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Editorial

Volume six of QI heralds several changes. The most visible is the change in format. The black on red cover
has been changed to a more readable blue on white, but we have retained the style of the old cover, for the sake
of continuity. The papers are now set in a tighter format, using double columns, which will enable more
papers to be published for the same cost.

For authors, the most significant change is that as from Volume 6 Number 2 (the next issue), a charge will be
made for typesetting. The charge is quite modest — R20 per page — and will enable us to keep up the high
standards that we have become used to with QI. It is worth recording that the alternative to this suggestion
was that authors should present camera-ready typescript, as is done for Queastiones Mathematice. Given that
document preparation and electronic typesetting is one of the areas of computer science that we can feel proud
of, it scemed right that our journal should use the most modern techniques available. Fortunately, the two
controlling bodies, the CSSA and SAICS, eventually agreed to our proposal and the result is the professional
journal you have in front of you now.

Supporters of QI may be interested in a few statistics that I compiled when I took over the editorship from
Gerrit Wiechers in April this year. In the past two years (June 1985 to June 1988), 73 papers have been
received. Of these 39 (53%) have appeared, 19 have been rejected or withdrawn (26%) and 15 (21%) are either
with authors for changes or with referees. If we look at the complete picture for Volumes 4 and 5, we find the
following: -

Volume Issues Papers Pages  Ave.pages per paper
5 3 27* 220 7.7
4 3 21 136 6.4

Although this issue contains one very long paper of 18 pages, the future policy of QI will be to restrict papers
to 6 or 7 printed pages, and prospective authors are asked to bear this in mind when submitting papers.

For the future, we arc hoping to move towards more special issues. Many of the papers being published at the
moment were presented at the 4th SA Computer Symposium in 1987. Instead of continuing the policy of
allowing such papers to be accepted by QI without further refereeing, we are hoping to negotiate with
Conference organisers to produce special issues of QI. Thus the proceedings would ab initio be typeset by QI
and all the papers would be in a single issue. Given the competitive charges of QI, there will be financial
gains for both parties in such an arrangement.

As this is my first editorial, it is fitting that it should close with a tribute to the previous QI team. My
predecessor as editor was Gerrit Wiechers. Gerrit took over the editorship in 1980 and served the journal well
over the years. With his leadership, the number and quality of the papers increased to its present healthy state.
I must also extend a big thank you to Conrad Mueller and the University of the Witwatersrand who pioneered
desk top publishing of QI in August 1985, using the IBM mainframe and its laser writer. Without Conrad’s
diligence and the excellent facilities provided by the Wits Computer Centre and subsequently the Computer
Science Department, QI would easily have degenerated into a second-rate magazine. Quintin Gee, also of the
Wits Computer Science Department, has taken over from Conrad and has raised the production quality of QI to
new heights, as this issue testifics.

I look forward to your help and support in the future. Long live QI!
Judy M Bishop

Editor
June 1988
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A Detailed Look at Operating System Processes

B H Venter
Department of Computer Science, University of Fort Hare, Private Bag X1314, Alice,
Republic of Ciskei

Abstract

An operating system provides, among other things, an operational definition of a process. The concept ofa
process is one of the fundamental concepts of Computer Science, and the designer of an operating system must
strive to provide a definition that is simple to understand, does not violate the intuitive notions one has about
processes, and is simple to implement efficiently on a wide range of computer systems. On the other hand, the
definition should not fail to provide the functionality that existing operating systems have, by user demand,
gradually evolved into providing. This paper presents a framework for discussing the operational definition of a

process, and uses this framework to discuss systematically some of the more important decisions and trade-offs
regarding processes, that the designer of a new operating system must make.
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1. Introduction

There is no universally agreed upon definition for the
concept of a process, and the definitions offered in
the literature are often inadequate (for example, those
in [1]). And while it is difficult to fault abstract
definitions such as [2], they are not specific enough
to be of much use to an operating system designer.

An operating system amounts to an operational
definition of a process, and no two operating systems
amount to exactly the same definition. The designer
of a new operating system must strive to provide a
definition that is simple to understand and use, does
not violate one’s intuitive notions about processes,
and is simple to implement efficiently on a wide
range of computer systems. On the other hand, the
definition should not fail to provide the functionality
that existing operating systems have, by user
demand, evolved into providing.

The aim of this paper is to provide a framework for
discussing operational definitions, particularly with
regard to functionality, and then to use this
framework to discuss systematically some of the
more important decisions and trade-offs regarding
processes, that a designer of a new operating system
must make.

The considerations outlined in this paper have
formed the basis for the process concept offered by a
new operating system that the author has designed
[5]. The process concept of this operating system
differs significantly from the definition offered by
UNIX [4,6], a system that many proponents
proclaim as suitable for adoption as THE standard
operating system, but which offers an inadequate
definition of a process.
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However, this paper is not a critique of UNIX or
any other operating system, nor a defence of the
author’s proposal. The paper aims to identify and
discuss the general principles involved, and readers
are invited to make their own comparisons and to
draw their own conclusions.

2. The Framework

The most basic property of an operating system
process is that it executes on a virtual processor
created by the operating system. Each such virtual
processor has its own set of registers and has access
to a subset of the memory of the real processor used
to implement it. Furthermore, the instructions of a
virtual processor can be regarded as being extended
with extra instructions, namely the system calls
offered by the operating system, which allow it to
interact with the devices and other virtual processors
in its environment. A process can thus be defined as
a virtual processor seen in conjunction with the set
of instructions (program) that it is executing.

The differences between the operational definitions
offered by different operating systems can be
described as differences in the capabilities of the
virtual processors created by these systems.

In the following sections, the desired capabilities of
a virtual processor are discussed in the light of a list
of questions. Some of these questions may seem to
have trivial answers, but all have been answered in
different ways by different operating system
designers. The list is:

* Should two different virtual processors be able to
access the same area of physical memory?



* Should virtual processors use virtual or real
addresses to access memory?

* Should virtual processors be able dynamically to
vary the amount of memory allocated to them?

* Should a virtual processor be interruptible? That
is, should a non-deterministic event in its
environment be able to start the execution of an
interrupt service routine?

* Should a virtual processor be able to handle
exceptions caused by instructions executed by it?

* To what extent should a virtual processor be
controllable by an external agent?

* What should the initial state of a newly created
process be?

* Should it be possible to make assumptions about
the rate of execution of a virtual processor in ‘real
time’, as well as about the elapsed ‘real time’
needed to finish executing a routine after the
occurrence of an event in its environment?

3. Memory Sharing

Data structures kept in shared memory areas have
long been the principle concept used to achieve co-
operation among different processes. However, along
with the obvious advantages, allowing processes to
share memory has certain disadvantages:

* Processes are implicitly given access to their
private memories as part of their creation. However,
to provide processes with access to shared memory
areas, an operating system has to provide an explicit
mechanism. Such a mechanism must provide a
naming scheme and must not allow security to be
compromised. Allowing memory sharing thus adds
complexity to an operating system.

* Two processes cannot share a memory arca
efficiently unless their virtual processors can be
implemented by physical processors with access to a
common physical memory. This either limits the
class of hardware that can be used, or necessitates an
additional mechanism to control the physical
processors used to implement virtual processors -
thus ‘adding more complexity to the operating
system, ‘ '

* Further mechanisms must be provided to allow
processes to synchronise their access to shared
memory areas. It is difficult, if not impossible, to
make these mechanisms general, safe, and efficient at
the same time. Moreover, they add yet more
complexity to the operating system.

It is possible for an operating system designer to
accept these disadvantages as unavoidable and to
provide generalised mechanisms that allows arbitrary
processes to share memory (as -is done in UNIX
System V [6]). However, since non-shared memory
multi-processors (for example, hundreds of
workstations inter-connected by means of a high
speed local area network) are likely to become more
common; if not prevalent, it makes sense to avoid
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memory sharing among processes. It therefore also
makes sense to ask whether it is necessary to provide
complex, generalised mechanisms to allow arbitrary
processes to share memory.

Memory sharing only makes sense if the sharing
processes are

a) executed by a single physical processor, or

b) executed by separate physical processors that
share access to a common physical memory.

a) Assuming that the processes that are co-operating
via memory sharing are all executed by the same.
physical processor, the question arises why they
should not be consolidated into a single process. The
multiple processes cannot together execute faster
than a single process since the available real
processor cycles remain fixed. In fact, the overhead
incurred by extra context switches and process
synchronisation make such multi-process
formulations slower than single process
formulations.

The main argument for having multiple co-
operating processes on the same physical processor
is that multiple-process solutions can sometimes be
simpler to program than single-process solutions. A
typical case is a server process that may receive
requests from different clients in quick succession,
each of which may involve waiting for some event
to happen in the environment of the server (for
example the completion of a disk access). Unless a
single-process server explicitly breaks up each
request into multiple subrequests, none of which
require waiting, and interleaves the execution of
diffcrent requests on this complicated basis, the
single-process server will be slower than a multi-
process server since context switching among the
various co-operating processes automatically
achieves the desired interleaving.

However, it is straightforward to incorporate a local
scheduler into the code of a single-process server.
This makes it possible to formulate the server as a
set of memory-sharing, co-operating ‘light-weight’
processes, while actually executing the server as a
single operating system process. Since the ‘light-
weight’ scheduler is ‘user code’, it can dispense with
many of the precautions that the operating system
‘heavy-weight’ scheduler must take. It can therefore
be much more efficient to construct a set of memory-
sharing, co-operating processes without the aid of
expensive operating system mechansims.

There will, of course, be cases where memory-
sharing, co-operating processes need the separate
identitics and relative isolation available only to
operating system, ‘heavy-weight’ processes.
However, these cases should be comparatively rare,
and confined mainly to ‘systems programming’
situations. It thus seems reasonable to require these
processcs to be declared as “privileged and trusted’ (by
suitably authorised users) and to be explicitly tied to
specific physical processors. It is then possible to



provide a simplemechanism that dispenses with most
of the complications of generality and security
checking to enable such privileged processes to
obtain access to sharedmemory areas.

Another use for memory sharing among processes
is to allow them to access common blocks of code,
such as language-provided run-time systems.
However, such code sharing need not affect the logic
of a process, and the issue can thus be relegated to a
convention between the linker and loader, rather than
be treated as part of the definition of a process. In
some systems, memory sharing is also used by
debuggers. However, such debuggers can be

‘accommodated by providing ‘privileged and trusted’

server processes that allow them to achieve the same
ends.

b) Assuming now that there are multiple physical
processors that have access to a shared physical
memory, and therefore that the memory-sharing
processes can be executed in true parallel, the ‘light-
weight’ process solution is no longer applicable, and
the ‘privileged and trusted’ solution is too primitive
and restrictive. Furthermore, the existence of ‘teams’
of closely co-operating processes executing in true
parallel opens up new opportunities and
complications, such as ‘co-scheduling’ [3] and non-
blocking (‘spin-lock’) forms of synchronisation.

It is, however, possible to accommodate such
hardware without resorting to generalised
mechanisms by extending the ‘light-weight’ process
solution. On non-shared memory systems, the
routines for implementing a ‘light-weight’ scheduler
will be provided as a standard library, to be linked
into the code of the ‘heavy-weight’ process hosting
the collection of ‘light-weight’ processes. However,
on shared-memory multi-processors these routines
will simply invoke ‘hidden’ system calls, which see
to it that the ‘light-weight’ processes are executed on
different physical processors, while otherwise being
part of a single ‘heavy-weight’ process.

