ISSN 0254-2757

IQU}ES TIONES
INFORMATICA

Volume 6 « Number 4 April 1989

D G Kourie Editorial 137

VIEWPOINTS and COMMUNICATIONS

B H Venter Reflections on the Nature and Future of Computer Science 139
in Southern Africa

MSc/PhD Abstracts: MS¢/PhD Conference held at Dikhololo in 1988 143

RESEARCH ARTICLES

P Machanick Software Design to Meet Third World Requirements: An 153

Experimental Software Engineering Approach

G R Finnie A “Cooperating Expert’s” Framework for Business Expert 162
System Design

PM Q Lay The Application of Scientific Method to Information 169

CR Atkinson Systems Analysis

D G Kourie An Approach to Defining Abstractions, Refinements and 174
Enrichments

The official journal of the Computer Society of South Africa and of the South African
Institute of Computer Scientists

Die amptelike vaktydskrif van die Rekenaarvereniging van Suid-Afrika en van die
Suid-Afrikaanse Instituut van Rekenaarwetenskaplikes

QUASTIONES INFORMATICA

The official journal of the Computer Society of South Africa and of the South
African Institute of Computer Scientists

Die amptelike vaktydskrif van die Rekenaarvereniging van Suid-Afrika en van die
Suid-Afrikaanse Instituut van Rekenaarwetenskaplikes

Editor

Professor D G Kourie
Department of Computer Science
University of the Pretoria
Hatfield

0083

Production

Mr Q H Gee

Department of Computer Science
University of the Witwatersrand
Johannesburg

Wits

2050

Subscriptions

The annual subscription is
SA US UK

Individuals R20 $ 7 £ 5

Institutions R30 $14 £10

to be sent to:
Computer Society of South Africa
Box 1714 Halfway House 1685

Quaestiones Informaticze is prepared by the Computer Science Department of the University of the
Witwatersrand and printed by Printed Matter, for the Computer Society of South Africa and the
South African Institute of Computer Scientists.

Editorial

by

Derrick Kourie

It is my privilege to have been requested by the
SAICS executive to take over the post of editor of
QI from Professor Judy Bishop. I think it is in order
to thank her on behalf of the readership for the fine
job she has done in boosting the quality of the
journal during her brief but effective term. It is also
appropriate to thank the production editor, Quintin
Gee, for his substantial role in producing the journal.
I am grateful that he is still in the post, and for all
the support and work that he continues to do.

My job as editor is directed towards the overall goal
of serving the South African academic community in
the various computer-related disciplines in particular,
and the computer industry in general. A number of
objectives which support this goal include

« ensuring that high quality papers are published,
thereby providing a display window for
computer-related research in South Africa
boosting local and international circulation of
the journal both within the academic community
and in the computer industry at large, thereby
promoting a fruitful interchange of ideas
attempting to do this in a cost-effective fashion
so that the limited financial resources of SAICS
and the CSSA may be released (perhaps even
modestly augmerted) to promote their various
other service-orientated activities.

A number of measures are planned which are
intended to meet these objectives. I shall mention
some of them below, while others will become
manifest with the passage of time.

After much debate it has been decided to change the
name of this journal from Quastiones Informatice
to The South African Computer Journal/Die Suid-
Afrikaanse Rekenaartydskrif. It will be abbreviated to
SACJ in English and SART in Afrikaans.
Arguments against this name change include the
conciseness and uniformity of reference in both
official languages provided by QI, and a certain kind
of catchiness to the name. Those in favour of the
name change regard the new proposal as being more
descriptive for ordinary mortals (i.e. non-Latin
scholars), less pretentious, and therefore more
inviting for a wider audience. The fact that the new
title identifies the journal as South African is also
regarded as important. Many readers would, I
surmise, be fairly neutral about the name and adopt a
philosophical “a rose by any name” position.
Perhaps the divide is between those who opt for a
high level of abstraction and information hiding, and

Quastiones Informaticz 6 4 1989

those who feel that a measure of refinement is
necessary.

Regarding the quality of papers, I shall continually
strive to ensure that papers submitted are reviewed by
at least two relevant and competent specialists. It is
appropriate here to thank all those who have so
enthusiastically reviewed papers to date. This is a
time-consuming, altruistic, backroom task, with
very little explicit reward. To ensure that the burden
is spread more equitably, I would like to appeal to
readers to suggest additional names of people who
could be approached for reviewing. Names of
overseas contacts would be particularly useful.

I should also like to invite as much reader-
participation in the journal as possible. There are
several levels at which this may be done. The most
obvious is by way of letters to the editor. Many
people out there have strong ideas about a variety of
subjects. In the absence of a decent national network
facility (perhaps someday!), please feel free to use
SAC]J as your soapbox.

However, it is also evident that many people read
many books for a variety of purposes. Why not share
these insights by submitting book reviews to the
journal, particularly with respect to books which
could be prescribed for courses? If there are any book
publishers or distributors out there who perchance
may read this editorial, perhaps you should make

. inspection copies to lecturers contingent on a review

137

being provided to SACJ!

I would also encourage researchers to continue
providing a steady stream of research papers to the
journal. Clearly, SACIJ is in competition with other
international journals for your research results.
However, this is not a head-on competition. While it
would be sheer hubris to pretend that SACJ is
precisely equivalent to one of the more prestigious
overscas publications, there are considerations which
argue in favour of submitting certain kinds of
research to SACIJ. First, SACJ will be dedicated to
providing a quick turnaround in reviewing and
publication. Hence, it is an ideal forum for
presenting and testing interim research results, and
even for quickly assuring your stamp on potentially
important ideas which you hope to flesh out later.
Secondly, SACJ is the obvious forum to use for
locally relevant research. Finally, and quite candidly,
the competition for publication in SACJ is
obviously not as intense as in a more prestigious
international journal. However, I nced to be most

explicit on the implications of this latter point.
SAC]J should not be seen as a soft option in the
sense that quality will be sacrificed. By this I mean
that on some arbitrary scale of quality measurement,
if CACM contains papers above say the 95%
percentile, then SACJ should fall into about a 60%
percentile category. Put differently, there is clearly a
gap to be filled that lies somewhere between poor,
inferior drivel and outstanding research contributions
- a gap which SACJ will seek to fill. Papers will
therefore be rigorously reviewed, and every effort will
be made to ensure that the journal is worthy of
international recognition — even if such recognition
does not come about immediately. This is not the
impossible task that some might consider it to be.
There are several South African scientific journals
that already enjoy a measure of international
recognition (the South African Statistical Journal —
to name but one). Furthermore, it is my perception
that many of our academics who travel overseas
discover — perhaps slightly to their amazement — that
they are well able to hold their own with academics
at peer institutions. This suggests that there is
probably sufficient brain power, research ability and
research activity in the country to ensure that the

goal of international recognition is attained.

As for the cost-effective functioning of SACJ, two
points need to be made. First, SACJ will be
available for a limited amount of advertising at
R1000 per page and RS00 per half-page. The
computer industry and book publishers might wish
to avail themselves of this offer, as might
universities and employment agencies. Enquiries in
this regard should be directed to Quintin Gee.
Secondly, a modest charge per page (indicated
elsewhere in this edition) will be levied on accepted
research papers. This has become standard practice for
most journals, the rationale being that the SACJ is
one of the journals which counts for state subsidy
purposes. However, the editor will have the right to
waive such charges in deserving cases, as for
example in the case of an author from industry
whose company is unwilling to provide the financial
support.

Ultimately then, SACJ will critically depend on
your support. It will become what you, the reader,
researcher and reviewer, make it. In a sense the South
African Computer Journal will expose you, the
South African Computer Academic, to the outside
world without a single Latin phrase to hide behind.

Quastiones Informatice 6 4 1989 138

Reflections on the Nature and Future of
Computer Science in Southern Africa

B H Venter

Department of Applied Computer Science, University of Fort Hare, Private Bag X1314, Alice,
Republic’ of Ciskei

Received September 1988, Accepted October 1988
1. Introduction

Computer Science is a relatively recent scientific
discipline. It has seen rapid growth and even more
rapid change. Not surprisingly there is constant
controversy among computer scientists about the
nature of the discipline, and how best to pursue it.

This article aims to stir up the controversy. The
views expressed in it are personal, and the article is
an adaptation of the author’s inaugural address at Fort
Hare University. .

2. What’s in a Name?

Before going on to more serious matters, I wish to
reflect on the name “Computer Science”. The name
has been the subject of one of the most heated and
least productive controversies, and Fort Hare has not
escaped.)

To get some idea of how low the level of debating
can become, consider the following statement which
one hears far too often

“If a discipline has to attach the word science to

its name, it’s probably not a science. For

example:

Chemistry, Physics, Geology, etc.

as against
Social Science, Political Science, Computer
Science.”

When confronted with such a statement many
Computer Scientists react by coming up with names
like Computerology, Informatics, and so on. I
believe this is misguided because:

¢ Changing the name of the discipline is not
going to change its nature.

« It is terribly narrow-minded to contend or accept
that the classic disciplines of the natural sciences
are the only truly “scientific” disciplines.

Of course, for the most part, people wish to change
the name of the discipline because they believe that
it does not accurately reflect the nature of the
discipline. Hence one often hears names like
Computing Science, Programming Science,
Information Science, Information Processing,
Software Engineering, and so on.

Quastiones Informatice 6 (4) 139-142, April 1989 139

It also happens that a university department
changes or extends the term “Computer Science” in
order to indicate that it is somehow different or
superior to the “plain vanilla” computer science
departments. For example, the Fort Hare department
is currently known as the department of “Applied
Computer Science.” I suspect that it acquired this
name in order to place some distance between the
curriculum of the department and the very Numerical
Mathematics oriented curricula of departments at
other universities in the early seventies. The
distinction has since faded considerably.

I do not believe that playing around with the name
of the discipline or an individual department serves
any useful purpose. The term “Computer Science”
has become entrenched and is not likely to be
changed. Virtually every computer science
department in Southern African is called “Department
of Computer Science” and I believe Fort Hare should
follow suit.

3. Is Computer Science a Natural Science?

A less heated but far more serious controversy
concerns the fundamental nature of Computer
Science. Is it a natural science, or an engineering
discipline, or the underlying discipline of a
profession distinct from Natural Scientist or
Professional Engineer? Put in another way: does a
computer science department belong in a natural
science faculty, an engineering faculty, a commerce
faculty, or a faculty of its own?

Put in yet another way, should a South African
professional computer scientist be registered in terms
of the act covering natural scientists or the act
covering professional engineers, or should there be a
special act, or should there not be any act at all?

In the United States computer science departments
have ended up in natural science faculties as well as
in engineering faculties, depending on whether the
“parent” department had been Mathematics or
Electrical Engineering. Apparently, these
departments flourish equally well in either faculty.

In South Africa, most departments find themselves
in natural science faculties. Correspondingly, the

South African Council for Natural Scientists
(SACNAS) attempted to list “Computer Scientist”
as one of the professions covered by its act.

On the other hand, SACNAS did not, at that stage,
recognize the South African Institute for Computer
Scientists (SAICS), and hardly consulted SAICS
about the listing. Officially this happened because

SAICS did not have enough qualified members when *

it sought recognition. However, one cannot help but
suspect that SACNAS did not really wish to find a
way around this difficulty. Perhaps, some of the
scnior natural scientists involved in the issue were
not quite convinced that Computer Science is a
natural science.

The intended listing of “Computer Scientist” as a
profession reserved for registered natural scientists
was met by an outcry from the myriad of non-
graduates who make a living from programming
computers. Few of these people would qualify for
* registration as natural scientists and they quite
rightly fear that listing “Computer Scientist” may
eventually lead to their exclusion. Of course, the
employers of these people are even more horrified at
the prospect of having to compete for the services of
a very small pool of academically qualified people.

Needless to say, the masses prevailed and
“Computer Scientist” was removed from the list of
professions reserved for registered natural scientists.

My own opinions about these issues are:

» Computer Science may well not be a true
“natural science” because it is not chiefly
concerned with natural phenomena, However, if
that is the case, then one should exclude the
Mathematical sciences as well.

» Computer Scientists ought not to register with
SACNAS, and SACNAS probably ought not to
exist in the first place. The computer software
industry, for one, is not yet ready for a limited
entry profession, and public safety will be better
served by making software producers more
accountable for the quality and consequences of
their products.

* I personally feel most comfortable in a natural

science faculty, and students from such faculties
tend to fare better with Computer Science than
students from other faculties. Moreover, in
Southern Africa, the structured curricula of
engineering and commerce faculties are simply
too crowded to adequately accommodate the
topics a professional computer scientist should
know.
I feel further more that the difference between
Computer Science and Physics is no greater than
the difference between Physics and Zoology or
between Zoology and Chemistry. And, on the
whole, I feel that Computer Science is more
similar to the natural sciences than to any other
grouping of sciences.

Quastiones Informaticz 6 4 1989 140

4. Do we need Computer Scientists in
Southern Africa?

Computer science departments largely base their
curricula on a model drawn up in the United States,
and succeed in producing graduates that are
internationally acceptable as computer scientists.
This is no empty claim, for quite a few of our
graduates proceed overseas to further their studies,
and they generally do quite well there. Unfortunately,
some never return.

One of the reasons for this mini brain drain may
well be a lack of jobs for computer scientists (A
“Computer Scientist”, of course, is someone with at
least an honours degree). Certainly, many of the
industries that employ computer scientists in
developed countries have no local equivalents.
Instead, the bulk of computer related employment in
Southern Africa is offered by the data processing
departments of companies that have little interest in
computers other than using them to implement
business information systems.

In the past, the management of some of these data
processing departments have been sharply critical of
the curricula of computer science departments. In
effect, their criticisms amounted to the following :
local industry has very little use for computer
scientists, and instead needs commerce graduates with
a sound computer background, augmented by non-
graduate programmers trained with specific
programming skills.

Such complaints and representations have led to the
creation of departments of “Business Data
Processing” in the commerce faculties of
universities. Furthermore, Technikons and private
training companies have rushed in to provide training
to the legions of non-graduate programmers
demanded by data processing departments.

Such developments appear to eliminate data
processing departments as a reason for producing
computer scientists. What’s left of local industry is
mainly the growing number of companies that
develop complex systems incorporating computers.
These companies certainly have more use for
computer scientists. However, they are typically
dominated by engineers and their managers claim to
need “software engineers” rather than computer
scientists.

Not surprisingly, engineering faculties have rushed
to include programming courses in their curricula,
and they are starting to claim that software engineers
should be produced by engineering faculties rather
than by science faculties.

One may thus reasonably ask whether it makes
sense to go on producing computer scientists when
those that do not emigrate end up with employers
that supposedly have little use for computer
scientists. Would it not make more sense to
distribute the handful of computer science lecturers

among engineering and commerce faculties, and
forget about having computer science departments?

My view is that the following reasons arc more

than adequate to justify the existence of computer
science departments in their current form:

+ A BSc with Computer Science as a major
subject is a useful education even for students
that do not go on to become active computer
scientists.

« Computer Science, in its present “scientific”
form, is a sensible minor subject for any
bachelor’s degree, since it thoroughly de-
mystifies the computer. It is also an effective
way of developing problem-solving skills,
methodical thinking, and the ability to abstract.

« Constructing computer software is an extremely
demanding task. Much of what is now done by
non-graduates should rather be done by computer
scientists. Employers are starting to realize this.

» The curricula of engineering and commerce
faculties are too crowded to allow their students
to acquire all the skills and knowledge needed to
become effective software developers.

« Eventually, the availability of professional

" computer scientists will lead to industry
undertaking more projects that cannot possibly
be carried out by non-computer scientists.

5. The State of Computer Science Research
in Southern Africa

Coming back to the computer scientists that further
their studies overseas and then stay there. I guess that
at least a few of them become computer science
researchers, and stay overseas because they despair of
their chances to do research in Southern Africa.
Certainly, it is true that university lecturers are
expected to do research, and many do research, but it
is also true that lecturers get very little time for
research and very little recognition for what they
manage to do.

And while it is true that most computer science
departments are understaffed, this does not mean that
a prospective researcher can casily find a suitable job
upon graduating. Right now, Fort Hare would
probably be unable to hire such a graduate.

To the best of my knowledge, no computer science
research is currently being conducted outside of
universities. It may well be that I am simply not
informed about it, but it is also certain that such
research is neither published in the research journals
nor publicized elsewhere.

Until a year ago, the CSIR maintained a computer
science department as part of the, now defunct,
National Research Institute for Mathematical
Sciences. This department, while under-equipped and
understaffed by international standards, had a staff
including more than 10 professional computer
scientists (including mysclf), most of whom were

Quastiones Informatica 6 4 1989 141

pursuing higher degrees.

This made the department larger than any university
department apart form UNISA. Correspondingly,
almost a third of all the papers presented at the most
rccent South African Computer Symposium
originated from this department.

Unfortunately, the publishable research conducted
by this department was severely impeded by
management attitudes and priorities, as well as by
the lack of senior staff of international stature. The
department was thus unable to establish computer
science research on a firm and respectable footing in
Southern Africa.

Nevertheless, while it existed, the department had
the potential of doing this. Unfortunately, the demise
of the CSIR as a body carrying out research with its
own staff has squandered this potential. The newly
appointed chairman of the governing council of the
CSIR recently motivated this as follows (my
translation):

“Initially this (research carried out by the CSIR)
was the best approach, because South Africa
needed a strong scientific infrastructure.

