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NOTE FROM THE EDITOR

Three points must be made by way of introduction to the second issue of Volume
2 of Quaestiones Informaticae.

Firstly, an apology is in order for the mistake in the date (November 1983 instead
of 1982) at the foot of my note introducing the preceding issue. Lacking the services
of a professional proof reader, printing errors are bound to show up from time to
time, but it is hoped that their number will be kept to a minimum!

Secondly, it is a pleasure to announce that this journal will not only serve to publish
papers of a scientific or technical nature on computing matters under the auspices
of the Computer Society of South Africa. An agreement has been reached to share
the facilities of Quaestiones Informaticae between the CSSA and SAICS, the South
African Institute of Computer Scientists. Henceforth this journal will also be used
to publish the Transactions of this Institute. This implies certain changes to the cover
pages which will be implemented in future issues. I shall continue to serve as editor,
but on behalf of SAICS Prof R. J. van den Heever will share some of my duties
and act as co-editor.

Finally Mr Edwin Anderssen, of Rand Afrikaanse Universiteit, has agreed to serve
as circulation manager for Quaestiones Informaticae. I am grateful indeed that he
is willing to serve the journal in this capacity, and look forward to a long period
of fruitful cooperation.

G WIECHERS

May, 1983






Die Operasionele Enkelbedienermodel

J.C. van Niekerk
Sperry, Johannesburg

Abstract

Die operasionele benadering tot die ontleding van die enkelbedienermodel word bespreek. Daar word gekyk na Buzen
se operasionele ekwivalent vir die stogastiese geboorte/sterfte Markov-model, waarna veralgemenings van die model
ondersoek word. Ten slotte word prestasiemate vir die modelle afgelei.

The operational approach to the analysis of the single server model is discusses. Firstly Buzen’s operational equivalent
to the stochastic birth/death Markov model is presented, whereafter generalisations of the model are examined. Last-
ly, the performance indicators are derived for these models.

Inleiding

In die laaste paar jare, in die besonder vanaf 1977, is ’n
metode vir prestasie-ontleding ontwikkel wat grootliks
ekwivalent is aan die stogastiese benadering, maar nie onder
dieselfde nadele gebuk gaan nie. Die hoofdoel van hierdie
metode is, naamlik, om van meetbare veranderlikes en
bewysbare aannames gebruik te maak om die prestasie van 'n
stelsel te ondersoek. Die groot klag teen die stogastiese metode
is dan ook dat die gemiddelde prestasie-analis in die praktyk
meestal nie oor die statistiese kennis beskik om dit ten volle te
begryp nie. Daarby is die aannames wat gemaak moet word
geensins in eindige tyd verifieerbaar nie. Alhoewel verifieer-
ingseksperimente getoon het dat die meeste resultate wat bereken
word wel baie goed vergelyk met die werklike gemete waardes,
is daar geen manier waarop bewys kan word dat 'n nuwe stelsel
onder beskouing ook op hierdie manier akkuraat ontleed kan
word nie. Die prestasie-analis verkies dus dikwels om die meer
bekende en makliker begrypbare metodes soos normtoetse te

gebruik, alhoewel die metodes op sigself nie so akkuraat is’

nie [6].

Tot op hede is die twee belangrikste tipes operasionele modelle
wat ontwikkel is die enkelbediener en die toustaan-
netwerkmodelle. Die enkelbedienermodel word gebruik om
enkele komponente van ’n stelsel te ontleed. Die kompleksiteit
van moderne stelsels maak dit egter feitlik onmoontlik om die
hele stelsel as ’n enkelbediener te beskou. Sulke stelsels bestaan
uit netwerke van enkelbedieners wat interafhanklik is en dus
met meer gesofistikeerde metodes soos toustaannetwerkmodelle
ontleed moet word [3,4,5]. ’n Deelversameling van hierdie tou-
staannetwerkmodelle wat aan ’n sekere aantal voorwaardes vol-
doen, reduseer egter na modelle waarin elke komponent as ’n
aparte enkelbediener beskou word. Die resultate van die enkelbe-
dienermodel is dan direk daarop van toepassing. Vir meer
besonderhede sien [3,4,5,7). In hierdie artikel word die bespre-
king beperk tot die enkelbedienermodel.

In [2] het Buzen aangetoon hoe die operasionele formules,
wat ekwivalent is aan die stogastiese geboorte/sterfte Markov-
formules, afgelei word en welke aannames in die proses gemaak
moet word. In hierdie artikel word aangetoon hoe akkurate for-
mules afgelei kan word vir modelle wat slegs aan een van die
twee aannames voldoen.

Die Model
Die model bestaan uit die volgende drie komponente:

1. ’n Bediener wat een taak op ’n slag verwerk en slegs ledig
is as daar geen take vir bediening wag nie. Die diensspoed
is afhanklik van die aantal take wat vir verwerking wag.

2. Een wagtou met ’n maksimum lengte.

3. Take wat teen ’'n sekere aankomstempo by die bediener
aankom. Die aankomstempo is ook afhanklik van die
toulengte. Nadat die tou sy maksimum lengte bereik, word
alle verdere take weggewys.

Die Stelseltoestand
Die toestand N(t) van die stelsel op tydstip t word beskryf

deur die aantal take wat op daardie tydstip in die stelsel teen-
woordig is. 'n Aankoms of vertrek wat op tydstip t plaasvind,
word nie by N(t) in berekening gebring nie. N(t) se waarde bly
dus dieselfde as net voor die aankoms of vertrek.

Die Enkelbedienermodel
Die volgende veranderlikes word benodig:

Meetbare Operasionele Veranderlikes

T — lengte van die tydsperiode waarin die stelsel
waargeneem word.

M —  maksimum aantal take in die stelsel op enige tydstip
gedurende die tydsperiode.

m —  minimum aantal take in die stelsel op enige tydstip

gedurende die tydsperiode.

T(n) — tyd wat die stelsel gedurende die waarnemingsperiode
in toestand n deurbring, n=m,m+1,....,M.

A(n) — aantal aankomstes terwyl die stelsel in toestand n is,
n=m,m+1,....,M-1. .

C(n) — aantal vertrekke terwyl die stelsel in toestand n is,
n=m+1m+2,....M.

Afgeleide Operasionele Veranderlikes
P(n) — breukdeel van die totale tyd wat die stelsel in toestand
n deurbring.

P(n) = _'I‘F(r_n) n=m,m+1,...M

M M
Omdat >, Tm) = Tvolgdat 3, Pn) =1

n=m n=m

An) — gemiddelde aankomstempo terwyl die stelsel in toes-

tand n is.
A(n)
A = =m,m+1,...,M-1
(n) Tm) n=m,m
M) = 0
u(n) — gemiddelde vertrektempo terwyl die stelsel in toestand
nis
u(m) = 51‘283 n=m+1m+2,...M
pm) = 0

Die Operasionele Geboorte/Sterfte-model [2]

Die volgende twee verifieerbare aannames word gemaak in
die operasionele afleiding van die uitdrukkings vir
P(m),P(m + 1),...,P(M).



Aanname 1 — Basiese Operasionele Ewewig

Die stelseltoestand aah die begin en einde van die tydsinter-
val moet dieselfde wees,

N(@O+¢) = N(T) vir ’n baie klein ¢>0.
Aanname 2 — Enkel Aankomstes/Vertrekke

Geen aankoms en/of vertrek vind gelyktydig plaas nie.

Aanname 2 verseker dat die stelsel vanuit toestand n slegs
na toestand n+1 of n-1 kan gaan. Verder geld dat vir elke
oorgang van toestand n na n+ 1 ’n oorgang van n+ 1 na n op
’n ander tydstip moet plaasvind (aanname 1 en 2).

Dus: An) = Cn+1) n =m, m+1,...M-1
Hieruit volg: A(n) . T(m) = u(n+1) . T(n+1)
ANn).P@m). T = pn+1) . Ph+1). T

An)

Dus P(n+1) = P(n) ————
us P(n+1) (n) PEES)
Rekursiewe toepassing van die formule lewer

Mm)Am + 1)...\(n-1)
(m + Dp(m +2)...p(n)

P(n) = P(m) n=m+1,m+2,.,M (L.1)

Omdat P(n) = 1 volg

i
g

MmAMm +1)...Mn-1) |

(1.2)
w(m+ Dp(m+2)...x(n)

M
P(m) =(1 + 5

n=m+1

Hierdie formule is ekwivalent aan di¢ van die stogastiese
geboorte/sterfte Markov-model, waarin die waardes wat die
stelseltoestande kan aanneem beperk word tot
n=m,m+ 1,...,M. Om die stogastiese formules af te lei, moet
egter die volgende aannames gemaak word.

1) Die tussenaankoms- en dienstye is toestandafhanklik
eksponensieel verdeel.
2) Die stelsel is in statistiese ewewig.

Aanname 1 stem ooreen met die aanname van enkel
aankomstes/vertrekke by die operasionele model en aanname
2 met die aanname van basiese operasionele ewewig. Die nadeel
is dat hierdie stogastiese aannames nie in eindige tyd geverifieer
kan word nie.

’n Verdere probleem by die stogastiese metode is die bepal-
ing van waardes vir die parameters A(n), n=m,m+1,...,M-1
en u(n), n=m+ 1,m+2,...,M. Beide \(n) en u(n) word ge-
woonlik op dieselfde wyse as by die operasionele model bereken.
Volgens die Wet van Groot Getalle sal die waargenome A(n)-
en u(n)- waardes in die limiet met waarskynlikheid een
respektiewelik na die stogastiese parameters A(n) en u(n) nader.
Deur die stelsel dus slegs vir ’n eindige periode waar te neem,
is die waardes wat vir die parameters bereken word nie noodwen-
dig akkuraat nie. Die afleiding van die formules word in meeste
boeke wat elementére toustaanteorie bespreek, gegee.

Geboorte/Sterfte-formules Sonder Basiese Operasionele
Ewewig

Gebruikmakend van die operasionele benadering kan akkurate
formules afgelei word vir modelle waarin slegs die enkel
aankomstes/vertrekke-aanname geld en nie basiese operasionele
ewewig nie. Hulle kan gebruik word indien waarnemings
gemaak is oor tydsperiode T waarvoor nie geld dat die begin-
en eindtoestande dieselfde is nie en daar ook nie rekord gehou

is van die tydstippe waarop die stelsel se toestand verander het
nie. Die formules is egter heelwat komplekser as vir modelle
waarin die aanname wel geld. Indien daar relatief baie waarnem-
ings gemaak is tydens die waarnemingsperiode, nader die
waardes bereken deur hierdie formules na dié bereken uit die
model waarin die aanname wel gemaak word.

Gestel die begintoestand is a en die eindtoestand b. Sonder
verlies aan algemeenheid kan aanvaar word dat a<b.

Die volgende vergelykings kan direk neergeskryf word:

Ak) = Ck+1) k=m,m+1,...,a-1,b,b+1,...,,M-1
Ak) = Ck+1) + 1 k=a,a+1,...,b-1
Hieruit volg:

AK) . T(k) = wk+1) . T(k+1)
k=m,m+1,...,a-1,b,b+1,....M-1

en Mk) . T(k) = wkk+1). T(k+1) + 1
k=a,a+1,...,b-1

Gebruikmakend van P(k) = T,(rk) volg:
: AK)
Pkk+1) = Pk k= B veesM-
k+1) ( )p(k+1) m,m+1,...,a-1,b,b+1,...,M-1
ANK) 1

en P(k+1) = P(k) k=a,a+1,...,b-1

pk+1)  Tuk+1)
Rekursiewe toépassing van die formule lewer:

Am)A(m + 1)...\(k-1)

m=< k=< a: P(k) = P(m)
p(m+ Du(m +2)...u(k)
k-1 D)
=P
m n=m #@D+ID)
k-1
a+1 < k < b: P(k) = P(m) A
n=m #on+l)
1 E-Ja ( 1 k-1 An)
T i=1 @+ n=a+i mo+l)
k-1
b+l <k=M:P®=Pm [ —&  _
n=m #n+1)
1 b-a 1 k-1 AD)

)

— i i
T i=1  w@+) pn=a+i p@+))

n=m
1 b k-a 1 k-1
Pm = { 1 +— 3 : M)
T g=a+1i=1 w@+) pn=a+i s@+1)
. 1 l\é b-a 1 k-1 D) }
T k=b+1 i=1 w@+i) n=a+i s+l
*[1 ¥ oK e ]_,
+ -
k=fi+1n=m #n+1)

Indien aanvaar word dat u(n), u(n) en P(m) in die limiet be-
staan en groter as 0 is, kan limietverdelings.vir hierdie uitdruk-
kings afgelei word.



Aanvaar

lim _ * — -

T oo AMm) / T) = N*@m) > 0 n=m,m+1,...,M-1

bm o)/ T@) = p*@ >0 n=m+1m+2,..,M

T"> oo ’ ERRER]

lim _ *

Tos 00 T(W / T = P*m) > 0

Dan volg:

lim B k-l \*@ k=m+1,m+2,..,.M

T> o Pk) = P*(m) n1=1m 7"101_‘_ ) (1.3)
lim : Mkl @) 1 (1.4

en g, Pm)=(+ PCES))

k=m+1ln=m

Hierdie formules is ekwivalent aan (1.1) en (1.2).

Limietgedrag van die geboorte/Sterfte-proses waarby beide
aannames verswak word [2]

Deur beide die basiese operasionele ewewig en enkel
aankomstes/vertrekke-aanname te verswak, kan formules afgelei
word wat in die limiet ekwivalent is aan (1.3) en (1.4).

Aanname 1

Die aanname van basiese operasionele ewewig word vervang
met die aannames wat ook in die vorige paragraaf gemaak is,
naamlik, die bestaan van A(n), u(n) en P(m) in die limiet.

Aanname 2

Die aanname van enkel aankomstes/vertrekke word vervang
met die aanname dat gelyktydige aankomstes en vertrekke kan
plaasvind, onder die voorwaarde dat die verhouding tot T van
die totale aantal aankomstes en vertrekke wat nie alleen plaas-
vind nie, na nul afneem as T—> . Laat q(n,i,j) die aantal herha-
lings van i aankomstes en j vertrekke wees wat gelyktydig plaas-
vind terwyl die stelsel in toestand n is
(=0, j=0en n = mym+1,...,.M).

Anders gestel:

lim 1 M el ©
- X { I I G+)amii
T>ow T n=m i=1  j=1
M-n . . M-n . .
+ >  iLami0) + X j.a@m0.)) } =0

met q(n,i,j) = Oviri=j=nenn+i-j > M
Die afleiding van die formules word gegee in [2].

Prestasiemate
Bedienerbenutting
Benutting word soos volg gedefinieer:

B

U = — met B die tydsperiode waartydens die stelseltoestand

groter as O is.