The discussion on shared memory can be
summarized as follows. It is easier and more efficient
to implement a process concept that does not allow
processes to share memory. Furthermore, an
application formulated as a set of processes that do
not share memory can be executed on a wider range
of computer systems, which is highly desirable.

However, when it is essential to exploit a shared-
memory multi-processor, this can be achieved by
introducing ‘light-weight’ processes that are
‘internal’ to normal ‘heavy-weight’ processes. These
‘light-weight’ processes can also be supported on a
single processor by incorporating an internal ‘user-
code’ scheduler into the code of a single ‘heavy-

- weight’ process. Thus, applications that explicitly

exploit shared-memory multi-processors can still be
ported to other kinds of computer systems, albeit
with a performance penalty in some cases.

It should be noted that the concept of a ‘light-
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weight’ process is really independent from the
concept of a ‘heavy-weight’ process. The rest of this
paper is exclusively concerned with ‘heavy-weight’
processes.

4. Virtual Address Spaces

A virtual address space typically allows a virtual
processor to view its subset of the physical memory
as one or more contiguous blocks of memory,
starting at fixed addresses such as zero.

Providing virtual processors with such virtual
address spaces has several disadvantages: it limits the
class of suitable hardware, most processor caches
must be invalidated after each context switch, and the
operating system is complicated by the need to cope
with different address spaces.

However, appropriate memory management
hardware units are becoming common, and virtual
address spaces facilitate the writing of compilers.
Furthermore, virtual address spaces allow a process
to comprise a number of disjoint areas of physical
memory and make it possible to provide processes
with virtual memories that are larger than the
physical memory (however, this is becoming
increasingly less important as physical memories
become larger).

Moreover, widely-used operating systems such as
UNIX provide processes with virtual address spaces.
It may thus be more difficult to port programs
developed for existing operating systems to a new
operating system that does not provide processes
with virtual address spaces.

Thus, the advantages of providing virtual address
spaces appear to outweigh the disadvantages.

5. Dynamic Memory Allocation

Allowing a process to change the amount of memory
available to it dynamically is highly desirable. For
example, a process such as a compiler then needs to
use no more memory than is required by the input of
a particular run, and a process such as a sort utility
can use as much (or as little) memory as is available
during a particular run.

However, to be implemented efficiently, dynamic
memory allocation requires memory management
hardware that allows the virtual processor to access a
potentially large number of disjoint segments of real
memory. Furthermore, it complicates both the
operating system resource allocation policies and the
code of the dynamically sized processes, since the
amount of memory needed by a process is not known
in advance and it may be impossible to grant a
request for extra memory.

These difficulties can be ameliorated effectively by
requiring the linker to supply the loader (via
parameters in the process image) with the maximum



amount of extra memory a process may request, as
well as the minimum amount of extra memory the
operating system must guarantee. These parameters
allow particular implementations of an operating
system to overcome limitations of the memory
management hardware by pre-allocating or partially
pre-allocating extra memory for a process when it is
created. They also facilitate the writing of
dynamically sized processes as a minimum amount
of memory can be guaranteed to be dynamically
allocatable.

6. Virtual Interrupts

Whether or not to make virtual processors
interruptible is a somewhat contentious issue.
Anyone who has programmed an interruptible
processor will recall at least one extremely hard-to-
find error caused by subtle interactions between non-
deterministic interrupts. None but the best and
bravest (or most foolish) programmers will venture
anything of substance that the final ‘debugged’
system running on an interruptible processor will be
completely free of errors.

The main argument for having interrupts is that
they allow fast responses to external events and avoid
the need to check repeatedly whether the event has
occurred. However, these propertics can be obtained
in a non-interruptible system by packaging interrupts
as arriving messages, by providing a process with
suitable mechanisms for suspending its execution
pending the arrival of a message, and by providing
mechanisms that enable a process to respond quickly
to the receipt of a message.

The only processes for which these ‘no interrupt’
mechanisms are clearly less suitable than interrupt-
based mechanisms are the device driver processes that
must ultimately deal with the real interrupts on the
real machine. These interrupts should preferably be
dealt with as rapidly as the hardware allows, and the
less software packaging is involved, the better.
However, since device driver processes can
reasonably be required to be designated as ‘privileged
and trusted’, it suffices to give such processes access
to the real interrupts via a simple (but dangerous)
mechanism involving no overhcad for other
processes.

As will be seen below, the programmer who really
wants an ordinary process to be asynchronously
interruptible can readily achieve this by means of a
protocol between the process and its parent.
Furthermore, the entire mechanism and the overhead
of the mechanism are firmly under the control of the
programmer.

7. Exceptions

Real processors often use the same mechanism to
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handle exceptions and interrupts. However, since
exceptions are usually caused by a processor trying
to execute an erroneous instruction, it makes no
sense for an operating system to package an
exception as a message to the process, and then to
allow the virtual processor to carry on executing
until the process explicitly accepts the message.

Clearly, after an exception, the virtual processor
must suspend the execution of the instruction stream
that caused the problem, and either carry on with a
different instruction stream, or have the process
terminated. The mechanism for doing this should
preferably involve minimal overhead for the ordinary
process, which should not generate exceptions and
should be terminated when it does. The mechanism
should also be machine independent so as not to
decrease portability, and should provide the
programmer or language run-time system with
complete control over what happens when an
exception is generated.

The simplest mechanism that will do the job is as
follows. When a process generates an exception, it is
suspended, and the event is packaged into a message
that is sent to its parent process. The parent of a
process can then cause its suspended subprocess to be
restarted at any point within the subprocess address
space. Alternatively, the parent can simply terminate
the subprocess.

This mechanism allows the operating system to
handle exceptions using a simple non-interrupting
scheme that exacts no overhead other than the cost of
sending a message (the minimum cost in a non-
shared memory multi-processor). The policy
decisions on what to do about an exception are
relegated to a machine-independent protocol between
the process and its parent process. Moreover, the
mechanism provides the programmer and/or language
run-time system with complete control over what
happens when a process generates an exception.

8. Control by External Agents

External agents, such as devices and users, can
always be represented by corresponding processes.
Thus the issue is the extent to which one process can
control another. As previously indicated, a process
can restart a suspended subprocess, as well as
terminatec a subprocess. It can also be informed
whenever a subprocess terminates itself or is
suspended.

It may seem unreasonable to restrict the privilege
of controlling a process to its parent process.
However, restricting the privilege avoids the need to
introduce an explicit ‘right to control’ granting
mcchanism and makes it easier to check whether a
process has the right to make a control request
(especially in a distributed implementation of the
operating system). Also, a programmer can
synthesise control facilities in non-parent processes



by letting the parent execute requests communicated
to it by these processes. The restriction, therefore,
simplifies the operating system without impairing
functionality. Furthermore, the overhead of providing
extended control rights is limited to those
applications for which these are required.

An additional control feature often provided by
operating systems is the ability to cause an interrupt
or exception in another process. This can be achieved
by allowing a process to suspend a subprocess,
whereafter it can restart the subprocess at the address
of the interrupt/exception handler. This allows, for
example, a process to extricate a subprocess from an
endless loop, and to restart it inside a ‘cleanup and
reset’ procedure,

Allowing a process to be suspended at an arbitrary
point in its execution, and then to be restarted at
another, causes some complications. Firstly, the
‘interrupt’ handler entered when the suspended
process is restarted may eventually wish to resume
the interrupted control flow (in true interrupt handler
fashion). Thus, when a process is suspended, the
address of the instruction that was about to be
executed must be saved on the process stack.
Secondly, the interrupt handler may need to know the
reason for the interrupt. Consequently, the parent
must supply a reason code when it suspends a
subprocess; this code is then stacked along with the
‘return’ address. (When a subprocess suspends itself,
it too supplies a reason code, andwhen it is
suspended because of an error, the system provides a
reason code.)

Suspending a subprocess so that it can be resumed
cleanly from the point of interruption can be very
difficult if the subprocess is inside a system call at
the time that the suspension request is received
(which can be at any time on most multi-
processors). Consequently, a suspension request
issued by a parent while the subprocess is inside a
system call takes effect only when the system call
returns. If the parent proceeds to restart a subprocess
that is still waiting to be suspended, the completion
of the parent’s restart request is delayed until the
subprocess can be suspended.

However, if a subprocess is inside a system call
that may never return, for example when it is
waiting for an input/output operation that will never
be completed, then such a scheme will cause the
parent to be delayed indefinitely when it tries to
extricate its subprocess from an indefinite delay.
Consequently, such system calls must be
interruptible.

When interrupted inside such calls, the stacked
reason code is modified, and additional information is
placed on the stack. An interrupt handler that wishes
to return to the point of interruption can use this
stacked information to resume the interrupted system
call. On the other hand, an exception handler that
must extricate the process from an erroneous control
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flow, rather than resume it, must be able to regard an
interrupted system call as completed.

The complications that arise when a parent is
allowed to suspend its subprocesses raise the
question whether it is possible to dispense with this
mechanism. However, the only alternative to
suspending and restarting a run-away subprocess is to
terminate it. When a process is terminated, all of its
communication links are severed and all its
subprocesses are terminated - otherwise, other
complications would arise.

The cascading effects of terminating a process
forming part of a set of co-operating processes may
be 100 severe to be acceptable to a multi-process,
real-time, fault-tolerant application. Albeit somewhat
complicated, the semantics of suspend/restart seem
preferable. And, even though complicated to describe,
the suspend/restart mechanism can be implemented
without exacting much overhead cost.

With regard to the automatic termination of
subprocesses, note that a process can nevertheless
create another process that will survive itself. A
process would do this by not creating the new
process as its own subprocess, but by requesting an
operating system provided non-terminating ‘server’
process to create and control a subprocess on its
behalf. Such a server would provide the functions of
the background batch queues found in many
operating systems.

9. The Initial State of a Process

There can be little argument that it is desirable to
control fully the initial state of a process. However,
there are at least two ways of achieving this. One is
to allow the system linker to create a fully specified
process image in a file, and for the loader to load the
image, exactly as specified, into memory. Another
way, taken by UNIX, is to duplicate the current
image of a process when it creates a subprocess, and
also to allow a process (usually a new subprocess) to
replace its current image with one specified in a file.

However, creating a new process by duplicating the
memory image of the parent process is not sensible
if the subprocess immediately replaces the image
with one from a file (by far the most common case).
Furthermore, such an unnecessary duplication can be
a very expensive operation if the image must be
copied from one physical memory to another via a
network,

Once a new process is created, it can either
immediately start executing, as is the case for a
UNIX process, or it can remain in a suspended state
until explicitly started by its parent process. Such an
initial suspension allows a parent process to create
several subprocesses, and to set up communication
links between them, while they are in a known state.
A parent can also connect the communication ports
of subprocesses to servers, files, or devices, or



transfer the use of some of its own communication
links to subprocesses. Initial suspension is thus
preferable.

Another initialisation issue concerns the interface
of a new process to its environment. A new UNIX
process inherits copies of all the file descriptors of
its parent. This is fine when the descriptors provide
read-only access to actual files. However, if one of
the file descriptors represents a terminal and both
parent and child use it simultaneously, chaos results.
In the operating system designed by the author, the
UNIX concept of a file descriptor is superceded by a
generalised ‘communication link’, and it can be both
complicated and undesirable automatically to provide
a new process with duplicates of all the
communication links of its parent. Consequently, a
new process is created without any communication
links, and it is up to its parent explicitly to provide
the links that the new process expects to be able to
use without establishing them itself.