Now, however, we have reached the stage where
the universities can truly stand on their own, and
the basic sciences are firmly rooted.

The CSIR thus need not duplicate what the
universities are doing, or are able to do, and can
rather use its enormous pool of talent in the
service of industry.”

Following this change of strategy by the CSIR,
many of its computer scientists (including myself)
left its service. Those that did not, or could not, were
transferred to the CSIR computer centre (data
processing department) and told to earn money
somehow. 1 doubt whether much publishable
computer science research will ever again originate
from the CSIR.

Presumably, the current state of computer science
research at the universities, had little influence on the
making of such momentous decisions, In fact,
computer science issues probably do not figure in
many decisions at all. The low status of computer
scientists is perhaps best summarized in the
introduction to the proceedings of the last South
African Computer Symposium, written by Prof.
Pieter Kritzinger of UCT:

“I know of no computer scientists in South
Africa who is in a position where (s)he can
affect funding priorities. As far as I know we
have no representation on any of the committees
of the Foundation for Research and
Development, and I know of no-one in our
Afrikaans speaking fraternity who is a member
of the Akademie vir Wetenskap en Kuns. It will
take time and conscious effort to establish our
presence. The same is true of course for our
universities. Again, with one exception, I know

of no dean of a science faculty, vice-principal or
principal who is a computer scientist.”

As I have already mentioned, computer science
lecturers have little time available for research. This
problem is greatly compounded by the very nature of
computer science research: all computer science
research is ultimately concerned with the
construction of software. More often than not, a
research project requires a great deal of software to be
specially constructed, and constructing software is
extremely time consuming. The result is that years
of work may culminate in a single research paper. In
fact, in reading research in my fields of interest, I
seldom encounter the same author twice, except
when the same paper is published over and over
again.

Coupled to the low stature of computer scientists,
this trickle of papers per individual researcher makes
it almost impossible, if not completely impossible,
for a computer scientist to obtain significant funding
from the Foundation for Research and Development,
in competition with established researchers in other
fields, who in some cases manage to produce as
many as ten papers per year.

The result is insufficient equipment, insufficient
library allocations, insufficient opportunities to
attend research conferences, insufficient post-graduate
students, insufficient research-oriented computer
science lecturers, and so on. Which in turn
perpetuates the insufficient research. I regret to
conclude that computer science research is in a sorry
state in Southern Africa. Moreover, the signs are lhat
things are getting worse rather than better.

6. Do we Actually need to do Computer
Science Research in Southern Africa?

One may justifiably ask if it really matters whether
or not computer science research is carried out in
Southern Africa. Lecturers need to do research in
order to be able to train research students. But if
these students cannot find jobs as researchers, apart

Questiones Informaticz 6 4 1989 142

from overseas or as lecturers, why go to all this
trouble? Why not simply educate students up to the
honours level and be done with it? \

Well, one obvious answer is that one is going to
have trouble finding and keeping university lecturers
if this is the attitude taken, and this may already be
happening. But in addition to that, I feel that a
thorough training in basic research is an excellent
background for doing development and
implementation.

That is, we may not need computer science
researchers outside of the universities, but we do need
people that were trained as computer science
researchers. Besides, the availability of enough
trained researchers may in itself lead to the creation
of a need for researchers.

7. So what do we do about it?

One is always tempted to pronounce “the central
government must do something about this, or there
will be dire consequences to the national well-being.”
And certainly, in the case of South Africa, one may
reasonably ask whether a country that can support an
Antarctic research team, and that is contemplating a
space program, will not be better off sacrificing one
of these in favour of comprehensively supporting
computer science research,

However, from the bleak picture I have painted thus
far, I think it is clear that public sector and private
sector policy makers are not likely to come to the aid
of Computer Science in Southern Africa.

. It is thus up to policy makers in the universities to

provide the necessary support for Computer Science.
It is largely thanks to the efforts of these people that
Computer Science was established in Southern
Africa in the first place, and it will largely be up to
them to keep it viable in the future.

Of course, it is ultimately up to the computer
scientists themselves to do so well with is available,
that the discipline will ultimately generate its own
growth, funding and respectability.

Abstracts: MSc¢/PhD Conference held at Dikhololo in 1988

The 3rd Conference for MSc/PhD computer science students, held at Dikhololo in 1988, was attended by
representatives of most South African Computer Science departments. The conference, which was sponsored
by the RCP Group and organised by the Computer Science Department of the University of South Africa, was
worth attending, and included some very interesting research activities. Abstracts of the papers presented at the
conference are produced below. ’

The Specification of an Operating System

H C Ackerman
University of Stellenbosch

Abstract

Computer hardware has improved dramatically over
the past decade. Current technology offers processing
potential on a chip which was traditionally associated
with mainframe computers. Software science
development has unfortunately not kept up with
engineering progress, and the development of
systems today is handicapped by software reliability
rather than hardware.

The correctness of large software systems depends
on three main factors: correct decomposition of the
system into modules; individual correctness of the
modules; and correctness of the interfaces between
component modules. This paper is concerned with
the latter: formal specification of module interfaces.

Ideally a system should be decomposed into

component modules which are implemented in
parallel by several programmers. Experience shows
that errors are caused by the integration of modules,
indicating that the formalism used for the
specification of decomposed models is inadequate. It
should be possible to check the correctness of a
specification mechanically in order to rule out human
error in the proof of specification correctness.

Algebraic specification offers a formal method of
specifying systems top-down, and several
specification languages for algebraic specification are
in use today. We examine the feasibility of a
comprehensive algebraic specification of a non-trivial
operating system.

A Semantic Interpreter for LOTOS

D Behr

University of Pretoria

Abstract
System specifications for communication and
distributed systems using FDTs like LOTOS have
been receiving a lot of international attention. These
systems tend to be concurrent, asynchronous and
non-deterministic. Specifying and verifying such
systems using traditional techniques is difficult. As
part of a research project at UP, an environment for
“the specification of communication and distributed
systems is being developed. The part of the project
discussed here deals with the development of a
semantic interpreter for LOTOS specifications. The

Quastiones Informatica 6 (4) 143-152, April 1989 143

semantic interpreter generates traces for a
specification. These traces provide a means of
verifying the LOTOS specification. International
attention tends to prove a trace as either acceptable,
or not acceptable to a specification. This approach
however tends to provide another means of
characterizing a system, by generating a sufficiently
big subset of traces and/or subtraces. These provide
an alternate means of verifying aspects of a
specification.

The Feasibility of Applying Expert System Technology to the System
Performance Analysis and Tuning of Operating Systems

D A Bryant
University of Stellenbosch

Abstract
It is proposed that an expert system that can be
applied to analyse the performance of IBM
mainframe computer systems running under the
OS/VS2 MVS operating system should be
developed. The expert system will utilize
performance data logged by the standard MVS
software monitors such as SMF, RMF, GTF and the
CICS monitoring facility. The expert system will
analyze this data and report-on the inefficient usage
and performance degradation of the system. The
expert system will identify exception events and
provide the most likely cause of the event, together
with the actions recommended to remedy the
situation. The knowledge embedded in such a system
will represent the skills of the most expensive and
scarce programmers in the computer industry.

In order to evaluate the feasibility of this approach,
three prototypical expert systems have been
developed. Each assesses the ASM or Auxiliary

Storage Management component of the OS/VS2
MVS operating system. The placement and size
allocation of the data sets on the DASD devices
within the system configuration are evaluated,
possible system bottlenecks are highlighted, and
recommendation to improve system performance are
made.

The first expert system developed makes use of
Goldworks, an expert system development tool, or
expert system shell based on Golden Common Lisp
software. The second uses the environment provided
by Arity Prolog, an extended version of the Prolog
programming language. The final expert system has
been developed using a procedural language, Modula-
2, to mimic the actions of the Al languages.

This paper evaluates the relative applicability and
suitability of each of the three approaches to the
particular problem area under consideration.

Speeding Up Ray-Tracing

R F Breedt
CSIR

Abstract

Ray-tracing is an clegant approach to realistic image
generation. Shadows, reflections, transparency and
other visual effects can all be handled in an integrated
way. However, being a brute force method, ray-
tracing is a very slow process. Speed-ups can be
achieved by exploiting the inherent parallelism of the

process and by using approximate data structures.

This paper introduces the concept of ray-tracing and
then discusses various software and hardware
solutions for reducing the time complexity of ray-
tracing.

Image Processing Applications on the Transputer

N Cooke
Rhodes University

Abstract

This paper describes an investigation into the
application of Image Processing techniques on a
transputer network hosted by a PC-AT. The research
concentrates on identifying an appropriate

Quzstiones Informaticz 6 4 1989 144

distribution of tasks between the network and the
80286 processor for Image Processing applications.
The major considerations in the investigation are
benchwork of standard Image Processing techniques

on the two processing systems and the comparison
of their architectural features which support Image
Processing. To complement the investigation, a
system has been developed for displaying images
from either of the processors with the aid of an

Enhanced Graphics Adapter. The results of the
research are used to draw conclusions about the
viability of this hardware configuration as an Image
Processing workstation.

EXPROG: ’n Outomatiese Programmeringstelsel

J P du Plessis

Universiteit Oranje Vrystaat

Abstract

EXPROG is ’'n outomatiese programmeringstelsel
wat Pascal programme genercer. EXPROG maak
gebruik van die kennis-gebaseerde benadering tot
probleemoplossing. Gevolglik besit EXPROG ’n
verskeidenheid soorte (tipes) kennis wat deur middel
van verskeie voorstellingsmetodes, bv. reéls, rame en
EXPROG definisies, voorgestel word. Die gebruiker

beskryf, in Engels, die spesifikasie van die verwagte
program aan EXPROG. EXPROG redeneer dan met
behulp van sy bestaande kennis totdat 'n algoritme
gekonstrueer is wat voldoen aan die spesifikasie soos
verskaf. Daarna word die algoritme gekodeer in
Pascal om sodoende die verwagte program daar te
stel.

A Modula-2 Implementation for the Transputer

W J Hayes
CSIR

Abstract

This paper reviews message passing techniques for
communication ‘between processes. An
implementation of Modula-2 for the Transputer is

then given. Finally, added features to Modula-2,
providing concurrent programming and message
passing facilities, are discussed.

Analytic Modelling Approaches for DASD Subsystems

H Joubert

Modelling of Shared Resources in Computer Systems: The Multiserver Station
with Concurrent Customer Classes

S Crosby
University of Stellenbosch

Abstract

With the sponsorship of the SA Post Office and
Semantyx (Pty Ltd.) a group of students at the
University of Stellenbosch is undertaking research
into the modelling of DASD subsystems of large
computer systems. Research involves the
investigation, application and development of
appropriate mathematical techniques to model DASD

Quastiones Informaticz 6 4 1989 145

subsystems to a high degree of accuracy. The group
will produce a modelling package with a graphics
interface based on existing windowing software,
which will allow easy specification and modification
of models.

Performance monitoring data from the DASD
subsystem to be modelled will be used for automatic

construction of the model, and results of the model
will be displayed graphically.
Two papers will be presented, which will give an

overview of the project and cover in some detail the
existing techniques for, and proposed research into,
mathematical modelling of DASD subsystems.

A Survey of Standards for the Exchange of Digital Geographical Information

A Cooper
CSIR

Abstract

There are a number of countries and international
organizations who are developing standards for the
exchange of digital geographical information. Some
of these standards attempt to cater for all types of
geographical information while others are aimed at
specialized subsets of geographical information, such
as cadastral or topographic information. While some
standards have been implemented, none of them have

been tested completely.

The author has been involved in drafting the South
African exchange standard and has held discussions
with people involved in the drafting of the standards
of the United States, the United Kingdom and the
International Hydrographic Organization. This paper
will discuss these and other exchange standards.

Parallel Process Placement

C Handler
Rhodes University

Abstract

This paper investigates mcthods of automatic
allocation of processes to available processors in a
given network configuration.
The major considerations which have been addressed
in deciding upon a particular allocation scheme are:
the number of processes to be allocated versus
the number of processors available in the
network;
the computing power of each processor;
the work load of each process; and
the interdependency between processes, e.g. the
use of shared variables and the degree of inter-
process communication.
The research work involves the implementation and

testing of various algorithms for optimal process
allocation, as well as the gathering of performance
statistics during program execution for use in
improving subsequent allocations.

The system has been implemented on a network of
loosely-coupled microcomputers using multi-port
serial communication links to simulate a transputer
network. The concurrent programming language
Occam has been implemented replacing the explicit
process allocation constructs with an automatic
placement algorithm, enabling the source code to be
completely separated from the hardware
considerations.

A Knowledge-based Design Environment for Information Systems

J Kambanis
University of South Africa

Abstract

This paper describes the functionality and architccture
of an Information Systems design environment
which is based on a Semantic Data Model. Recent

Quastiones Informatice 6 4 1989 146

research in Software Engineering has recognised the
promising possibilities of using Knowledge Repre-
sentation techniques from Artificial Intelligence, in

modelling Information Systems. The environment
described is based on this approach. It integrates User
Interface techniques used in Computer Aided Soft-
ware Engineering and Knowledge Acquisition
Environments to support modelling of Information

Systems. Knowledge representation is based on the
Taxis language development at the University of
Toronto. The architecture of the environment is
aimed particularly at maximising its generality and
extensibility.

The Synthesis and Processing of Waveforms to Generate Musically Interesting
Sounds

A J Kesterton
Rhodes University

Abstract

Audio frequency sound of musical interest can be
generated by converting a set of data from the digital
to the analog domain. Various standard methods exist
to generate the data and alter it to create more
musically interesting sounds. These methods can be
implemented in hardware or software or both.

This paper gives details of Frequency Modulation
and Additive Synthesis algorithms being
implemented entirely in software to generate sound
data. The implementation of various filters and the

direct manipulation of the digital data are also
discussed. The downloading of the resultant data,
using the MIDI protocol, to a sampler (a type of
digital music synthesizer) to perform the conversion
to the analogue domain is described.

The software is designed to run both as a stand-
alone system and as part of a Music Network system
being implemented at Rhodes. The Network uses the
XINU real-time operating system and Ethernet
hardware on IBM PC look-alikes.

Sellulére Qutomate

L Kotzé
Randse Afrikaanse Universiteit

Abstract
Een- en twee-dimensionele sellulére outomate word
gedefinieer. Verskillende eienskappe van sellulére
outomate word ondersoek; onder andere die volgende:
— Die patrone wat voortgebring word deur die
outomate onder verskillende begintoestande.
— Die ooreenkomste tussen twee- en meer-

toestand outomate. Die ooreenkomste tussen
sellulére outomate en PASCAL se drichoek.
— Die afledingsvermo# van sellulére outomate.
Toepassings vir sellulére outomate in die fisika,
chemie en ander velde word bespreek.

An Expert System for Diagnosing, Tuning and Optimising Computer Systems
Performance

W H Kotze
University of Stellenbosch

Abstract

The expert system VAXEXP evolved from the need
to support the systems and performance management
of large and complex VAX systems. There was also
a need to provide some training support for junior
systems staff.

Quastiones Informaticz 6 4 1989 147

The initial starting point is the VAX system(s)
where a combination of Fortran, VAX DCL and
System Services collects the required data and
concentrates it into one large ASCII file. This is
ported across t0 a microcomputer supporting Arity

Prolog under MS/DOS 3.1. VAXEXP is planned to
consist of three main modules, the first of which,
called SYSGEN, will provide information on the
usage of the systems parameters, indicate the
implications of the value of a particular parameter,
and lastly uses the data from the VAX to suggest a
better suited value for a parameter. This module is
nearly finished and contains some 350 rules.

The second main module, called PERFLEARN, is
designed to be an aid in building up expertise that

will enable VAXEXP (and the system manager) to
turn a qualified statement into a quantified rule, e.g.
“the direct I/O is EXCESSIVE” — “If the direct I/O
is xxxx THEN it is EXCESSIVE”.

The final module, called PERFEVAL, will actually
make extensive use of the data from the VAX to
identify and diagnose existing and potential problems
and where possible will also suggest a remedy. There
are some 500 potential rules for this module.

Query Processing in Distributed Database Systems

S M Lamprecht
University of Stellenbosch

Abstract

Query processing in distributed database systems
involves the determination of an execution strategy.
An execution strategy is a sequence of operations
that must be performed on the database in order to
obtain the required result to solve the query. For a
given query several execution strategies can be
ascertained. It is therefore a very important problem
in query processing to acquire the optimal exccution

strategy. An execution strategy is optimal with
respect to a selected cost function. This cost function
is determined by several different factors. One of the
most important factors in the distribution
environment is the cost of transmitting data between
different computers. Several optimisation techniques
exist which optimise data transmission cost. Some
of these optimisation techniques will be presented.

Exploiting Redundancy in Knowledge Representations

R Layton
University of the Witwatersrand

Abstract

Most complex representational formations embody
both explicit and implicit redundancy. Much effort
has been extended at both identifying this redundancy
and reducing it to some minimal form.

Isolated cases have proposed that redundance be
exploited within specific areas of knowledge such as
machine vision and sensor-based diagnostics but no
overall model has yet been proposed.