Die volgende twee gevalle kan onderskei word, naamlik,
I)m # 0,danis U = 1
2) m = 0, dan geld

P % “
U= 4% T@= 3% P@=1—PO

Deurvoertempo
Die gemiddelde deurvoertempo van die stelsel in toestand n
is p(n) virn = m+1,m+2,... M

Die gemiddelde deurvoertempo van die stelsel oor alle
stelseltoestande is

M 1
pm . Pm) = 3] Cm) . —
n=m+1 T

M
X= %

n=m+1

Onder basiese operasionele ewewig geld dat vir alle waardes
van n is

A(@-1) = C(n)

Dus X Y !
us X = by ) A(n-1) . T

n=m+

Hierdie waarde is gelyk aan die gemiddelde aankomstempo
by die stelsel, dus is in hierdie geval die deurvoertempo gelyk
aan die aankomstempo en gee dit gevolglik geen aanduiding van
stelselprestasie nie.

Indien U = 1 is, is X ’n aanduiding van die maksimum
aankomstempo vdn take wat die stelsel kan hanteer.

Gemiddelde toulengte
Die gemiddelde toulengte n van die stelsel is die gemiddelde
aantal take in die tou, plus die taak in bediening.

. M

n= Y n,P@mn
n=m

Responstyd

Responstyd kan uitgedruk word in terme van die gemiddelde
toulengte en stelseldeurvoer [1].

n
R= —

X
Slotsom

Die stogastiese metode is tot dusver met groot sukses in die
prestasie-ontleding van reéle stelsels gebruik. Alhoewel die aan-
names nie geverifieer kan word nie, moet tog aanvaar word dat
die meeste stelsels wel inherent daaraan voldoen. In teenstell-
ing met die stogastiese benadering, kan die aannames van die
operasionele benadering wel bewys word. Verder word daar in
die afleiding van die formules ook nie van enige gevorderde
wiskundige of statistiese kennis gebruik gemaak nie en kan die
gemiddelde prestasie-analis dus met veel meer vertroue van die
operasionele benadering gebruik maak.
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Detecting Errors in Computer Programs

Bill Hetzel

Blue Cross and Blue Shield of Florida

Peter Calingaert
University of North Carolina at Chapel Hill

Abstract

A controlled experiment was designed and conducted to compare three methods for detecting errors in computer
programs: disciplined, structured reading; specification or black-box testing; and a refined form of typical selective
testing. Reading was found to be significantly inferior in effectiveness to the other two methods. Specification and
selective testing did not differ significantly from each other. On the average, subjects found little more than half the

errors present, even on a severity-weighted basis.

Good performance in detecting errors was found to be closely associated with the experimental subjects’ com-
puting education, computing background, and self-confidence in performing the experimental tasks. Little associa-
tion was found with the amount of time spent in detection. The distribution of time to detect the next error was observed

to be approximately uniform.
ACM Reviews Categories 4.6; 2.49

Introduction

A major part of the development of any computer program
or system is aimed at assuring that the program actually works
correctly. The definition of how a program is supposed to work
is provided by its specification. If the program does not behave
as specified, it is said to contain an error. Current techniques
for detecting errors are far from perfect. A strong incentive is
present to develop better methods and improve the effectiveness
of our ability to detect errors when they exist. This paper reports
on a study [1] and experiment that were conducted to aid in
that process.

The basic aim was to learn more about the error-detection
activity. Except for some recent work [2] on the classification
and tabulation of error data, surprisingly little empirical research
has been done in this area. Debugging has been studied by a
number of researchers, but the focus has been on the diagnosis
and correction of errors once they are found [3,4]. This study
was concerned only with the initial detection of errors and not
their removal.

It was desired to compare different error-detection techni-
ques, analyze individual differences in using the techniques,
develop hypotheses and in general gain as much insight as possi-
ble into the error-detection activity. Data were collected ex-
perimentally. The basic design of the experiment centered
around error-detection sessions in which subjects were given a
program and asked to detect the errors in it by using a specified
error-detection method. The next section of the paper describes
the experiment in detail. A third section presents the results of
the experiment and the final section reviews the major conclu-
sions and significance of the study.

EXPERIMENT
Methods

Three methods were selected for comparison — one based
on an examination or reading of the program, a second on
specification or black-box testing, and a third on a mixture of
both reading and testing. The methods were intended to be
broadly representative of the spectrum of possible approaches.

In specification testing, the program source code was not
available and subjects were given only the specifications. The
subjects selected and executed test cases based on the specifica-
tions, and then examined the resulting output for discrepan-
cies. This method is sometimes called black-box testing, for the
subject has no way to determine the internal construction of
the program being tested.

In the mixed method, subjects constructed test cases based
upon examination of both specifications and source code. A
software tool was provided that indicated execution counts and

permitted the subject to ensure systematically that each state-
ment was executed at least once. Every subject but one did in
fact execute each statement. Except for this additional criterion,
the mixed method is the testing method typically used by most
programimers.

The reading method selected was a disciplined and structured
desk check. It relied on the fact that the programs were struc-
tured to consist of a simple sequence of paragraphs. Each

- paragraph had the property that flow of control entered at the

top and left from the bottom, with the provision that any
paragraph could invoke another. The reading procedure con-
sisted of a bottom-up reading and characterization of each
paragraph, followed by a top-down reading of the complete pro-
gram. As each paragraph was read, its external effects were
characterized on a special Effects Summary form. Basically,
the subject tried to characterize and record the effects of each
paragraph as though it were a high-level statement. After all
paragraphs were characterized, the program was read top-down
with the aid of the Effects Summary form. The resulting pro-
gram effects were compared with the specifications and any dif-
ferences recorded.

Programs

The programs selected were actual applications developed at
the University of North Carolina (Chapel Hill) Computation
Center. One (ANSI) was a program that reads in an arbitrary
Fortran program and converts several statements to conform
to the ANSI Fortran standard. A second (LIBRARY) was a
program to maintain a file of bibliographic references and print
a table of contents and a keyword cross-reference index. The
third (TEST) was a program to score and evaluate multiple-
choice examinations and provide a cumulative examination-
grading report.

Each program was written in a typical production-
programming environment as a carefully structured PL/I pro-
gram. The reason for restricting attention to highly structured
programs is the expectation that such code is rapidly becoming
the norm. The actual errors that were found during the develop-
ment and production use of the programs were recorded and
retained. Each was then reinserted into its program, provided
that proper execution of at least one simple test case was possi-
ble. The programs were therefore free of syntactic and seman-
tic errors; only logical errors were present.

The descriptions for each program were carefully revised and
their clarity was tested in a pilot experiment. The resulting
specifications were considerably clearer and more precise than
is usually the case. Although all three programs were relatively
simple, the modules do represent a spectrum of both applica-



tion and coding complexity. The smallest program (ANSI) con-
tained 75 statements and 5 paragraphs, and the largest (TEST)
had 240 statements and 11 paragraphs.

In this manner three program modules were prepared that
reflected a production environment and contained naturally oc-
curring errors. Each module executed at least one simple test
case correctly and was a realistic approximation to a module
that a programmer might have at the start of testing.

Subjects

The aim of this experiment was to find out not so much what
programmers actually do, but rather what they can do. The at-
tempt was to design an experimental setting to yield results as
good as or better than could be expected in actual practice. This
meant obtaining subjects as highly qualified and experienced
as possible and ensuring that they were strongly motivated. This
was achieved by actively recruiting and selecting subjects to par-
ticipate in the experiment and offering monetary incentive for
high performance. Each subject was paid a minimum of $75.
An additional payment of as much as $200 was based on relative
performance during the experiment. Thirty-nine subjects were
selected, most of whom were highly educated and experienced.
Six were female and thirty-three were male. Just under half held
a master’s or Ph.D. degree. Their average work experience in
computing was over three years. All had either work experience
or academic course experience with PL/I. Their backgrounds
are summarized in Table 1.

TABLE 1
Subject Backgrounds
Minimum Mean Maximum
Age 20 27 38
Grades (A=3, B=2, C=1) 1 2,3 3
Degree (Ph.D.=4, M.S.=3,
H.S.=1) 1 2,4 4
Computing Work
Experience (months) 6 38 124
Programming Work
Experience (months) 3 36 84
PL/I Work Experience
(months) 0 18 61
Computer Science Courses 0 8 17
Programming Courses 0 3 9

Administration

The experiment consisted of each subject trying to detect er-
rors in each of the three programs by using a different method
for each program. Each subject was randomly assigned to one
of three groups A, B, and C. Table 2 shows for each group
the correspondence of testing method to program. For exam-
ple, each subject in group A used the reading method on AN-
SI, the specification method on LIBRARY and the mixed
method on TEST. The order of the three sessions for each sub-
ject was also randomized.

TABLE 2
Assignment of experimental conditions
Method Program
ANSI LIBRARY TEST
Reading A C B
Specification - B A C
Mixed C B A

The basic design of the experiment permitted for the three
error-detection methods a comparison that was controlled for
differences in subject, differences in program, and differences
in order of experimental tasks. The primary performance
measure was the percentage of errors found. An alternative
measure was a percentage score weighted according to error
severity.

All subjects participated in a five-hour instruction session
prior to the start of the experiment. The objectives of the ex-
periment and the error-detection methods were explained. The
subjects then participated in three error-detection sessions each
lasting between three and five hours. Each subject was given
a time limit that depended only on the program being verified.
The instruction and error-detection sessions were held during
the course of one week in a large classroom reserved for the
purpose. An experiment staff of four persons coordinated and
monitored each session. Generally, two staff members remain-
ed in the classroom to supervise and answer questions while the
other two submitted and returned test runs. These test runs were
prepared on coding sheets given to the experiment staff to be
keypunched and run. After execution the output was returned
to the subject. Special computer center procedures established
for the experiment made it possible to achieve an average tur-
naround time under fifteen minutes. Each subject was thus pro-
vided with excellent response time and freed to concentrate on
the error-detection task.

Subjects did not leave the room without being signed out.
They were permitted to sign out of the experiment for a break
period to avoid losing experiment time waiting for a run to be
returned or to assist the staff in keypunching test data. Any
time spent on breaks was not included in the subject’s time limit,
nor counted in his elapsed time. Subjects were instructed to take
a break whenever they became fatigued or had to wait for
output. :

Data

At the start of the experiment, each subject was given a
background survey and an attitude survey. The background
survey provided data about each subject’s education, experience,
self-estimates of ability, and other background variables. The
attitude survey requested the subject’s opinion towards the
various methods and the experiment. It was given again after
the final error-detection session to permit an analysis of attitude
shifts.

The basic data from each session were recorded on error-
detection logs. Each subject logged the submission and return
of test cases, breaks taken, and suspected errors. At the end
of each session, the subject also completed a survey form con-
taining general information about the session. After the experi-
ment, each log was carefully reviewed and encoded. Descrip-
tions of possible errors entered in the logs were matched against
the list of actual errors, and the appropriate error number was
coded. The coded data were read into a program that reproduc-
ed the logs and provided data for further analysis.

RESULTS
Comparison of Methods

The three error-detection methods were compared with
respect to the percentage of the total errors detected with each
method. The results are summarized in Table 3. Averaged across
the three programs, the mixed and specification testing methods
detected just slightly fewer than half of the errors present in
the programs. For the reading method, only 37 % of the er-
rors were found. Similar relative results are seen for each of
the programs individually. The percentages for mixed and
specification testing were very close and the percentages for
reading were considerably poorer.

TABLE 3
Mean percentage of errors detected by all programmers in each
experimental condition

Mean of 3
ANSI LIBRARY TEST Methods
Reading 48 33 31 37
Specification 55 52 36 48
Mixed 57 48 35 47

An analysis of variance showed the variances accounted for
by the programs and by the methods to be highly significant.



The variances due to each group, each replicate, and the dif-
ferent task orders were very small and not significant. The mixed
and specification testing methods were not significantly dif-
ferent, but each was very significantly (at the ,001 level) better
than reading.

One question was whether these results might be sensitive to
the severity of the errors detected. Some errors were very minor
and for a few it was even questionable as to whether they were
really errors. A number of weighting schemes were used to assign
to each error a score based on its severity. The data were then
analyzed using the percentage of the total score as criterion.
The conclusions were unchanged. The authors could not even
think of any plausible weighting scheme that led to a different
conclusion. The method differences are present quite uniform-
ly across the different types of errors and are large enough that
the choice of weighting scheme has no effect.

The clear conclusion is that the specification and mixed
methods are essentially equivalent and that reading is significant-
ly inferior.

Individual Differences

One object of the study was to try to explain the observed
.individual differences in performance. The ranges of observed
differences are shown in Table 4. In general, the best performer
was two to three times as capable as the worst in mixed and
specification testing, with the spread somewhat greater for
reading. To investigate these differences, an analysis was made
of the association between each subject’s performance and his
background, attitudes and approach. Rank order correlation
coefficients and X* contingency tables were used as measures
of the association between the various variables and a subject’s
score.

TABLE 4
Extreme percentages of errors detected by all programmers in
each experimental condition

Lowest Highest
ANSI 20 80
Reading LIBRARY 7 60
TEST 0 67
ANSI 40 67
Specification LIBRARY 20 73
TEST 24 72
ANSI 27 73
Mixed LIBRARY 27 67
TEST 24 48

The analyses showed a number of variables to be significantly
related to good performance in detecting errors. Regardless of
the program being verified or the method used, close associa-
tion was present between performance and the subject’s com-
puting education, computing experience, and self-confidence
in performing the experimental tasks.

Little association was found with basic variables such as age,
sex, degree level, other self-estimates and attitudes, and the
amount of time used by the subject. )

One interesting variable that showed moderate association
was the number of test cases run by the subject. Particularly
in specification testing, there was evidence that some subjects
adopted a ‘“‘try anything” attitude and just created large
numbers of test cases in hope that some error might show up.
Discounting subjects who submitted over twenty test cases in
a single session, the association between good testing perfor-
mance and the number of test runs was highly significant.

A factor-analysis model of the data was also developed in
an effort to explain the underlying relationships in the data.
In each of some tens of runs with different variables, about
70 % of the variance in the data was accounted for by variables
that could be grouped into four derived factors. The multiple
runs tested the model’s sensitivity and showed it to be quite
stable. The four factors were interpreted as experience, self-

esteem, computing education, and attitude toward the experi-
ment. A regression prediction model was also produced. The
best-fitting model contained the variables of academic major,
education (measured by number of courses taken), self-esteem,
attitude, and work experience; it gave an average prediction er-
ror of 18 %. The only highly significant variable was academic
major. For the group of subjects in the experiment, this variable
was closely correlated with computing education and computing
experience. Over-all, the regression and factor models support
and strengthen the conclusions obtained from looking at the
association measures. Subjects with substantial computing
education and experience backgrounds who felt confident about
their abilities were the ones most likely to do the best jobs of
detecting errors.

Other Analyses

A number of other analyses were made in an attempt to
develop hypotheses about the error-detection activity and gain
additional insight. Two of the more interesting are reported here.

The first was an analysis of the distribution of the time to
detect the next error. A program was written to count the detec-
tions that occurred in successive time intervals during error
detection. Several theoretical distributions were then fit to the
counts. The results were surprising. The best fit was simply a
uniform distribution, regardless of the method used or the pro-
gram being verified. Subjects steadily increased their knowledge
about the program and tended to try more complex test cases
as the session progressed. A plausible explanation for the
uniform distribution may be that the increasing knowledge and
test case sophistication just about offset the reduced error
population. This is a very different situation from the usual pro-
gram development case. Both Tucker [5] and Schneidewind [6]
have reported an exponential increase in error-detection times
in that situation.