10. Rate of Execution

If the operating system is to support real-time
applications, or even just interactive applications,
there is little choice but to allow a programmer to
make some assumptions about the rate of execution
of a process. It is also necessary to allow the rate of
execution to be influenced by the programmer.

Most operating systems allow priorities to be
attached to processes, and some implement feed-back
schemes that dynamically adjust the priorities of
processes. While workable, and often successful, this
approach does suffer from the drawback that priorities
must be chosen and controlled carefully. When the
number of real-time processes become large, it
becomes very difficult to arrive at an appropriate set
of priorities. And when processes are dynamically
created and destroyed in response to the demands of
interactive users, it becomes very difficult to use
priorities with predictable effect.

A simpler approach is to allow the rate of
execution of a process to be specified directly, rather
than be influenced indirectly via priorities. For
example, the speed of a processor can be rated on
some absolute scale and the rate of execution of a
process expressed as a number on the same scale,
with the following interpretation. Let Y be the speed
of the processor and X the desired rate of execution of
a process. The process should then receive at least
X/Y of the processor’s cycles, say every 100
milliseconds, while the process remains ready to
execute.

Of course, to guarantee that a process will progress
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at least as rapidly as at its desired rate of execution,
the sum of the rates of all the processes that can be
ready at the same time must not exceed the speed of
the processor. However, it should be easier for a real-
time application designer to ensure that this is true,
than it would be to ensure that a set of priorities will
result in the desired progress by each process.

To aid real-time application designers further, an
operating system should also be able to distinguish
among ‘real-time’ and ‘ordinary’ processes, with real-
time processes pre-empting ordinary processes. A
real-time application designer then need not take non-
real-time processes into account at all.

11. Conclusion

In striving to provide the simplest possible
definition of a process, while providing as much
functionality as possible, the impact of various trade-
offs must be evaluated carefully.

This paper has identified a number of the more
important aspects of functionality and has discussed
the issues and trade-offs involved, particularly in
terms of the simplest mechanisms that can be used
to provide the needed functionality.

By providing the necessary functionality from the
start, it is possible to avoid the problems associated
with piecemeal evolution. In this regard, it is
instructive to compare the complex definition of a
process offered by UNIX System V to the simple,
but incomplete, definition offered by early versions
of UNIX.
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1. Introduction and Motivation

= ?,54

A modem general-purpose operating system can &ﬁ

expected to provide a high level of data security, to
provide appropriate support for a comprehensive
database management system, and to support real-
time applications. Furthermore, such a system can
be expected to isolate applications from the
underlying hardware. That is, the operating system
should be implementable on most current and future
hardware systems, and an application written in a
standard high level language should be able to run on
any hardware system running under the control of
such an operating system.

Moreover, a computer controlled by a modern
operating system should be able to form part of a
network of distributed computers, and provide users
with efficient, transparent access to the resources
available via the network. In particular, a modern
operating system should be able to make effective
use of the loosely-coupled multi-processor systems
that are beginning to appear.

The current generation of widely-used, multi-user,
general-purpose operating systems have gradually
evolved from versions designed in the 1970’s and
1960’s. Then, many of the issues that are of
considerable importance today, were unimportant or
not even thought of. In particular, loosely-coupled
multi-processor systems were unforeseen, and
operating systems were designed with a single-
processor mind set, making it difficult to port these
systems to loosely-coupled multi-processors

For example, current implementations of UNIX
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cannot even be ported to tightly-coupled multi-

«~processors without major changes and preferably a

complete rewrite [2]. The situation is even worse for
loosely-coupled multi-processors: the latest
‘standard’, UNIX System V [4], allows arbitrary
processes to share memory which cannot be done
efficiently on a loosely-coupled multi-processor.
Furthermore, the message-passing mechanism which
is of critical importance to distributed applications -
is far too complicated and cumbersome to be
implemented efficiently. In fact, the designers of this
message-passing mechanism have apparently
assumed that the sender and receiver processes share
access to a common physical memory. There are also
other aspects of UNIX which, upon close
examination, prove difficult or impossible to
implement effectively on a loosely-coupled multi-
processor.

The situation is not much better when one
considers other widely-used current generation
operating systems. Thus, if one aims to build a new
computer system based on a loosely-coupled multi-
processor, a substantial operating system
development effort must be undertaken.

. If compatibility with existing software is one’s

principal concern, one should aim to implement
either a UNIX ‘look-alike’, or an MVS ‘look-alike’.
However, as pointed out above, UNIX is not well
suited to the role. The same is true for MVS.

If, on the other hand, making do with limited
resources is one’s principal concern, then it makes
sense to develop a new operating system, with full
use being made of what has been learnt about



operating systems since the 1970’s.

The author is currently involved in the development
of a loosely-coupled multi-microprocessor system.
The aim is that this system should provide ‘super
main-frame’ functionality and performance. The
project is being undertaken with relatively limited
resources, and building a working system with the
available resources is considered more important than
providing compatibility with some existing software
base. Consequently, a new operating system has
been designed for this computer, and a fairly
complete ‘quick-and-dirty’ prototype has already been
implemented. A full-scale implementation, using the
prototype operating system as the development
system, is currently under way.

The rest of this paper is a brief survey of the main
features of the operating system design. The
intention is not rigorously to justify design
decisions, nor to point out what contribution the
work makes, but rather to provide the reader with an
overall description and enough detail to compare the
new operating system to any existing operating
system. A more detailed description can be found in

[31.

2. Processes

A new process can be created either by forking an
existing process, in the style of UNIX, via the
following two system calls: (‘->’ means ‘returns’)
fork_process (process_num, monitoring_io_port)
-> process_num replace_image (file_num,
entry_point)
or by loading the process’ starting image directly
from a file:
load_new_process (file_num, monitoring_io_port)
-> process_num

The latter method is more appropriate for a loosely-
coupled multi-processor. It makes little sense to
copy the current memory image of the parent process
over the network to the processor that is to execute
the new subprocess, only to replace it soon
afterwards with a new image obtained from a file, as
is usually the case. Forking is only provided to
facilitate UNIX compatibility.

Note that, unlike UNIX, a process can fork not
only itself, but also one of its subprocesses.
Furthermore, a parent process can be informed of all
state changes in its subprocesses, and can exert
complete control over them, with the ability to
terminate, suspend, or restart a particular subprocess.

Furthermore, unlike UNIX, a new process is created
in a suspended state, and execution must be started
explicitly by its parent. This allows a process to load
several subprocesses and to set up communication
links between them while they are in a known state.

A parent process may also suspend an executing
subprocess and then restart execution at a different
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instruction. The suspend/restart mechanism is
formulated such that the restarted subprocess can
execute either an interrupt handler (eventually
returning to the point of interruption), or an
exception handler (never returning).

As is to be expected, a process can suspend or
terminate itself and supply a reason code that will be
received by its parent. A process can also
dynamically obtain additional memory from the
operating system, and release unused memory for use
by other processes.

The operating system does not normally allow
processes to share access to the same area of
memory, since, in general, it is not possible or
desirable to ensure that processes execute on physical
processors that have access to a common physical
memory bank. Memory sharing is therefore
discouraged by limiting it to specially privileged
‘server’ processes. (Server processes are discussed in
Section 4.)

It is, however, possible to simulate a form of
memory sharing between different ‘light-weight’
processes executing on the same processor by
incorporating a scheduler into the code of a single
‘heavy-weight’ operating system process. Such
‘light-weight’ schedulers can ignore most of the
fairness, synchronisation, and security issues that an
operating system must address, and can thus provide
a much cheaper form of single-processor concurrency
than the operating system. A typical user of ‘light-
weight’ processes would be a server process that
must serve several clients concurrently.

3. Inter-Process Communication

As Hoare pointed out [1], transferring information
from a process to a process does not differ from
transferring information from a device to a process,
or from a process to a device. In fact, in a modem
operating system implementation, device drivers are
likely to be implemented by processes.

Consequently, the operating system provides a
generalised 1/O call as the principal means whereby
processes must interact with their environment. This
system call corresponds to the classical 1/0 call of
current generation operating systems in most
respects, generalising it only in so far as to allow
1/0 operations to be performed on processes as well
as on files and devices, and by allowing a single
operation to perform both output and input.

The 1/0 call is invoked as follows:

io (io_port, operation, address, out_len, out_buf,

in_len, in_buf)

Note that all the parameters, except out_buf, may
be updated by the call.

An 1/O port corresponds to a UNIX file descriptor,
but may represent another process, as well as a file
or device. Furthermore, up to sixteen different I/O



operations may be carried out on an I/O port. For
example, when an I/O port is linked to a file, the
following operations are supported:

0 = read next string (length given in in_len)

1 = write next string (length given in out_len)

2 = read string at offset from file start (given in

address)

3 = write string at offset from file start

4 = append string at end of file

5 = get current length of file (result in in_len)

6 = set current length of file to length in out_len

7 = flush updates to non-volatile storage

As can be seen, some operations are input
operations, others perform output, and still others do
neither. It is also possible to have operations that
perform output as well as input. In general, the
subset of operations that can be carried out on an [/O
port and the effect of the operations depend on the
kind of object to which the I/O port is linked. When
an 1/O port is used as an inter-process
communication link, the programmer has full
control over the subset of allowable operations and
the interpretation given to them.

An I/O port is linked to a file, device, or server via:

open (process_num, io_port, object_num,

desired_ops) -> available

Note that a process can open not only its own I/O
ports, but also those of subprocesses; object_num
identifies the file/device/server; desired_ops is a bit
map indicating the subset of the sixteen possible
operations that the caller wishes to carry out on the
I/O port. (For example, to open a file for sequential
read-only access, desired_ops must have a value of
0000000000000001.)

desired_ops) -> available

An /O port is linked to a process via:

connect (process_a, io_port_a, bitmaps_a,

time_out_a, process_b, io_port_b, bitmaps_b, .

time_out_b)

A process may connect the 1/O ports of its
subprocesses to each other, or may connect its own
1/O ports to the I/O ports of subprocesses. Thus a
process can communicate with its subprocesses,
siblings, parent, and files/devices/servers.

Note that each I/O port has a bit map associated
with it, indicating which 1/O operations may be
carried out on it, as well as a bit map indicating
which 1/O operations perform output. Additionally, a
time-out is associated with each port. These values
are explicitly specified for ports opened with connect,
but are determined by the object to which the port is
linked for ports opened with open.

The general progression of an I/O call is as
follows:

- send operation,address,out_len,in_len to the other
process (append contents of out_buf if the
operation calls for it)
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- wait for a response from the other process (return
with an error code if no response within time_out)

- return operation,address,out_len,in_len sent by the
other process, and store rest of its response in
in_buf (sender out_len = receiver in_len, and sender
in_len = receiver out_len)

When an I/O port has just been connected to
another, the first operation that outputs the contents
of out_buf is delayed until the other process performs
an input operation on its corresponding I/O port. The
/O call of the process that performed the input
operation then completes, returning the parameters
and buffer contents supplied by the process that
performed the output operation (resulting in a data
transfer taking place; see also figure 1). Meanwhile,
the outputting /O call is suspended while awaiting a
response. This response is received when the process
that performed the initial input operation performs
its next I/O operation. The response consists of the
parameters and possibly the contents of out_buf,
supplied to the second I/O operation.