A model is proposed that exploits both implicit and
explicit redundancy in order to maximise
consistency-checking and to facilitate multiple
viewpoints in a single representation. This leads to a
conclusion that, whereas a universally accepted
representation cannot exist, a hybrid model with
controlled redundancy exhibits properties required of
such a universal representation.

A Communication Kernel for a Distributed Database System

M D Meumann
University of Stellenbosch

Abstract

The major components of a Distributed Database
Management System comprise, amongst others, a

Quastiones Informaticz 6 4 1989 148

network facility enabling access to remote sites and a
concurrency control mechanism to handle and

synchronize distributed transactions. These two
fcatures are the major components of the
communication kernel of a DDBMS currently under
dcvclopment at the University of Stellenbosch using
the XENIX operating system. This talk will describe

the networking features being included in the XENIX
operating system using ArcNet communication cards
and the concurrency control being implemented based
on a conservative timestamp algorithm.

An Algorithm Development System

C C Pienaar
University of Stellenbosch

Abstract

A short informal introduction is given to the weakest
precondition methodology for developing an
algorithm and a proof of its correctness, with
reference to other popular programme verification
mcthods. An example of algorithm development
using weakest preconditions is presented, with

comments on the role an interactive, computerized
development system could play in this process.
Finally, an overview is given of some of the
problems encountered in automating such a
mecthodology.

Parallelle Logika Programmering

A E G Potgieter

University van Pretoria

Abstract

Daar is verskeie benaderings tot die parallelle
verwerking van logikaprogramme waarvan EN-
parallelisme, STROOM-parallelisme en OF-
parallelisme die belangrikste is. Tydens EN-
parallelisme kan datakonflikte ontstaan, en
gesofistikeerde kontrole word benodig om hierdie
konflikte te verhoed.

Huidige navorsing in die gebruik en implementasie

van parallelle logika tale sal bespreek word met
spesiale verwysing na die implementasie van EN-
parallelisme in J S Conery se EN/OF prosesmodel,
en die implementasie van STROOM-parallelisme in
PARLOG, Concurrent Prolog en GHC.

'n Stelsel wat ontwikkel is op ’n netwerk van
transputers, waar STROOM-parallelisme verkry word
deur pyplyning, sal verder bespreek word.

Formalisation of the Entity-Relationship Model

H H Rennhackkamp
University of Stellenbosch

Abstract
The entity-relationship data model was originally
presented by Chen; and many extensions and
improvements have since been proposed. It is an
improvement on the relational data model in that data
is viewed in the more natural manner as consisting
of entities and the relationships between them, each
with their descriptive attributes.

The relational data model has been formalised in

Quastiones Informatice 6 4 1989

149

many ways; from the original formalisation by its
presenter Codd, in terms of data objects, operations
and integrity rules. This formalisation has since been
improved a number of times; also by Jacobs in terms
of an extension of first order logic.

A similar extension of first order logic is presented
as a formalisation of the entity-relationship data
model.

Computer Animation and Applications

CF Scheepers
CSIR

Abstract

Developments in low-cost high-end graphics
workstations have placed the many applications of
computer animation within our reach. A combined
use of these workstations with current video
technology provides enough “hardware” capabilities
to do animations. Animation software systems
developed overseas are also available, thus only a
lack of funds and possibly of imagination now

prevent those interested to create their own computer
generated animation sequences.

This paper will discuss computer animation and
associated problems. Various applications of
computer animation are also mentioned, specifically
in education, entertainment, advertising and
visualization in science. The discussion will be
highlighted with a computer animation presentation.

Intelligent Computer Aided Instruction

T Thomas
University of South Africa

Abstract

The aim of intelligent computer aided instruction is
to create systems that can teach and adapt to students
on a one to one basis as a human teacher can in the
same situation. Each teaching step is not hardcoded
into the system but is decided upon based on the
student’s model at a particular time and the work that
has been done previously. This paper discusses
intelligent computer aided instruction in general and
refers to a proposed system the author hopes to build
to implement some of the ideas of intelligent
tutoring. The first part of the paper discusses what

intelligent CAI is and how it differs from
conventional CAI. A discussion of the use of the
overlay method for student modelling follows with
reference to the work that has been done and the work
proposed. The use of artificial intelligence techniques
in the creation and use of teaching strategies based on
the overlay model is then discussed with a
description of some of the work planned in this area.
The necessity of an authoring system that can create
intelligent systems is then introduced.

Distributed Database Recovery

H Viktor
University of Stellenbosch

Abstract

The NRDNIX-system is a distributed database
management system prototype currently being
developed at the University of Stellenbosch. One of
the main advantages of a distributed database over
centralized counterpart is that nonfailing sites
continue operating in the event of other site
failure(s). This complicates the recovery process and
it is therefore essential that robust recovery
techniques must be implemented that ensure the
global consistency of the database at all times. This
is achieved by combining local recovery techniques

Quastiones Informatice 6 4 1989 150

and additional methods developed to facilitate
distributed recovery.

In NRDNIX data is dynamically duplicated as
needed. It is essential that these multiple copies have
to be kept consistent even in the event of failure of
one or more sites. This further complicates the
recovery process and emphasises the need for the
provision of a globally consistent view of the
database at all times.

An overview of the factors which have to be
brought into consideration when developing a

globally consistent system is given, as well as the
recovery techniques implemented to provide a

globally consistent distributed database.

Research on Intelligent Computer-Assisted Instruction (ICAI)

J van den Berg
University of Pretoria

Abstract
ICAI research lies at the intersection of the domains
of artificial intelligence, cognitive psychology and
computer aided instruction. The aim of ICAI is to
develop adaptive instructional systems based on a
diagnosis of the student’s lcarning necds. Current
ICAI systems use Al programming techniques and
are usually implemented in languages such as LISP
and Prolog. These systems usually consist of

a problem-solving or expertise module

a student model

a tutorial module

a communication module

Due to the size and complexity of ICAI systems,

most current systems only focus on one or two of
the above mentioned components.

The aims of this research are
to critically evaluate the theoretical base,
instructional principles and development process
used in current ICAI systems
to identify related areas of study from which
known principles can be used in the
development of ICAI systems
to propose a methodology for designing and
implementing ICAI systems as complete
instructional systems
to implement aspects of the research in a
practical ICAI system
to identify an area of ICAI (or a related topic) for
PhD studies.

An Overview of Image Processing Environments

J Smit
CSIR

Abstract

The last two decades have seen image processing
systems migrate from mainframe to workstation and
micro to be used for an ever-increasing range of
applications. This paper gives a brief overview of
image processing applications and techniques. It

traces the development of image processing
environments, discusses some of their design issues
and finally describes the functional components of an
image processing environment.

A Frame- and Rule-Based Approach for Developing Medical Expert Systems

J van Jaarsveld
CSIR

Abstract

To date most local expert systems use the rule-based
approach and few incorporate the frame approach.
This paper describes the development of a medical
expert system for interpreting the effects of
hypertension using a combination of frames and
rules. The structure and properties of the system are

Quastiones Informaticz 6 (4) 151

described by using the Arity Prolog/Expert
Development System. In addition, the inference
process linking the frames and the rules is discussed.
Finally, some aspects of the knowledge engineering
experience are detailed.

Determining Truth Values of Quantified Statements

A P Viljoen
University of South Africa

Abstract
In classical logic there exists a standard procedure 10
follow when one wants to determine the truth value
of a given formula in a specific interpretation.

A new procedure, equivalent to the standard one, is
proposed. This procedure also allows the calculation
of truth values for formulas containing fuzzy

predicates. A fuzzy predicate is interpreted as a fuzzy
subset of a universe of discourse. Limiting the
interpretation to a finite set, the quantifiers “for all”
and “there exists” as well as nonstandard quantifiers
like “few”, “many” and “most” can be handled in a
uniform manner,

The Application of Real-time Design Techniques to Simulation

G C Wells
Rhodes University

Abstract

This paper discusses the application of the Ward and
Mellor design methodology for real-time systems to
the field of simulation. The tools and heuristics used
by Ward and Mellor are extended to provide a useful

Quzstiones Informatice 6 4 1989 152

methodology for the design of real-time simulations.
This is illustrated by the example of a real-time
simulation of a manufacturing plant and process
control system.

Software Design to Meet Third World Requirements:
An Experimental Software Engineering Approach

Philip Machanick
Department of Computer Science, University of the Witwatersrand, Johannesburg, 2050 Wits

Abstract

Appropriate technology refers to technology appropriate for use in less developed parts of the world, especially
the Third World; this paper raises some problems in adapting a definition of appropriate technology to com-
puter software. A partial solution, a strategy called experimental software engineering, is introduced. The
potential of this solution is demonstrated by a case study, in which software for medical education is devel-
oped. The result is a clearer understanding of both appropriate technology and design of software for usability.
Keywords: appropriate technology, software engineering, human-computer interaction, medical education

Received September 1988, Accepted January 1989
1. Introduction

Computers are becoming increasingly widely used in
technologically developed countries, such as the
USA. An important part of this trend is the migra-
tion of computers to contexts where users are
technically naive. This move of computers to the
mass market has yet to impact less developed parts
of the world. For example, Gambia has been reported
as having no computer dealers at all in 1987 [5].

This paper examines some problems in fitting
computers to needs of third world countries, from the
starting point that dropping prices must eventually
overcome the problems such as lack of foreign capi-
tal which inhibit the distribution of computers to
poorer parts of the world. The fact that computer
hardware is becoming more affordable does not mean
computers will meet the needs of a third world coun-
try: the needs of the new society should be taken
into account.

Much research into adapting other technologics to
the third world has already been undertaken [9, 16].
Appropriate technology is the name broadly given to
technologies considered suited to less developed soci-
eties. Mostly, “appropriateness” is measured by
simplicity, and avoidance of high capital costs.
Where computers are concerned, some thought needs
to be given to the definition of appropriateness,
since computcrs are a relatively advanced technology
yet they are increasingly becoming affordable. In
order to simplify the problem, the issue addressed

here is how computer technology may be made to fit

a specific, accepted definition of appropriate technol-
ogy. This paper is further restricted in its scope in
looking at a case study of a single application. In
addition, the reasons for choosing the application
domain are not presented.

The major focus of the paper is introducing and

Quastiones Informatice 6 (4) 153-161, April 1989

evaluating a strategy called experimental software
engineering (ESE). ESE is a strategy for deriving
the requircments when they are not clear, especially
when the users have had little exposure to comput-
ers. ESE emphasizes usability, and placing the user
in control of both the requirements and the finished
product.

The next section looks in more detail at how a
dcfinition of appropriate technology may be applicd
to computers. In particular, criteria for deciding
whether a computer approach is appropriate technol-
ogy arc presenied. The following section introduces
ESE, and explains how it relates to the problem of
meeting the criteria for appropriate technology.
From this start, a case study, in which the require-
ments for a tool for medical education are developed,
is presented to illustrate how ESE may be applied.
This case study is used to demonstrate how ESE
brings out issues of usability, and gives the user
control of the development process. In conclusion,
ESE is evaluated in terms of appropriate technology
concerns, and lessons which apply more generally to
software cnginecring are considered.

2. A Definition of Appropriate
Technology

Appropriate technology is technology specially
adapted or designed for less-developed (especially
third world) countries. Mostly, research into appro-
priate technology has revolved around low
technology industries and agriculture. It is not obvi-
ous how experience of this kind may adapt to a
relatively sophisticated technology such as the com-
puter. For this reason, some attention is given to
adapting an existing definition of appropriate tech-
nology to this new arca.

d1 low investment cost per workplace

d2 low capital investment per unit of output

d3 organizational simplicity ~ @eneral definition

d4 small-scale operations ™

d5 high adaptability to particular cultural or social environments
d6 sparing use of natural resources

d7 very low cost of the final product

d8 intermediate level of technological sophistication

d9 particularly easy to use by unskilled people

speciﬁc criteria

d1, d2, d6, d7|c1 hardware should be low in cost
d3, d4|c2 multiuser or networked configurations should be avoided
d8, d9|c3 the software should be easy to use

d3, d4|c4 minimal training should be required

d5|c5 the user interface should readily adapt to new languages

d5|c6 the functionality should easily adapt to new contexts

d1, d5|c7 approach should apply to wide range of people, localities
d1, d2, d7c8 the cost per user should be low

A definition of appropriate technology (9] is used to derive criteria directly related to computer applications.

Figure 1: Criteria for computers as appropriate technology

A specific definition, presented in figure 1, is
used as a starting point. This section derives criteria
for evaluating computers as appropriate technology
from this definition. Derivation of these criteria as
illustrated in figure 1 is not presented in detail here
(see [13]), since the major thrust of this paper is a
description of the software development strategy
employed. Instead, the implications of the criteria are
considered here.

The first criterion (cl) — that the hardware should
be low in cost — is derived from no fewer than four
points of the definition, yet it is considered the least
restrictive. Computer hardware is continually drop-
ping in price; today’s expensive workstation is
tomorrow’s personal computer. Even in an area as
sophisticated as artificial intelligence (Al), tools for
low-cost equipment such as IBM PCs and Apple
Macintoshes are beginning to rival those on rescarch
machines of the last decade [12]. Low cost, then,
should be seen as relating to a specific project, rather
than as an inhibiting factor on research.

The next criterion (¢2) relates specifically to
reducing the complexity of the equipment. Net-
worked or multiuser configurations will not always
be complex — so exceptions should be allowed. For
example, the AppleTalk network is a very cheap and
simple way of sharing resources such as laser print-
ers. Howcever, even such a simple network can
become complex to use when more sophisticated ser-
vices such as file servers arc added [11].

The next criterion (c3) — the software should be
easy to use — requires some thought, since ease of

Quastiones Informatice 6 4 1989

use is not trivial to define. This point is further
addressed in the rest of the paper. If the ease of use
criterion can be met, the criterion of requiring mini-
mal training (c4) should not present serious
problems. Both criteria need to be specified concrete-
ly, in the context of a specific project. For example,
when Apple launched the Lisa (the predecessor of the
Macintosh), it was claimed that a novice could learn
to use the machine in half an hour. An experiment
has found that this claim is not literally true [6] -
although some critics of the experiment have com-
plained that its findings are unfair in some respects

[10, 15].

The next three criteria (c5 to ¢7) relate to adapta-
bility. This fact that three criteria are devoted to
adaptability indicates how important this issue is.
First world countries can generally rely on large
markets to absorb development costs; third world
countries often either have small populations or
wide regional differences.

The final criterion (c8) — the cost per user should
be low — also relates to spreading the usability of
the software as widely as possible. A diskette costs a
few cents, and hardware is becoming cheaper. Clear-
ly, any mcasure of the cost per user must be heavily
inflnenced by how widely the cost of the develop-
ment of the software can be spread.

The criteria can be summarized in two major
points: placing the user in control and spreading the
uscfulness of the software as widely as possible.
Both of these points are captured (if not in full) in
the concept of usability.

initial requirements

modified or corrected
requirements

lessons from current attempt

« test prototype on users
« identify issues for new version of requirements

conventiona sofiware
sngineering

Each iteration leads to further clarification of the requirements, based on experience with a prototype for the
current version of the requirements. Ultimately, should the requirements be sufficiently clear, a
conventional software engineering strategy can take over. Ideally, issues elucidated should help in later

projects as well.

Figure 2: Experimental software engineering

3. Experimental Software
Engineering

One of the most difficult issues in software engineer-
ing is accurately capturing the user’s requirements
[24]. The user usually does not have a clear under-
standing of what a computer can do, while the
software engineer may not have much knowledge
about the application domain. In the context of
appropriate technology, this problem is exacerbated
in two significant ways.

Firstly, there is little experience in implementing
software as appropriate technology. Such work as
there has been has either been in the form of isolated
projects [1], or of investigations into general policy
issues [16]. No serious attention has been given to
the problem of the issues in software engineering of
meeting criteria for appropriate technology.

Secondly, potential users have had little exposure
to computers, which increases the already serious dif-
ficulty of obtaining accurate requirements from the
uscrs.

In defining a strategy for dealing with these prob-
lems, two sourccs arc drawn on in this research:
other expericnce with software engincering in which
usability has played a major role, and expericnce in
an area in which software is created without a clear
initial idea of the requirements. The example of usa-
bility is the 1984 Olympic Mecssage System; the
latter example is programming in artificial
intelligence.

The Olympic Message System — which allowed
athletes and other interested parties to leave messages
for each other — was designed with usability as a cen-
tral issue. The underlying philosophy was one of

Quzstiones Informatice 6 4 1989

using behavioural measures to ascertain the accepta-
bility of the system to the user. Although large
numbers of people were used to test the system at
later stages, the methodology was relatively infor-
mal. The strategy used deviated from the classical
model of the software life cycle — sometimes known
as the waterfall model [2]. The design and require-
ments analysis were carried through to relatively late
stages. As features were implemented, they were
tested on potential users for acceptability, and the
system was changed as problems were identified [8].
This is in contrast to the waterfall model, in which
software development is scen as consisting of largely
non-overlapping stages.