A second analysis examined the individual errors to see
whether different types tended to be found to different extents
by the different methods. If at least one-third more of the sub-
jects detected an error with one method than detected it with
another, then the error was considered to be found to a
significantly different extent by the two methods. Such errors
were then categorized in an effort to establish classes of errors
that tended to be more difficult to detect by one method than
by another. The results confirmed what might be suspected in-
tuitively. Reading did not work well for errors of omission of
code statements. Errors involving interrelationships between
code segments in different paragraphs were also difficult.
Specification testing was more effective for detecting errors that
showed up on test cases suggested by the specifications and less
effective for hard-to-generate test cass. Mixed testing, which
includes some aspects of both reading and specification testing,
tended to fall in the middle. Only one error was detected
significantly more times as a result of the requirement to ex-
ecute each of the statements at least once. In general, the path
testing requirement seemed to be of very little value.

CONCLUSIONS
How Significant are the Results?

Comparing the three methods gave a very consistent message.
Regardless of the performance measure used, specification
testing and mixed testing were essentially equal and reading was
a poor third. The programs differed significantly, but the
relative performance of the methods was the same for each pro-
gram. In general, this result was unmistakable and convincing.

What about the Generally Poor Performance?

No subject found all the errors in any of the error-detection
sessions and, on the average, only about half the errors were
detected. Why was this performance so poor? Every effort was
made to obtain maximum performance from the subjects. The
programs were clearly structured, computer turnaround was ex-
cellent, subjects were highly educated and motivated, and they
worked without distractions. It is reasonable to conclude that
the results are likely to be better than what can be expected in



actual practice and that the detection of errors is a very dif-
ficult process. The experiment shows that an intensive period
of independent error detection does not provide any assurance
of correctness. One might speculate whether financial incen-
tives to program writers and program testers would lead to the
generation of fewer errors and the detection of more.

Why wasn’t the Mixed Method Better?

The mixed method was designed to have the advantages of
both reading and specification testing without the disadvantages
of either. That it did not turn out better shows that the time
and mental effort required to comprehend the source can be
a detriment. Careful concentration on the specifications seems
to lead to better test cases and to increase the likelihood of er-
ror detection.

How Well can Individual Differences be Explained?

Three groups of variables were found to be significantly
associated with error-detection performance — computing
education, computing experience, and self-confidence in error
detection. Use of test runs was also associated to a point. These
associations were found to be present fairly uniformly for all
of the programs and methods. The results suggest that many
of the skills needed for good error-detection performance can
be taught and acquired.

What Else was Learned?

The distribution of the time to find the next error was shown
to be approximately uniform. This was attributed to the increas-
ing subject knowledge and submission of more complex test
cases offsetting the reduced error population. The experiment
also confirmed the logical deductions that reading was not ef-
fective for detecting errors of omission and that specification
testing was not effective for detecting errors that were hard to
generate. Finally, the experiment showed that very little help
in detecting errors was provided by the path testing requirements
to execute each statement.

Other Contributions
Other benefits of this investigation include the data resource

acquired, the experimental methodology, and some suggestions
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for future research. Worthy of further study are the effect of
different numbers of errors in the program being verified, the
relationship of program complexity to error detection, and a
closer examination of the usefulness of path testing, especially
for larger programs. The raw data have been carefully preserv-
ed in the first author’s dissertation [1].
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Restructuring of the Conceptual Schema to produce
DBMS Schemata

S. Wulf
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Abstract

An overall methodology for database design is presented. This includes creation of a data dictionary and relational
analysis. An algorithm is presented to create a conceptual schema or logical database design from the set of third
normal form relations. The primary emphasis of this paper is to present algorithms for restructuring the conceptual
schema to create first pass designs (FPD) for particular DBMS. These FPDs can then be used as the basis for iterative
physical database design and performance predictions. Examples are given for creating FPDs for TOTAL and IMS.
These can be extended for any other DBMS. Indications are given for future research in extending the methodology.

1. INTRODUCTION

In practice, database design has been found to be complex
and difficult. The resulting success of the database is a func-
tion of the knowledge of the initial information requirements,
the robustness of the design and the subsequent performance
of the database. It has been pointed out [1,2,3] that the overall
design process should be structured and formalised. The follow-
ing iterative phases have been proposed [4] to cover the database
design activity from gathering of information requirements to
physical implementation of the database:

1 Information requirements specification
2 Creation of the data dictionary

3 Relational Analysis

4 Creation of the conceptual schema

5 Structured analysis and local views

6 First pass DBMS design
7 Performance modelling

8 Physical design

In this paper we review briefly the process of relational
analysis culminating in the creation of a refined conceptual
schems’. The conceptual schema is a network diagram with
nodes corresponding in general to entities and the links between
them to the relationships between these entities. An entity is
a person, location or object of interest to the organisation be-
ing modelled. It is clearly a logical model — that is, indepen-
dent of any particular hardware and software implementation
constraints.

This paper presents algorithms for specifying operations upon
the conceptual schema to modify it to conform to the data struc-
turing constraints of certain target database management
systems (DBMS). The objective is to create a DBMS schema
[5] as close in flexibility to the conceptual schema as possible.
We call this the first pass design (FPD). This design serves as
the starting point for iterative physical design.

This entails modelling the proposed database system using
queueing network techniques based on algorithms developed
in [6] and [7] and modifying the current DBMS schema is ar-
rived at which satisfies minimal performance constraints of the
application. Physical design is outside the scope of this paper.
In Section 2, a brief review of relational analysis is presented.
In Section 3, the production of the conceptual schema is discuss-
ed. This serves as the source schema for FPD. Data restructur-
ing algorithms for FPD are presented in Section 4 for two ma-
jor DBMS — IMS [8] and TOTAL [9]. A sample conceptual
schema is then used in Section 5 to prepare a FPD for both
DBMS. Future work is discussed in Section 6 and conclusions
are presented in Section 7.

2. RELATIONAL ANALYSIS
The process of information requirements specification
culminates in the production of a data dictionary. This is essen-
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tially a list of data elements sorted alphabetically by name of
the data element together with information about the functional
dependencies between pairs of data elements [10]. Relational
analysis consists of applying successively the procedure of nor-
malisation [11] on this data to produce a set of third normal
form relations. By definition each named relation consists of
a set of data elements, one or more of which constitute the
primary key. We define a foreign key in a relation to be one
or more data elements of that relation which are a primary key
of another relation. Following {3] we use the following nota-
tion to document a relation:

relation-name
** data-element,
** data-element,

’
1)

; .
** data-element
data-element

’
data-element
* data-element

’
>

* data—elementp
where double-starred data elements comprise the primary key
of the relation and single-starred data elements comprise foreign
keys. This set of relations is used to produce the conceptual
schema.

3. THE CONCEPTUAL SCHEMA
The initial conceptual schema network diagram is created by
applying the following rules systematically:

1. Eachrelation becomes a node with the relation name as node
name primary key of the relation as key of the node and
data elements of the relation of data elements of the node.

2. If a subset of the primary key of any relation is not the key
of any existing node then create a new index node with that
subset of the primary key as key of the node.

3. If the key of any node is a subset of the key of another node
then draw a link between the two nodes with a single head-
ed arrow (- ), pointing into the node with the superset key.

4. If the key of any node is a foreign key of another node then
draw a link between the two nodes with a double-headed
arrow (->>) pointing into the node which has the key data
elements as a foreign key.

5. If more than one single-headed arrow is incident on a node,
we designate one link as the primary link and make all the
others double-headed arrows.

The result will be a network diagram consisting of a set of



nodes with a single and double headed arrows joining them.

The procedure of structured analysis [4] culminates in the pro-
duction of a data flow diagram based on the functional re-
quirements of the proposed application system. From this
overall system data flow diagram, a set of linear data flow
diagrams such as those described in [12] can be constructed.
There is one linear data flow diagram per application transac-
tion (input-transformation-output). Associated with each linear
data flow diagram, that portion of the overall conceptual
schema which it needs can be derived.

The overall conceptual schema is based on the complete data
dictionary and the functional dependencies between data
elements without regard to the functional requirements of the
application system. It is likely, therefore, that many of the nodes
and relationships of the conceptual schema will not be required
on the implemented database. Subsets of the conceptual schema
used in each individual linear data flow diagram constitute local
views or subschemata of the conceptual schema. By con-
solidating all these views, we can produce a refined conceptual
schema. This is the logical model of the database which will
be the basis for physical database design. In practice we have
found that the initial conceptual schema for an organisation
is large (70-100 nodes with 120-150 links) while the refined con-
ceptual schema is smaller and hence more manageable (10-40
nodes with 15-50 links).

4. RESTRUCTURING OPERATIONS FOR FPD
4.1 Hierarchical and non-hierarchical relations

In [13] analysis of the logical and physical structures of
databases is discussed. Hierarchical and non-hierarchical data
relationships are defined and application of the schema analysis
methodology to restructuring is presented. This work has been
used as the basis for the techniques presented in this section
for deriving the FPD for various DBMS given a particular refin-
ed conceptual schema.

Consider a set relation (A,B) where A and B are nodes of
the conceptual schema and there exists a link between A and
B with the arrow head pointing into B. If the key of B is a subset
of the key of A, we call (A,B) a hierarchical relation. A is call-
ed hierarchically superior and B is the hierarchically dependent
node. Clearly, every relation in the conceptual schema which
has a single-headed arrow is a hierarchical relation. If the set
relation (A,B) is not hierarchical, we call -the relation non-
hierarchical. Every relation in the conceptual schema which has
a double-headed arrow is non-hierarchical.

Generally, hierarchical relations denote one-to-many relation-
ships between owner nodes A and member nodes B of a set rela-
tionship. Non-hierarchical relatins are generally many-to-many.
If a node participates as the member of more than one non-
hierarchical relation (ie. two or more double-headed arrows
point to the node) it in fact contains the ‘‘intersection data’’
or ‘‘link data’’ for logical occurrences of the implicit many-to-
many relationship between the two owner nodes. In [13] and
in the various representations of the entity-relationship model
[14], this data is not represented explicitly as a node but as data
associated with the relation. We have found the representation
used here to be closer to DBMS schemata and hence easier to
use.

4.2 Restructuring algorithms for FPD

The objective of FPD is to manipulate the source concep-
“tual schema network schematic in a programmed way to en-
sure that the target DBMS schema is as conformable as possi-
ble. The conceptual schema structure is a generalised network
with possibly mixed hierarchical and non-hierarchical relations
while DBMS schema specifications usually place restrictions on
the allowed schema structures. For example, TOTAL does not
allow a given node to be both an owner and a member. IMS
supports only strictly hierarchical ‘‘physical’’ databases but
allows these to be linked together to form ““logical’’ databases.
We present here algorithms for both TOTALI and IMS to restruc-
ture the source conceptual schema to valid FPDs.
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Algorithm for TOTAL
1. For all nodes i,
If source-node (i) =
any member
create target-node (i, ‘master’) =
2. For all source nodes i, j with i # j
If source-node (i) = any member of source-node (j) and
target-mode (j, ‘master’) or target-node (j), ‘master’, ‘index’)
exists
create target-node (i, ‘variable’) = source-node (i)
link target-node (i) to target-node (j, ‘master’, ‘index’)
3. For all source nodes i,

If source-node (i) = any member and target-node (i,

‘variable’) exists and source-node (i) = any owner

create target-note (i, ‘master’, ‘index’)
4. Repeat steps 2-3 for all nodes i.

In the above algorithm, ‘master’ and ‘variable’ denote the
creation of TOTAL master and variable data sets., ‘index’
denotes creation of a master data set with one key record for
each record as the associated variable data set.

any owner and source-node (i) not =

source-node (i)

Algorithm for IMS
1. For all nodes i,
If source-node (i) is not = hierarchical member
create target-node = source-node (i)
2. For all source-nodes i, j and i # j,
If source-node (i) = hierarchical member of source-node G)
and target-node (j) exists
create target-node (i) = source-node (i)
link target-node (1) to target-node (j)
3. For all source-nodes i, jand i # j
If source-node (i) = non hierarchical member of source-node
(1))
link ‘logical’ target-note (i) to target-node (j)
4. Repeat 2 and 3 for all nodes i.
In the above algorithm ‘logical’ denotes the creation of a
logical child link between the two nodes.

5. DATA BASE EXAMPLE
Suppose that the following set of third normal form relations
is given:

Agent Customer Customer-Account
**agent-no **customer-no **customer-no
agent-details customer-details month-no

account-details

Customer-Address  Order Order-Lines

**customer-no **order-no **order-no

**address-type order-details **stock-no
customer-address  *customer-no *depot-no

*agent-no line-details

Stock Depot Depot-Stock
**stock-no **depot-no **depot-no
stock-details depot-details **stock-no
' quantity

This is a typical set of relations in a commercial accounting
environment. Applying the algorithm presented in Section 3 we
obtain the following conceptual schema:

Agent —> Order — Customer
Order Customer Customer
Lines Account Address
Depot L Depot- Stock
Stock




The next step is to complete the data flow diagram for the
proposed application. From the data flow diagram, linear data
flow diagrams together with their associated local view diagrams
can be prepared. The union of all the data flow diagrams cor-
responds to the refined conceptual schema. We assume that this
refined conceptual schema turns out to be equivalent to the
above conceptual schema.

If the TOTAL algorithm is applied, the following FPD is ob-
tained (master data sets are designated by [J, index master data
sets by V and variable data sets by O):

AGENT CUSTOMER | \ ORDER DEPOT
: CUSTOMER | [ CUSTOMER
ORDER ACCOUNT ADDRESS

STOCK

If the IMS algorithm is applied, the following FDP is obtained:

References

l I}
Agent Customer—3 Order Stock Depot
Customer | |Customer Order Depot
Address | | Account Lines Stock

The double-headed arrow indicates a logical parent-child
relationship.

6. Future Developments

In continuing work by the author, application system func-
tional requirements as summarised in the data flow diagram
together with the FPD are used to produce a structured design
[12] hierarchy diagram. Similar to the algorithms for FDP,
algorithms to control subsequent iterative modification of the
DBMS schema can be defined. These incorporate the restruc-
turing operations of [15]. Depending on the results of a predic-
tion model at each iteration, appropriate restructuring of the
current DBMS schema can be performed to meet either disk
space constraints or the response/throughput time constraint.
This iteration continues until the DBMS schema most closely
resembling the conceptual schema and meeting performance
specifications is produced.

7. Conclusions

The algorithms for FPD have been specified here for TOTAL
and IMS only. It is relatively simple to produce simple
algorithms for other DBMS. For example, Codasyl-type systems
such as IDMS need only specifiy procedures for restructuring
bijunctive relations to produce an FPD.

They offer a disciplined method for initial physical database
design to the database administrator and ensure that the benefits
of formal relational analysis are not lost in tailoring the con-
ceptual schema to a DBMS compatible one.
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Managing and Documenting 10-20 Man Year Projects

P. Visser

Software Management Systems Pretoria

Abstract

This paper presents a summary of tutorial material on accepted management techniques and philosophies as applied
to the development of large software systems, based upon the documentation for such systems.