Thus, two communicating processes are always
synchronised so that the initiation of an operation by
one, causes the completion of an operation by the
other, as well as a data transfer. The result is that
communication takes on a ‘hand-shaked’ request-
response nature, and that when one process sends
output to another, the other has already set up an
input buffer to the receive the transferred data. This
eliminates the need for a system buffer pool and
takes care of flow-control and synchronisation.

When a port is opened to a file/device/server, the
operating system engages in a dialogue with a
corresponding file-driver-process/device-driver-process
/server-process, which results in an inter-process
communication link being set up between the client
process and a driver/server process. After the open,
the driver/server is waiting to complete an /O
operation, and the client process has yet to perform
its first operation.

When the client performs its first I/O operation on
the port, the incomplete I/O at the driver/server
completes, resulting in the driver/server receiving the
request made by the client. After serving the request,
the driver/server responds by initiating a next I/O
operation, which in turn causes the client’s
incomplete 1/O operation to complete, returning the
desired results,

Naturally, the I/O call allows a proceed option
(indicated by setting a modifier bit in operation). A
proceed I/O call sends the request to the other
process, but does not wait to receive the response.
The requesting process can later complete the call
and. receive the response by performing another /O
call on the port — setting a modifier bit to indicate
whether or not to wait for the response, if this has
not yet been received.

It is possible for a process to have a number of /O
ports on which proceed I/O operations were carried



out. Therefore, it is possible to perform an I/O call
that will complete any one of these incomplete calls.
This facility will typically be used by a server
process that serves many clients concurrently, and
thus may be waiting for several requests (that is,
have several incomplete I/O calls) at the same time.

The I/O call also supports broadcasting/multi-
casting, as well as scatter/gather transfers.

4. Servers

Server processes are the principal means by which
the operating system provides its services.
Furthermore, servers can be used as the basic blocks
for building distributed applications.

A server process has a globally visible name, drawn
from the same name space used for files and devices.
Thus, a prospective client establishes an inter-
process communication link with a server by calling
open. The operating system carries out a call to open
by sending an unsolicited message to the target of
the open call. Whether it is a file, device, or explicit
server, the target of an open call is always a process;
hence the term ‘server’ will from now on be
understood to include files and devices.

When a server starts executing, it sets up a number
of ‘reconfigurable’ I/O ports, using:

make_reconfigurable (io_port, valid_op_bitmap,

in_len, in_buf, time_out)

While reconfigurable, an I/O port does not represent
a communication link to any particular process, but
acts as a receiving port for unsolicited messages.
Thus, when the operating system sends an
unsolicited message to a server, one of the server’s
reconfigurable I/O ports is selected to hold the
message, and the server will receive the message
when it tries to complete an I/O call on that port (it
will usually try to complete an 1/O call on any port).
Note that make_reconfigurable scts up the buffer to
hold the unsolicited message.

The unsolicited message received by the server
a) can be trusted because it comes from the

operating system
b) fully identifies the prospecctive client, its
privileges, the type of access required, and so on.

After receiving such a message, the server must
decide whether or not to accept the clicnt and indicate
this by outputting an appropriate message through
the I/O port that received the request. If the client is
accepted, the I/O call indicating the acceptance
remains incomplete until the client performs its first
I/O operation on the port it has just opened
successfully. Thus, when a client is accepted via a
reconfigurable I/O port, the I/O port is configured as
a dedicated inter-process communication link between
client and server. Note that, among other things, the
server’s acceptance message supplies information to
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be associated with the client’s I/O port: the valid
operations, the operations that output out_buf, and
the time-out to be used when waiting for a response
from the server.

A server process can be tied to a particular
processor of a multi-processor system, in which case
it is loaded when that processor bootstraps.
Alternatively, a server can be ‘untied’, in which case
it is loaded into any available processor when first
referenced by an open call. Untied servers usually
terminate when they have no more clients.

Designating a process as a server, thus giving it
global visibility, is a privileged operation since a
server is trusted to take part in the ‘new client’
protocol. Servers are also the only class of processes
that can be allowed to perform certain privileged
operations.

For instance, a server that is tied to a particular
processor can be used as a device driver by allowing
it the privilege to access I/O space and to install
interrupt handlers. A tied server can also be allowed
to share memory with other servers tied to the same
processor.

It follows that an implementation of the operating
system will itself largely consist of a set of server
processes distributed among the various physical
processors. Adding new servers to the collection
making up the basic operating system will be
straightforward, resulting in an ‘open’, extensible,
adaptable operating system. Furthermore, structuring
the operating system as a set of servers
communicating via messages greatly facilitates the
transparent integration of local resources (services)
with resources available, via a network, from other
systems.

The server mechanism also allows a single service
(that is, a single object in the name space) to be
implemented by several co-operating processes. One
way to implement such a multi-process server is to
designate several server processes as the members of
a single server group, identified by a single ‘group
object’ number. When a client performs an I/0
operation on an I/O port linked to a group, the
request message is broadcast to all members of the
group. It is possible for the structure of the group to
be invisible to the client, in which case the members
must use a protocol to ensure that only one response
will be generated. Alternatively, a client may be
required to be aware of the group structure, in which
case the client must set up additional I/O ports to
receive the multiple responses (an 1/0 port can
receive at most one response for each request).

It is also possible to implement a server group,
without using broadcasting, by means of a co-
ordinator process. In this case, client requests go to
the co-ordinator, and the co-ordinator then
‘subcontracts’ them to the other processes co-
operating to provide the service. A co-ordinator can
subcontract all client interaction, in which case the
‘request to become a client” message goes to the co-



ordinator and is subcontracted, following which all

further interaction is between client and subcontractor

(unbeknown to the client). Alternatively, a co-
ordinator can subcontract individual requests, inwhich
case all requests first go to the co-ordinator and then
to the subcontractors.

Note that subcontracting and broadcasting can be
combined. It is thus possible to exploit multiple
processors to achieve both speed and fault-tolerance,
while providing clients with the illusion of dealing
with a simple ‘single’ server.

S. The File System

The file system is intended to facilitate the storage
and retrieval of arbitrary strings of bytes, such as text
files, object files, and process images. The file
system is not intended as an efficient or convenient
store for records since it is more reasonable to use a
database management system to store and retrieve
such data.

The file system is implemented as a set of
communicating servers, with each open file having a
corresponding ‘driver’ process that actually receives
and acts upon the I/O operations that client processes
perform on I/O ports linked ‘directly’ to files. The
file system servers are structured as a hierarchy and in
such a way that the database management system can
exist ‘alongside’ the file system, by making use of
the lower level ‘disk block’ servers instead of the file
system visible at system call level. ‘

Files are identified by numbers drawn from a global
name space that includes devices and servers. This
allows user interfaces to use arbitrary symbolic
name-to-file number mappings, further adding to the
‘open’, extensible, adaptable nature of the operating
system.

Files are allocated in two steps:

create_temporary_file (logical_vol_num, size_hint)

-> file_num make_file_permanent (file_num,

future_expansion-hint)

Temporary files are automatically reclaimed when
the process that allocated them terminates. By
converting these temporary files into permanent
files, rather than directly allocating permanent files,
it is possible to follow a protocol that results in the
allocation of a file and the recording of a symbolic
name-to-file number mapping as an atomic
operation.

The size hints that may be given when a file is
allocated allow the operating system to pre-allocate
space for a file so that sequential access is optimised.
The file system need not heed the hints and will
never refuse to allocate or grow a file because a
suitable run of disk blocks is not available,

The design of the file system attempts to minimise
the visibility of physical disk volumes to application
programmers in order to promote program

Quastiones Informaticz 611988

transportability: All permanently on-line storage
media are consolidated into logical volume zero and
files from all volumes are identified from a single
name $pace. ’

However, it is necessary to introduce the concept of
distinct volumes to cope with removable disk packs.
Clearly, the operating system cannot just
incorportate removable disk packs into a global pool
and allow arbitrary files to be allocated on removable
disk packs. Consequently, removable disk packs are
grouped into one or more logical volumes, any of
which can be off-line. File allocations on these
volumes must be indicated explicitly and can only be
performed by suitably authorised users.

6. Security

Users gain access to the operating system by
interacting with a user authentication server. It is
possible to associate an arbitrary authentication
server with a given user access device, and to restrict
a given server to admitting only a subset of users.
Thus, it is possible to make it reasonably easy to
gain entry as a casual user, while making it
arbitrarily difficult to gain entry as a privileged user.

When a user gains entry into the system, the
corresponding user access device is assigned to an
appropriate user interface process, which is
‘exccuting on behalf of” the user. The ‘executing on
behalf of” property of a process is inherited by all
subprocesses, and can only be changed if a process is
a specially privileged server process (for example, an
authentication server). Thus, all actions initiated by a
user are carricd out by processes authentically
executing on behalf of the user.

Files, devices, and servers all have owners, and are
accessible only to processes executing on behalf of
the owner or a user explicitly mentioned in an access
list - a file listing all the users that may access the
protected object, with each entry indicating an
individual set of privileges for the user. (Note that a
scrver may reject a client even if the client is listed
in its access list.)

Additionally, files, devices, servers, and processes
are associated with ‘information categories’. An
arbitrary number of information categories can be
established, and the operating system enforces a set
of rules that ensure that information cannot ‘flow’
from one category to another, unless specifically
permitted. This is basically achieved by limiting a
process to accessing only objects associated with the
same information category, while also allowing a
process to have read-only access to objects associated
with categories that have flow paths to the category
of the process. A process may only change its
category if its user is permitted to operate in the new
category and if the change cannot result in an illegal
flow of information.



The operating system also includes mechanisms for
limiting software piracy, denial of resources, Trojan
Horse attacks, and the use of covert channels to
subvert information flow controls.

7. Database Support

Database managers are principally supported by the
server mechanism. Furthermore, the file system is
structured in such a way that a database manager can
access disk blocks directly.

The only additional support provided by the
operating system is in the form of a transaction co-
ordinating server. This server is accessed by client
processes via the system calls:

start_transaction

commit_transaction -> success_indicator

abandon_transaction

These calls keep the transaction co-ordinator up to
date on the transaction status of processes, and it, in
turn, keeps ‘transaction supporting’ servers up to
date on the transaction status of their clients.

The transaction co-ordinator co-ordinates a two-
phase commit, provides a ‘centralised’ deadlock
detection service, and allows transaction supporting
servers to use a wide range of synchronisation
strategies, including optimistic strategies.

While it is logically a centralised service, the
transaction co-ordinator can be implemented as a
distributed set of co-operating processes, and thus
does not preclude the implementation of a distributed
database manager.

8. Real-Time Support

The operating system allows the minimum rate of
execution of a process to be specified directly rather
than be influenced indirectly by means of priorities.
Furthermore, processes are classed as ‘real-time’ or
‘ordinary’, with real-time processes pre-empting
ordinary processes. All operating system server
processes execute as ordinary processes, thus giving
real-time application programmers complete control
over processor allocation.

Note also that server processes can be granted the
privilege of handling interrupts directly, as well as to
share memory with similar servers on the same
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processor. Furthermore, the operating system can be
configured with a separate ‘real-time’ file system that
serves only real-time processes and thus isolates real-
time processes from interference by non-real-time
processes in this aspect as well.

9, Conclusion

This paper has briefly outlined the design of an
operating system that is hardware independent,
provides a high level of data security, and supports
distributed applications, database applications, as
well as real-time applications.