The Olympic Message System is an important
example, because it illustrates how far system design
and construction can be driven by usability, especial-
ly in a nontrivial program. The users were from a
wide range of backgrounds, and the software worked
well and was accepted positively by the users [ibid.].
However, the potential of applying the experience of
this project directly to other areas is limited in two
respects. The initial functionality was reasonably
clearly specificd — the details were the real problem.
Also, the implementers had access to a table-driven
tool for generating user interfaces, which considera-
bly increased their flexibility in changing the design.
This tool was specifically intended for communica-
tions applications; such a tool may not necessarily
be easy to construct for other applications.

Al is an interesting source of ideas for dealing
with the issue of constructing software where the
initial idea of the requirements is extremely vague.
Some Al researchers view programming in Al as an
experiment, in which the requirements are clarified.

r1 free switching between gathering evidence and forming, confirming and
rejecting hypotheses should be supported
r2 no order should be imposed on the specific hypotheses and evidence which

are considered

r3 association of hypotheses and evidence should be explicit
r4 an ordered record of the hypotheses and evidence considered should be kept

r5 the system should be non-judgmental

ré solving of problems meaningful to the learner should be supported
r7 the student should supply medical knowledge for solving a given problem by
some approximation to building an expert system — the system should not

contain any medical knowledge

r8 ease of use should be emphasized; this implies that user interface may become

a major issue

r9 inference should be avoided: the student, not the program, should find the

solution

These requirements, which were the starting point for the experimental software engineering strategy, are
based on the educational approach called knowledge engineering based learning (KEBL) as well as the

criteria for appropriate technology of figure 1.

Figure 3: Initial requirements

Al is scen by some as an empirical science [17], in
which programs produced by successive researchers
form data points in a grand experiment [4]. The
long-term outcome is an enhanced understanding of
human intelligence and what computers can do. Pro-
gramming in an experimental fashion rcquircs
powerful tools and techniques. Examples include the
Interlisp programming environment [23] and struc-
tured growth, in which modules of a program may
be rewritten as more sophisticated possibilitics are
considcred feasible [21]. Some critics of Al have
gone as far as to claim that the development of tools
which support programming without a clear idea of
the requirements is the major contribution Al has
made [7]. Some lessons from Al research have found
their way into software engincering environments,
such as Cedar [22] and Pccan [20].

Al is however not always a suitable basis for con-
structing robust software, which is intended for
widespread use. The lack of a precise specification of
requirements makes testing difficult, and is likely to
cause problems in the long term with maintenance.
This claim is borne out by software engincering
research which has measured the cffects of replacing
the requirements and design stages of the waterfall
model by prototyping. The general finding is that
the lack of formal documents cases problems with
the later stages of the project, from integration
onwards [3].

For developing software as appropriate technolo-
gy, some of the ideas from the Olympic Message
System and from AI can be put together. The first
principle is to cmphasize usability. To this end,
bchavioural measures of how the users relate to the
software should be used. The second principle is that
the requirements should be derived by a process of a

Quastiones Informatica 6 4 1989

succession of prototypes, each of which can be seen
as a data point in an experiment to determine the cor-
rect functionality and user interface of the program.
The carlicr prototypes should be constructed using
tools which allow maximum flexibility in changing
the approach — in the Al tradition — while later pro-
totypes should use increasingly rigorously specified
languages in the spirit of soltware engincering. The
outcome of this process, which is given the name
experimental software engineering (ESE), is a pre-
cise specification of the requirements which may be
uscd in a conventional software engineering project
1o implement the software.
The ESE strategy is summarized in figure 2.

4. A Case Study: A Tool for Medical
Education

The casc study presented here illustrates how ESE
may be applied in practice. The example used is the
specification of requirements for a tool for medical
cducation. An initial attempt at specifying require-
ments for this tool is based on the criteria for
appropriate technology of figure 1. The tool is
intcnded to be an approximation to an expert system
shell, which will support learning medical problem
solving in the same sense as Logo supports learning
mathematical problem solving [18]. The philosophy
is one of lcarning by doing, with the learner in con-
trol. The learncr is placed in the role of a knowledge
cngincer, although in a much simplified version of
an cxercisc in expert system construction. A full
explanation of this step of the project is beyond the
scope of this paper, which focuses on the application
of ESE. This scction presents a series of experi-

kahepatoma

support

f

i
J

refute

g

delete link

delete

signs and symptoms

causes

[abd swel ||

|] edit name
Click on one of these boxes to add a new name (RETURN when done).

(a) The top half of the screen is used for adding, deleting and editing names — as well as making and

breaking links. Here, a name is about to be edited.

hepatomeg I¥ jaundicey’

scan ascitesy shangaan+y’
exudatev’ dilated vv chronicy
+histov’ test aty alcoholy’
afpv’ scam/ jaundicev’

hepatomal cirrhosis |hepatitis | |

bruitx ggtx ggtx

chronicy’ hver failx liver failx
spleenx exudatey’
spidersx +histov’
gynx hepatomeg v

hepatitis ineph syn
th peri cirrhosis
hepatomd

(b) The bottom half of the screen is used for activating and deactivating causes (hypotheses), and marking
signs or symptoms as present or absent. The section of the screen illustrated here contains a table of all
causes on the right; those in grey are not currently active. The active ones appear in white on black writing
in a report to the left of the table, with evidence for the above and evidence against below (based on the
student’ s rules). A cause is activated or deactivated by selecting its name in the table.

Figure 4: The LISP prototype’s user interface

ments which were carried out in developing the
requirements, starting from the initial requirements
in figure 3. '

The first experiment was an initial attempt at
investigating the implications of the requirements.
The tool used was a program called CLASSIFY, a
simple decision tree-like approximation to an expert
system shell, which is supplied with Prolog-86 (an
IBM PC implementation). The outcome of this
experiment was used to validate the initial require-
ments; the requirements were then more fully tested
using a program written in OPS5 on an Apple Mac-
intosh (which is used for subsequent prototypes as
well). The next version of requirements — in keeping
with the philosophy of moving to tools which are
increasingly useful for rigorously defining the beha-
viour of the program — was tested by an experiment
with a prototype written in LISP. The final version
of the requirements was prototyped in Pascal.

The CLASSIFY experiment mainly established
communication with medical educators. A group of
six people (three educators, two registrars and a med-
ical student) which was presented with the KEBL
idea was able to see merit in it, but agreed that
CLASSIFY was not usable. The sofltware proved to
be limiting, and difficult to use. In particular, the

Quastiones Informaticz 6 4 1989

fixed order in which the program asked questions
based on its decision tree caused difficulty. Since this
aspect of the program conflicted with the require-
ments, the finding was taken as confirmation that
software conforming to the requirements should be
constructed for another experiment.

The next prototype constructed was written in
OPSS5, in order to facilitate flexibility in changing
the control strategy as new ideas were offered by
medical educators. This prototype more fully imple-
mented the requirements. It allowed the student to
make supporting and refuting links between evidence
and hypotheses, and to supply questions which the
program could ask to find out if evidence was
present. Once the student’s rules had been construct-
ed, the program would ask the student to give names
of evidence. The student determined the order of
inputs, in keeping with the learner in control philos-
ophy. The program did not perform any inference —
the idea was the student should learn to solve a prob-
lem in a systematic way by building a computer
representation of the steps taken in finding the solu-
tion. The student could ask for a report of evidence
for and against each hypothesis, and had to decide
when to stop, as well as what the solution was. The
option of switching to having the program ask the

free switching between gathering evidence and forming, confirming and
rejecting hypotheses should be supported — to this end, a permanent report on
evidence for and against active hypotheses should be displayed, and
hypotheses and evidence should be explicitly activated and deactivated

no order should be imposed on the specific hypotheses and evidence which

an ordered record of all actions taken by the student should be kept — including
choice of hypotheses and evidence to consider, and the order of rule formation

r1
r2
are considered

r3 rules should specify evidence as supporting or refuting hypotheses
r4

r5 the system should be non-judgmental

ré solving of problems meaningful to the learner should be supported
r7

the student should supply medical knowledge for solving a given problem by
some approximation to building an expert system — the system should not

contain any medical knowledge

r8. ease of use should be emphasized: the use of the keyboard should be

eliminated as far as possible

r9 inference should be avoided: the student, not the program, should find the

solution

ri0 only one mode should be used for both problem-solving and knowledge

acquisition

ri1 signs and symptoms should be automatically considered present when brought

into consideration

ri2 allowance for a range of attributes in addition to present or absent should be

considered

The experiments with LISP KEBL led to a further revision of the requirements, in the final application of

the experimental software engineering methodology.

Figure 5: The final requirements

questions the student had supplied for evidence was
allowed, to see whether the students would readily
adopt the learner in control strategy. The program
made use of the underlying LISP system’s listener
window to record the student’s steps, and the stu-
dent’s rules could be saved to disk for reuse or
evaluation.

The OPSS prototype was tested with a group of
47 first-year students, who were given simple prob-
lems to solve. Informal observations were the main
measure of the usability of the system. In addition, a
survey of the students’ attitudes was carried out at
the end of the exercise, and thcy were given the
opportunity to discuss their impressions with a
group of medical educators. The survey results were
generally positive; however, the survey was taken
just before a long weekend, and only 51% of the stu-
dents participated, so the results cannot be considered
accurate. Of more significance are the observations
of the students’ use of the program. Typing turned
out to be a major problem: the students were unable
to make reasonable progress without intervention. In
addition, they were only too willing to allow the
computer to do the work. The “lcarner in control”
mode of the program was generally avoided, and the
mode in which the computer asked the questions was

Quastiones Informatice 6 4 1989 158

immediately used.

Based on these points — and other observations —
the requirements were modified for the next proto-
type. The biggest innovation was the introduction of
a mouse pointing device to make links; the only use
of the keyboard according to these new requirements
was to be in entering new names. The learner in con-
trol aspect was further emphasized, by removing the
possibility of having the computer ask questions.
Three other changes were matters of detail. A report
indicating the evidence for and against each hypothé-
sis under consideration was to be maintained at all
times on the screen. In addition, a full record of the
steps taken by the user was to be kept on disk, to
allow retracing of the user’s steps. This is in con-
trast to the OPSS prototype, where windows on the
screen necded to be explicitly saved, and the exact
order of the user’s steps was not recorded.

The next prototype was written in LISP. The ver-
sion of LISP used allowed incremental compilation,
which made for flexibility in accommodating the
wishes of the three medical educators who tested ear-
ly versions of the prototype. The essential
functionality had ben fixed in the previous experi-
ment, and the issue being investigated was the user
interface. The LISP implementation had reasonable

& File Edit Attributes Windows
L3 [non pulsatile fontanel ® fit - " tonin
pedsl edema * age months !
D petechies trauma
] photophobia | N tumour
5 ph;:toghobia '\J//' <} tumourtrauma
petechie P
. non pulsatile fontanel o toxin))
eck stiff % pyrexial convulsions
e R I —
i‘llx"é'&iﬂ& age 15 months epilepsy
0 basal creps supports
o I meningitis g2
oNn ___
> headache (e age 15 months < Q
| age 15 months e fit
e fit
& o o o
epilepsy | meningitis add a cause |edd a cause |
K non pulsatile fontanel _O_-_ Q_ <>
- L
© 5 5 o J

The Pascal Program has only one mode, and the keyboard is not used. Names are loaded into signs and
symptoms (top left) and cause (bottom right) dictionaries from disk, and are brought into consideration

(into the middle part of the screen) by selecting them with the mouse. Causes are activated (i.e., become
active hypotheses) by selecting their names in the “in consideration” section, and then selecting a cause
position in a report (bottom). Names may be sent back to the dictionaries, and links are made or broken
using the icons in the centre of the screen. Lists may be of indefinite length, and can be scrolled in the

standard Macintosh style (using the mouse).

Figure 6: The Pascal prototype’s user interface

access Lo the Macintosh graphics toolbox; other lan-
guages such as Pascal were better in this respect, but
were considered less suitable for rapid prototyping.
The user interface of the program is illustrated in fig-
ure 4. For this implementation, a change in
terminology occurred: signs and symptoms replaced
evidence, and causes replaced hypotheses. The reason
for this change was to avoid a debate in medical edu-
cation research as to whether medical problem
solving was or was not hypothesis formation [14].

The program was initially tested in field studies at
Hillbrow Hospital, Johannesburg, using a total of
14 fourth-year and sixth-year medical students. Sub-
sequently, an experiment was conducted with 16
nursing sisters from the Soweto Community Health
Centres. In both cases, findings were based on infor-
mal observations. Despite the considerably reduced
reliance on the keyboard, typing remained a problem.
In neither the Hillbrow nor the Soweto exercises was
there time to train the users sufficiently in the use of
the keyboard; all typing was done for them. In other
respects, the program proved to be clumsy in detail,
though the overall strategy was acceptable to the
users.

It is intercsting to contrast the attitudes of the
medical students with those of the sisters, who had

Quastiones Informatice 6 4 1989 159

less exposure to technology. The medical students
were keen on setting up a computerized guru which
would find all the answers for them. One went as far
as to suggest that the computer could be linked to
laboratory equipment to save time in entering infor-
mation. The sisters on the other hand were more
sceptical. One expressed concern that using a com-
puter in a clinical setting would cause the patient to
feel neglected. Another argued strongly that the com-
puter strategy could just as easily be carried out on
paper. On the whole, though, most participants were
positive and indicated interest in seeing further
research.

The major weakness of the program was its use
of two modes: one for making and breaking links
(called knowledge acquisition) and one for activating
and deactivating causes (called problem solving).
Although these two modes were considered natural in
terms of the original intention to emulate an expert
system-building exercise, they were confusing to the
users. This finding is considered important for its
confirmation of earlier similar findings about the dif-
ficulty of using moded software [19]. In addition,
modes can be seen as contrary to the learner in con-
trol philosophy, in that they restrict the options
open to the user.

5. Evaluation of Experimental
Software Engineering

The research has only gone as far as a final version
of the requirements, with a matching prototype —
this time written in Pascal — which, it is hypothe-
sized, could form the basis for continuing with a
conventional software engineering exercise. These
final requirements are presented in figure 5; key
aspects of the Pascal program are illustrated in figure
6. The Pascal program has not been fully imple-
mented. However, the key elements of the user
interface are in place, and sufficient detail has been
implemented to make a detailed design reasonable
straightforward.

Further research is needed into how ESE interfac-
es to the rest of the software life cycle. In particular,
consideration should be given to including ESE
tools in a software engincering environment designed
to support later stages of the software life cycle.
Also, work on examining the cost implications of
ESE is needed. Since the ESE aims to increase the
accuracy of the requirements specification, it is rea-
sonable to suppose that the later stages — especially
maintenance — should be facilitated. However, this
claim needs to be justified by further research.

Nonetheless, the ESE case study has illustrated
how relatively computer-naive users can make a
meaningful contribution to specifying non-trivial
software, aimed at meeting criteria for appropriate
technology. In addition, some issues clarified by this
research are of wider application. Use of a keyboard
is considered to be an inhibiting factor for users who
are unfamiliar with technology. A modeless user
interface, in which the user is free to choose the
order of events, is found to be more intuitive than a
heavily moded one. Furthermore, a learner in control
strategy is found to be natural, and the learner should
not have the option of allowing the computer to
control the order of events. An important finding is
the usefulness of Al tools on relatively cheap com-
puters, especially as tools for ESE.

The extent to which these lessons apply generally
needs further research. It would be particularly inter-
esting to investigate whether the process of software
production could become appropriate technology, so
that third world countries could develop their own
software industries. The case study presented here
illustrates what can be achieved using relatively low-
cost equipment; further research should be possible
without losing sight of the intention of making the
results accessible to poorer parts of the world.

Acknowledgements
I would like to thank Conrad Mueller and Prof.

AM. Starfield, who supervised the research for a
Masters degree on which this paper is based, for their

Quastiones Informaticz 6 4 1989

helpfulness and encouragement. In addition, Dr
Andrew Truscott was very helpful in setting up the
experiment in Soweto. Ian McNairn, Prof Graham
Mitchell and Prof Pat MacPhail assisted in designing
and testing the LISP prototype. The students who
were prepared to be subjects of the experiments, as
wcll as those who assisted in setting up and running
the experiments, made the whole thing possible.
Scott Hazelhurst assisted in proofreading this paper,
and made helpful comments.

References

[1]1 B Auvert, P Aegerter, V Gilbos, E Benillouche,
P Boutin, G Desvé, M-F Landre and D Bos, [1986],
Tropicaid: Un syst¢me expert sur ordinateur portatif
pour I'aide a la décision médicale dans les pays en
développement, 6th International Workshop on
Expert Systems and Their Applications, 28-30,
Avignon, France. '

[21 B W Boehm, [1976], Software Engineering,
IEEE Transactions on Computers, 25 (12),
1226-1241.

{31 B W Boehm, T E Gray and T Seewaldt, [1984],
Prototyping Versus Specifying: A Multiproject
Experiment, IEEE Transactions on Software
Engineering, 10 (3), 290-303.

[4] B G Buchanan, [1982], New Research on Expert
Systems, Machine Intelligence 10 (ed.] E Hayes, D
Michie and Y-H Pao), Ellis Horwood, Chichester,
269-299. ‘

[5] P Byass, [1987], Computers in Africa:
Appropriate Technology? Computer Bulletin, 3 (2),
1987, 17.

[61]] M Carroll and S A Mazur,
LisaL.earning, Computer, 19 (11), 35-49.
[71J Doyle, [1985], Expert Systems and the “Myth”
of Symbolic Reasoning, IEEE Transactions on
Software Engineering, 11 (11), 1361-1374.