INTRODUCTION
Techniques and facilities to increase production can only be
effective if they form part of a total management effort. This
applies especially in the development of large software systems.
Management of software development is not different from nor-
mal management, yet it is known to be difficult. The reasons
can be found in the characteristics of software development
which resembles research work in most management aspects.
The method of implementation of management techniques must
therefore be adapted to these characteristics:
— Not visible in the normal sense.
— Production facilities not obvious.
— Type of personnel — highly skilled.
— ““Peoples’’ systems.
— End product defined as part of production — direct control
is not possible as for manufacturing.
— Measurement dependent on judgement.

PRODUCTION MANAGEMENT FOR SOFTWARE
PROJECTS

The purpose of production management is to accomplish the
efficient use of company resources which constitute mainly per-
sonnel in the case of software development. Planning and con-
trol of the following aspects are therefore essential.

— Personnel — appointments, development, training and
scheduling.

— Realistic progress estimates.

— Quality of completed items.

— Running cost per project.

Planning should establish realistic objectives to be used as
criteria in the control process. The methods for establishing these
objectives must however be adapted to the characteristics of
software development. The planning and control systems must
be based on self-balancing principles. Systems based on direct
control principles can only destroy self-motivation and thereby
the basis for a democratic process which is essential in the
development of systems by a team. (Democratic process is us-
ed here in the sense that sound creative ideas from any team
member can be incorporated into the design in a controlled way).

MANAGEMENT INPUTS

Facilities

Word processing facilities are so essential to the design process
as hardware, compilers and other utilities to the development
of executable programs. Other essential facilities (services) are
typing/editing and a program library.

Software Standards

Standards should prescribe work procedures suitable for the pro-
per planning and control of progress, cost and quality. Stan-
dards should also set criteria for the evaluation of the quality
of development work.
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Development of Personnel

Personnel should be encouraged to use the various techniques
and methods for software development skilfully, This can on-
ly be achieved through proper guidance in a competitive en-
vironment. Training in techniques and specific items (e.g. soft-
ware packages) is also essential in the specialization of person-
nel in order to provide them with a proper background for ex-
ecuting their allocated tasks effectively.

Organization

The organization of the team is essential for the division of
work. It must provide for the democratic process néeded dur-
ing design but without endangering the integrity of the design.
An efficient project management system is also essential but
must be an integral part of the organization and work
procedures.

PLANNING AND CONTROL

Principles

Three activities must be pursued on an ongoing basis:
— Setting of criteria (planning)

— Measurement of performance

— Evaluation of performance and corrective actions
These activities must be directed towards:

— Quality of work

— Progress of work

— Cost of work

Criteria for evaluation (Objectives) )

In order to use a criterion for objective evaluation it must be
measurable and have short term attainability (2-4 weeks). To
set criteria for progress therefore requires that a large project
be broken into small, executable tasks, each with a defined
physical output. Coding has a natural output in the form of
program listings, but constitute the smallest portion of work.
The output for all other phases should be prescribed in the form
of documents to be generated. The completion of such a docu-
ment then marks the completion of a task and should be achiev-
ed in a short period of time.

If the completion of each small task is measurable, the pro-
gress for the total project can be calculated. It is assumed in
this type of calculation that all tasks needed for project com-
pletion are included. Software standards should therefore in-
clude a standard framework for the planning of a project. This
framework must be consistent with the team’s work procedures
which must therefore also be prescribed. The planned activities
must then be scheduled against the available personnel taking
sequence, skills, deliveries and other factors into account. Us-
ing the relative weight of each task, an expected progress curve
for the project can be established.

High quality of work can be attained only through the com-
bined effect of the following:



— Setting of standards for design, coding, testing and
documentation.

— Correct use, development and training of personnel.

— Prescription of work procedures which will result in work
of high quality.
Setting cost criteria is merely a calculation process, using the

progress criteria as a basis.

Performance measurement

Progress estimates for small tasks individually contribute very
little to the total progress. It is however assumed that no rework
will be necessary. Quality control on the product of each small
task is therefore essential as well as the total coordination of
tasks. Especially during the design phase, coordinated perfor-
mance to attain design integrity is important, and methods to
attain this should be build into the work procedures and stan-
dards for documentation. Cost measurement can again be
calculated from reliable progress estimates.

Evaluation and corrective action

If techniques are established for setting criteria as well as per-
formance measurement, evaluation can be done regularly and
corrective actions can be taken timeously. Measurement of the
effect of delays is also possible both in terms of development
time and development cost.

SOFTWARE STANDARDS

Implementation of Software Standards

Standards should be the documentation of sound practice
developed from theory and positive experience. It should assist
the organisation by providing a structure for the efficient opera-
tion of a department or team. Software standards should also
describe a desired result rather than techniques open for
misinterpretation. As shown in previous paragraphs the adop-
tion of proper standards can create an environment for the
development of software which is suitable for the execution of
normal management practices. As such, software standards and
their proper implementation are a prerequisite for planning and
control of software projects. Software standards should be
adhered to by competent software engineers, else it would only
be a rulebook on the shelf of the manager.

Responsibilities and work procedures

A standard team structure is used in all organizations which
should be adapted to the type of systems developed by the
organization. Responsibilities and authority of the various posi-
tions should be set out clearly. Work procedures for the major
activities of the team should be planned such that the desired
end results will be attained. These activities include the different
types of design, reviews and other.

Configuration Management and QA

Quality of design and coding can only be built into a system
during development and must therefore be controlled within
the project team. The only management input is through sound
work procedures as discussed above and the training of com-
petent personnel. Poorly designed systems normally result in
delays caused by rework with an adverse effect on cost. The
quality and training level of personnel must therefore always
match the requirements of the system.

Product quality can be maintained by software quality
assurance procedures. These procedures must be controlled from
outside the development team. Configuration Management
practices are geared towards safeguarding completed copies of
software and documentation, and maintaining the integrity of
the completed portion. The program library is the basic vehi-
cle needed for this task. Configuration Management during
development is just as essential as for a fully operational system.
It must however be adapted for this work phase and its cor-
responding work procedures.

Configuration Management and Quality Assurance pro-
cedures must form an integrated system and must be adapted
to the size of the organization and other characteristics of the
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system being developed. Change control procedures form a
natural part of Configuration Control and should be
incorporated.

Documentation Standards
Documents form the physical output of any type of design pro-
cess. It is therefore necessary to define a set of documents
suitable for the following processes and to cater for the specific
characteristics of the type of systems developed by the
organization.
— Customer and user information
— Further design and development processes
— Quality and progress control
— Coordination in the development process
— Maintenance

For each of these documents a standard layout and contents
definition must be given. The documents should also be based
on the same principles underlying the work procedures in order
to be the natural outcome of such procedures.

Design and coding standards

As for documentation standards, design standards must also
be correlated with the prescribed workprocedures. These stan-
dards should be viewed as the main criteria for making design
decisions. Standards should therefore be specified for each
design level independently and should be applicable to methods,
control structures and data structures.

Where a standard framework for program or system struc-
tures are used in an organization, these should also be includ-
ed as part of these standards. Design standards should not be
open for misinterpretation. Techniques should therefore not be
prescribed as a standard but rather the desired characteristics
of the end result.

UNDERLYING PRINCIPLES FOR THE DEVELOPMENT
OF LARGE DYNAMIC SYSTEMS

Characteristics of development

In a dynamic computer system coordinated actions are need-
ed. The interactions and interfaces between programs result in
a complex structure which influences the correctness and effi-
ciency of the system. Mastering this global complexity in a
system is the key to successful systems.

A totally integrated approach to system design and develop-
ment can lead to the mastering of complexity and prevent
mistakes at a lower level rather than correcting them. The design
process should therefore be an ordered sequence of problem
definition and decision making. The criteria for choosing bet-
ween alternatives depend on the design stage. Such an ordered
approach with specified decision criteria can maintain the in-
tegrity of the design throughout the design and implementation
stages. Program development has a physical output in the form
of compiler listings and demonstrable software. Too much at-
tention is therefore focussed on this stage and software personnel
are motivated to ignore the preceding design decisions, thereby
ignoring the global complexity of a system.

The only solution to this dilemma is to enforce prescribed
documentation in such a way as to provide the design phases
with physical output. This facilitates progress, cost and quali-
ty control of the design phase and therefore the application of
normal management techniques. More important however, it
also enforces the ordered sequence of decisions by the designers,
which is an essential prerequisite for the development of effi-
cient software systems.

Global approach to design

The techniques of top-down design, development and testing
focus on the program as total entity. The same approach may
however be used to create an ordered approach to the design
of dynamic software systems. This global design approach con-
sists of various design levels, each of which focus on a particular
entity, viewed as a black box at that stage, and its interactions
with other similar entities and its environment. These levels of
design determine the decision making criteria at that level, and
are discussed below. In the same way the techniques of top-



down development and testing may be implimented.

This approach then allows one to focus attention on the global
structure of a dynamic system during design, development and
testing. The biggest problem encountered with the global design
approach is that a great deal of insight with regard to the later
implementation of each concept is needed. The only way to over-
come this problem is knowledge, experience and preliminary
investigation of implementation techniques.

External design

All systems are built to satisfy a specific need. The first task
is to formalize this need in order to define a goal for system
design and development. With this in mind, and taking resources
and circumstances into account, a formal set of objectives for
the system can be defined. The environment includes operators,
recipients of output and equipment.

To describe all actions, reactions and other functions and
characteristics in a consistent way, a standardized approach must
be used. External design has as output documents describing
the objectives and functional specification of a system. The
criteria to guide design decisions during this phase must be stated
explicitly in both company standards and in the objectives defin-
ed for each system.

System design

The system design level focus on the task as entity. Tasks must

therefore be viewed as black boxes performing specified func-

tions, interacting with one another and using specified inter-
faces to achieve this. The major activities during system design
is therefore the following:

— Define independent subsystems i.e. subsystems which can
perform their normal functions independently within their
functional environment.

— Define the tasks in each subsystem.

— Define the interactions between tasks explicitly.

— Design interfaces between tasks as well as with the external
environment.

The criteria for making design decisions during this stage,
must be included in the company standards and must always
be within the restrictions of the functional specification and
system objectives.

A standardized form for documenting a system design must
be included in the company standards. In these documents both
the logic and the various data must be described. The logic of
the system is described in terms of the functions and of the
characteristics of tasks and their interactions. All types of data
are described in the interface design. The various documents
describing the system design therefore contain a complete
specification for each task in the form of a description of all
its functions, interactions and interfaces.

Program design

A task as defined during system design is a dynamic entity in
the system, capable of communicating with other entities and
reacting in a prescribed way on impulses depending on various
operating conditions. Equivalent programs must therefore be
designed to fulfill these specifications. The logic of each pro-
gram and the corresponding datastructures are designed and
documented during the program design phase.

This phase focusses on the module as entity. A program’s
logic are described through design methods and module defini-
tions, as well as their dynamic and static structures. Data struc-
tures form the interfaces between modules and are as such also
included in this design phase. A module is viewed as a separately
compilable collection of statements and may contain several pro-
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cedures. Various techniques for program design are documented
in textbooks. The same applies for design criteria on which to
base decisions during this phase. These criteria must however
be incorporated into the company standards, as well as the ap-
proach to the documentation of this work phase.

Module design

Modules are the smallest units specified in design documenta-
tion. Module design forms part of program development. It is
primarily concerned with the explicit planning of language code.
Its outcome forms a natural part of module listings in the form
of structured comments and the resultant code statements.

TEAM OPERATION

Team organization

Larger software projects can only be developed by teams with
the accompanying problems of coordination between person-
nel and the maintenance of integrity of design. Specialization
on the other hand can only be economical in large teams (more
than 25) or in large software organizations. In the normal team
for SA (5-20) a combination of ideas for team organization can
be used. .

The Project Manager is the coordinator with the customer
and respensible for system analysis and specification. His
counterpart is a senior designer responsible for the complete
design and its implementation. Technically he is assisted by one
or more designers and programmers.

Design coordination

The identification of subsystems and their interrelation is done
by the senior designer following the system specification. Dur-
ing the design phase however each designer is allocated the sole
responsibility for a subsystem with the most difficult or most
important one to the senior designer. The design is then
developed by the responsible person, assisted during meetings
by all other designers. In this way other designers and especial-
ly the senior designer can present ideas, coordinate interfaces
and define potential problem areas. The original ideas of the
senior designer can in this way be maintained or replaced by
better ideas without the danger of loosing cohesiveness between
parts of the system. The designer responsible for each subsystem
should then be able to impliment this design with the aid of
one or more programmers which function in the same way as
described above.

Coordination of development and testing

The workplan for development (coding and debugging) should
follow the principles of top-down development which is a coor-
dination tool in itself. On the other hand the standard for
documents should be such that every aspect of interactions and
interfaces is described fully.

Testing is validating that the development process generated
the product expected by the user. Design documents should in-
clude a testplan and test procedures which describes the actions
and reactions of the system. This will identify differences bet-
ween user expectations and system specifications at a very ear-
ly stage.

Customer/user coordination

Reviews during design and implementation of each sub-system
are essential. After the design of each subsystem this design
should be presented, highlighting the consequences of specifica-
tions and the restrictions of design ideas. Before acceptance
testing a review should again be held to highlight implementa-
tion problems encountered and the solution implemented.






Data Structure Traces
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Abstract

Three levels of traces for data structures (as opposed to simple variables) are defined. A machine-code core dump
is essentially a low level trace. A high level trace reflects the high level language in which the data structure being
traced has been implemented. A very high level trace displays the data structure in the format in which the program-
mer conceptualizes it. Three traces written by the author (a graphical FORTRAN array trace, a portable trace for the
Pascal heap, and a graphical Pascal data structure trace) are described, and the level of each trace is then analyzed.