This has not been achieved by introducing radically
new concepts, but by carefully reformulating,
generalising, and integrating the basic concepts that
any operating system must support.

Firstly, the process concept has been stripped of
restrictions and assumptions, leaving a
straightforward mechanism that can be utilised
efficiently for a wide range of applications. Secondly,
the input/output mechanism has been generalised to
provide a straightforward, efficient form of inter-
process communication. Thirdly, the concept of a
device has been generalised into the concept of a
server, on which the operating system itself is
largely based. Servers make the operating system
flexible and extendible, and provide a suitable
mechanism for distributed implementations.
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The operations in the Take/Grant Protection Model are formalised using theory and results from the discipline
of formal languages. A Protection Graph Rewriting Grammar is defined, which generates protection graphs
consistent with the restrictions inherent in the Take/Grant Model.

Keywords: Take/Grant Model, protection graph, formal grammar, rewriting system

Received July 1987, Accepted July 1987

1. Introduction

The goal of this paper is to define a graph rewriting
grammar to simulate the operations in the Take/
Grant security model [2]. This grammar will have
certain context conditions applicable to every
production in the grammar. These context conditions
will allow the grammar to simulate the conditions
inherent in the different operations allowed in the
Take/Grant model.

The grammar will rewrite one protection graph [1]
by another, the rewriting process being controlled by
the context conditions of the productions.

For a discussion of the Take/Grant model, the
reader is referred to [1], [2].

2. Protection Graphs

2.1 Definition
A protection graph is a directed, loop-free, edge
labelled, two colour graph

P=(VR)
where P=V U 0, S n O =, is called the sct of
nodes, with S the set of subject and O the set of
object nodes.

Edges are labelled by nonempty subsets of a finite
set of labels

R={ry,..,m} w {t,g)}, called rights.
R contains two distinguished elements t and g. We
say P is a protection graph over V/R.

2.2 Definition
For any protection graph P = (V,R), let w(V/R) =
Ri
[H. | X,y € V7 Rl QR},
X y

i.e. y(V/R) is the set of all protection graphs over
V/R consisting of only two nodes.

An eclement D € y(V/R) is called a limited
protection graph.
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x is called the initiator and y the receiver of the
limited protection graph
Ry
D = @&——— @ denoted by i(D) and r(D)
X y
respectively.

3. Protection Graph Rewriting Grammars

3.1 Definition
A protection graph rewriting grammar (PGR-
grammar), is a system
G =(V,X,P,LR) where
V is a finite non-empty set of nodes, V=S U O
S is called the subjects, and O is called the objects.
Y is a finite non-empty subset of V, called the set
of terminal nodes.
P is a set of productions described below.
I is the initial protection graph (axiom).
R is a finite non-empty set of edge labels, with the
two distinguished labels t and g in R.

P consists of 4 types of productions:
3.1.1 Growth production
A growth production can rewrite (replace) a node by a
limited protection graph, i.e. it can extend (let grow)
an existing protection graph. (Add a new node to the
protection graph). Growth productions have the
following form:
(x, D, (X1; X2), (Y1, Y2))
where x € V, D is a limited protection graph over
V/R with x = i(D)
X1, X2cX
Y, Y2 are limited protection graphs over V/R
(D) € X».

A production of this kind is applied in the
following way to a protection graph H containing x:

R;
Suppose D = &———>®, R; c R.
X y



Add y as a node to H, with a new directed edge,
labelled Rj between x and y, if the following
conditions hold:

(a) All elements of Xy appear somewhere in H,

(b) No elements of X appear anywhere in H,

(c) All elements of Y; appear as subgraphs

somewhere in H,
(d) No clements of Y2 appear as subgraphs
anywhere in H.

X1 and X7 are known as the permitting/ forbidding
node contexts respectively, and Y] and Y7 as the
permitting/ forbidding edge contexts.

From the description above, it is clear that this
type of production allows the protection graph under
consideration to grow, i.e. add new nodes.

Note y € Yo (from the definition of this kind of
production). This requirement prevents the addition
of y if y already appears in the relevant graph.

3.1.2 Edge generation productions

An edge generation production can generate (insert)
an edge between two existing nodes in a protection
graph.

Edge generation productions are of the form:

(x,y, Ry, (X1, X2), (Y1, Y2)), where
(x,y e V,R1 cR, Xy, X5, Yy, Yp) are defined and
used as in 3.1.1.

The effect of such a production is to insert the edge
labelled by R between nodes x and vy if the context
conditions are satisfied.

Note that x, y € X1, i.e. both x and y must appear
in the protection graph under consideration. Further
we demand that

Rj
&———®,V R; R be in Yy, i.e. there may
X y
not (already) exist an edge between x and y.

3.1.3 Edge removal productions
An edge removal production can remove an existing
edge between two nodes.

These productions have the form:

(x,y (X1, X2), (Y1, Y2))
with x, y, X1, X2, Y1, Y2 defined as in 3.1.1.

The effect of such a production is to remove the
edge between nodes x and y if the context conditions
are satisfied.

Ry
Note that @&———>®, must be in Y] i.c. there
X
must be an existing nge, labelled Ry, between x and

y.

3.1.4 Edge label update productions
These productions can change the label of an existing
edge. _

Their form are:

(x, y, Ry, Ry, (X1, X2), (Y1, Y2)),
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where x, y, X1, X2, Y1, Y3 are defined as in 3.1.1,
and R, Ry cR.

The effect of such a production is to change the
label of the edge between x and y from R to R.

Ry
Note that@————®, must be in Y i.e. there
X y

must be an existing edge, labelled R1, between x and

y.

3.2 Definition (Informal)
The language generated by a protection graph
rewriting grammar

G=(,Z,P,LLR)
is the set of all protection graphs over I/R that can
be generated from the axiom I using productions
from P.

3.3 Definition
If ¥ =V, we call G an extended protection graph
rewriting grammar.,

In the rest of this paper we will assume, without
stating it every time, that ¥ = V.

We will also not distinguish explicitly between
object and subject nodes.

4. Note

We have now generated different protection graphs
from the axiom. This generation was strictly
controlled by the context conditions of the different
productions.

The "definition” of a PGR-grammar is based on [3].

S. Simulating the Take/Grant Model with
PGR-Grammars

In this paragraph we will take the four rewriting
rules in the Take/Grant model [2], and simulate them
with PGR-productions. We will discuss each
rewriting rule separately, primarily to show how the
context conditions in the PGR-production "controls"
the specific Take/Grant rewriting rule.

5.1 The Take-rule
Let x, y and z be nodes in a protection graph PG,
such that x is a subject. Let there be an edge from x
to y, labelled Ry, such that "t" € Ry, and an edge
from y to z labelled Rj.

Let R3 cRo.

Then the "take"-rule defines a new protection graph
PG, by adding an edge to PG1 from x to z.

Graphically




We can simulate this using an edge generation
production as discussed in 3.1.2. Consider the
following edge generation production:

5.1.1 (x,z,R3,(y;),

R;={t} U R, R, R,
(e—0 ., @ >0 ; @ >e))
X y vy Z X yA

V e S, (remember V=S U 0),R3 cRy, VR4 cR.

Production 5.1.1 states:
The node y must appear in PGy
The limited protection graphs
R;=(t) U R, Ry
(@——>® and —>@
X y y z
must appear in PG, and the limited protection graph
R4
@——>® may not appear for any R4 c R, ie.
X z
there may be no existing edge between x and z in
PGi. So PGy is generated from PGj using
production 5.1.1.

Note that 5.1.1 is actually a shorthand notation for
a whole set of productions. Every member of the set
can be written down explicitly, making the semantic
requirements viz

x £ S, R3 c Ry, V R4 c R unnecessary.

Using this set of productions we can therefore
mechanically implement the Take-rule by some
automata.

5.2 The Grant-rule

Let x, y and z be distinct nodes in protection graph
PG1 such that x is a subject. Let there be an edge
from x to y labelled Ry, such that "g" ¢ Ry, and an
edge from x to z labelled R;. Let R3 ¢ Rp. The
"grant"-rule defines a new protection graph PG3 by
adding an edge from y to z labelled R3. Graphically

Ry Ro
Q) L e N
xR={gJUR;y =z Ry 'y Ry z

Again we can simulate this using an edge
generation production. Consider the following edge
generation production:

52.1(y,z,R3, (x;),

R, R;={g}UR, Ry
(@ >0 . ® >0 ; & >@))
X z X y 'y z

forxeS,R3c Ry, VR4 R.
The explanation of this production follows the
same lines as 5.1.1.
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5.3 The Create-rule
Let x be any subject node in a protection graph PGj,
and let Ry be a non-empty subset of R. The "create”-
rule defines a new protection graph PG by adding a
new node n to PG with an edge from x to n labelled
R1. Graphically
Ry

o =0—0

X 4 n

We simulate this using a growth production as
described in 3.1.1. Consider the following growth
production:

Ry
(x, ——®; (; {n}) (;)
X n

forxeS,R;j cR.

The forbidding node context checks that n does not
already appear in PGy, i.e. two identical nodes
cannot appear in PGo.

5.4 The Remove-rule

Let x and y be distinct nodes in a protection graph
PG such that x is a subject. Let there be an edge
from x to y labelled Ry, and let Ry be any subset of
rights. The "remove"-rule defines a new protection
graph PGy by deleting the R rights from Ry.

Graphically,

Ry R1-Rp
—0 >0— >0
x Y X y

We can simulate this using an edge label update
production as described in 3.1.4. Consider the
following production: (Let R3 =Rj - R2).

Ry

(x,y,R1,R3 () (——@))

X y

The permitting edge context requires that an edge
between x and y, labelled Ry, must exist in PGj.

If Ry = @, the edge can be physically removed
using an edge removal production as discussed in
3.1.3.

6. Conclusion and Further Research

From the approach taken in this paper, it seems
possible to maintain a secure environment by using
the PGR-productions to enforce the restrictions and
context conditions inherent in any security policy.
The decision making process, i.e. deciding which
rights may be given to whom, and who may access
whom, can be "hard-coded" into the system using the
productions. The PGR-grammar can then
automatically decide, by checking the situation of the
present protection graph, and by applying applicable
productions, where and when access is allowed.

The next step is to try to model the Send/Receive
security model using the same principles.
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Abstract

Performance analyses of data communication systems do not always rely on a detailed analysis of the
underlying protocols. Those analyses which do, usually rely on an analysis of the protocol state transition
graph. These graphs tend to become very large for nontrivial protocols and the analyses correspondingly
complex. Image protocols is a recent approach to reduce the complexity of communication protocol analysis.
The method allows for the construction of an image protocol which is generally smaller than the original
protocol and its analysis therefore less complex. An image protocol system is said to be faithful if it preserves
the safety and liveness properties of the original protocol system. In this paper we show that an image protocol
is also faithful as far as its performance is concerned, a result which simplifies performance studies of the
protocol considerably. An example which illustrates the principles involved is included.
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1. Introduction

Most international standards for data communication
networks are based upon a layered architecture. At
each layer tasks or protocol entities provide and
receive services from the adjacent layers and execute a
peer to peer protocol between that layer and the
corresponding layer at remote stations. These
architectures are very complex and initial reports
about their performance in terms of measures such as
Data Unit throughput are not encouraging.