[81J D Gould, S J Boies, S Levy, J T Richards and
J Schoonard, [1987], The 1984 Olympic Message
System: A Test of Behavioral Design Principles of
System Design, CACM, 30 (9), 758-769.

[91 N Jéquier and G Blanc, [1979], Appropriate
Technology Directory, OECD, Paris.

[10] G Kiliany, [1987], Response to “LisaLearning”
Article (letter to editor), Computer, 20 (3) March, 4.
[11] MACazine, (19871, Business Report,
MACazine, 4 (12), 41-63.

[12] P Machanick, [1986], Low-Cost Artificial
Intelligence Tools, Questiones Informaticee, 4 (3),
27-32.

[13] P Machanick, [1988], Design of Medical
Education Software as Appropriate Technology
Using Artifical Intelligence and Software
Engineering (masters dissertation), Computer
Science Department Technical Report 1988-01,
University of the Witwatersrand, Johannesburg.

[1986],

[14] C H McGuire, [1985], Mecdical Prob-
lem-Solving: A Critique of the Litcrature, Journal of
Medical Education, 60 (8), 587-595.

(15] D L Metzger, [1987], “Lisalearning” Called
Apple-Bashing Session (letter to editor), Computer,
20 (3), 4.

[16] M Munashinghe, M Dow and J Fritz, [1985],
Microcomputers for Development, CINTEC-NAS,
Sri Lanka.

[17] A Newell and H A Simon, [1976], Computcr
Science as Empirical Enquiry: Symbols and search,
CACM 19 (3), 113-126.

(18] S Papert, [1980], Mindstorms, Harvester Press,
Brighton.

[19] T S Perry and P Wallich, [1985], Inside
PARC: The ‘Information Architects’, IEEE
Spectrum, 22 (10), 62-75.

Quazstiones Informatice 6 4 1989

161

[20] S P Reiss, [1985], PECAN: Program
Development Systems that Support Multiple Views,
IELL Transactions on Software Engineering, 11 (3),
276-285.

[21]1E Sandewall, [1978], Programming in an
Interactive Environment: the ‘LISP’ Expericence,
Computing Surveys, 10 (1), 35-71.

[22] W Teitclman, [1984], A Tour through Cedar,
IEEE Software, 1 (2), 44-73.

[23] W Teitelman and L Masinter, [1981], The
INTERLISP Programming Environment, Computer,
14 (4), 25-33.

[24] P Wegner, [1984], Capital-Intensive Software
Development, IEEE Software, 1 (3), 7-45.

This paper was received in camera-ready form.

A “Cooperating Expert’s” Framework for Business
Expert System Design

G R Finnie
Department of Computer Science, University of Natal, PO Box 375, Pietermaritzburg, 3200

Abstract

Expert system development environments based on current language constructs such as rules and frames have
been criticised for approaching the task of problem solving from too low a level of abstraction. This paper
describes the generic tasks framework for knowledge based systems proposed by Chandrasekaran et al. and

discusses its application to the problem of financial statement analysis.
Keywords: expert systems, decision support systems, financial statement analysis, generic tasks.
Computing Review Categories: 1.2.1: Artificial Intelligence, Applications and Expert Systems

Received October 1988, Accepted January 1989
Introduction

The development of programming languages has
been categorised into a number of generations,
ranging from machine code (1st) to assembler (2nd)
to procedural problem solving languages like Pascal
or COBOL (3rd) to non-procedural 4GLs (4th) to
logic programming (5th?). Each generation step
(excepting as yet the 4th to 5th) has been
accompanied by a consequent leap in productivity
(although some would feel that the value of 4GLs
may be overstated). The expert/knowledge based
system field is, in computing terms, relatively
young, with problem solving being done largely in
the context of the first generation of expert system
tools (although again the term second generation
tools has been used to describe the more recent
development environments). Chandrasekaran and
associated researchers [3.,4,5,6,7] have argued that the
current crop of knowledge based languages and tools
operate at too low a level of abstraction for efficient
problem solving, with the consequence that too
much attention is focused on forcing the tools to fit
the problem. They propose instead a set of tools
based on the concept of generic tasks, where a
specific tool is tailored to the solution of a specific
class of problems.

The first section of this paper looks at some of the
applications of knowledge based systems in
business, and more specifically in the area of finance.
This is followed by a section which outlines the
generic tasks framework and some of the tools
available. The next section discusses the problem of
financial statement analysis by expert systems and
suggests how the generic tasks approach could be
used in its solution. The conclusion briefly considers
the potential advantages of approaching expert
systems development from a higher level of
abstraction than the current tools provide.

Quastiones Informatice 6 (4) 162-168, April 1989 162

Business Knowledge-Based Systems

In view of the high potential payoff of expert
(knowledge-based) systems in certain commercial
applications, their uses or possible uses in business
have aroused wide interest. Several texts have been
published in the area [e.g. 11,14,24] and a number of
conferences or conference sessions have concentrated

‘on the topic [e.g. 20,26]. It is apparent from the

literature that there has been some success in
developing useful commercial expert systems.
However, some authors have questioned the value of
expert systems in this area. Martins [17], for
example, argues that they have proven effective only
in simple applications, are weak theoretically, have
high development costs and require heavy utilisation
of resources.

The relationship between expert systems (ES) and
decision support systems (DSS) has also been the
subject of some discussion. Turban and Watkins [28]
suggest that there is a strong case for treating ES as
a component or subsystem of a DSS. They argue
that although there is some support for the view that
ES are a special case of DSS, there are several
fundamental differences separating the two areas, in
particular the fact that in many cases ES make rather
than support decisions. A similar view is held by
Pfeifer and Luthi [23] who hold that the two
concepts should be treated as complementary rather
than similar. They state “the paradigm for DSS is
improving (management) decision making, the one
of ES problem solving”. Sen and Biswas [25] argue
that the ES approach could be used to establish
domain independence in DSS (called XDSS) and to
simplify the integration of qualitative and
quantitative data. As with similar debates on
nomenclature (e.g. DSS vs MIS), it is unlikely that
a universally acceptable definition will emerge.

A broad range of potential commercial application
areas for expert systems have been identified in the
research literature. Blanning [1] has suggested four
primary areas for the use of expert systems in
management. These are (1) resource allocation:
allocating limited resources under various constraints
to several activities, (2) problem diagnosis: using
stored knowledge to explain symptoms associated
with problems, (3) scheduling and assignment: also
under various constraints, and (4) information
management: assisting managers to assemble
information required to solve specific problems.
Rauch-Hindin [24] identified several current uses of
ES is the business and finance area. These included
financial statement analysis, mergers and
acquisitions, portfolio analysis, asset and liability
management, expert databases and intelligent
reporting systems. Some other applications which
have been investigated are insurance risk assessment,
tax accounting, investment planning, auditing,
banking services advice, strategic decision making
and the analysis of competition for marketing tasks.

The finance area has attracted particular attention for
expert system development, possibly in view of the
high potential return in certain applications as well
as a lack of personnel with sufficiently high skills in
areas like investment advice. Rauch-Hindin [24]
observes however that the financial services market
may develop more slowly than the industrial market,
as the sector may not lend itself to incremental
systems development. Much of the work in this area
has been done in secret [24] in order to provide
financial advantage to the developing company but a
number of authors have published on their research.
Mays et al. [18] describe a system based on semantic
nets which establishes ways of financing large
equipment proposals. Dhar and Croker [9] have
considered the use of ES techniques to simplify the
use of integer programming models in resource
allocation problems. Methlie [19] used a rule based
system built on EMYCIN to study ratio analysis in
financial statement analysis. Mui and McCarthy [22)
describe the design of a financial statement analyser
which can use semantic nets to aid the interpretation
of additional financial statement information such as
footnotes. Kerschberg and Dickinson [15] developed
a PC based expert support system for financial

analysis which incorporated the concept of intelligent .

spreadsheets i.e. linking a spreadsheet with a
knowledge engine. Heuer et al. [13] describe a frame-
based system to provide investment advice. Duda et
al. [10] have applied a functional language approach
to develop a system for assessing the risk associated
with business opportunities. Stansfield and
Greenfield [27] have developed Planpower which
generates comprehensive personal financial plans.
This list is by no means exhaustive and there remain
a considerable variety of financial applications for
knowledge based systems which have not yet been
researched or reported.

Quastiones Informaticz 6 4 1989 163

The Generic Tasks Approach to ES
Development

A central theme of the research performed at the
Laboratory for Artificial Intelligence Research
(LAIR) at Ohio State- University has been the
identification of several generic tasks which provide
the basic framework for the solution of different
classes of expert system problem [3,4,5,6,7,8,12].
Chandrasekaran [7] argues that the current set of ES
problem solving tools (rules, frames, semantic nets,
logic programming, etc.) provide too low a level of
abstraction to adequately reflect the structure of the
problem under consideration. He states [7] “The
available paradigms often force us to fit the problem
to the tools rather than fashion the tools to reflect
the structure of the problem”. More conventional
programming languages have moved through several
levels of abstraction from the second generation of
assembler, to the third generation problem solving
languages (e.g. Fortran, Pascal) to the current 4GL
tools. Chandrasekaran and his research group hold the
view that most currently available Al languages are
in effect the assembly languages of the field and that
higher level languages and ‘constructs are required to
facilitate effective ES development.

Bylander and Chandrasekaran [5] characterise a
generic task in terms of the following information:

(@ The type of problem i.e. what function does the
generic task perform '

() The representation of knowledge i.e. how
should knowledge be structured to facilitate
solution of the generic task.

© The inference strategy i.e. what inference
techniques should be applied to the knowledge
representation.

The research has identified six generic tasks which
have been developed for the construction of expert
systems. The following i$ a brief review of the
salient features of each type of task, more detail can
be found in [7]. The first four tasks arose largely
from work on diagnostic reasoning while the last
two came from studies of routine design problems.
Routine design can be applied when the way to
decompose a design problem is already known.

(1) Hierarchical Classification

The diagnostic process can be viewed largely as one
of classification driven by the symptoms or known
facts concerning the specific problem. In the
hierarchical approach, each node in the classification
hierarchy corresponds to some diagnostic hypothesis.
Problem-solving proceeds in a top-down manner: the
root node (highest level concept) is given initial
control of the search, control then passes to the most
likely successor node, and so on. More general
concepts appear in the higher nodes of the structure
while more specific concepts are placed lower in the
hierarchy. Each node or concept in the hierarchy
contains sufficient knowledge to enable it to decide

how well this concept matches the current data. If a
concept is insufficiently supported i.e. assumed not
rclevant to the problem, all its successors are also
assumed irrelevant. The terminology adopted by the
research group is that each node plays the role of a
specialist i.e. the conceptual hierarchy is a
community of specialists [7]. A blackboard system
is used to provide interaction between the specialists
and to maintain a record of the current state of the
system.

The inference strategy employed is termed
establish-refine. Each node attempts to establish
itself. If it fails, the search structure is pruned at this
point and the next node at the same level is
considered. If it succeeds in establishing itself, the
refinement process is started i.e. each successor
attempts to establish itself. Gomez and
Chandrasekaran [12] state that three types of rule can
be used in each concept or node: (a) confirmatory
rules which look for evidence associated with the
concept, (b) exclusionary rules which can be used to
eliminate the concept, (c) recommendation rules
which are pieces of knowledge which suggest
direction to the sub-concepts. The process continues
until sufficient tip nodes (corresponding to primitive
concepts or specific hypotheses) have been
established to account for all the observations or
symptoms.

(2) Hypothesis matching or assessment

During the classification process, each node or
specialist must attempt to establish itself, usually
under conditions of considerable uncertainty. The
essential process involved is that of pattern matching
of the concept against relevant data to establish a
measure of goodness of fit. Chandrasekaran [7]
argues that the matching process should be treated as
a separate generic task with separate knowledge
structures and inference strategy. The matcher
developed by the research group for the MDX
diagnostic system [12] employed a process of
hierarchical symbolic abstraction. An abstraction of
the data is mapped to a set of discrete qualitative
measures of fit — the process is hierarchical as the
final abstraction is computed from intermediate
abstractions. More detail on the process is available
in [4]. Alternative matching processes could be
considered — the primary issue under consideration is
that the problem of matching hypotheses and data
can be considered as a general type of problem
solving process which could be employed in a
variety of contexts.

(3) Knowledge-directed information passing

A problem solving process does not operate in
isolation but instead functions in the context of
general knowledge of the problem domain. For
example, the analysis of financial data should be
considered not only for a particular set of financial
statements for a particular company but also within

Quastiones Informatice 6 4 1989 164

the context of the economic environment, general
principles of accounting reporting and general
knowledge concerning financial issues. Inferences
conceming this type of knowledge can be handled by
a generic task called knowledge-directed information
passing. Mittal [21] developed a specific database
system for the task (PATREC) which can hold
general domain knowledge together with an inference
process which can be used to infer domain knowledge
which is not explicitly stored in the database. The
PATREC system is organized as a frame hicrarchy,
each frame containing either the required data or
information about how the value might be obtained.
Again the specific storage design and inference
mechanism is not as significant as recognising the
need for a specific generic task to handle this type of
problem-solving.

(4) Abductive assembly

Although hierarchical classification may generate a
number of hypotheses, each hypothesis tends to be
developed and viewed in at least partial isolation
from the others. The Ohio State Laboratory for
Artificial Intelligence has proposed a process of
abductive reasoning which can be applied to a set of
tentative hypotheses to build a composite hypothesis
which best explains the data. Each hypothesis has
some set of symptoms which it can account for with
some degree of certainty. The abductive assembly
process develops the composite hypothesis
incrementally by successively adding hypotheses
until a best or most economical coverage of thetotal
problem is obtained.

The abductive assembly process requires knowledge
in the form of relations between the relevant data and
the hypotheses e.g. relations such as incompatibility
between the data and a hypothesis or the data being
suggestive of a particular hypothesis. The inference
process can be described as alternating assembly and
criticism. During assembly, the search process has
the goal of explaining all significant data and is
driven by a means-ends heuristic strategy. Each
assembly seeks to add the best hypothesis which
explains the most significant portion of the
remaining data to the composite hypothesis. After
each assembly, the criticism phase removes any
superfluous components of the hypothesis. The
process continues until all the data is explained or
there are no hypotheses left.

(5) Hierarchical design by plan selection and
refinement

In routine design, compiled design plans are assumed
to be available for each stage in design [3].
Knowledge for this generic task should be considered
in two forms: (1) knowledge of the structure of the
objects which are known at some level of abstraction
i.e. the device components and their relationship to
each other, and (2) knowledge of the design plans for
each part of the structure being developed. The plans

can make design choices and invoke subcomponent
designs. In the Aircyl system [3], the knowledge is
organised as a design specialist hierarchy. Aircyl is
used for the design of air cylinders, which can be
considered a routine design problem as the general
structure of air cylinders is known as are the design
plans for each air cylinder component.

The control process works recursively to establish a
complete design by initially selecting a specialist
corresponding to an object component. The specialist
sclects a specific plan which may in turn suggest the
activation of other specialists. If a plan fails, the
rcasons for the failure may cause a higher level
specialist to change the plan and retry the problem.

(6) State abstraction
In many practical problems, an expert system user is
interested in predicting the consequences of actions
i.e. the well-known what-if capability of decision
support systems. Typically, solution of this type of
problem requires some form of simulation.In
simplified form, the knowledge structure should be
capable of representing the relationship between any
change of state in any subsystem and the consequent
state change in the system immediately containing
the subsystem. These relationships could be
represented as a hierarchy of conceptual specialists
[7]. The control process operates in a bottom-up
manner by tracing the effect of a specific state change
through the various affected subsystems until the
effect of the change can be determined at the required
level of interest.

A variety of languages and tools have been

developed by the Ohio State University Laboratory

for Artificial Intelligence Research group to support
the encoding of generic tasks. The process of
hierarchical classification has resulted in the
development of the language CSRL (Conceptual
Structures Representation Language) [6]. The
language HYPER [4] uses structured matching to
measure the fit of a hypothesis to a problem
situation. DSPL [3] was developed to cater for the
process of object synthesis by selection and
refinement. The knowledge-directed database system
PATREC [21] has been used for knowledge-directed
information passing while a language for abductive
assembly (PEIRCE) is under development. These
languages could considerably simplify the encoding
of expert system tasks by facilitating problem
definition and programmed solution at the correct
level of abstraction.