INTRODUCTION

Just as languages may be described as high level or low level, have to consider how the machine is handling either his pro-
so we may classify the level of a trace. For example, suppose gram or the data on which it operates. The only occasion when
we wish to trace the Pascal statement the high level language programmer should have to descend to
total : = total + 50 code level is in order to optimize critical loops to speed up pro-
If the value of total was 1 000 before the statement was ex- gram execution; this in itself should be very infrequent for the
ecuted and the statement itself is at line 123, a high level trace vast majority of programmers.
might print something like The ideal situation is that if a data structure needs to be traced
line 123: total = 1000/1050 then the output from the trace should resemble the original high
Such a trace may be described as high level because it reflects level source code as closely as possible, For example, the ac-
the high level language in which the statement being traced was tual user-defined names of variables should appear (rather than
written. their addresses); furthermore, the names of fields within records
But if the trace prints the machine-code equivalent of the should be specified. In this way the programmer is freed from
original Pascal statement, or the trace takes the form of a core the burden not ony of having to understand the internal machine
dump, then such a trace is low level. representation of his data structure, but also of having to think
When tracing data structures, rather than simple variables, in terms of that internal representation, thereby defeating the
a third category of trace may be defined. If the output of the whole purpose of programming in a high level language [8].
trace displays a data structure in the format in which the pro-
grammer conceptualizes it then such a trace will be termed very Very high level data structure traces
high level. For example, if tracing an array causes the elements It can be very helpful for a user to “‘see’” a data structure
of that array to be displayed arranged in rows and columns, which he has conceived in the format in which he has conceiv-
or if a tree or doubly-linked list appears as such, then since the ed it. For example, if a user has conceptualized a two-
“‘shape”” of the trace output corresponds to the “‘shape’’ of that dimensional array in terms of rows and columns, but has for
data structure within the programmer’s mind this is a very high some reason transposed the elements of such an array, then a
level trace. graphical display will quickly show up his mistake. On the other
In this paper the above three categories of data structure trace hand, merely listing the array elements, even in a high level for-
are analyzed and evaluated. Then three data structure traces mat, may not solve the problem; the user may simply not ap-
written by the author are described, and the category into which preciate that (say) the first index, rather than the second, cor-
each falls considered. The traces are: responds to ‘‘row number’’.
(1) A FORTRAN array trace [6]. At a more advanced level, the fact that a language like Pascal
(2) A trace for the Pascal heap [7]. allows literally an infinite number of different possible data
(3) An interactive graphical trace of the Pascal heap [2]. structures means that very complex structures can arise; presen-
| ting a user with graphical output depicting his data in a form
COMPARISON OF DATA STRUCTURE TRACES as close as possible to the way he “‘sees” it is again a quick
Low level data structure traces and helpful debugging aid. (The reader will no doubt at this
Debugging a program written in a high level language by point recall the oft-quoted Confucian proverb relating the com-
analyzing a machine-code core dump of a data structure is most parative worth of a picture and 1K words of natural language).

undesirable. In the first place, the programmer is required to
have detailed knowledge of the internal representation of his EXAMPLES OF DATA STRUCTURE TRACES

program and data, defeating the whole purpose of high level A Fortran array trace
language programming. Furthermore, the ability to understand The author has constructed an interactive graphical trace for
core dumps is becoming increasingly rare as fewer and fewer FORTRAN arrays [6]. The system permits the contents of up
programmers are being trained in low level languages. But even to four arrays (of one or two dimensions) to be displayed
if a programmer does possess this skill, it is strictly non-portable simultaneously on a TEKTRONIX [5] graphics screen. At any
from machine to machine, and generally from confpiler tocom- . one time no more than a 10 x 10 portion of each array can ap-
piler, as there is certainly no guarantee that (say) two Pascal pear, but the entire array may be displayed piecewise by choos-
compilers will store packed records in the same way. Thus low ing the appropriate options. The user may decide how the ar-
level data structure traces should be employed only if there is rays selected for tracing are to be arranged on the screen by
no alternative form of tracing available. means of the graphics cursor.
Typical output from the array trace is shown in Figure 1. Four
High level data structure traces ‘ arrays are being traced, a double-precision array
When programming in a high level language such as FOR- DUBBLE(50,30), an integer array TARRAY(50,30), a complex
TRAN or Pascal, it should be possible for a user at all times array COMP(50,30) and a real vector A(100). The current value
to “‘think high level”’. That is to say, he should almost never of any element appears in the top half of the corresponding
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“box’’, which is labelled by its row and column index; a new
value appears in the lower half. If the value again were to
change, this would result in the entry in the lower half being
overwritten; option ‘R’(Refresh) causes the screen to be redrawn
with the latest values once more in the top half of each rec-
tangle, thus obviating the possibility of overwriting values.

The system is implemented in the form of a pre-processor
which transforms the user’s FORTRAN program into a FOR-
TRAN program containing the relevant calls on subroutines
which perform the plotting. It is written in FORTRAN IV, and
hence is fully portable. For further details the reader is refer-
red to Schach [6]; here we are more concerned with the level
of this trace.

The fact that each array is specifically labelled on the screen
with its name as given by the user in his or her FORTRAN
source code, and that each element bears the appropriate row
and column number means that we are dealing with a high level
trace; the output is in a format closely resembling the original
high level language source program. But further, since the data
structures (arrays) are displayed in terms of their rows and col-
umns as the user visualizes them means that this is in fact a
very high level trace.

A trace for the Pascal heap

. The package HEAPTRACE (7] is a precompiler for Pascal
programs which enables the user to trace the heap, selectively
dumping dynamically created records in a high level format.
Each field of the record is named, and its value given in a form
as close as possible to the original source code. Each record to
be traced is assigned a sequence number as it is created on the
heap, and these numbers not only provide unique identifica-
tion during program execution, but are used when tracing
pointer (e.g. POINTER P POINTS TO NODE — 456).

Figure 2 shows the output produced when HEAPTRACE was
applied to the example on pages 44-46 of the Pascal User Manual
[4]. When HEAPTRACE intervenes, the user is informed of
the line number in his original Pascal program. When a node
is dumped, its type identifier (in this case person) as named by
the user is given. Then each component field is named, and its
value given.

Integers, reals and characters are output in the conventional
way, while the values of types defined by enumeration (including
Boolean) are explicitly printed out. The user is informed if a
field is of type set, and the contents of the set (if any) are printed
out as above. For arrays, the indices and values of the first and
last elements are printed. For example, if the program includes
the declaration

specimen : array [ -4..9,false..true,34..45] of real,
then the output from HEAPTRACE would include

specimen : array

specimen [-4,false,34] : 72.96
specimen [9,true,45] : -7.52

For packed arrays of char, the first and last character strings
are given.

A record field within a record is identified as such, and its
fields are in turn indented a further four spaces (see birth and
ddate in Figure 2). Indentation is also used for tagfields (ms
in the figure), and for the fields of variant parts.

But despite the fact that the underlying structure of each
" record is reflected through indentation, HEAPTRACE is not a
very high level trace. The reason is that while the contents of
any one individual record of the data structure are provided,
the user is not given the overall picture of his data structure
in the format in which he conceptualizes it. In terms of the ter-
minology of this paper, HEAPTRACE is thus a strictly high
level trace.
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An interactive trace for the Pascal Heap

The Pascal pre-processor HEAPTRACE described in the sec-
tion above provides information as to the contents of selected
Pascal dynamic records. GRAPHTRACE, on the other hand,
allows the user to ‘“see’’ the overall shape of his data structures
at a graphics screen. Each record is represented as a node, and
the nodes are interconnected by directed links representing the
pointers of the data structure. However, the contents of the in-
dividual fields do not appear on the screen.

Typical GRAPHTRACE output is shown in Figure 3a. Each
record to be traced is assigned a number, as before. There are
nodes of two distinct types, represented here by circles and
diamonds respectively, corresponding to the two record types
in the user’s program. The three types of pointer defined in the
program being traced are also distinguishable. The user is pro-
vided with a key to enable him to match the node or pointer
to the name he gave it in his Pascal source.

The user specifies which subset of the records he wishes to
see displayed in the current plot (or all of them), and may also
select the root of the graph to be drawn. He may specify that
certain links are to be drawn horizontally or drawn vertically,
or are to be ignored. On the other hand, if he is unsure of the
exact shape of his data structure he may simply allow the
package to draw it as it sees fit, and the user will then refine
his instructions stepwise, indicating that a particular record is
the root of a tree, and so on. Figure 3b shows the same data
structure as before, but with node 10 specified to be the root
of a tree.

Figures 3c and 3d again show the identical data structure,
but the user has specified various choices of directions for draw-
ing his three types of pointer (or has chosen to suppress one
type).

The method used for displaying the graph is used on the
UDRL algorithm of Becker and Schach({1], but modified to
allow for links which are neither horizontal nor vertical to be
superimposed on the basic structure. For further details see Getz
et al [2].

With regard to the level of GRAPHTRACE, the fact that
the data structures may be displayed precisely as the user con-
ceives them means that this is a very high level trace. But at
the same time, GRAPHTRACE is not a high level trace.

The reason is that the only Pascal variable names with which
GRAPHTRACE is concerned are the names of the types of the
records, and of the pointers. As mentioned above, the contents
of the nodes themselves are not displayed on the screen. Thus,
strictly speaking, GRAPHTRACE is not a high level trace.
However, GRAPHTRACE does allow the user to interact with
the HEAPTRACE routines at any time. The user is permitted
to dump selectively the contents.of the heap at a printer or VDU
screen.

By combining GRAPHTRACE with HEAPTRACE we thus
have both a high level and a very high level trace, which together
provide the user with maximal information for tracing the Pascal
heap.

CONCLUSION
High level languages like Pascal or Ada[7] support powerful
and flexible variable types, thus permitting highly sophisticated
and complex data structures to be constructed. The price that
must be paid for this is that if there is an error within a com-
plicated data structure, then it is often not easy to detect and
correct it. Use of a low level trace is entirely unsatisfactory, and
at the very least a high level trace should be employed, and
preferably a very high level one. Such traces do not exist for
the new language Ada, but as soon as Ada compilers become
available it would be advantageous for high level and very high
level traces to be written.
(3
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*xkk* HEAPTRACE CALLED AT LINE 44

NODEE # 1 TYPE - PERSON
NAME : RECORD
FIRST : ARRAY
STRING : EDWARD
LAST : ARRAY
STRING : WOODYARD
ss : 845680539
SEX :  MALE
BIRTH : RECORD
MO ¢ AUG
DAY : 30
YEAR : 1941
DEPTDS : 1
MS :  SINGLE
INDEPDT :  TRUE
NODE # 2 TYPE - PERSON
NAME : RECORD
FIRST : ARRAY
STRING : NICOLAS
LAST : ARRAY
STRING : ROBERTSMAN
SS : 627259003
SEX :  MALE
BIRTH : RECORD
MO :  MAR
DAY : 15
YEAR : 1932
DCPTDS : 4
MS ~:  DIVORCED
DDATE : RECORD
MO : FEB
DAY : 23
YEAR : 1972
FIRSTD :  FALSE

Figure 2: Sample HEAPTRACE Output.
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Figure 3: The same data structure drawn by GRAPHTRACE with various choices of the direction for the 3 types of pointers.
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Case-Grammar Representation of Programming Languages

Judy Mallino Popelas and Peter Calingaert
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Abstract

The correction of errors in programs can be based on an analysis, that subordinates syntactic relationships to func-
tional relationships among elements of a program. For this purpose, case grammars, originally developed to model
natural languages, have been adapted to model programming languages. The component parts of such a modified
case grammar are described, and a case grammar for a subset of Pascal pfesented.

INTRODUCTION

The laudable goal of ensuring that a program is correct before
it is presented to a computer is an elusive one even for experienc-
ed professional programmers. It is virtually unattainable for the
rapidly increasing masses of persons for whom some computer
programming is a necessary, but nevertheless part-time, activi-
ty. Errors occur both in programming, the design. of an
algorithm and the selection of data structures, and in coding,
the representation of the algorithm and data structures in a pro-
gramming language (PL). Although programming errors are
of great importance, our research has focussed on the more
mundane, but very aggravating, errors in coding.

Humans surely spend much less time encoding computer pro-
grams than they do communicating with one another by means
of natural language (NL). We hypothesize that many of the er-
rors humans make in encoding programs are similar to those
they make in encoding thoughts into NL utterances. This sug-
gests that techniques for correcting encoding errors in NL should
help to correct coding errors in PL, and that useful models of
NL representation should lead to useful models of PL
representation.

Communication between humans can proceed effectively even
when the utterances violate rules of syntax. Thus, ‘‘you was
coming’’ and ‘‘they gave it to John and I’’ are clearly understan-
dable, although incorrect. Even ‘‘today me shirt buy’’ is far
from incomprehensible. The human who hears such an utterance
does not immediately reject it because of its faulty syntax. He
tries instead to understand it, using whatever nonsyntactic clues
he can find. In translating computer programs with syntax er-
rors, the compiler, too, can be made to use nonsyntactic clues
to determine the underlying meaning when normal syntax cor-
rection would fail.

A particularly attractive model of NL, well capable of
representing the meaning of the syntactically incorrect utterances
presented in the previous paragraph, is the case grammar of
Fillmore[1]. Case grammar (CG) concentrates on the underly-
ing deep structure by associating with each verb a case frame.
The case frame is occupied by one or more phrases, each of
which plays a specific role demanded by the associated verb.

Thus the verb ‘‘buy’’ requires an agent who buys (a phrase
in the agentive case) and an object that is bought (a phrase in
the objective case). The phrases must often possess specified at-
tributes; the agent of ‘‘buy’’ must be animate. In the example
“‘today me shirt buy’’ the case frame requirement for an agent
is filled by ‘“me’” and the case frame requirement for an ob-
ject by “‘shirt”’.

Meaning can be extracted from the NL utterance without per-
forming conventional syntactic analysis, by identifying the
phrases that occupy the case frames. By adapting CG to PLs,
which are much less complex than NLs, we expect to improve
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our ability to correct coding errors, and to perform correction
without conventional syntactic analysis.

We have begun by developing a CG for Pascal and an
algorithm for translating a syntactically incorrect program in-
to its CG representation. We chose Pascal because it is formally
defined (2], designed for efficiency of conventional translation
{3], and widely used. Our adaptation of CG to PL is presented
in Section 2, and illustrated in Section 3 by a subset of the Pascal
grammar.

CASE GRAMMARS FOR PROGRAMMING LANGUAGES
Overview

Like their NL counterparts, CGs for programming languages
emphasize functional rather than positional relationships bet-
ween object phrases and verbs. Again like Fillmore’s CGs, they
emphasize an object’s attributes rather than its form.

CGs for programming languages, hereafter referred to simply
as CGs, have three basic components. The first component, an
object space denotation, defines the objects found in a language
in terms of attributes and attribute combinations. The second
component, the verb dictionary, contains a case frame entry
for each verb in the language. Each case frame entry is com-
posed of a header and a case frame. The header gives the at-
tributes of the object resulting from the filled case frame. The
case frame itself describes the objects required by the verb,
together with the functional relationship, or case relation, bet-
ween each object and the verb. The constituent object descrip-
tions in a case frame are called case frame slots, or more general-
ly, frame slots. The final CG component, an access form dic-
tionary, is similar to the verb dictionary. It is composed of form
frame entries, which consist of a header and a form frame. Each
form frame defines the access to an object other than a simple
literal, by describing the objects that compose it or can be con-
verted into it. Again, the object descriptions in a form frame
are called frame slots, or more specifically, form frame slots.
Form relations between the component objects and the resul-
tant object may be specified. However, unlike case relations,
which are often indicated explicitly via keywords and other PL
markers, form relations generally are not indicated explicitly
in PLs. Any keyword or PL marker that indicates a case or form
relationship is called a case or form relation predictor. The
header and frame of a case or form frame entry are analogous
to the left- and right-hand sides of a context-free production.

Object Space Denotation

We use the word ‘‘object’’ to denote any entity that can be
referred to or manipulated within the context of a given PL.
Integer and real numbers, for example, are objects in most PLs.
An object space is defined in large part by the attributes pro-



vided in a language, and by the combinations of attribute values
that the objects in the language can possess. Attributes can be
classified as being universal if they apply to every PL object,
or dependent if they apply to only a subset of the PL objects.