Performance analyses of data communication
networks do not always include a detailed analysis of
the protocol itself as it influences the execution of
the protocol function. Those analyses which do,
make use of a formal specification of the protocol
and more specifically, the protocol state transition
graph. As is the case for protocol validation
methods, these graphs become very large for real-life
protocols and the analyses correspondingly complex.

Despite the obvious advantages to be gained,
protocol performance analysis is not a very active
research area. The first work to make use of a formal
specification is that of Bauerfeld [2] followed by
Rudin [8]. Analyses based upon Petri-net
descriptions are those by Molloy [6] and Razouk [9].
More recently the author has proposed a performance
analysis technique [5] which applies the techniques
of multiclass queuing network theory. The latter
analysis is based upon the state transition graph of a
protocol and although it can handle systems with
many thousands of states the method can benefit
from state reduction as indeed can all of the proposed
methods.

Several techniques have been proposed in the
literature for the reduction of the protocol state space
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with the objective of protocol validation in mind.
Recent advances in this regard is the work on
decomposition by Choi and Miller [3], that on phase
reduction techniques by Chow et al. {4] and the use
of image protocols by Lam and Shankar [10].

In this paper we show how the performance
analysis technique proposed by the author [5] can be
combined with the method of projections as proposed
by Lam and Shankar to reduce the complexity of the
performance analysis. We define the concept of
faithful performance of an image protocol and show
that it applies.

After first introducing the protocol system model of
Lam and Shankar the performance analysis technique
is described in terms of that model. A very brief
overview is given of the construction of an image
protocol and the paper ends with an analysis of the
performance properties of an image protocol.

2. Protocol System Model

The reader is referred to Lam and Shankar [10] for a
full description of the protocol system model used
here. In this paper only those definitions from that
paper which are required for an understanding of the
performance model, described in the next section, are
given.

Let there be I protocol entities Py, P,, ..., P;and K
channels C,, C,, ..., Ck. Let §;be the set of states of
P;and M, be the set of messages that P; can send
nto Ck'

The dynamics of these protocol entities and
channels are described by entity events and channel
events.

Channel events specified for channel C, are denoted



by E} and are used to model various types of channel

errors. The reader is referred to [10] for a full

description of channel event errors. The occurrence of

a channel event in E; depends on, and changes only

the state of Cy; no change in the state of a protocol

entity is involved and for that reason channel events
are not considered any further in this paper.
There are three types of entity events:

* Send Events: Let t(r,s,~m) denote the event of P;
sending message m into channel C, where me M,
and C,is in the outgoing channel set of P;. The
send event is enabled when P; is in state r. After
the event occurrence, P;is in state s and m has
been appended to the end of the message sequence
in Ck

* Receive Events: Let t(r,s,+m) denote the event of
P; receiving message m from channel Cy where
me M and Cy is in the incoming channel set of

P;. The receive event is enabled when P; is in state ‘

r and m is the first message in channel Cy. After
the event occurrence, P; is in state s and m is
deleted from the channel.

* Internal Events: Let t(r,s,0) denote an internal
event of P; where a is a special symbol indicating
the absence of a message. This internal event is
enabled when P; is in state r. After the event
occurrence, P; is in state s. Internal events model
timeout occurrences internal to P;, as well as
interactions between the entity and its local user.

Each send or receive event may alter the states of
the entity and the channel involved in the event.
Internal entity events do not affect the state of any

-a
]

y

+b a \
0 —=

*-»-1-———>

channel. Following Lam and Shankar we use T; 0
denote the set of events specified for P,i=1,2,.
L

In most cases, the behaviour of P; would be
nondeterministic. For example, we may spec1fy T;to
contain both £4r,s,x) and ¢,(r,u,x) where s # u as well
as both t(r.s,x) and 1,(r,s,y) where x y. We denote
the probability of an entity event ti(r,s,x) by
pi(rs.x). Note that unless otherwise specified, we
will use the notation #(r,s,x) to mean all of x = +m,
—m or a.

Each event corresponds to a set of transitions in the
global state space G of the protocol system. The
union of the sets of transitions over all events
specified for the protocol system will be denoted by
7. The simultaneous occurrences of multiple events
in the protocol system are treated as occurrences of
the same events in some arbitrary order. The pair
(G,7) is also called the global state transition graph.

Figure 1 taken from [10] is an example of two
protocol entities P, and P, modelled by two
communicating finite-state machines.

3. Protocol Performance Model

Each event in the protocol system is specified by its
enabling condition and its execution. The enablmg
condition of an event is a predicate in the
components of the global state of the protocol
system. We will not concern ourselves with the
logical properties of a protocol system in this paper.
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Figure 1. Two Communicating Finite-State Machines
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The execution of an event however, specifies an
update to the components of the global state and
requires time from the processor on which the entity
is executing.

The performance model first described in [5],
assumes that there are [; instances of entity P, i =1,
2, ..., I as would be the case with several endpoint
connections in a real protocol system. It is moreover
assumed that all protocol entities contend for service
at a single processor. A measure of the performance
of the protocol would typically be the rate at which a
particular send event #(r.,s,-m) is executed or the
throughput rate at the processor of all send events
associated with entity P;. These, and other
performance quantities are computed by considering
the protocol system as a closed multiclass queueing
system with two service centres.

The one service centre is of the Processor Sharing
type [1] and models the processor. The second service
centre is a pure delay server and models the delays
experienced in channels Cy,C,, ..., Cg associated
with receive events.

Customers in the network are instances of the
entities Py, P,, ..., P;. A customer takes on a distinct
class associated with each distinct entity event
causing a state transition. Each distinct entity event
therefore represents a distinct customer class. Each
entity event is moreover classified to be either an
active event, if the event requires processor time, or a
delay event otherwise.

For example, all send events t(r.s,~m) are active
events, since they require the execution of a certain
average number of instructions, which in turn
requires a certain average amount of processor time.
Receive events {,(r,s,+m) represent time delays in the
corresponding channel. An internal event #,(r,s,x)
could be either a delay event (denoted by x = +a),
representing a timeout event say, or an active event
(denoted by x = —) when it represents an interaction
between the entity and its local user requiring
processor time.

Note that an event cannot be both an active event
and a delay event; any such event would have to be
decomposed into two events with a new intermediate
state. If t,(r,s,a) were such an event for example, it
would be decomposed into an active event £(r,s,,~0)
and a delay event t,(s;,5,+a).

It follows from the above that we associate a time
duration with every entity event. Denote the expected
value of this time for event t4(r,s,x) by ufl(r,s,x).

In the model, a sequence of events will thus cause
an entity to spend time in either one of the two
servers, depending on whether the associated event is
an active event or a delay event. For example, an
entity in a transition due to active event t,(r.s,—m)
having received a corresponding average service time
p,»'l(r,s;-m) from the processor centre, will leave and
either return to that same centre if the following
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event is again an active event, or would proceed to
the delay centre if the following event is a delay
event. In this way an entity would pass
nondeterministically between the servers, depending
on the sequence of events.

Figure 2 illustrates these concepts for the
communicating finite state machine P, of Figure 1
where, arbitrarily, the internal events #,(r.s,) have
been considered to be active events for all 7, s and o..

Note that the only assumptions required to solve
the model as a closed multiclass queueing network
are that,

» the probabilities p(r,s,x) are independent for all r,

s and x, and
« the time u’;l(r,s,x) associated with an event is

independent of the time associated with arty other

event in the same protocol system.

4. Analysis of the Performance Model

As one event follows another, an entity P;changes
from one to the next, not necessarily different state
in S;. Let £(r,,) denote the expected value of the
number of times P;is in state re S;between
successive times that it is in some arbitrarily chosen
state r*e S;. In other words, &(r,,)/E,(r*,,) is the
relative number of times that P; would be in state r
compared to the number of times it would be in state
r*. The &(r,,) satisfy the set of linear equations given
by

Er)= Y Y, s )pis.rx) o

SES" x

where Z, denotes the summation over all xe My k=
1, 2, ..., K, such that ¢(s,r x) takes entity P;from
state s to state r. It is not difficult to see that if
&(r.s.x) denotes the expected value of the relative
number of times entity event (r,s,x) is executed,
that

Ers.x) = pir,s.x)Edr.,) @

Define the relative utilisation v;,(r,s.x) of the
processor centre by instances of entity P;in a
transition due to active event ¢,(r,s,x) to be

Via(r,$.%) = &ir s 0)/uir.s x) 3)
where x = —-m or —a. Similarly we define the relative
utilisation v;4r,s,y) of the delay centre by instances

of entity P; in a transition due to delay event #;(r.s.y)
to be

Vid(”s»)’) = §i(’J»}’)/Hi("J,)’) (4)

where y = +m or +a.



ACTIVE CENTRE

DELAY CENTRE

tl(6,2,+b3)

=

=

Figure 2. Event Sequences in the Two Servers for Entity P1 of Fig. 1

Denote the total relative utilisation of the processor
centre by P; by

Pa= X D, Vilrsw) ®)

l',SES" x

where x = —m or —a, and of the delay centre by

pu= X D, Vidrsy) ©

rses; y

where y = +m or +a.

Let L = (4, 05, ..., I}) be the system population
vector of the number of instances /; of entity P;, i =
1,2, ..., I Let 3;,(rs.x,L) denote the average rate at
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which active events #(r,sx) arc completed at the
processor or in other words, the expected throughput
rate of the /; instances of the entity P, in a transition
due to that event. It is known [11] that the value
Xia(r,s.x,L) is given by

%ia(r.5,x,L) = E(rs 0% (L) (7

where x = -m or —a. The average throughput rate
Xia(L) of entity P; due to any active event #(r,s,x)
where rseS;, x = -m or —o, is the sum of the
throughputs given by (7) for individual events. That
is,

%ia(L) = Zy % (L) ®)



[1)

3 Y Ersn) ©

€S; x

x*(L) in (7) and (8) is a mathematical quantity
without direct physical interpretation and which is
calculated in the Mean-Value-Analysis (MVA)-
Algorithm [7] presented in Fig. 3.

Algonthm
Step 1. initialisation

set 0,00,0,...,00=0

Step 2. loop over the number of instances of every
entity

leti= (27 T ip

foriy=0,1,..,hiy=0,1,.... L ...; =0, 1,
.,I[dO;
(#) changes most rapidly)

Step 3. loop for every entity
forj=1,2,..,1do;

R =E2(0,Gi- ) + 1]
Sa
Rid = 24

150 = (Pl Quli -

end,
end of step 3 .

~£~

j)+ 1] +P/d)

0.() = Z S DR D)
j_
end,
end of Step 2.

Figure 3. The MVA-Algorithm

The average queue length Q,,(r,s,x,L) of instances
of entity P; in transition due to event t(r,s,x), x = —
m or —« is given by

OulrisLy =280z g 3r 1) (10)

a
The quantity R,,(L) in the last equation is the
average response time at the processor centre of
instances of entity P; in any transition. According to
Liule’s formula the corresponding quantity
Ra(r.sx,L) for entity P; in transition due to an
active event f,(r,5,x), x = —m or —a, is given by
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Rii(r,s,x,L) = Qig(r,s X, L) %ia(r,s,x,L) (11)

The same statistical quantities can be computed for
the delay centre by replacing the subscript “a” by the
subscript “d” in equations (7) - (11) and computing
the relevant quantities for delay events.

The vector quantity e; is a unit vector in the j-th
direction. The reader is referred to [5] for a full
description of the computation of these quantities
using the MV A-algorithm.