An Example From Financial Statements
Analysis

Methlie [19] has observed that the financial position
of a company has much in common with the health
of a patient where the financial statements can be
considered as indicators of the financial health of the

Questiones Informatice 6 4 1989 165

firm. However, as in medical diagnosis, the analysis
and interpretation of the financial statements is a
non-trivial task. The information must be
consolidated and organised into a compact
understandable form. A primary tool for this
organisation is ratio analysis, in which the ratios
between specific financial values can be used as
indicators of possible malfunction in a given sector
of the organisation. An example is the current ratio
which is simply the ratio of current assets to current
liabilities. A poor current ratio could indicate that
either current assets or current liabilities are
unsatisfactory. Further investigation might reveal
low levels of assets like accounts receivable,
inventory and cash or high levels of various types of
debt.Six groups of financial ratios may be used in
analysing the financial state of an organisation [29]:
@@ Liquidity ratios are a measure of the firms
ability to meet its short-term commitments
from liquid assets.
(b) Leverage ratios are used to indicate the capacity
to service long term debt.
(©) Activity ratios illustrate how assets are being
utilised.
(@ Profitability ratios indicate net return on sales
and assets.
(©) Growth ratios which assess the firm’s ability to
maintain its economic position.
(® Valuation ratios which assist in focussing on
the goal of maximising the value of the firm.
If the simple determination of ratios was sufficient
to determine the financial state of a company, there
would be little need for knowledge based systems.
However, the analysis is complicated by several
issues. Ratios should not be considered in isolation
but should be studied in the context of factors like
industry averages, the general state of the economy
and demographic considerations. This type of
comparison requires considerable skill and general
financial knowledge e.g. the knowledge that a
particular industrial sector is under stress. Much of
this type of data is qualitative rather than
quantitative. Factors such as the relative size of the
company should also be considered. Ratios should
not be treated individually but should be considered
together i.e. certain ratios may reinforce or negate
decisions based on other ratios. Another
complicating factor is that ratios should be analysed
over time i.e. trends and discontinuities should be
noted and related to such issues as past business
decisions.
However, probably the most complex problem for
a knowledge based system to handle is that the
meaning of the financial data can vary according to

- the accounting principles and explanatory statements

included in the financial data. Rauch-Hindin [24]
points out that the relatively rare skill of a successful
financial statement analyst is “generally characterised
by their ability to read a financial statement’s

footnotes” where footnotes are defined as

explanations of the criteria used to prepare the
financial statement. Interpretation of the footnotes
establishes the financial environment in which the
analysis should proceed. The FSA system of Mui
and McCarthy [22] is intended to cater for the
preliminary data gathering or intelligence phase of a
financial analysis (called the familiarisation phase).
A major component of this system, a frame based
representation of footnotes, is responsible for
interpretation of the footnotes to establish the
general financial knowledge required for effective
analysis of the financial data. The FINEX system of
Kerschberg and Dickinson [15] however ignores this
issue of interpreting the additional financial
statement data and assumes that spreadsheet models
of the statements can provide sufficiently accurate
ratios for analysis. This system is however
interesting for its use of a semantic net to define the
relationships between various financial concepts and
the ratios. The semantic net also provides a control
strategy for eliciting data by questioning the users.
The view that a company financial position and a
patient’s health are analogous suggests that a
knowledge based system for the analysis of financial
statements could be similar in structure to those used
in medical diagnosis. Mui and McCarthy use a
framework for financial statement analysis based on a
protocol analysis performed by Bouwman [2] which
divides the decision process into the phases of
familiarising and reasoning. Familiarisation involves
data gathering and searching the environment to
identify key values in the statements and potential
problem areas. Successful familiarisation requires
interpretation of footnote data. The reasoning phase

utilises not only the ratios but also requires the type
of knowledge discussed above e.g. knowledge of the
economy and the industry.

The generic tasks approach suggest a possible
system design framework for financial statements
analysis (FSA) which allows the process to be
subdivided into a number of co-operating experts,
each expert comprising a specific generic task. The
initial phase of financial statement analysis could be
considered a form of diagnosis in which the system
would be attempting to ascertain whether anything is
wrong in any part of the company. This could be
approached using the generic task of hierarchical
classification. A partial classification hierarchy is
outlined in Figure 1 with the diagnostic knowledge
of FSA distributed throughout the hierarchy. The
establish-refine problem-solving paradigm could be
applied to drive the classification process. The ratios
node would attempt to establish if a financial
problem exists, if so, the refinement would consist
of attempting to establish each successor i.e. to
determine whether the problem lies in short-term
obligations, long term debt requirements, asset use,
profitability or growth (or some combination of
these). Each of these concepts would then attempt to
establish itself before refining its successors. For
example, if a problem is suspected in long-term debt
servicing, the focus would the shift to attempting to
establish either a balance sheet or income statement
class of problem (or combination). The hierarchical
classification technique provides a suitable control
regime for effective data gathering i.e. the data
gathering is performed at each point of diagnostic
focus. '

Ratios
Short-term Long-term Asset
Obligations Debt Turnover
Balance Income
Sheet Statement
Issues Issues

Figure 1 Hierarchical Classification for Financial Statement Analysis

Quastiones Informatice 6 4 1989 166

The process of establishing a specific concept (node
in the hierarchy) can be approached using the generic
hypothesis matching task. The technique can employ
various forms of uncertainty, one possible approach
being the qualitative technique used by the HYPER
system [4]. The task essentially involves matching a
concept to specific data to establish a goodness of fit
measure. The matching process concentrates on the

accumulation of evidence which either supports or

rules out a specific diagnosis with some qualitative
or quantitative measure of confidence. For example,
in establishing short term liquidity problems,
attention would be focussed on determining
indicators such as the current ratio and the acid test
ratio. If the focus was on long term income
statement problems, evidence collection would be
aimed at data like fixed charge coverage and cash flow
coverage.

Hierarchical classification and hypothesis matching
require the interpretation of financial statement
inserts and footnotes as well as general data on the
industry and the economy. The process of knowledge
directed data passing could be used for the intelligent
retrieval of this data. The frame based approach used
in PATREC can be used to hold general domain
knowledge with each slot in a frame containing
either the required knowledge or information about
how to determine the required knowledge. Procedural
attachment could be used to generalise the knowledge
gathering process. Mittal et al. [21] also discuss
techniques for the representation and processing of
temporal knowledge which could be of value, inter
alia, in the processing of trend information. Within
the context of financial statement analysis, the
classification and matching processes could be
investigating the hypothesis of problems in the
long-term debt structure of the company. However,
the effect of leverage depends, inter alia, on the state
of the economy and the degree of risk averseness of
the investors. When the economy is in a down cycle,
firms with low leverage ratios have a lower risk of
loss but they also have lower probable returns if the
économy enters an up-swing. The reverse is true for
firms with high leverage. Knowledge concerning the
relationship between leverage, as measured by the
ratios, and factors such as the economy or the risk
profile could be held in a frame-structured database
for retrieval as required.

The classification process, in concert with
matching and information passing, could produce a
number of possible hypotheses to account for the
firms financial state. The hypotheses would in most
cases not be independent. The abductive assembly
process could be used to assemble a composite
hypothesis which best explains the data i.e. a
hypothesis which provides a minimal covering set to
explain all the financial symptoms. As a simple
example, to explain a low profit margin on sales, the
hypothesis of high costs could be supported (rather
than that of low sales prices). To explain high

Quzstiones Informaticz 6 4 1989 167

interest expenses, there could be a supported
hypothesis of excessive investment in plant and
equipment. However, the cause of the high input
costs and hence the low profit margin could be the
high interest charges.

Conclusion

The generic tasks approach appears to have some
potential for the efficient development of business
knowledge based systems. Many business problems
do not readily lend themselves to expert system
design based on existing tools, which tend to provide
a relatively uniform and low level set of
representations. The higher level of abstraction
proposed by Chandrasekaran et al could provide the
ability to attack larger problems by providing a
framework for problem decomposition as well
tailoring the method to the problem. An example
could be the area of strategic planning, in which a
wide variety of qualitative and quantitative sources of
data and techniques are needed. This group also argue
that the generic tasks approach assists in providing a
clearer explanation of the problem solving employed
than the current tools, a critical component of any
expert system. Bylander and Chandrasekaran [5] also
claim that the approach will simplify knowledge
acquisition by suggesting a different knowledge
acquisition strategy for each kind of reasoning.

If the current set of knowledge base tools can be
considered the equivalent of assembler level
programming for expert systems, dealing with the
problem solving at a higher level of abstraction has
the potential of providing the same leap forward in
knowledge base computing that languages like
Fortran and COBOL provided over assembler coding.
The building of sophisticated expert systems is
currently a very slow process, even with
development environments, and any advances which
could dramatically improve the rate of development
are worth serious investigation.

References

[11R W Blanning, [1985], Expert Systems for
Management: Research and Applications, Journal of
Information Science, 9, 153-162.

[21 M J Bouwman, [1983], Human Diagnostic
Reasoning By Computer: An illustration From
Financial Analysis, Management Science, 29, 653-
672.

(31D C Brown and B Chandrasekaran, [1986],
Knowledge and Control for a Mechanical Design
Expert System, IEEE Computer, 19 (7), 92-100.

(4] T Bylander and T Johnson, [1988], Structured
Matching, Tech Report, The Lab for Al Research,
Ohio State University, Columbus, Ohio.

[51 T Bylander and B Chandrasekaran, [1987],
Generic tasks for Knowledge-Based Reasoning: the
“Right” Level of Abstraction for Knowledge
Acquisition, Int J Man-Machine Studies, 26, 231-
243,

[6] T Bylander and S Mittal, {1986], CSRL: A
Language For Classificatory Problem Solving and
Uncertainty Handling, Al Magazine, 7 (3), 66-77.

[7]1 B Chandrasekaran, [1986], Generic Tasks In
Knowledge-Based Reasoning: High-Level Building
Blocks for Expert System System Design, /JEEE
Expert, 1 (3), 23-30.

[8]1 B Chandrasekaran and M Tanner, [1986],
Uncertainty handling in Expert Systems: Uniform vs
Task-Specific Formalisms, in L Kanal and J Lemmer
(eds), Uncertainty in Artificial Intelligence, Elsevier
Science Publishers, 35-46.

[9] V Dhar and A Croker, [1988], Knowledge-Based
Decision Support in Business: Issues and a Solution,
IEEE Expert, 3, 53-62.

[10] R O Duda, P E Hart, R Reboh, J Reiter and T
Risch, [1987], SYNTEL: Using a Functional
Language for Financial Risk Assessment, /JEEE
Expert, 2 (3), 18-31.

[11] C J Emst, (ed), [1988], Management Expert
Systems, Addison-Wesley Publishing Company.
[121 F Gomez and B Chandrasekaran, [1984],
Knowledge Organization and Distribution for
Medical Diagnosis, in Clancey and Shortliffe (eds),
Readings in Medical Artificial Intelligence, Addison-
Wesley Publishing Company.

[13]} S Heuer, U Koch and C Cryer, [1988], Invest:
An Expert System for Financial Investments, /EEE
Expert, 3 (2), 60-68.

[14] C W Holsapple and A B Whinston, [1987],
Business Expert Systems, Richard D Irwin Inc.

[15] L Kerschberg and J Dickinson, [1988], FINEX:
a PC-based Expert Support System for Financial
Analysis, in C J Emst (ed), Management Expert
Systems, Addison-Wesley Publishing Company,
111-133.

[16] P Levine, J Ch Maillard and J Ch Pomerol,
[1987], DECIDEX, a Multi-expert System for
Strategic Decisions, in H G Sol, C A Takkenberg
and P F de Vries Robbe (eds), Expert Systems and
Artificial Intelligence in Decision Support Systems,
D Reidel Publishing Company.

Quastiones Informatica 6 4 1989 168

[171 G R Martins, [1984], The Overselling of
Expert Systems, Datamation, 3 (18), 76-80.

[18] E Mays, C Apte, J Griesmer and J Kastner,
[1987], Organizing Knowledge in a Complex
Financial Domain, IEEE Expert, 2 (3), 61-70.

[19] L B Methlie, [1987], On Knowledge-Based
Decision Support Systems For Financial Diagnosis,
in C W Holsapple and A B Whinston, (eds),
Decision Support Systems: Theory and
Applications, Springer-Verlag, 335-371.

[20] G Mitra, [1986), Computer Assisted Decision
Making, North Holland.

[21] S Mittal, B Chandrasekaran and J Sticklen,
[1984], PATREC: A Knowledge-Directed Database
For a Diagnostic Expert System, IEEE Computer, 1
9), 51-58.

[22]1 C Mui and W E McCarthy, [1987], FSA:
Applying Al techniques to the Familiarization Phase
of Financial Decision Making, IEEE Expert, 2 (3),
33-41.

[23] R Pfeifer and H-J Luthi, [1987], Decision
Support Systems and Expert Systems: a
Complementary Relationship, in H G Sol, C A
Takkenberg and P F de Vries Robbe (eds), Expert
Systems and Artificial Intelligence in Decision
Support Systems, D Reidel Publishing Company.
[24] W B Rauch-Hindin, [1985], Artificial
Intelligence Applications in Business, Science, and
Industry vol 2: applications, Prentice-Hall.

[25] A Sen and G Biswas, [1985], Decision Support
Systems: An Expert Systems Approach, Decision
Support Systems, 1, 197-204.

[26]H G Sol, C A Th Takkenberg and P De V
Robbe, [1987], Expert Systems and Artificial
Intelligence in Decision Support Systems, D Reidel
Publishing Company.

[271J L Stansfield and N R Greenfield, [1987],
Planpower: A Comprehensive Financial Planner,
IEEE Expert, 2 (3), 51-60.

[28] E Turban and P R Watkins, [1986], Integrating
Expert Systems and Decision Support Systems, in R
H Sprague and H J Watson (eds), Decision support
Systems: Putting Theory into Practice, Prentice-
Hall.

[29]J F Weston and E F Brigham, [1981],
Managerial Finance, (7th ed), The Dryden Press.

The Application of Scientific Method to Information Systems Analysis

P M Q Lay and C R Atkinson
Department of Accounting, University of Cape Town, Private Bag, Rondebosch 7700

Abstract

This paper addresses the challenging question of the rigour of the systems analysis process. First of all it
discusses the nature of analysis, concluding that, contradictory to current opinion, it can best be described as
an art. The processes of research and systems analysis are then mapped onto each other and the similarities
are described. Some of the methods used by scientific researchers are then analyzed and a framework is
proposed whereby the techniques and procedures for research can be integrated into the systems analysis

process, thereby improving its overall rigour.

Received June 1988, Accepted March 1989

1. Introduction

Systems analysis, as a discipline, is approximately
forty years old. While it is recognized as a vital
task in the building of information systems, the
principles upon which it is based, and the
underlying philosophies, are in their infancy. An
analysis of the literature dealing with systems
analysis reveals that it has moved through three
distinct stages. The early writings on the topic
were fundamentally experiential with authors
emphasizing practical methodologies. In the
sixties there was a swing towards building a more
rigorous approach as authors delved into systems
theory and the scientific method to build a
stronger foundation. In the third (and current)
stage authors have reverted to the practical era,
and this despite the emergence of MIS as an
academic discipline [5]. Prominent researchers
such as Couger and Knapp [4] state categorically
that systems analysis has moved from the realm of
an art to that of a science. In direct contrast to this
the conclusion in this article is that because of the
non-repeatability of the solutions and the objects
of the analysis, the total analytical function can at
best be described as an art. However, this should
not be used as an excuse to down-grade the
process to the level of witchcraft. Within the
individual activities that comprise systems analysis
there is scope for the injection of scientific
procedures, provided that the philosophy and
objectives are clearly understood.

The aim of this paper, therefore, is to revitalize
the scientific approach to systems analysis and to
draw comparisons between the processes of
research and systems analysis, and to provide a
basis on which to improve the analytical process.
To achieve this end, three main areas will be
examined. First, aspects of systems analysis and
positivist science will be discussed. Scientific
research will then be described and the elements
of rigorous research will be superimposed on the

Quastiones Informatice 6 (4) 169-174, April 1989 169

analytical process. Suggestions will then be made
relating to specific aspects of the information
systems analysis phase of systems development
that would improve the rigour of the process.

2. The Scientific Method

The scientific view of the world is basically of a
system in which all processes are governed by
unchanging laws, and the aim of the pure scientific
endeavour is to advance knowledge about those
laws and processes - what they are and why they
are. In pursuit of this aim, modern science
employs three principles: reductionism,
repeatability of experimentation, and refutation.
Reductionism, which is used to simplify problems,
has its foundations in Descartes’ view of a
problem in terms of parts or levels:

".. to divide each of the

difficulties that I was examining

into as many parts as might be

possible and necessary in order

best to solve it." [3]

The second principle of scientific method,
repeatability of experimentation, distinguishes it
from other disciplines. Proof of a theory is not
dependent upon rational argument of why it
should be correct, but on physical demonstration.
Checkland [3] speaks of science as public
knowledge which is demonstrated . through
experimental happenings. It is a knowledge which
is not affected by interpretation, emotions, human
bias or irrationality. Connected with the
repeatability of experimentation is the
measurement of values obtained. Facts expressed
as quantitative results have more standing than
qualitative findings, and are also more easily
repeatable.

The third characteristic, that of refutation, is
achieved through sequences of experiments which
are used to test hypotheses. Each experiment re-
tests and builds on the previous, thus adding to

knowledge (hence this process is also referred to
as cumulative progress). The lack of cumulative
progress in the information systems field has been
written about by prominent IS researchers [5,11].