Usage, class, and structure are three universal attributes. Ac-
cess is a fourth universal attribute, but it is an attribute more
of the frame slots than of the objects that satisfy frame slots.
Usage refers to the way in which an object can be used. ‘Value’
usage indicates that an object can be used only as a value,
whereas ‘variable’ usage indicates that an object can be used
both as a value and as a store.

To be used, objects must be accessible. Commonly provided
access methods include naming, referencing, direct representa-
tion, generation, and modification. Naming is one of the most
common. Names, which have no inherent meaning, must be
bound to a particular object before they can be used to refer
to it. Languages commonly provide declaration parts or declara-
tion statements for this purpose. References can be regarded
as machine-generated names. They are usually used to refer to
dynamically created variables. Direct representation differs from
naming in that it is a permanent association between represen-
tation and object. In most languages, for example, ‘5’ always
represents the integer 5. Generation involves the execution of
a sequence of one or more operators. The expression ‘2+4’
generates the integer 6. Access by modification refers to the
methods commonly used to refer to objects such as array or
record components. Modification is similar to generation, ex-
cept that no explicit operator is present.

Some access-usage combinations can be referred to by a single
word. ‘Literal’, for example, refers to objects accessed by direct
representation and used as values. Conversely, other access-
usage combinations may encompass several distinguishable
kinds of objects. Both array components and record com-
ponents, for example, are accessed by modification and used
as variables.

A class is defined as a set of scalar values and a set of case
and form frame slots that accept those values. The restriction
to scalar values effectively separates the concepts of class and
structure, which together provide a complete and minimal set
of concepts for describing any type of object. Some common
classes of objects are integer, real character, boolean, verb,
[verb], procedure, function, name, pointer, label, and class at-
tribute. The notation ‘[verb]’ stands for a verb together with
the objects it requires. This constitutes a completed case frame
(i.e.. a programming language statement or expression).

Most languages allow for structured as well as scalar objects.
A structured object does not have a single associated class at-
tribute.. Rather, each of its component objects, if scalar, has
an associated class attribute.

Some objects may have dependent attributes in addition to
the four universal attributes. Exactly which dependent attributes
an object possesses is determined by the value of some other
attribute. Only objects whose class attribute is ‘real’, for ex-
ample, have a precision attribute.

Specification of Object and Object-Phrase Requirements
An object phrase consists of one or more objects, plus
preceding keywords and surrounding punctuation. Both case
and form frame slots specify object-phrase requirements. Ob-
jects are the most important components of object phrases.
Their requirements may be specified by stating permissible struc-
ture, class, usage, and access attribute values, as well as depen-
dent attribute values. For example, the specificatin ‘scalar,
real,value,direct__representation’ will be satisfied by objects like
1.0, 5.37, etc. The combination access-usage specification
‘literal’ can replace the separated specification ‘value,direct__
representation’. Some attributes may remain unrestricted. The
specification ‘scalar,real,value’ places no restriction on the ac-
cess method. Note that, since a variable can be used as a value,
it satisfies a usage specification of ‘value’. To force a restric-
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tion to non-variable objects, one could either specify
‘value__only’, or use an access-usage combination such as
‘literal’. Alternative attribute values may be specified, as in
‘scalar,integer|real,value’. Restrictions on the values of depen-
dent attributes are specified in parentheses after the attribute
value they modify, as in ‘scalar,real(single__precision),value’.

Punctuation symbols are classified as predecessors if they
precede objects, brackets if they bracket objects, separators if
they separate like objects, and successors if they succeed ob-
jects. A simple object phrase is defined as a keyword, which
acts as a case or form relation predictor, followed by a
predecessor, a left bracket, an object or a sequence of like ob-
jects separated by separators, a right bracket, and a successor,
in that order. Of these components, only a single object is man-
datory. The text ‘with a, b, ¢’ represents a simple object phrase.
The keyword ‘with’ is a case relation predictor; ‘a’, ‘b’, and
‘¢’ represent like objects (record variables); and ’°,” acts as a
separator.

To specify a simple object phrase, first specify the object,
as already described. Attach a superscript to the object specifica-
tion to indicate the number of like objects permitted in the ob-
ject phrase. The superscript ‘ +’ indicates one or more like ob-
jects; “*’ indicates zero or more like objects; ‘op’ indicates an
optional object; and a positive integer indicates that number
of like objects. The default value is unity. An encoding of the
surrounding punctuation, enclosed by parentheses, is also at-
tached as a superscript. A case label, denoting both the func-
tional relationship (case relationship) of the object to the verb,
and the particular keyword or other PL symbol, if any, that
acts as the case relation predictor, is attached as a subscript.
The case relation predictor appears parenthesized, after the case
relationship. Some common case relationships are indicant,
which specifies a name object used by a verb that binds names
to other objects (variable declaration statements have indicant
objects); selector, which indicates an object used by a verb to
select among many possible objects (GOTO, IF, and CASE
statements have selector objects); donor, which indicates an ob-
ject whose value is given to another object (assignment
statements have donor objects); and objective, a general case
relationship that indicates an object that receives the action of
a verb (operators such as +, —, and * have objective case ob-
jects). Thus, the specification

+ (00,0)

record,variable
selector(with)

is satisfied by the simple object phrase ‘with a, b, ¢’, assuming
‘a’, ‘b’, and ‘c’ are the names of record variables. Note that
‘0’ is used in the punctuation encoding to indicate the absence
of a predecessor, brackets, and a successor. The generic form

OBJE CTI(\;[II:]LT PUNCT

where OBJECT represents an object specification, MULT a
specification of the number of like objects in the object phrase,
PUNCT the punctuation encoding, and CL the case label,
describes a simple object phrase specification.

A complex object phrase is defined as a case or form rela-
tion predictor, followed by a predecessor, a left bracket, one
or more object phrases (simple or complex), or a repeated se-
quence of one or more object phrases separated by separators,
a right bracket, and a successor, in that order. Of these com-
ponents, only a single object phrase is mandatory. The text
‘[1:10]’ represents a complex object phrase, where ‘1:” and ‘10’
represent simple object phrases, and ‘[> and ]’ are used as
brackets. To specify a complex object phrase, first parenthesize
the interior object phrase specification(s). Then attach the
subscripts and superscripts to the parenthesized specification(s),
in the same way as for a simple object phrase. The complex
object phrase specification



(scalar,integer, litera]op(000:)
scalar,integer,literal) + ©i:0)

is satisfied by either of the complex object phrases ‘[1:10]’ and
‘(5,2:10)’, and by many others as well. The generic form

(OBIl ... OB JN)IEZAIE]LTI PUNCT

describes the specification of a complex object phrase. OBJI
... OBJN represent specifications of simple or complex object
phrases, and MULT, PUNCT, and CL represent exactly what
they do in the specification of a simple object phrase.

Verb Dictionary

The verb dictionary contains one case frame entry for each
verb in the language. Case frames are enclosed by square
brackets. They contain specifications for each object phrase re-
quired to the verb. They also indicate the case relation
of each object phrase phrase to the verb, even if that relation
is not made explicit by a keyword or other PL marker. Follow-
ing is a case frame entry for the GOTO verb.

scalar,[verb](GOTO,active,imperative,regular),literal
[scalar,label,value . ... o))

GOTO requires one object, a label, which acts as a selector.
The keyword ‘goto’ precedes or predicts the selector object.
CASE and IF statements also require selector objects, although
these are predicted by different keywords.

In most languages, verbs and their corresponding completed
case frames ([verb]s) will have significant dependent attributes.
Four such attributes are discussed here: name, voice, mode, and
influence. Name simply identifies the verb, as shown for GOTO.
Voice may be ‘active’ or ‘passive’. Passive voice indicates a verb,
like the variable-creation verb, that can be executed at most

once. Active verbs may be executed repeatedly. Verb mode may

be ‘imperative’ or ‘operator’. Operators include verbs like ad-
dition, multiplication, and binary selection (i.e., the IF state-
ment verb) that result in a single object. Imperative verbs, like
assignment, result in changes to the environment. Verb influence

may be ‘regular’ or ‘meta’. ‘Meta’ indicates that the verb re-.

quires objects that are themselves statements. The case frame
entry for the metaverb BINARY__SELECTION, without in-
terior labels, is the following.

scalar,[verb](BINARY__SELECTION,active,

operator(scalar,[verb]( ,active,imperative, )),meta), literal

[scalar,boolean,valuese]ecmr(w

[verb]( ,ac.tive.,impera'tive, )objectiveﬂhen ’
[verb](,active,imperative, )ggiecme{dse' ]
Besides the selector object, BINARY__SELECTION requires
either one or two statement objects that are in the objective case,
which receives the action of the verb. The objects must be ac-
tive, imperative statements. The blank in the name and influence
attribute positions indicates that any value for those attributes
is acceptable. IF and other meta operator statements also satisfy
the requirements because they ultimately generate active, im-
perative statements. Note that BINARY__SELECTION,
because it is an operator, has dependent attributes that specify
the structure and class of its resultant, generated object.
Verbs that require multiple objects often require agreement

among two or more of them. We introduce attribute variables
to express interobject dependencies. The attribute variables used
in a given frame are implicitly created at the beginning of the
frame, and remain accessible throughout the frame. Attribute
variables are implicitly assigned values when they prefix an at-
tribute restriction in an object specification. The specification
‘scalar,CLSl:integer|real,value’ causes the value of the class at-
tribute of the object satisfying the specification to be assigned
to the attribute variable CLSI. Attribute variables can be used
without a specific attribute restriction, as in ‘scalar, CLSI: ,
value’. The blank following ‘CLSI:’ indicates that there is no
restriction placed on the class attribute. The colon indicates that
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the variable CLSI is to be assigned a value. When attribute
variables appear without a succeeding colon, they specify a
restriction to whatever attribute value they currently possess.
Consider the case frame entry for assignment.
scalar,[verb](ASSIGN,active,imperative,regular),literal

{ STRI: ,CLSL ,variable,, pient
STRLCLSI,value, or(e= )]

When the recipient object phrase is encountered, the attribute
variables STRI and CLSI are assigned values. By using STRI
and CLSI to specify attribute values for the donor object phrase,
agreement between the two objects is forced.

Conditional clauses may be used to modify a succeeding at-
tribute value specification, simple object-phrase specification,
or complex object-phrase specification. They consist of a
predicate enclosed by ‘(= =)’ brackets. The case frame for an
ASSIGN verb that allows integers to be assigned to reals can
be specified by using a conditional clause.

scalar,[verb](ASSIGN,active,imperative,regular),literal
{STRI: ,CLSI: ,variable . picat

STR,CLSI| ( =CLSI =real =) integar, valuedomr(; o

Access Form Dictionary

The access form dictionary defines the access methods. For
example, a complex literal like a procedure would have an ac-
cess frame describing each of its component object phrases. For
array components, which are accessed by modification, the ac-
cess frame describes the array object and the objects that could
be used as indices. Access frames specify transformations of
objects to other objects.

Access frames are enclosed in angular brackets. Following
is a simplified form frame entry for name access.

STRUCT, CLASS, USAGE, named
<name(bound(STRUCT: ,CLASS: ,USAGE: ))>

It states that a bound name object may be transformed into
an object whose structure, class, and usage attribute values are
determined by the dependent attributes of ‘bound’.

Semantics

Because a case grammar deals with language at the object
level rather than at the symbol level, at least a partial defini-
tion of semantics is needed to make it complete. The semantics
must specify the creation of objects, the association of attributes
with objects, and the deletion of objects. A complete notation
for defining the semantics in a case grammar for Pascal is given
in the first author’s dissertation[4]. The details of the notation
are unimportant, since many other notations would have serv-
ed as well. However, a simplified subset is presented here to
enable the reader to understand the case grammar example
presented in the next Section.

Semantic action statements are used to assign values to at-
tribute variables explicitly. They are of the form ‘attribute
variable <— value’, and are enclosed by ‘)’ brackets. They
may appear anywhere in a case or form frame.

SYMTARB is a global attribute variable, accessible from any
frame. It contains the kind of information commonly found
in symbol tables, the association of names with the objects they
represent. In particular, the value of SYMTAB will be a se-
quence of name literals, each with its associated dependent bin-
ding attribute. The value ‘bound’ has, in turn, three associated
dependent attributes: structure, class, and usage. These give the
structure, class, and usage of the object to which the name has
been bound. Both ‘unused —> (unbound)’ and ‘used —>
(bound(scalar,integer,variable))’ represent legitimate entries in
SYMTAB. The operator ‘+ ||> will be used to add entries to
SYMTARB. Similarly, ¢ — || is used to delete entries from SYM-
TAB. The verbs CREATE__PROG and CREATE__VAR
demonstrate the + || operation.

EXERPTS FROM A CASE GRAMMAR

We present here excerpts from a case grammar for a very
small subset of Pascal. The subset includes an abvreviated pro-
gram statement, the var, begin, assignment, if, and while



statements, and several operators. Labels are omitted. The
boolean entities ‘true’ and ‘false’ are treated as literal values
the lexical structure of simple literals such as integers and reals.

Object Space Denotation

The object space is defined by three tables. Table 1 lists the
attributes used in the grammar, together with the values they
may assume, Table 2 lists attribute dependencies, and Table 3
shows the co-occurrence of attribute values in objects. Because
the language has only scalar objects, neither Table 1 nor the
rest of the grammar includes a structure attribute.

Attributes  Values

class integer, real, boolean, name,
class__attribute, verb, [verb], program

usage value, variable

access directly__represented, generated, named

literal, generated__value, named__constant,
named__variable

access-usage

binding bound, unbound
voice active, passive
mode imperative, operator
influence regular, meta

TABLE 1: Attributes and Values

Dependency Attributes

name binding

bound class, usage

verb name, voice, mode, influence
operator class

TABLE 2: Attribute Dependencies

CLASS
ACCESS-USAGE 1 2 3 4 5 6 7 8
literal X X X X X X X X
generated__value X X X X
named__constant X
named__variable X X X

where 1: integer, 2: real
3: boolean, 4; name
S: class__attribute, 6: verb
7: |verb|, 8: program

TABLE 3: Object Availability
Verb Dictionary

[verb}(CREATE__PROG,passive,imperative, meta),literal
[ { SYMTAB <—nul |

name(unbound){©%:)
indicant(program}

{ SYMTAB <— + || VALUE(indicant)— >

(bound(program,value)) }
program,literalg‘fg)]

VALUE is an operator that can be applied to objects to yield
their value. In CREATE__PROG, VALUE returns the actual
name literal used to satisfy the indicant case object requirement.
In the CREATE__VAR frame, VALUE is used to yield a class
value.

[verb](CREATE__VAR,passive,imperative,regular),literal

[ (name(unbound), ;..