5. Constructing an Image Protocol System

An image protocol system is a partition of each of
the sets

SiMy, T, E, forall i and k

in the original protocol system specification.
Protocol entity states, messages and events in each
partition subset are treated as equivalent and are
aggregated to form a single quantity, called their
image, in the image protocol system. Since partition
subsets are mutually exclusive and collectively
exhaustive, quantities that are treated as equivalent
have the same image; quantitics not treated as
equivalent have different images. Following Lam and
Shankar we shall use x’ to denote the image of a
protocol quantity x.

Since an image protocol is obtained from the
original protocol by aggregations, it captures only
part of the logical behaviour of the original protocol
system. First, global states of the image protocol
system correspond to aggregations of global states of
the original protocol system. Second, in the global
state space of the image protocol system, the
observable effect of different events in the original
protocol system may be different or nil. Our
objective however, is to show that the performance
behaviour of the image protocol system will be
faithful to that of the original protocol system.
Before doing that however, and for the convenience
of the reader, we describe the process used in [10] to
construct an image protocol system.

5.1 Aggregation of Entity States

An image state 5’ of a set of states of the original
state space §; is constructed by partitioning S;. All
entity states in a partition subset are aggregated to
the same image. Let S _denote the set of images of
states in §;i.e., S (sseS; iR S' is called the image

. state space of P;.

For example, Fig. 1 shows the partition {{0, 1, 2,
4}, 5, 6} of the state space S, of entity P;. Let
image state 0’ denote the image of states 0, 1, 2, 3
and 4 in §; and 5 denote the image of states 5 and 6
in §;. The image state space of P, is S'l = {0, 5}.

‘Similarly let image states 0", 1’ and 2 respectively

denote the images of the states in the parmlons {0,
3,4}, (1,5} and {2, 6) of S,. In this case S~ -[0’ 1,
2’].



5.2 Aggregation of Messages

Only when the reception of two messages m and n
cause identical state changes in the image state space
of the receiver of Cy are they treated as equivalent.
This equivalence relation partitions M ir» and
messages within the partition subset may be
aggregated to form an image message nr'. The image
message sets are given by

M;.k = {m":meM,;) for all { and k.

In particular, messages in M;, whose receptions do
not cause any state change in the image state space
of the receiver are said to have a null image.

The reader is referred to the example in [10] for the
derivation of the image message sets M’ = {ay’, a5},
and M '2 = {by’}) where b,’denotes the image of
messages b; and b3 and the image of a, and b, are both
null. These transitions in the image state spaces are
illustrated in Fig. 4.

5.3 Aggregation of Entity Events

Entity events which have the same observable effect
in the image global state space are aggregated to the
same image entity event. An image event whose
occurrence does not have any observable effect in the
image global state space is said to be a null image
event. An image internal event L(s’r @) is a null
image event if & = 7. Image send events involving
null image messages and infinite buffer channels are
treated as image internal events in 7’; in this case the
image event is represented as tL(sr ,‘a) and it is a null
image event if s’ = . Finally, image receive events

I’ +b2!

+b +b

involving null image messages must have § = 7 by
definition; hence such receive events are null image
events if the channel involved is an infinite buffer
channel.

The set of image events for P; is defined by T’ =
{(tds’,’ ) : ti(s,rx) € T,;} where x = +m, -m or o,
and the image of £(s,7,x) is not a null image event.

The reader is referred to the example in [10] for the
derivation of

T, = (105, a), (10,54, 1(5.0,+5))
and

T, = (000 40), 50'5'~a)), 10, V' 4a)),
o2, 52 §,-5))

in Fig. 5 which illustrates the image protocol
constructed from the original protocol illustrated in
Fig. 1.

6. Properties of Image Protocols

Lam and Shankar [10] discuss various logical
properties of image protocols in relation to the
logical properties of the original protocol.

In [5] the question was posed whether, depending
typically on the constituent functions of the
protocol, it would be possible to decompose a
protocol state transition graph into its constituent

+a

Figure 4. Transitions in the Image State Spaces
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-a, a3 +b!

5 +a)

Figure 5. Image Protocol Constructed from the Original Protocol in Fig. 1

subgraphs, aggregate each subgraph and still have a
system whose performance would be faithful to the
original system. In this section we show that this is
indeed possible.

6.1 Performance Properties

Let (s ,x") denote the image entity event of a
subset of entity send events in T;. Define the relative
utilisation of the processor centre by all instances of
entity P; in a transition due to event ,(r',s"x’) to be

VP X = O ErsD)lursx) 12)

(rs.x)

Here X ¢ x) denotes the summation over all send
events t{r,s,x) in the original protocol system with
image t(r',s’ X).

Similarly, let 1(~,s,y) denote the image entity
event of a subset of entity receive events T;. Define
the relative utilisation of the delay centre by all
instances of entity P;in a transition due to event
t(r.s’,y)tobe

Vdr S W)= D, Ersydrsy) (13)

(rs.y)

where Z(/ ¢ y7) denotes the summation over all
receive events f(r,s,y) in the original protocol
system with image #,(~.s",y).

Also let (7,5 x) denote the relative frequency of
execution of the image event 1(r,s”,x’). Clearly

B XY= D Ers) (14)

(r.sx)

where Iy ¢ ) has the same meaning as above. The
quantities v;, (7,8 X)), v;Ar'.s’.y), and &~ 5’ x'), are
respectively the image protocol quantities
corresponding to v,(r,s,x), vidr.s,y), and E(r,s.x) of
the original protocol defined in (2), (3) and (4).
Although all entity events #(r,s,x) whose image is
a null image event are eliminated in the construction
of the protocol image system, they cannot be ignored
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in the analysis of the image protocol system. The
effect of these events have to be taken into account
in the computation of the performance quantities p;,
and p; defined in (5) and (6). Let T; c T; denote the
sct of send events in P; which have null images.
Define

pL= D Vialr.s) (15)
T

where x = -m or —a. Similarly, let T; c T; denote
the set of receive events in P; which have null
images. Define

P = D valrs ) )
TJil-f

where x = +m or +a.
Rewrite (5) and (6) in terms of image entity events,

=it XD vulrsX) an

’ ’
rseS *
i

where x’= -m’ or —a, and

LT AL D YR (R (18)

’ ’
rses. *
i

where y'= +m’ or +a, and

Definition: An image protocol system is said to
have faithful performance if the value of a
performance statistic of the entity P; in a transition
due to an image event £,(r’,s’.x") is the sum of the
performance statistics of the entity events whose
image is 1,(r .5’ x).

Note that if an image event is the image of a single
event in the original protocol, that the statistics for
the two events will be identical.

Theorem: The performance of an image protocol
system constructed as explained above, is faithful.

Proof: The proof follows from the MV A-algorithm
using the quantities p and p defined in (17) and
(18) instead of p;, and | Piqas well as the equivalent



Figure 6. Finite State Machine with the Probability Values Indicated.

image protocol quantities defined in (12), (13) and
(14) and substituting in the appropriate equations.

As an example, consider the throughput rate
X14(5°,0°,4+b;") at the delay centre of entity P; in
transition due to image entity event 1(5°,0',+b,).
Assume a single instance of Py, the expected value of
all times to be unity and the probabilities of the
various events as illustrated in Fig. 6.

Computing the quantities given by equations (12) -
(18) for the image protocol and applying the MV A-
algorithm, it can be shown that X14(5,0",+b)") =
0.18182 per unit time from the image protocol
equivalent equation (7). However, 1,(5,0 +b,") is the
image of entity events 4(5,0,+b,), 1,(5,4,+b5),
11(6,4,+b;) and 11(6,2,+b3). The equivalent
throughputs are %14(5,0,+b;) = 0.06061 and
X145,4,4b3) = 0.06061 and X14(6,4,+b;) = 0.03030
and x,,46,2,+b5) = 0.03030 per unit time. The result
follows.

7. Conclusion

Previous work by other authors have shown how to
construct image protocols for individual protocol
functions of a complex protocol. The complexity of
the image protocol system is less, and under certain
conditions it is faithful to the original protocol
system in all its safety and liveness properties.
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Image protocols have a further advantage in that
they reduce the complexity of analysing the
performance of the protocol. In this paper it is
shown that the performance of an image protocol
system is also faithful to that of the original
protocol system. It is therefore possible to do a
performance study of the reduced image protocol
system, where the results obtained would be the
same as when the analysis were applied to the
original protocol system.
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Abstract

The laws and techniques of mature subjects such as Physics and Electrical Engineering are logically connected

1o one another in the form of a deductive network There 1s a foundation of basic laws deriving from them are
successive layers of logically consequent laws and techmiques The field of study “Information Systems’ (IS )
shares a common feature with Physics and Electrical Engineering All three provide the knowledge necessary
for designing Man s artefacts Consequently we can expect their logical structure to be similar That means

1§ techmiques should be logically connected to1 S laws

and 1S laws should be logically connected to laws

of fundamental subjects such as Computer Science Psychology and Management
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Islands of Knowledge

Since their invention some forty years ago,
electronic computers have spread rapidly into many
spheres of human acuvity Coupled with rapid
advances 1n the technology 1tself, the enormous rate
of computerisation has deluged the Information
Systems researcher with urgent problems of practical
systems development and management As a result,
the academuc field of study “Information Systems”
(IS) has evolved rapidly, but not altogether
soundly

In particular, many IS textbooks present their
subject matter as independent “islands of knowledge”
— much like the “islands of mechanisation” (1]
prevalent 1n the business firms of the nineteen-
sixties For mstance, Gane & Sarson’s “Structured
Systems Analysis” [S] starts with several law-like
statements 1n chapter 1 Yet there 1s no reference to
those laws mn the subsequent chapters on the
techmques of data-flow diagrammung, process-logic
analysis, etc A similar omission occurs 1n Jackson’s
“Principles of Program Design” [6] The book
describes a ‘basic design technique’ of data structure
analysis, program structure formation and task
allocation Yet this technique 1s almost entirely
unsupported Jackson makes no attempt at logical
dertvation from underlying laws, indeed he does not
even state such laws

Further examples of logical omission can also be
found 1n Martin’s “Strategic Data Planning
Methodologies” [9], Lundberg’s “Information
Systems Development” [8], Wemnberg’s “Structured
Analysis” [13] and G B Davis’s “Strategies for
information requirements determination” [2]

In order to 1denufy and avoid such shortcomings,
researchers should consider what kinds of knowledge
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the IS practitioner needs, and how different types of
knowledge are interconnected A previous paper 1n
Quastiones Informatice - “Laws and Techmiques of
Information Systems” [11] - introduced a general
classification of knowledge types The present paper
now extends that classification, establishes a general
model of utihitanan knowledge, and denives a specific
model of I S knowledge

Laws and Techmques

The academic field of study “Information Systems” 1s
concemned with a particular kind of man-made artefact
[3] computer based systems which produce
information Information systems are similar in
purpose to many other devices that people have
developed over the ages, from simple hoes and clay
tablets through ploughs and ledgers, to tractors and
accounting machines All such inventions were
motivated by the same objective, namely increased
human productivity The prospect of ever greater
output per man per hour constantly lures us on to
seck more powerful artefacts However, the designs
of our artefacts are criucally dependent upon the
knowledge base provided by subjects such as
Physics, Electrical Engineering, Chemuistry,
Chemical Engineering, Biology, Agriculture — and
Information Systems The previous paper showed
that this dependency relationship strongly influences
the desired structure of those subjects Firstly, the
dependency demands that the knowledge base should
include two distinct types of ideas laws and
techniques