3. Views of Systems Analysis

A comprehensive scan of the literature on systems
analysis indicates that the systems analysis
function has moved through three discrete stages.
Early writers regarded it as an art form, with the
analysis aimed at documenting existing processes
only [4]. In the mid-sixties this view changed as
authors and researchers looked for a more
rigorous approach. Lee, in one of the definitive
publications on systems analysis [13] constructed
an approach based on the scientific method. He
wrote of problem definition (specification of the
boundaries of the system), research (an
observation of the operation of the systems and a
specification of the problems), and the
development of models coupled with the
formulation of hypotheses. This built on the work
of Johnson, Kast and Rosenzweig [12] who refer
to the scientific method as a basis for systems
analysis. This attempt at a rigorous approach to
systems analysis was pursued by others such as
Hare [8] who, as early as 1967, advocated a
prototyping approach and the use of techniques
such as "symptom-cause complex tables" and
"differential ~ diagnosis" as methods of
understanding relationships and activities within a
system. All these efforts were aimed at placing
systems analysis on a firmer footing than the art
form suggested by earlier authors.

In the third phase there seemed to be a
reversion to the earlier approach. For instance, an
analysis of books by Hodge and Clements [9],
Licker [15], Leslie [16] and Davis [7] to name but
a few, reveals almost no reference to the scientific
approach with its emphasis on repeatability and
rigour. This would force the conclusion that either
the original suppositions were false, and that the
scientific method had no place in systems analysis,
or that authors were ignorant of the work of their
predecessors. The latter being the case, MIS
researchers are guilty of trying to build the
systems analysis foundations in a vacuum instead
of building on the works of others - the basis for
good research and knowledge development.

4. Positivist Science and Systems
Analysis

There are points on which the approaches of
positivist science and systems analysis agree, but
they vary greatly on the fundamental issues of

Queestiones Informatice 6 4 1989 170

methods of observation, confirmation of results
and repeatability. Systems analysis is largely based
upon subjective enquiry, due to the fact that the
systems investigated are of human creation,
whereas scientific enquiry must be neutral.
Another significant difference between the two
can be found in their fundamental aims: the aim
of science is the advancement of knowledge
(Aristotle’s theoria) whereas the primary aim of
information systems analysis is to improve
organizational work or data flows or to provide
data to improve or aid decision making. It is
therefore fairly obvious that the two are not
compatible on major issues and that if the
positivist definition of science is accepted,
information systems analysis cannot be regarded
as a science.

Does this mean that systems analysis is
therefore relegated to the area of "black (or grey)
art" or witchcraft (with the association of
unstructured, ill-defined paths)? This would seem
an easy solution. A more constructive approach
would be to accept the artistic domain but to
attempt to superimpose some of the disciplines
and techniques of scientific enquiry into the
procedure of systems analysis - not with the
objective of lifting it into the realms of science but
simply of improving its rigour and repeatability
and therefore the correctness of the results.

This paper therefore proceeds by investigating
the philosophy of research and its relationship to
systems analysis. If the relationship holds then
aspects of research (or scientific enquiry) could be
transferred to analysis and built into the analysis
techniques.

5. Systems Analysis and Research

Research is the process of careful search, of
systematic investigation. Although there are many
forms that research can take, the process aims at
understanding a specific problem and building a
solution. A research project, according to Howard
and Sharp [10] consists of four phases: planning,
data collection, analysis of the data and the
formulation of conclusions, and the presentation
of results. Leedy [14] refers to a cycle of planning,
problem analysis, data collection and analysis and

“result presentation. Now compare this to the

systems analysis process. Ahituv and Neumann 1]
describe the analysis of a system as three stages:
the preliminary analysis - during which the
problem is analyzed and data is collected, the
feasibility study when conceptual solutions are
designed, and information analysis when the final
solution is developed and the detailed systems
proposal presented. These stages are referred to

by many other authors (eg Davis and Olsen [6],
Lucas {17]) and demonstrate that at the macro
level there is a close correlation between the
processes of research and systems analysis. They
both aim at the analysis of a problem and the
creation of an appropriate solution (by adapting
or inventing). They both aim at documenting the
results so as to convey those results to a third
party.

If the above argument is accepted then it
follows that the systems analyst is a form of
researcher and that elements of rigorous
procedure should be as applicable to the one as to
the other. Since the process of research is far
older than that of systems analysis this paper
focuses on that aspect - the procedures
advocated by prominent philosophers of science.

The Baconian method advocates that there is
no formal hypothesis, that the researcher should
proceed to immediate empirical observation and
deduce conclusions based on observations. His
rigour is obtained through the nature of his
observation. This inductive approach has received
significant criticism in recent times by people such
as Sir Peter Medawar [18] and Karl Popper [20].
Note, however, that it was fashionable in DP
circles a number of years ago to refer to the
unbiased nature of the analysis phase and to
suggest that the analyst should refrain from
formulating a solution (pre-judgement) until he
was aware of all the facts (advocating the
Baconian approach). This argument (thankfully)
has been contested by a number of authors and
the studies of Vitalari and Dickson [22] appear to
support the contention that not only are
hypotheses natural but that good analysts exploit
them. An hypothesis can be liberating, leaving the
researcher free to let his/her thoughts roam while
proving the hypothesis.

Cohen and Nagel were at the other end of the
extreme, advocating immediate hypotheses which,
they claimed, were research directing. This is
followed by inductive reasoning and observation.
The problem with this approach is that the
researcher formulates an hypothesis when there is
insufficient data - much like an analyst suggesting
a solution after a user telephones and says: "There
is a problem with my system". The danger is that
the analyst then protects his hypothesis and makes
the facts fit the solution rather than vice versa.

The compromise approach, and the one that
seems to have achieved the greatest acceptance by
twentieth century researchers, was proposed by
Galileo [19]. This has come to be known as the
hypothetico-deductive approach and consists of
the following steps:

Problem reduction to root forms

Quustiones Informaticz 6 4 1989 171

Selection of the simplest phenomena
relating to the problem

Empirical observation of these
phenomena

FProjection of hypotheses

Deduction based on the hypotheses

Empirical proof of the hypotheses

(relating the problem to the hypotheses)
Generalization

The correctness of each stage is established
before proceeding with the next.

There can be no doubt that any researcher is
measured in terms of not only the nature and
extent of the project (the relevance to the object
system), but, as importantly, the rigorous proof of
his hypotheses. Failures of research are usually
attributed either to an incorrectly specified
hypothesis or to this lack of rigour. The many
tools and techniques that are available to the
researcher aim at improving his ability to
understand a problem and to prove the results of
his research. The tools and techniques available to
the analyst, on the other hand, may help him to
describe the object system in terms of flows but
do not help him validate hypotheses concerning
the true nature of the problems or solutions, ie
they are description-orientated, not solution-
orientated.

6. Applying a Research Methodology to
System Analysis

Assuming that the approach of Galileo is the most
rigorous and relevant to systems analysis, how
could it be adapted to fit the systems analysis
process? A possible methodological statement
would consist of the steps shown in Figure 1. The
point to note about the sequence is the emphasis
on defining and understanding the problem and
the focus on proof. The statement of an
hypothesis and formulation of a solution is
relatively late in the cycle.

7. On the Use of Hypotheses

The hypothesis is probably the most important
intellectual instrument in research. Its function is
to give direction in experimentation and
observation, leading to discoveries even when not
correct itself [2]. Analysts should beware of
protecting the hypothesis through manipulation of
the experimental results. Ideas should be
subordinated to the facts, not vice versa. This can,
to a certain extent, be overcome by the
formulation of multiple, but not -conflicting,
hypotheses.

SCIENTIFIC METHOD

USE IN SYSTEMS ANALYSIS

Understanding the problem
domain.

The boundaries and scope of the problem
are defined.

Stating the problem in its
simplest form.

The problem situation is reduced to the
relevant factual situation.

Empirical observation of
the problems in the
object system

Observation is against a background of facts,
which are either known (experience) or given
(user supplied), and prior knowledge. The
observation must also be focused using a
specific set of objectives.

Problem analysis

This involves data collection concerning
the problem to understand the true nature
of the problem, and to clarify the requirements.

Hypothesis formulation

The analyst now postulates reasons for the
problems and determines possible solutions

to each problem based on experience, reading,
interaction with other analysts, visits to other

sites, and so on.

Solution deduction

The analyst now eliminates the incorrect
hypotheses and refines the remainder. A
conceptual solution to the system is developed
based on those hypotheses.

Empirical testing

The proposed system is simulated to establish
its feasibility and to prove that it is valid in
terms of problem elimination. A prototype of
the proposed solution is developed or it is
mathematically simulated.

Generalization

The system is mapped onto the live environment
as a final test.

Figure 1 Scientific method and systems analysis equivalents

Analysts are often warned not to "prejudge” a
situation, but in many ways a prejudgment is an
hypothesis. The fault lies not with the
prejudgment, but with an inadequate, non-
rigorous and subjective testing of that
prejudgment prior to development of that system.
As Beveridge so aptly states: "Probably the main
characteristic of the trained thinker is that he does
not jump to conclusions on insufficient evidence
as the untrained man is inclined to do." 2]

8. Conclusion

to define the
scientific enquiry and

This paper has attempted
relationship between

Quastiones Informatice 6 4 1989 172

systems analysis. By deduction it has shown that
information systems analysis cannot be placed in
the scientific domain primarily because of the
object being studied and the non-repeatability of
the solution. Despite this, elements of the
scientific method can be integrated into the
systems analysis procedure to improve the rigour
of the process and the correctness of the result.
The two sections that most easily lend themselves
to improvements are problem verification and
solution testability. If systems analysis was a
science, it could be argued that no solution should
be designed and developed until tested
conceptually and proved empirically. However,
just because it is not, is no excuse to discard the

principles of scientific method and thereby ignore
the aspects of conceptual testing and proof. This
implies a detailed understanding of prototyping
techniques and a very clear definition of
experimental objectives (a useful by-product is
that this forces modularity on the solution).

If it is accepted that the purpose of analysis (in
the main) is to understand a problem, then the
tools and techniques used by the analyst must be
problem-directed. An examination of those
currently used such as Data Flow Diagrams,
Structure Charts, and Activity Charts reveals that
they are purely descriptive in terms of process or
data flow. They are not analytical and do not drive
the focus of the analysis at potential problems.
Further research into the analytical process
should undoubtedly focus on problem analysis and
the elimination of problems in system proposals
by validating the conceptual solution.

The close relationship between systems analysis
and research indicates that an important
component in the education of analysts might be
the scientific approach to research and even
discussion of the philosophical nature of rigour,
repeatability, falsifiability and objectivity. A more
detailed understanding of these aspects in relation
to the systems analysis domain will improve the
process and perhaps systems analysts will one day
be able to prove scientifically that for any given
problem they have developed "the best solution”.

References

[1] N. Ahituv and S. Neumann, [1986], Principles
of Information Systems for Management, 2nd
Edition, Wm C Brown, Dubugque, Iowa.

[2] W.LB. Beveridge, [1950], The Arnt of Scientific
Investigation, WW Norton & Co, New York.

[3] P. Checkland, [1981), Systems Thinking,
Systems Practice, University Tutorial Press,
Suffolk.

[4] J.D. Couger and R.W. Knapp, [1974], Systems
Analysis Techniques, John Wiley and Sons, New
York.

[5] MJ. Culnan and E.B. Swanson, [1986],
‘Research in Management Information Systems,
1980-1984 : Points of Work and Reference’, MIS
Quarterly 10 (3), 289-302.

[6] GB. Davis and MH. Olsen, [1984),
Management Information Systems, Conceptual

Quastiones Informatice 6 4 1989

173

Foundations, Structure and Development, 2nd
Edition, McGraw-Hill, New York.

[71 W.S. Davis, [1983], Systems Analysis and
Design - A Structured Approach, Addison-Wesley,
Reading Massachusetts.

[8] V.C. Hare, [1967], Systems Analysis: a
Diagnostic Approach, Harcourt, Brace & World
Inc.

[9] B. Hodge and J.P. Clements, [1986), Business
Systems Analysis, Prentice-Hall, Englewood Cliffs,
NJ 07632.

[10] J. Howard and J.A. Sharp, [1983], The
Management of a Student Research Project, Gower
Publishing Co, Aldershot, Hants GU11 3HR
England.

[11] B. Ives and S. Hamilton and G.B. Davis,
[1980], ‘A Framework for Research in Computer-
based Management Information Systems’,
Management Science, 26 (9), 910-934.

[12] RA. Johnson and F.E. Kast and J.E.
Rosenzweig, [1967], The Theory and Management
of Systems, McGraw-Hill, Tokyo.

[13] AM. Lee, [1970], Systems
Frameworks, MacMillan, London.

[14] P.D. Leedy, [1980], Practical Research -
Planning and Design, MacMillan Publishing Co,
New York, USA.

[15] P.S. Licker, [1987], Fundamentals of Systems
Analysis, Boyd and Fraser Co, San Francisco.

[16] RE. Leslie, [1986], Systems Analysis and
Design - Method and Invention, Prentice-Hall,
New Jersey.

[17] H.C. Lucas, [1985], The Analysis, Design, and
Implementation of Information Systems, McGraw-
Hill Book Co, Singapore.

(18] P.B. Medawar, [1969], Induction and Intuition
in Scientific Thought, American Philosophic
Society, Philadelphia.

[19] F.S.C. Northrop, [1947], Logic of the Sciences
and the Humanities, Greenwood Press,
Connecticut. ‘

[20] K. Popper, [1959], The Logic of Scientific
Discovery, Hutchinson, London.

[21] G.I. Susman and R.D. Evered, [1978], ‘An
Assessment of the Merits of Action Research’,
Administrative Science Quarterly, 23, 582-603.

[22] P. Vitalari and G.W. Dickson, [1983],
Problem Solving for Effective Systems Analysis:
An Experimental Exploration’, Communications
of the ACM, 26 (11), 948-956.

Analysis

An Approach to Defining Abstractions, Refinements
and Enrichments

D G Kourie
Department of Computer Science, University of Pretoria, Pretoria 0083

Abstract

A proposal for defining abstractions and refinements is given in terms of three-valued logic applied to a
domain of discourse consisting of a property and an entity set. Definitions for several related concepts
flow naturally from these, including possible orderings on refinements and abstractions, as well as the

notions of non-determinism, enrichment and base abstractions.
Keyword: abstraction, refinement, enrichment, three-valued logic, non-determinism.
Computing Review Categories: D.2.1, D.2.8, D.3.1, F.3.0,12.6

Received September 1988, Accepted January 1989
1. Introduction

Most software development mecthods proposed
during the last two decades or so depend in one
way or another on the idea of stepwise refinement
of abstractions. The notion of abstraction also

comes to the fore in the Artificial Intelligence -

context [1,2,3].

Often the concepts of abstraction and
refinement are referred to in the literaturc in an
intuitive and/or imprecise way. In other cases
definitions, sometimes differing from onc author
to the next, have been proposed. Such proposals
are, however, either limited to a specific context
(such as the development of sequential programs),
or a definition is given for one of the concepts
but not for the other. It would seem, therefore,
that there is a need to develop a unified formal
theory of abstractions and refinements so as to
sharpen and shape the ideas of those who are
involved in software development and in the
practice of Al Towards this end, the present
paper proposes generic definitions for these
concepts, and for several concepts directly
associated with these. In particular, the notion of
enrichment scems to belong naturally with that of
refinement. However, the cmphasis is primarily,
but not exclusively on software development,
rather than on Al

The next section gives the basic model within
which the definitions are made. The definitions of
abstractions, refincment and enrichment are given
in section 3 as well as a number of corollaries
that follow from these definitions. Section 4 is
devoted to possible orderings which arise by
virtue of the definitions. The final section briefly
discusses some of the more important literature
that relates to the present work.

Questiones Informatice 6 (4) 174-178, April 1989 174

2. Basic Model

2.1 Notation and Conventions
The following notation is used :

XUY :the union of sets X-and Y

¢ : the empty set

iff : if and only if

- P : Predicate P is true

P—Q : Predicate Q logically follows

from predicate P

Atomic formulae are predicates or well-formed
formulae (wff’s) in first order predicate calculus
without connectives. A literal is either an atomic
formula or an atomic formula preceded by a
negation symbol. A clause is the disjunction of
one or more literals (cf. Nilsson [9]).

Where it is clear from the context, a set of
clauses will denote their conjunction, i.e. {P; / P;
a clause, i = 1..n} denotes the predicate P, & P,
&P,

2.2 Domain of Discourse

The context for the discussion below is a domain
of discourse involving entities and their associated
properties. A domain of discourse is represented
by a pair of sets : an entity set and a property set
respectively. The pair is denoted by <Ent,Prop>.
Apart from being non-empty, no assumption about
the cardinality of these sets is made.

Each E;, € Ent is a constant symbol which is
interpreted as a distinct entity of interest in the
domain of discourse.

Each p(E) € Prop is a clause in which every
literal contains the free variable, E, as one of its
arguments. E represents some uninstantiated entity
in Ent. An interpretation is assumed that identifies
each literal of each clause py(E) (and therefore
each clause as a whole) as a property of the
uninstantiated entity E. For example, the

appearance of the free variable E in a literal such
as colour(Eblue) is construed to mean that the
uninstantiated entity E has the colour blue.

When E is substituted by entity E; € Ent, the
resulting clause is denoted by p(E). p(E) is
called a property assertion of entity E. It is a
clause that asserts that the specific entity E,
possesses the property alluded to in p/(E).

In general, only propertics which are
considered directly relevant in the domain of
discourse are included in Prop. However, it will
be assumed that if a clause is considered relevant
then each separate literal in the clause together
with its negation is also in Prop.

An interpretation of property assertions in the
domain of discourse is assumed to exist in the
form of a total function :

I : Ent X Prop — {true, false, unknown}.