{ SYMTAB <—SYMTAB + || VALUE(indicant— >
(bound(VALUE(spemfler),varlab]e))}) +(00,9)

class__attribute

) ) vary)
specifier- objectlve(var/
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[verb](COMPOUND,active,imperative,metal),literal

3 i 3 + (00;end)
[ [verb] ( ,active,imperative, )obje cﬁve(begin)]

[verb](ASSIGN, actlve,lmperatlve regular) literal
[CLASS: ,variable
CLASS| {CLASS real | integer, valuey: )]

[verb] (BINARY__SELECTION,active,
operator([verb]( ,active,imperative, )),meta),literal
[ boolean,valuesemm(w
[verb](, active, imperative, )
[verb]( ,active,imperative, )

objective(then)
objectivefelse)
[verb] (REPETITION,active,imperative, meta),literal
[ bOOICan’Valuegovemor(while}
[verb]( ,active,imperative, )objmive(da)]
[verb] (ADD,active,operator(CLASS),regular),literal
[ CLASS:integer|real,value
CLASS2:integer|real,value
{ CLASS < — integer
(= CLASSI = real | CLASS2 = real =) CLASS <—real| |

The case frames for the other regular operators in the language
are not shown.

objective

objective(+)

Access Form Dictionary
program,literal

< [verb](CREATE__VAR, , , )°p0)

{verb](COMPOUND, , , ),literal >

CLASS,generated__value

< [verb]( ,active,operator(CLASS: ), ) >
CLASS,USAGE,named

< name(bound(CLASS: ,USAGE: )) >

CONCLUSION

Case grammars define PLs in terms of objects and verbs, and
their relationships to each other. Although the notation is
capable of defining the syntax completely, the emphasis remains
at the object rather than at the symbol level. By following CG
as a model, we may be able to design PLs that incorporate some
features of NL and are therefore more comfortably used. Multi-
ple surface structures can be allowed, perhaps permitting multi-
lingual translators. CGs can also serve as a vehicle for compar-
ing PLs concentrating on their deep representational abilities
rather than on their surface structures. Nevertheless, the most
important application of CGs offer the following advantages
over context-free grammars. First, syntactic details are clustered
into punctuation encodings, and can easily be ignored. If er-
rors occur at this level, they are likely to have a minimal effect
on the parser’s functioning. Second, attribute-value informa-
tion is stressed, whereas in most context-free grammars and
parsers it is ignored. Finally, functional case relationships are
emphasized over positional relationships. This suggests that er-
rors of position can be well tolerated.
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Die Definisie en Implementasie van die taal Scrap
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Samevatting

SCRAP is 'n hoévlaktaal geskik vir stelsel- sowel as toepassingsprogrammering. Die uitstaande kenmerke van die taal
is 'n aantal goedgedefinieerde sintaktiese konstruksies, 'n modulére struktuur, masjienafhanklike datatipes en ’'n
meganisme vir kommunikasie met die onderliggende steisel. SCRAP word selfvertalend geimplementeer. Die vertaler
is in drie gange verdeel, te wete sintaksontleding en semantiese ontleding, wat saam die masjienonafhanklike deel
daarvan uitmaak, en kodegenerasie, die masjienafhanklike deel.

Abstract

SCRAP is a high-level language that provides facilities for systems progragmming, but can equally well be used for
applications programming. The prominent features of the language are a well-defined syntax, a modular structure,
machine-dependent data types, and the possibility of communication with the underlying system. SCRAP is to be
implemented by a self-compiling compiler. Compilation consists of three passes: syntax analysis and semantic analysis,
forming the machine-independent part; and code generation, the machine-dependent part.

ACM Reviews — kategorie: 4.22

1. Inleiding

Programmatuur kan as stelselprogrammatuur of toepas-
singsprogrammatuur geklassifiseer word. In hierdie referaat word
met ‘stelselprogramme’ programme bedoel wat deel van ’n

rekenaarstelsel uitmaak en wat ondersteunende fasiliteite aan

al die gebruikers van die stelsel bied, terwyl toepas-
singsprogramme nie deel van die stelsel as sodanig is nie.

SCRAP (‘Systems Construction and Applications Program-
ming Language’) is ’n hoévlaktaal wat by uitstek vir
stelselprogrammering op minirekenaars geskik is, maar ook
algemeen genoeg vir toepassingsprogrammering is [1]. SCRAP
is gedefinieer en ontwikkel om so goed as moontlik aan die
kriteria van doeltreffendheid, algemeenheid, betroubaarheid,
onderhoubaarheid en oordraagbaarheid te voldoen. Aangesien
doeltreffendheid en oordraagbaarheid in ’n mate teenstrydige
kriteria is, is die uitweg van pseudo-oordraagbaarheid gevolg.
As gevolg van pogings om optimale doeltreffendheid in elke
aparte omgewing te verkry, mag die voorkoms van SCRAP van
een rekenaaromgewing na ’n ander verskil. ’n SCRAP-program
is dan oordraagbaar tussen die omgewings in soverre die om-
gewings versoenbaar is.

Die kenmerkende eienskappe van SCRAP word kortliks
bespreek, met die klem op dié eienskappe wat vir stelselprogram-
mering van belang is. *n Kritiese beskouing van die mate waar-
toe SCRAP aan sy ontwerpskriteria voldoen, word gegee. Daar-
na volg ’n oorsigtelike bespreking van die tegnieke wat vir die
eerste implementasie van SCRAP gebruik is. Vir meer
besonderhede word die leser na [1] verwys.

2. Die Taal SCRAP

Slegs sommige van die uitstaande kenmerke van SCRAP word
kortliks hier bespreek, te wete unieke afsluitsleutelwoorde,
modules, masjienafhanklike datatipes en kommunikasie met die
onderliggende stelsel.

2.1 Unieke afsluitsleutelwoorde

Alle komplekse sintaktiese konstruksies word deur unicke
begin- en afsluitsleutelwoorde afgebaken. Die
afsluitsleutelwoord vir ’n gegewe konstruksie word gevorm deur
‘end’ aaneen te skakel met die eerste letter van die
beginsleutelwoord, bv. ‘loop...endl’, ‘if...endi’. ’n Natuurlike
en leesbare programuitleg word sodoende verkry. As gevolg van
die gebruik van beheerstrukture wat op dié manier afgebaken
is, kon in SCRAP die konsep van ’'n saamgestelde stelling
afgebaken deur ‘begin...end’-hakiewoorde, asook die gepaard-
gaande probleme, vermy word. Maklike sintaksontleiding en
fouthantering is ’n verdere voordeel van die unicke
afsluitsleutelwoorde.
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2.2 Modules

Die konsep van modulariteit dra aansienlik tot die oor-
draagbaarheid, betroubaarheid en onderhoubaarheid van pro-
grammatuur by, met die voorbehoud dat die modulesterkte hoog
moet wees en die koppeling tussen modules laag [2]. Dié konsep
is op ’n unieke manier in SCRAP verwenslik.

’n Program bestaan uit een of meer modules, wat saam of
afsonderlike vertaal kan word. ’n Module word uit ’n aantal
globale blokke opgebou, nl. letterlike blokke, datablokke en
prosedures. Die blokke kan sintakties in enige volgorde
voorkom. Een en slegs een van die modules moet ’'n
inisialiseerblok aan die einde daarvan insluit, waar programuit-
voering begin. Die raamwerk van ’n module word in Figuur
1 uiteengesit.

Die programmeerder kan absolute adresse aan datablokke
en prosedures toeken, wat spesifiseer dat die betrokke datablok
of prosedure vanaf die betrokke adres gelaai moet word. Hoe
die absolute adresse met laaityd op geheue-adresse afgebeeld
word, is masjienafhanklik. Die adres as sodanig het geen
betekenis vir die vertaler nie, en dit berus by die programmeerder
om dit op die regte manier te gebruik. Absolute adresse word
benodig vir onderbrekingstabelle en -prosedures, statuswoorde,
ens. Hierdie fasiliteit is dus ’n vereiste in 'n omgewing waar
produksie-stelselprogramme wat direk op die apparatuur van
die teikenrekenaar moet uitvoer, ontwikkel word.

Prosedures is by versuim dinamies; 'n prosedure mag egter
eksplisiet as staties verklaar word. In die geval van dinamiese
prosedures word stoorplek vir lokale gebruik op ’n uitvoer-
tydstapel gereserveer elke keer as die prosedure geroep word;
in die geval van statiese prosedures word lokale stoorplek in
statiese geheue gereserveer wanneer die program gelaai word.
’n Statiese prosedure se lokale veranderlikes bly dus van een
roep na ’'n volgende behoue. Dinamiese prosedures is
multitoeganklik en kan rekursief geroep word; daarenteen kan
statiese prosedures nie rekursief geroep word nie en is slegs
multitoeganklik as die teikenrekenaar die fasiliteit bied om die
data en stellings van ’n program in afsonderlike geheue-areas
te stoor. Statiese prosedures verkry beheer wanneer onderbrek-
ing-inkom en kan dus nie dinamies wees nie. Dit mag ook
wenslik wees om statusinligting van een onderbreking na ’n
volgende te behou.

’'n Module kan as ’n heining beskou word rondom die
modules waaruit dit bestaan; die module versteek sodoende in-
ligting aangaande sy blokke van ander modules. Modules kom-
munikeer met mekaar op die globale blokvlak. 'n Module maak
datablokke en prosedures vir ander modules toeganklik deur
dit eksplisiet uit te voer; ’n module verkry toegang tot



datablokke en prosedures wat in ander modules verklaar is deur
dit eksplisiet in te voer. 'n Blok wat deur een module uitgevoer
word, is bekend slegs in dié modules wat dit invoer; desgelyks
kan ’n blok slegs ingevoer word as dit deur ’n ander module
uitgevoer word.

Modules soos in SCRAP gedefinieer, verskaf ’n werktuig om
programme met ’'n hoé modulesterkte en lae modulekoppeling
te implementeer. Prosedures wat ’n funksionele verbintenis het,
en die data waarop hulle bewerkings uitvoer, kan saam in ’n
module gegroepeer word; die mate waartoe modules gekoppel
is, blyk duidelik uit die globale blokverklarings.

’n Nadeel van die ekslisiete invoer en uitvoer van blokke is
dat dit in sommige gevalle tot heelwat ekstra skryfwerk kan lei.
As ’n datablok ingevoer word, moet al die verklarings daarin
herhaal word om die eienskappe van die data binne die module
bekend te stel; as ’n prosedure ingevoer word, moet die hele
opskrif daarvan herhaal word. SCRAP bied geen standaard-
prosedure vir toevoer/afvoer en rekenkundige funksies nie; in-
dien ’n biblioteek van sulke funksies vir gebruik in ’n bepaalde
omgewing bestaan, moet die toepaslike prosedures in elke
module wat dit gebruik, ingevoer word. Bogenoemde probleme
kan oorbrug word deur die gebruik van ’n programmatuuront-
wikkelingstelsel op die teikenrekenaar om die wisselwerking
tussen programmodules te administreer; slegs die name van
datablokke en prosedures hoef dan ingevoer te word. So ’n ont-
wikkelingstelsel word in [3] beskryf.

2.3 Masjienafhanklike Datatipes

’n Verdere uitstaande kenmerk van SCRAP is die mas-
jienafhanklike definisies van die basiese tipes vir heelgetal-,
wisselpunt- en adresdata. Hierdie eienskap het ’n aansienlike
invloed op die doeltreffendheid en pseudo-oordraagbaarheid
van SCRAP.

Ten einde aan die vereiste van doeltreffendheid ten opsigte
van geheuekompleksiteit te voldoen, moet elke SCRAP-tipe in
’n gegewe rekenaaromgewing eenduidig en sonder verlies aan
doeltreffendheid of noukeurigheid op ’n apparatiese tipe
afgebeeld kan word. Die noukeurigheid asook die
beskikbaarheid al dan nie van die basiese datatipes hang van
die apparatuur van die teikenrekenaar af; as ’n tipe nie ap-
paraties ondersteun word nie, is dit uitgesluit uit die SCRAP
vir die bepaalde omgewing.

Die volledige stel basiese tipes sluit die volgende in: heelgetal
van normale lengte; heelgetal met lengte kleiner as normaal;
heelgetal met lengte groter as normaal; greep; karakter; wissel-
punt en dubbelnoukeurige wisselpunt. 'n Voorbeeld van hoe
die basiese tipes op verskillende rekenaars daar kan uitsien, word
in Figuur 2 gevind. Die adrestipe word as een van die
heelgetaltipes gerealiseer, afhangende van hoe groot die
teikenrekenaar se adresseerbare geheue is.

2.4 Kommunikasie met die Onderliggende Stelsel

’n Program voer op ’n onderliggende stelsel uit wat oor die
nodige fasiliteite vir kommunikasie met sy. omgewing beskik.
Die enigste manier waarop ’n program met sy omgewing kan
kommunikeer, is via die fasiliteite van die stelsel, hetsy direk
of indirek. Wat die onderliggende stelsel alles behels, asook die
fasiliteite wat dit aan die gebruikers daarvan verskaf, is geheel
en al van die omgewing onder beskouing afhanklik — dit kan
wissel van slegs apparatuur tot *n gesofistikeerde bedryfstelsel.
Ten einde die stelsel se fasiliteite te kan benut, is 'n koppelvlak
nodig, wat noodwendig masjienafhanklik is.

By die ontwerp van die meeste hoévlaktale is gepoog om 'n
aantal masjienonafhanklike fasiliteite vir toevoer/afvoer,
gelyktydige programmeering, ens. te definicer, wat dan mas-
jienafhanklik geimplementeer word; die gevolg is 'n onvolledige
en dikwels ondoeltreffende koppelvlak na die stelsel, en ’n
gebrek aan oordraagbaarheid van die taal self. Om aan SCRAP
se vereiste vir doeltreffendheid en uitdrukkingsvermoé te vol-
doen, moet al die stelselfasiliteite in ’n bepaalde omgewing tot
beskikking van die gebruiker wees, met die minimum bokoste.

Die filosofie wat by die ontwerp van SCRAP gevolg is, is om
slegs ’n meganisme vir die koppelvlak na die onderliggende
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stelsel daar te stel. Dié meganisme is die ‘sv¢’ -stelling. Dit neem
die vorm van ’n spesiale prosedureroep aan — die ‘prosedure’
wat geroep word, is die stelsel self. Die aantal en tipes van die
parameters wat die roep vergesel, asook die manier waarop die
roep geimplementeer word, is masjienafhanklik. Die parameters
spesifiseer die versoek aan die stelsel, die manier waarop dit
uitgevoer moet word, die data-areas wat betrokke is, ens.

Indien die stelsel slegs uit apparatuur bestaan, kan ’n aantal
‘pseudo-svc’-stellings vir die omgewing gedefinieer word, wat
dan met vertaaltyd na die ooreenstemmende objekkode
omgeskakel word. Normaalweg sal die stelsel egter ’n
bedryfstelsel insluit, in welke geval die ‘svc’-stelling na
ooreenstemmende roepe na die bedryfstel omgeskakel kan word.
Die implementasie van SCRAP op die Perkin-Elmer 3220 kan
as ’n verteenwoordigende voorbeeld beskou word. Roepe na
die OS/32MT-bedryfstelsel moet op lae vlak as ’n opdragkode
met twee operande gespesifiseer word — die eerste operand is
’n heelgetal wat die versoek aandui, en die tweede is die adres
van ’'n parameterblok. Die ‘svc’-stelling se parameters stem met
dié twee operande ooreen, en die stelling kan sonder enige
bokoste na die ooreenstemmende objekkode omgeskakel word.

