 SECUNtY MOEL......ceeecreeeee ettt 54
5.3 AQENt SECUNMTY...veeiieectieciie ettt ettt eeneesnnes 57
53.1 PN =0 (0] 01 [R 57
5.3.2 Attack from other agents at the hoSt.........ccoceeviceeeiciee e 58
533 Protection oOf the aQeNtS........ccviiiiiii i 59
SN (01 0= ol U] /R 61
54.1 Attack from agentS at thE NOSE........ccvveeeieeie e 61
5.4.2 Attack from other hosts in the SYStEM......ooiceee i 62
54.3 Protection Of the HOSL..........ceiiiieiii e 63
55 Requirements for protecting the Mobile Agent System...........cccceeevvevennee. 65
5.6 EvAUAION FACLOIS......cccvieiieciee ettt ettt et re e s e ennes 66
57 Conclusions and SUMIMAIY.........ccceeciuerieiieeiiiee e e et e eree e e e e sreeesareeens 67

Eval uations Of The Sel ected M obile A gent System%s

{700 S 1 9| 1o (8 Tox o S 68
6.2 Grouping of Mobile Agent SYSIEMS........c.ceceeiveeireeieeeiree et 696969
6.2.1 GIOUD ONE.....ceieeeeeie ettt s ss e saee e be e aneenee s 704970
6.2.2 GIOUD TWO .ottt ettt ettt s e et s e esneeenee s 704970
6.2.3 GIOUD THIEE ...ttt s e re e 7147
6.2.4 GIOUPR FOU ...ttt 71474
6.2.5 GIOUD FIVE. ...ttt ettt e nn e 724272
6.2.6 GIOUD SIX c.uveetieereeiteeiireesieesiseesteesiteesseessbeesseesbeessseeasessaaesnsessssenssenss 727272
6.3 Anaysis of the Selected Mobile Agent Systems........cccoceevveeevveeennen. 731373
6.3.1 D AQENtS (VErSION 2.1) ..ottt 737373
(3G 350 I R Y/ o o 1 /R 747474
6.3.1.2 COMMUNICELION.......ccieiieireeieeeireesteecreesreesreesreesreeereesareesseeas 754575
6.3.1.2.2 MESSAPE PASSING....cerueerrererrreerrereesreesteseesreessesseesseesseseesees 764676
6.3.1.2.0 SITEAMS.....cceeieeirieee et et e 767676
B.3.1.2.C EVENLS....c e TTHH
6.3.1.2.d Restricted form of RPC..........cccoeviiiiiiececsee e TTHH
[Tt G S = o U [/R TTH77
6.3.2 TACOMA 2.0 (Tromsg And COrnell Moving Agents).........cee..... 797979
6.3.2.1 MODIILY...ceoiteiee e e 808080
6.3.2.2 COMMUNICAIION.......ueeeereeeieeeesieeseeseeseesiesee e e see e sseeseesneesees 818181
B.3.2.3 SECUMY....veeiuieiieeceeccteesee et e see et e sre e sreesaeesreesbeesareesreesareeneens 818181
6.3.3 WASP (Web Agent-based Service Providing) version 2.0.............. 828282
6.3.3.1 MODIILY...ceeiiiieceeeceee e 828282
6.3.3.2 COMMUNICALIONS.eceereeeiereesreeseeseesseeseeseesseeneesseesseessesseesees 838383
6.3.3.2.2 MESSAE PASSING...cccveerurerreeireeireesreeseesreesreesreesseesseesseess 838383
6.3.3.2.0 SLrEAML.....cciiceecececee e e 838383
6.3.3.2.c Remote Method INVOCELION........cceeerveieiieenieeieseesee e 848484
6.3.3.2.d Loca Method [NVOCALION........ccoeevveeieeeieeciee e 848434
GG TG S = o U 1 /2R 848484
6.34 AIELS (VEISION 2.0)cueeieieieeeieeiesiee et sne e 858585
(G S R Y/ o o1 1 Y/ 858585
6.3.4.2 COMMUNICELION.......ccieiieereeieeeireesee e esteeereesbeesreeereesareesseess 868686
6.3.4.3 SECUIMLY...ccueeieiie ettt e e enae 878787
6.3.5 ARA (Agent for Remote Action) version 1.0a........ccceeeveeevveeeeennnee. 8888288
6.3.5.1 MODIIY...coeieiee et 898989
6.3.5.2 COMMUNICALION.......cceeiieiiieiiecireesee e et e et eere e e sreennee s 909990
6.3.5.2.2 SEIVICE POINS.....cccuiieeeiieie e sie e eeas 909090
6.3.5.2.0 TUPIE SPACE......ccueieteeceeetee ettt 919191
6.3.5.3 SECUIMLY..uviiiieiee ettt e e earee e 919191

6.4 Evaluation against the selection factors..........cccoceevceeve e ccee e, 929202

; Concl USIONS ..ot eeeeereeeeeeeeeseeeseeseeseeeesearesseeseesans 101401101

% S 1 9| 1o (8 ox o o WSS 101101101
7.2 Interpretation Of RESUILS.........ccoveeieeeciiecieccee et 102102102
7.3 Further RESEAICH.ccoe e 1041064104

ppendix A .. 106106106
St R 1 9| 1o (8 ox o PSR 106106106
A2 TheSoUrCE COUE......cciiieireeceietee ettt 107407107

Error! Notable of figuresentriesfound.

	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Appendix A
	Bibliography
	Contents