The notation |- p(E), or - ~p(E), or Ip(E) will
be used for I(E,p(E)), depending on whether
I(E,p(E)) has value true or false or unknown
respectively. It is assumed that the interpretation /
is consistent with the normal (strong) truth tables
that apply in 3-valued logic [6]. Hence, for
example, the interpretation of a property assertion
cannot be that it has truth value of false or
unknown if the interpretation of one of its
disjuncts is that it has a truth value of true.

Each entity, E,, thus partitions Prop into three
sets called the true, unknown or false property
sets of E;, which are respectively denoted by:
true(E)

= {p{(E) / p{E) € Prop & | p(E)}
unknown(E)

= (p(E) / p(E) € Prop & p(E))
false(E)

= (p(E) |/ p(E) € Prop & I ~p(E))

It can easily be shown, using the assumption of
consistency in 3-valued logic, that if Prop and
true(E) are given, then it is possible to infer
false(E) and wunknown(E). Hence, where no
further qualification is made, reference to a
property set should be taken to indicate the true
property set.

The foregoing assumes that the truth value of a
property assertion in a domain of discourse is
fixed over time, space, environment, etc. It is
either true (or false) under all circumstances (or
modalities), or else it has value ‘unknown’ — even
it is known to be true (or false) in some
circumstances.

Henceforth it will also be assumed that every
element of Prop is a member of the true property
set of at least one entity in Ent. Furthermore, we
shall say that entity E; has or does not have the
property p{(L) according as to whether p(E) €
true(E) or not.

Quastiones Informatice 6 4 1989 175

It is interesting to note that entities may be
characterized as either deterministic or non-
deterministic in terms of the foregoing model. An
arbitrary entity E; € Ent is deterministic iff
unknown(E) = ¢. An entity which is not
deterministic is non-deterministic.

3. Definitions

3.1Property Definitions
In this section two arbitrary properties p,(E) and
P,(E) in Prop are considered, and for conciseness
they are denoted by x and y respectively. ,
The notation x — y is used to assert that y
logically follows from x. A necessary condition
for this to hold is that every entity in Ent which
has property x (and by assumption there will be at
least one such entity) also has property y.
Conversely, ~[y — x] asserts that y does not
logically follow from x. A sufficient condition for
this to hold is that some entity in Ent which has
property y (and again by assumption there will be
at least one such entity) does not have property x.

The following definitions will be useful :
® Property x refines property y iff

F(lx =yl &~y = x])
® Properties x and y are equivalent iff

F(lx =yl & [y = x])
® Properties x and y are independent iff

F(-x =yl & ~[y 2 x])
® Propertics x and y enrich one another iff they

are independent, but are common properties of

at least one entity in Ent.
® Properties x and y are mutually exclusive iff
they are independent but do not enrich one
another,
Hence, any two properties in the property set of a
given entity are either equivalent, or they are
independent and enrich one another, or one of
them refines the other.

However, equivalent properties will always be
either jointly present or jointly absent in an
entity’s property set. They are thus not helpful in
discriminating between entities. Consequently, it
will be assumed that domains of discourse are
chosen in such a way that no equivalent properties
occur. Thus any pair of properties that an entity
has ecither enrich one another, or one of them
refines the other.

3.2 Abstraction
Consider two distinct entities E; and E; in Ent. E;
is defined as an abstraction of E, iff true(E) is a
subset of true(E)).

This definition implies the following about E;
and E;

e Since E; and E; are distinct entities, the
following must hold :
— true(E) is a proper subset of true(E),
— unknown(E) is a proper subset of

unknown(E),

— false(E)) is a proper subset of false(E)).

® Properties in true(E) but not in true(E) are in
unknown(E). Similarly properties in false(E)
but not in false(E;) are also in unknown(E).
Informally, therefore, there is a parallel
between abstraction and non-determinism. The
degree of abstraction is directly related to the
degree of non-determinism.

e An entity may be an abstraction of several
entities which may be, but nced not be
abstractions, of one another.

3.3 Refinement/Enrichment

Based on these notions, an entity may sometimes

be regarded as a refinement or an enrichment of

one or more of its abstractions. Consider the

entity E, and one of its abstractions, E,. Let

D = true(E) — true(E,), ie. D is the set of

properties that E, has in addition to those in E,.

e Entity E, is a refinement of entity E, iff every
property in D refines some property in true(E,).

e Entity E, is an enrichment of entity E, if every
property in D enriches all properties in
true(E)).

Note that if some (but not all) properties in D
refine properties in true(E,), and the remaining
properties in D enrich all properties true(E,) then
E, neither refines nor enriches E,.

3.4 Corollaries

Several corollaries follow from the foregoing

definitions. A non-exhaustive list includes the

following :

® The entity set may be partitioned into two sets:
a set of entities which are abstractions of other
entities and a set containing the remaining
entitiecs. Elements of the latter set may
appropriately be called concrere entities in the
domain of discourse, and eclements of the
former, .abstract entities.

e The enrichment relationship for properties is
reflexive, but not transitive. For entities the
enrichment relationship is irreflexive and
transitive.

e The refinement relationship is transitive but
irreflexive for both entities and properties.

e Furthermore, if p,(E) refines p(E) and p(E) €
true(E), then p(E) € true(E). However, the
converse does not necessarily hold, namely if
pWE) refines p(E) and p(E) € true(E), then it
does not follow that p(E) € true(E).

» Entity refinement and entity enrichment are
mutually exclusive notions.

Quaestiones Informaticee 6 4 1989

e If an entity E, is an abstraction of entity E,
and latter has exactly one more property in its
property set than the former, then E, either
refines E, or E, enriches E,.

® Let E, be some arbitrary abstraction of E, and
let E, denote some abstraction of E, which has
E, as one of its abstractions. By choosing E,,
appropriately, at least one of the following
assertions will be true :

a) E, refines E,
b) E, enriches E,
c) E,, refines E,
d) E,, enriches E,

e If a) holds above, then so does c) for any

choice of E,, and similarly for b) and d).

3.5 Base Abstractions

If a given property in Prop refines another in

Prop, it will be called a refining property. All

those properties in Prop which are not refining

are called base properties.

Note the following :

e Every pair of base properties in the property
set of an arbitrary entity enrich one another.

® A refining property always refines at least one
base property, but may also refine one or more
other refining properties.

e The property set of any entity E; can be
uniquely partitioned into a non-empty set of
base properties, and a (possibly empty) set of
refining properties. These sets will be denoted
by bas(E;) and ref(E;) respectively.

An abstraction E; of E; which is such that
true(E;) = bas(E;)) will be called a base abstraction
of E;, and will be denoted by ba(E).

However, while every entity has at most one
base abstraction, a base abstraction need not
always exist. For example, if refE) = ¢, then
true(E;) = bas(E), and no base abstraction of E;
exists. Also, bas(E) may be such that while
individual properties in this set enrich one
another, the consistency requirement for 3-valued
logic truth tables demands that other refining
properties always be present in the true property
set of any abstraction of E. For example,
properties of the form (a or b) and (~b) enrich
one another (neither logically follows from the
other), but any abstraction with these properties in
its property set, necessarily also contains the
refining property (a) in its property set.

Nevertheless, in applying progressive
refinement and/or enrichment to arrive at the
properties of an entity E;, much of the initial
creative effort will go into determining bas(E),
and indeed into the base abstraction of E; if it
exists.

176

4. Ordering

Since refinement of entitics is transitive and
irreflexive, it defines a strict partial order on
entities of Ent, which can be dcnoted by >,
Hence if entity E, is a refinement of entity E,, this
may be written as E, >, E_.

Similarly cnrichment of entities is a transitive
and irreflexive relation, and and defines a strict
but partial order >, on entities of Ent. Thus E, >,
E, denotes the fact that E, is an enrichment of E,.

The number of base properties in the property
sets of entities provides a basis for defining a
weak partial order on abstractions of entities in
Ent. The order will be denoted by =,. Given two
arbitrary abstractions, E, and E,, of an arbitrary
entity £, (and allowing also for the possibility that
either E, and/or E, is the entity E, itself) then E,
2, E, iff the number of base properties in true(E))
is greater or equal to the number of base
properties in true(E). E, 2, E, is read as: ‘E, is at
least as basic as E’.

Note the following :
® E, > E > (E 2 E) & ~(E, 2, E,) since an

enrichment, per definition, has more base

properties than the entity which it enriches.
®*E >E —(E 2 E) & (E, 2, E) since a
refinement of an entity per dcfinition adds
refining properties, but not base properties, to
the property set of the refined entity.
In a given context some base properties may be
regarded as more important that others. In such a
case, a suitably chosen weighting could be applied
to the base properties and the ordering would then
be according to the weighted sum of base
properties.

Several approaches to defining orderings on
abstractions now suggest themselves, some of
which are more naive than others.

The most naive approach is to postulate a weak
total order on abstractions, based on the number
of properties in the respective true property sets.
The semantics of such an ordering is, however,
not very clear.

A somewhat more meaningful approach is to
postulate a strict partial order, <,, such that E, <,
E, iff E, is an abstraction of E,.

Ideally an ordering for any pair of abstractions
of the same entity would be desirable — even if
neither one is an abstraction of the other. One
approach for achieving this would be to extend
the previous ordering to a weak order, <,
whereby:

E, < E, iff
(E, <, E,) or 1)
(~E, <.E, & ~E,<,E, & E, >, E). [01))

In general, such an ordering is weak when
considered over all entities in Ent since neither (I)

Quzstiones Informatice 6 4 1989

nor (II) need necessarily hold for two arbitrary
entities. However, the ordering is total over
abstractions of a given entity.

Note that if (II) holds, but not (I), then the
ordering implies that an abstraction with few base
properties which may possibly have many refining
properties is to be considered more abstract than
an abstraction with many base properties which
may not be at all refined. Furthermore, two
abstractions with disjoint property sets each
having the same number of base abstractions
would be considered to be equally abstract, even
if the property set of one abstraction contained
many refining properties, while the other
contained none. In other words the number of
base properties, rather than the degree of
refinement dominates in determining the level of
abstraction.

An even more sophisticated ordering of
abstractions could be defined based on a metric
on each abstraction. This metric should reflect not
only the number of base properties (perhaps
weighted in some way) in the relevant property
set, but also the extent to which the property set
shows how individual base properties have been
refined. Precisely how such a metric should
balance the degree of refinement against the
number of base properties will depend, inter alia,
on the domain of discourse.

5. Other Work

This paper is a summary of work reported on
elsewhere [7]. The latter extends the concepts
discussed here to the area of specifications, and
proposes definitions for concepts such as valid or
invalid, partial or complete specifications, as well
as for abstract, refined or enriched specifications.

The notion of abstraction is qualitatively
explained in a number of texts on software
development. A typical example is :

‘By abstraction we mean the act of singling

out a few properties of an object for

further studies or wuse, omitting from
consideration other properties that don't

concern us for the moment.’ [4]

Darden [2] spells out a similar idea of
abstraction in the AI context in somewhat more
detail, claiming that ‘abstraction formation
involves loss of content’. The present paper’s
definition of an abstraction is very much in the
spirit of these definitions. It is, however, more
formal, and given in the context of a domain of
discourse.

Benzon and Hayes [1] criticize Darden’s
approach. However, the latter appear to be more
concerned with ‘issues related to human cognitive

177

endeavors in forming abstract conccpts’ rather than
doing ‘a conceptual analysis of abstraction as it is
used in current computational Al work’ [3].

Hoare et. al. [5] propose an weak partial
ordering between programs which is very similar
to the ordering on abstractions <, discussed above.
Their ordering, which will be denoted here by =,
is defined as :

P2, 0ifPuQ=P
where P U Q designates a program that makes a

non-deterministic choice to function as either P or.

as Q. Were it not for the fact that in the present
paper <, has been defined irreflexively, the
following would hold for any pair of programs P
and Q:

P2,0ifQ<,P.

The definition of 2, leads to the concept of an
abstract program, a concept that is stricter but
similar to the notion of an abstract specification
[71.

Morgan and Robinson [8] propose a definition
for refinement in the context of software
development which is based on the concepts of
pre- and post-conditions. Using the well-known
notation wp(P,post) for the weakest precondition
of a program P with post-condition post, they
define refinement as follows:

‘For programs P and Q we say P is refined

by Q, written P < Q, iff for all post-

conditions post : wp(P,post) => wp(Q post).’

It can be shown that if Q is a refinecment of P
(but not vice-versa) according to the definition of
Morgan and Robinson then Q is a rcfinement of P
for a suitably chosen domain of discourse,
according to the present paper’s definition [7].

Quastiones Informatice 6 4 1989

178

To the author’s knowledge the theme of
enrichment has not been formally addressed in the
literature on software development.

References

[1]W Benzon and D Hayes, [1987], Reactions to
Darden, Letter in Al Magazine, 8(4), 7-8.

[2]L Darden, [1987], Viewing the History of
Science as Compiled Hindsight, Al Magazine,
8(2), 33-41.

[3]L Darden, [1987], Darden’s Response, Letter
in Al Magazine, 8(4), 11.

[4] D Gries, [1981], The Science of Programming,
Springer-Verlag.

[5]C A R Hoare, I J Hayes, J] He, C C Morgan,
A W Roscoe,] W Sanders, I H Sorensen,] M

Spivey and B A Sufrin, [1987], Laws of
programming, CACM, 30(8), 672-686.
[61S C Kleene, [1974], Introduction to

Metamathematics, Wolters-Noordhof Publishing
and North Holland Publishing Company, 7th
Reprint.

[71D G Kourie, [1988], Towards a general theory
of abstractions, refinements and enrichments,
Internal Report, University of Pretoria.

{81C Morgan and K Robinson, [1987],
Specification statements and refinement, IBM J.
Res. Develop., 31(5), 546-555.

[91N J Nilsson, [1982], Principles of Ariificial
Intelligence, Springer-Verlag.

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to publish
original papers in any field of computing.
These may include research, review and ex-
ploratory articles of interest to the journal’s
readers. The preferred language of the journal
will be English, although papers in Afrikaans
or other congress languages of IFIP will not
be precluded. Typed manuscripts for review
should be submitted in triplicate to:

Professor D G Kourie
Department of Computer Science
University of Pretoria

Hatfield 0083

Pretoria

Form of Manuscript

Manuscripts for review should be prepared

according to the following guidelines.

+ Use double-space typing on one side only
of A4 paper, and provide wide margins.

+ The first page should include:

- title (as brief as possible)

- author’s initials and surname

- author’s affiliation and address

- an abstract of less than 200 words

- an appropriate keyword list

- a list of Computing Review Categories.

+ Tables should be typed on separate sheets
of A4 paper, and should be numbered and
titled.

+ Figures should also be supplied on separate
sheets of A4 paper, and should be identi-
fied on the back in pencil with the author’s
name and the figure number. Original line
drawings, and not photocopies, should be
submitted. :

* Mathematical and other symbols may be ei-
ther handwritten or typed. Greek letters and
unusual symbols should be identified in the
margin. Distinguish clearly between:

- upper and lower case letters

- the letter O and figure zero

- the letter I and the number one

- the letter K and kappa.

References should be listed after the text in
alphabetical order of the (first) author’s sur-
name, cited in the text in square brackets.
References should take the following form:
[1] E Ashcroft and Z Manna, [1972], The
translation of 'GOTOQO' programs to
'WHILE' programs, Proceedings of IFIP
Congress 71, North-Holland, Amsterdam,
250-255.

[2] C Bohm and G Jacopini, [1966], Flow
diagrams, Turing machines and languages
with only two formation rules, Comm.

ACM, 9 (3), 366-371.

Manuscripts accepted for publication
should comply with the above guidelines, but
may be in one of the following three formats:

* typewritten and suitable for scanning

 provided as an ASCII file on diskette

» camera-ready.

Authors wishing to provide camera-ready
copy may obtain a page specification from the
production editor.

Charges
A page charge, scaled to reflect production
costs, will be levied on papers accepted for
publication. The costs per final page are as
follows: ‘

Typed format, not camera-ready R60

Disk in ASCII format R40

Camera-ready format R20

These charges may be waived upon request
of the author, and at the editor’s discretion.

Proofs

Proofs of accepted papers will be sent to the
author to ensure that typesetting is correct,
and not for addition of new material or major
amendments to the text. Corrected proofs
should be returned to the production editor
within three days.

Copyright
Copyright in published papers will be vested
in the publisher.

Letters and Communications

Letters to the editor will be welcomed and will
provide a forum for discussion on topical is-
sues. They should be signed, and should be
limited to about 500 words.

Communications reflecting minor research
contributions will be considered for publica-
tion in a separate section of the journal. Such
communications will, however, not be regard-
ed as a fully-fledged publication for FRD sub-
sidy purposes.

Book Reviews

Contributions in this regard will be wel-
comed. Views and opinions expressed in such
reviews should, however, be regarded as
those of the reviewer alone.

Advertising

Placement of advertisements at R1000 per full
page per issue and R500 per half page per is-
sue will be considered. Enquiries should be
directed to the production editor.

	Front covers
	1989_QI_06_04_Venter
	1989_QI_06_04_Machanick
	1989_QI_06_04_Finnie
	1989_QI_06_04_Lay
	1989_QI_06_04_Kourie
	Back covers