Die ‘svc’-stelling, ten koste van oordraagbaarheid van die pro-
grammatuur wat dit gebruik, voldoen dus in ’n hoé mate aan
die vereiste vir doeltreffendheid en algemeenheid. 'n Bykomende
voordeel is dat dit maklik is om te implementeer en dat oor-
dragkoste wat met die ‘sv¢’-stelling as sodanig verbonde is, laag
is.

3. Die implementasie van SCRAP

SCRAP word self-vertalend geimplementeer. Met die doel
om die oordraagbaarheid van die SCRAP-vertaler te bevorder,
is die vertaler in twee basiese dele verdeel, wat onderskeidelik
masjienonafhanklik en masjienafhanklik is. Die mas-
jienonafhanklike deel aanvaar ’n program in die brontaal, voer
die masjienonafhanklike funksies van die vertalingsproses uit
en lewer ’n intermediére voorstelling van die bronprogram. Die
masjienafhanklike deel aanvaar dan dié intermediére voorstell-
ing, hanteer die vertalingsaspekte afhanklik van die betrokke
omgewing en produseer die ooreenstemmende teikenkode. Die
masjienonafhanklike deel bly basies dieselfde vir alle omgewings
waarin SCRAP geimplementeer word; dit sal slegs ten op-
sigte van die masienafhanklike konsepte van SCRAP verskil,
byvoorbeeld lengtes van datatipes en toevoer-/afvoer
meganismes. Daarenteen moet die masjienafhanklike deel vir
elke omgewing oorgeskryf word. Beide dele word in SCRAP
geskryf.

Die skoenriemproses vir die eerste implementasie van SCRAP
word vervolgens uiteengesit. Die metodes wat in die ontwik-
keling van die vertalers gebruik word, word oorsigtelik bespreek
aan die hand van die eerste vertaler in die skoenriem; slegs die
uitstaande kenmerke daarvan word uitgelig. Die metodes bly
basies dieselfde vir al die vertalers in die skoenriem.

3.1 Die Skoenriem vir die Eerste SCRAP-vertaler

Die eerste SCRAP-vertaler word op ’'n Perkin—Elmer
3220-rekenaar geimplementeer, met behulp van 'n drievoudige
skoenriem. Pascal is as implementasietaal vir die eerte vertaler
in die skoenriem gekies, wat ’n deelversameling van SCRAP
ter ondersteuning van die uiteindelike selfvertalende vertaler im-
plementeer. Die skoenriem word met behulp van die notasie in
Figuur 3 diagrammaties in Figuur 4 voorgestel [4].

3.2 Die Struktuur van die Vertaler

Die vertaler is in drie gange verdeel, naamlik leksikale en sin-
taksontleding, semantiese ontleding en kodegenerasie. Die eerste
twee gange vorm die masjienonafhanklike, en die derde die mas-
jienafhanklike deel. Die natuurlike fases van die vertalingsproses
is so ver moontlik in die verdeling behou; dit het die voordeel
dat die funksie van elke gang duidelik afgebaken is en dat die
intermediére tale maklik gedefinieer kan word. In die finale ver-
taler sal ’n optimerende gang na gang twee ingevoeg word, en
moontlik ook na gang drie.

Die brontaal vir die eerste skoenriemvertaler is ’n deelver-



sameling van SCRAP voldoende om die volgende vertaler te
implementeer; konstruksies wat slegs betreklik moeilik
geimplementeer kan word, is uit die deelversameling uitgesluit.
Die teikentaal is die Perkin-Elmer samestellertaal CAL. Die twee
intermediére tale is slegs voorstellings van ’n gedeeltelik ver-

taalde bronprogram; hierdie tale is masjienonafhanklik en vol-

doende vir alle implementasies van SCRAP,

Die sintaksontleder en semantiese ontleder lees toevoersim-
bole een-vir-een in soos dit benodig word, en genereer afvoer
tydens die ontledingsproses. Die kodegenerasiegang lees 'n
basiese blok in, en genereer afvoer stelling-vir-stelling. Die sim-
booltabel bestaan slegs in die tweede gang; semantiese inligting
word saam met die items waarop dit van toepassing is, in die
intermediére kode ingevoeg.

Die SCRAP-produksiereéls voldoen aan die LL(I)-eienskap
[5], op een uitsondering na — daar kan nie uit sintaktiese
oorwegings tussen ’'n enkelvoudige veranderlikenaam en ’n
parameterlose funksieroep onderskei word nie. Hierdie beslis-
sing word uitgestel tot die semantiese fase.

’n Prosedure mag geroep word voordat dit verklaar word.
Hierdie vorentoe-verwysings word soos volg opgelos. Die sin-
taksontleder skryf alle inligting wat op prosedure-opskrifte
betrekking het, na ’n afsonderlike l&er. Die semantiese ontleder
lees dan hierdie inligting vooraf in, en doen inskrywings daar-
voor in die simbooltabel. Sodoende kan tydens semantiese
ontleding alle prosedureroepe op dieselfde manier hanteer word.

Die manier waarop die funksies van die gange en die kop-
pelvlakke tussen die gange gedefinieer is, het aansienlik tot ’n
spoedige implementasie van die vertaler bygedra. Die in-
termediére voorstellings is wel groot, maar dié nadeel word oor-
tref deur die vereenvoudiging van die gange self.

‘3.3 Sintaksdiagramme

Die sintaks van sowel die brontaal as die intermediére tale
word met behulp van sintaksdiagramme beskryf 16[. ’n Sin-
taksdiagram is ’n grafiese voorstelling van BNF-notasie en bes-
taan uit ’n gerigte grafiek met nodusse wat die terminale en nie-
terminale simbole van die ooreenstemmende BNF-produksieregl
voorstel. Die SCRAP-produksiereél vir ’n module, omskryf in
BNF-notasie en ’n sintaksdiagram, word in Figuur 6 gegee.

Sintaksdiagramme is ’n stelselmatige en doeltreffende
werktuig vir die ontwerp van ’n vertaler. Dit is gebruik om die
sintaks van die brontaal te spesifiseer; om die transformasie van
elke gang op sy toevoerdata voor te stel; om die sintaksontleder
te konstrueer; en om fouthantering in die sintaksontleder te
implementeer.

’n Beter insig in die gebruik van sintaksdiagramme kan verkry
word deur een produksie te bestudeer. Die ‘loop’-stelling is vir
die doel geskies. Die drie sintaksdiagramme vir dié konstruksie
word in Figuur 6 gegee. Hoe die diagramme in die sin-
taksontleder gebruik is, word in die volgende paragraaf
bespreek.

3.4 Gang 1 — Leksikale en Sintaksontleding

Die eerste gang konstrueer die bo-af, mees linkse afleiding
van die bronprogram en beeld terselfdertyd die bronprogram
af op die eerste intermediére voorstelling daarvan.

Die leksikale ontleder (taster) is as ’n prosedure van die sin-
taksontleder geimplementeer en word geroep wanneer ’n sim-
bool benodig word. Aangesien die terminale simbole deur ’n
reélmatige grammatika beskryf word, is die taster as ’n deter-
ministies eindige-toestandoutomaat geimplementeer {7,8].

Sintaksontleding word met behulp van rekursiewe afdaling
gedoen [7,8]. Die sintaksontleder bestaan hoofsaaklik uit ’n aan-
tal sintaksprosedures, wat ooreenstem met die sintaksdiagramme
van die brontaal. Die prosedures is eenvoudig en direk vanaf
die betrokke sintaksdiagramme gekodeer. Vir elke nie-terminale
nodus in die toevoerdiagram word die ooreenstemmende pro-
sedure geroep; vir elke terminale nodus word afvoer gegenereer
s00s beskryf deur die ooreenstemmende nodus in die afvoer-
diagram; en die vloei van beheer word deur die gerigte sye van
die diagram, tesame met die volgende toevoersimbool, bepaal.

Die algoritme vir fouthantering wat in die sintaksontleder in-
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gebou is, is eenvoudig en stelselmatig en lewer uitstekende
resultate. Dit berus daarop dat toevoersimbole na ’n sintaksfout
oorgeslaan word totdat ’n sleutelsimbool teégekom word, van-
waar sintaksontleding weer normaalweg kan voortgaan. Die
sleutelsimbole vir elke sintaksdiagram by elke punt daarvan kan
direk neergeskryf word; dit sluit in die terminale en die hand-
vatsels van die nie-terminale in die diagram. Indien ’n sin-
taksfout herken word, word die sleutelsimbole by die betrokke
punt saam met *n aanduiding van die tipe fout na ’n fouthanter-
ingsprosedure oorgedra. Die roetine skryf *n foutboodskap en
slaan toevoersimbole oor tot by die eerste toevoersimbool wat
met een van die sleutelsimbole ooreenstem. Die skema impliseer
dat elke sintaksprosedure die sleutelsimbole van sy roepende
prosedure as 'n parameter moet ontvang; lokale sleutelsimbole
word dan bygevoeg as die fouthanteringsprosedure of *n ander
sintaksprosedure geroep word. Die unieke afsluitsleutelwoorde
van SCRAP het grootliks tot die suksesvolle implementasie van
die algoritme bygedra.

3.5 Gang 2 — Semantiese Ontleding

Die tweede gang aanvaar die eerste intermediére voorstelling
van ’n program, voer alle masjienonafhanlike semantiese toetse
daarop uit, los alle vorentoe-verwysings op en genereer die
tweede intermediére voorstelling.

Alle tabelle met semantiese inligting word in dié gang opgestel
en gebruik. Die simbooltabel bevat inskrywings vir die iden-
tifiseerders van die bronprogram, terwyl die tipe-inligting wat
met dié identifiseerders verband hou, in ’n tipe-tabel gestoor
word. Inligting wat op struktuurvelde en vorentoe-verwysings
betrekking het, word in afsonderlike tabelle gehou.

Vir die verklarende gedeeltes in die toevoer word die nodige
semantiese toetse uitgevoer en die toepaslike inskrywings in die
tabelle gedoen.

Die semantiese ontleding van uitvoerbare kodes word met
behulp van ’n vertaaltydstapel gedoen; die beskrywing van
bewerkings word terselfdertyd van tru-Poolse notasie na drietalle
omgeskakel (Figuur 6).

3.6 Gang 3 - Kodegenerasie

Die derde gang beeld die tweede intermediére voorstelling van
'n program op die toepaslike teikenkode af, en voer ook alle
masjienafhanklike semantiese toetse uit.

Kodegenerasie vir verklarings is eenvoudig, aangesien alle
semantiese inligting aangaande die data in die intermediére kode
verskyn. Wat die uitvoerbare stellings betref, word kode vir ’n
basiese blok op ’n slag gegenereer. Wanneer die begin van 'n
prosedure se uitvoerbare gedeelte of ’n inisialiseerblok herken
word, word basiese blokke ingelees en verwerk totdat die einde
van die prosedure of inisialiseerblok herken word. Vir elke
basiese blok word volgende-gebruikinligting versamel, en ver-
volgens word kode vir elke drietal in die blok gegenercer. Die
kodegenerasie vir *n drietal behels hoofsaaklik die toewysing
van ’n register waarin die bewerking uitgevoer kan word, sowel
as die bepaling van die opdragkode(s) en die adressering van
die operand(e) vir die bewerking.

4, Gevoigtrekkings

Die eerste vertaler is reeds geruime tyd in gebruik, en te
oordeel na die sukses daarvan, lyk dit asof SCRAP wel aan sy
ontwerpsvereistes voldoen. Wat bedoel is om slegs ’'n
skoenriemvertaler te wees, is intussen met welslae in verskeie
ander toepassings gebruik. Die meeste van die leemtes wat tans
bestaan, sal deur die volledige SCRAP aangevul word.

SCRAP is maklik om aan te leer en te verstaan. Persone wat
alreeds in ander hoévlaktale geprogrammeer het, het SCRAP
binne 'n dag of twee bemeester.

Die modulére struktuur dra aansienlik tot stelselmatige en oor-
draagbare programimplementasie by, veral waar meer as een
persoon besig is om aan ’'n projek te werk. Verder verskaf
SCRAP voldoende u1tdrukkmgsvermoe vir elegante
programimplementasie.

- Die definisie en implementasie van SCRAP het getoon hoe
moeilik dit is om ’n taal daar te stel wat beide doeltreffend en



masjienonafhanklik is. By die implementasie op die Perkin-
Elmer kan die invoer en uitvoer van blokke uit modules
byvoorbeeld nie vir kommunikasie tussen multitake wat
dinamies gelaai word, gebruik word nie; die teikenkode moet

eers geredigeer word om daarvoor voorsiening te maak. Wat
die vertaler self betref, moes sekere masjienafhanklike inligting,
byvoorbeeld lengtes en gerigtheid van datatipes, noodwendig

in die masjienonafhanklike deel gebruik word.

MODULE modulenaam;
LIT
(*letterlike definisies*)
ENDL:
DATA databloknaam;
(*dataverklarings*)
ENDD databloknaam;
PROC prosedurenaam prosedure-opskrif;
(*prosedure*)
ENDP endprosedurenaam;
(*verdere letterlike blokke, datablokke en prosedures*)
BEGIN
(*inisialiseerstellings*)
ENDM modulenaam.

FIGUUR 1 — Die Raamwerk van ’n Module

Perkin-Elmer 3220 PDP 11/45

Univac 1110

INT 32 16 36
SINT 16 - -
LINT - 32 72
BYTE 8 8 -
CHAR - - 6
REAL 32 32 36
DREAL 64 64 72

FIGUUR 2 - Noukeurigheid van Basiese Tipes (Lengtes in bisse)

P = program

ST = skryftaal

BT = brontaal

TT = teikentaal

IT = interpreteerbare taal

MT = masjientaal

— = kopieer

«—» = hierdie programme is identies

----== = produseer met die hand (die veranderde taal
word aangedui)

~—w=produseer deur vertaling.

’n Rekenaar, sy masjientaal en sy samestellertaal word almal

deur dieselfde notasie aangedui.

’n program ’n rekenaar
BT T IT
ST ST
’n vertaler ’n interpreteerder

P P
——————
BT | BT - TT| TT
ST X
X

Vertaling en uitvoering van program P, in BT geskryf, op mas-

jien X.

FIGUUR 3 - Notasie vir *n Skoenriem.
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/ E 7/32 '/' S 7/32

s 32|s 3\7/73277/3

\/
S 7/32| S |S 7/32(7/32)

\_/
St 1328 st | st 732039 (7732

PP PK|PK 7/32

P = Pascal-4A

PK = P-kode

S1 = deelversameling van SCRAP
S = volledige SCRAP

7/32 = Interdata 7/32

FIGUUR 4 - Die skoenriem vir die eerste SCRAP-vertaler

<module> ::= MODULE <module ident>; {<global
block >} [BEGIN <statement sequence>]
ENDM < module ident >

— MODULE—> <mid>—> ;—> <globalblock > — BEGIN —> <statseq>->ENDM-> <mid>—>

T

FIGUUR 5 - Die produksiereél vir *'n module
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FIGUUR 6 - Sintaksdiagramme vir die ‘loop’-stelling
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