The process of designing any artefact involves a
series of decisions If those decisions violate the
charactenistic properties of the artefact’s components,



then the artefact will not work as intended, and the
design process will therefore be meffecuve So
effecuiveness demands that design decision-making
mnclude inferences from laws — statements which
describe the attributes of the various entities that are
combined to form the artefact [11] For example, in
deciding the appropriate curvature of a microscope’s
lenses, the optical designer needs to make deductions
from Snell’s Law of diffraction

“The sine of the angle of refraction bears a

constant ratio to the angle of incidence” [7]

In designing Man’s vanious artefacts , some of
those decisions are made over and over again For
efficiency of the design process, such recurring
decisions need to be supported by techmques —
statements which prescribe the steps a designer
should take to reach a conclusion quickly For
example, designers of optical instruments often face
decisions on the spacing between lenses These
decisions can be made more rapidly if one applies
standard “graphical ray tracing” techniques [7] mstead
of Snell’s Law

So for efficiency and effectiveness, the Design
Process 1n general requires laws which describe the
operands of design, and techniques which prescribe
feasible sequences of decision-making operations
The operations of an effective technique must be
consistent with the characteristics of the operands
This means that techmiques should be logically
connected to underlying laws [11] For example, the
optical ray tracing techniques mentioned above are
logical consequences of Snell’s Law Similarly
electrical engineering techniques of electric circuit
analysis were derived form underlying laws of
electricity, chemical engineering techniques of mass
and energy transfer follow from basic laws of mass
and energy conservation, and so on

Natural and Artifical Laws

Secondly, the dependency between Knowledge and
Design demands two distinct types of laws — natural,
and aruficial Modern artefacts represent design
“hierarchies” They consist of artificial components,
which 1n turn are composed of natural components
For example, an artesian well consists of a pump,
pipes and an electric motor the motor 1n turn
consists of copper wire and an 1ron frame Natural
components such as copper and wron are described by
“Laws of Nature” - laws that reflect their inherent
properues On the other hand, aruficial components
such as motors have contrived properties which
transcend those of their natural constituents These
additional properties are described by “Laws of the
Aruficial” [11] For example, the natural metallic
conductors 1 a motor are subject to Ohm’s Law — a
law of Nature On the other hand, an artesian well 1s
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described by overall performance formulae which are
Laws of the Artificial

Again, these two types of knowledge should be
connected The contrived properties of an artificial
entity are functions of the inherent properties of 1ts
natural constituents That means artificial laws
should be logically related to natural laws For
example, the artificial laws of electric motors follow
logically from natural laws of resistance and
induction, the artificial laws of capacitors follow
from the natural law of electrostatc force, and so on

General and Speafic Laws

Thirdly, the Design-Knowledge dependency also
requires a distinction — not mentioned in the previous
paper — between “general” and “specific” laws
Design components have two kinds of properties —
general and specific — and those need to be described
by corresponding types of laws For example, very
many mechanical design components involve motion
at sub-light velociies The set of all “sub-light
mouons” 1s described by Newton’s general Laws of
Mouon However, that set contains smaller subsets
of specific motions, such as rotation, oscillation and
orbital mouon [4] These subsets are described by
specific laws — such as Kepler’'s Laws of orbatal
motion

If a design decision mvolves an operand which 1s a
member of a specific sub-class within a general class
of design components, the decision can be made
more efficiently using the specific rather than the
general law For example, in many orbital
calculations 1t 1s easter to use Kepler’s Laws rather
than Newton’s Laws Similarly in opucal design
mvolving “thick” lenses, the Gaussian Formulae [7]
are more convenient than Snell’s Law So the design
process requires both general and specific laws

General and specific laws are necessanly related
Suppose a large class of design operands are described
by a general law Then the same law must also apply
to every sub-class That means the specific law of
the sub-class must be consistent with the general
law So 1t should be possible to deduce the specific
law from the general law using the specific
properties as “boundary conditions” For example,
Kepler’s Laws are deducible from Newton’s Laws,
and the Gaussian Formulae can be deduced from
Snell’s Law

Knowledge For Design

The foregoing analysis suggests that the knowledge
required by the designers of artefacts can be
represented by Fig 1 At the base of the network
there are general Laws of Nature Deriving from that
foundation we have specific Laws of Nature, then



Techmques

4 4

Specific Laws of the Artificial I

General Laws of the Artificial

: -

Speaific Laws of Nature

T

General Laws of Nature

Figure 1 Network of Design Knowledge

general as well as specific Laws of the Artificial, and
finally techmques

The Subject Information Systems

The network includes laws and techniques belonging
to many different fields of study Physics,
Mechanical and Electrical Engineering provide laws
and techniques for the design of mechanical and
electrical devices Chemistry and Chemical
Engineering supply laws and techmiques for the
design of chemical processes Biology and
Agriculture furnish laws and techniques for the
design of farming processes
Then there 1s also the subject Information Systems

Its function 1s to support the design of informational
artefacts It ought to provide laws and techmiques to
support obvious design activities such as
configuration and network design, program and
physical system design, logical system design
(analysis), DP-organisation and human-interface
design Furthermore, 1t should provide laws and
techniques for information systems planning, project
management and other decision-making activities
whose names do not contain the word “design” The
reason 1s that

“Everyone designs who devises courses of

action aimed at changing existing situations

mto preferred ones” [12]

Therefore virtually the enure subject matter of
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Informauon systems 1s part of the Knowledge Base
for design This implies that I S laws and techniques
should reflect the logical network structure of Fig 1

Knowledge About Information Systems

Thus our subject-matter should include

- laws and techmques to support decisions
involving artificial enties such as hardware,
software, systems, projects etc

- laws and techniques to support decisions
mnvolving natural entties such as the human element
1n systems and projects

For effecuve and efficient decision-making, the
techmiques should be logically connected to laws,
artificial laws should be logically connected to
natural laws, and specific laws should be connected
to general laws

Most general laws of human behaviour,
management, and computers properly fall within the
ambuts of other subjects — Psychology, Management
Theory, Computer Science, etc Accordingly, many
IS laws ought to be specific nstances of general
laws established 1n other subjects Therefore one
would expect the subject to be structured like a tree
IS laws should be logically derived from external
laws, like a tree stem connected to ground water by
nsroots IS techniques should be logically derived
from IS laws, like a tree’s foliage connected to the
stem by branches (Fig 2) -



L S. TECHNIQUES

m€>l"_m!—‘

EXTERNAL LAWS

Figure 2 Tree of LS. Knowledge

Structural Evidence

Empirical evidence of this structure can be found in

two I.S. publications. Firstly, Yourdon &

Constantine’s “Structured Design” [14] reflects the

anticipated root and stem structure. It refers to an

external law, namely Miller’s psychological law:
“People can mentally ... deal with ... only
about 7 ... concepts at a time” (p69).

From Miller’s general natural law the book derives
a specific natural law:
“we can win if we can divide any task into
independent sub-tasks” (p70).

Then from that law the book logically derives a
general Law of the Artificial:
“total systems cost will be strongly influenced
by the degree of coupling between modules”
(p83).

This leads on to a specific Law of the Artificial:
“data-coupled systems have lower coupling
than control-coupled systems” (p.86).

Secondly, the author’s own paper, “A priority
criterion for serial computer system development
projects™ [10] provides evidence of the expected
branch structure. It presents a three-step technique for
determining the relative priority of systems
development projects: a) estimate parameters, b)
calculate priorities, and c) rank projects in declining
priority sequence. This technique has been derived
mathematically from four artificial laws:

1. a system’s contributions decline with age

2. a distant future contribution is less valuable than
an equal contribution received in the near future

3. organisational growth increases a system’s
contribution

Quastiones Informatice 6 1 1988

4. organisational learning enhances the system’s
contribution

These two publications suggest that Information
systems laws and techniques can conform to the
predicted tree structure. However, as indicated at the
beginning, many of our publications lack the
expected logical connections.

Practical Implications

The prevalence of insular techniques suggests that
the subject Information systems is deficient in laws.
This implies that design decisions are being made in
practice with inadequate formal knowledge of the
properties of design components, and are therefore
likely to be ineffective. As a result, practitioners are
obliged to adopt a trial and error approach.

Insular techniques are also easy to mis-apply. If a
decision maker is unaware of a technique’s implicit
assumptions, he cannot recognise its limitations, and
will use it blindly. Then if he applies the technique
in a situation where the design components do not
actually comply with the underlying laws, the
resulting decision will be ineffective. So a costly
practical learning process is necessary before one can
identify situations where the technique is or isn’t
applicable. This may explain many an employer’s
preference for experience before qualifications when
hiring computer personnel.

Furthermore, an insular technique is in danger of
unwarranted condemnation. In the absence of explicit
assumptions and logical derivation the reader may
well suppose that it is intended to be universally
applicable. Then if the reader has experience of a
situation in which it fails, that single exception may
totally invalidate the technique from the reader’s
point of view, even though it might be very useful
in many other situation.

Conclusions

The tree model abstracts the distilled experience of
researchers in Physics, Engineering, etc and transfers
it to the field of Information Systems. We can
benefit from that experience in three ways. Firstly,
the model induces a healthy scepticism of techniques
which are unsupported by logical derivation from
underlying laws. Conversely, it lets us appreciate the
value of those few publications which introduce laws
and techniques with page after page of abstract
reasoning before proceeding to concrete applications.
Secondly, it suggest ways of identifying and
correcting insular techniques in our existing
literature. Such techniques can be identified simply
by checking their logical connections. They can then
be corrected by isolating the implicit assumptions on



which they are based, and developing a connecting
chain of reasoning. '

Finally, the model provides guidelines for future
research. It recommends that we deduce LS.
techniques from underlying laws. Similarly, it
suggests that we deduce L.S. laws from root laws in
Psychology, Management, Computer Science, etc.
Above all, it urges us to pay more attention to the
theoretical development of our subject.
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Abstract

Colour computer graphics covers a wide field of applications such as games, computer aided-design, image
processing and digital terrain modelling. The traditional way of using colour in raster graphics systems, the
RGB colour model, is not always acceptable to the user who finds it unnatural and difficult to use. These
disadvantages can be overcome by the use of colour models that provide natural interfaces, such as the HSI,
HSL and CNS colour models, or a uniform colour space such as the LUV colour model. This paper describes
these models and discusses their use in colour assignment and other applications.
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1. Introduction

The use of colour in graphics applications covers a
wide field. Colour is used in games, painting
programs, computer aided design, educational
programs, image processing, digital terrain models
(DTM’s), and even as a basis for animation [1]. In
many applications colour is used to enhance a
picture. A typical example of this is the assignment
of colours to a grey scale image to accentuate
contrasts. In this case the colours should differ as
much as possible. In other applications the colour
assignment is used to represent some order, for
example, heights in digital elevation models.

The way in which colours have to be specified for
graphics hardware is not always acceptable to the
user. Most colour display units use the three primary
colours, red, green and blue, as the basis for the
specification of colours. This RBG colour space is
not “natural” to the user. For interactive applications
a colour model that corresponds more closely to the
way in which users think about colour may be
preferable. The RGB colour space is also not
uniform, that is, colours that are equidistant in the
RGB colour space do not appear to be equidistant to
the human eye. For example, the human eye can
distinguish more shades of green than blue.
Applications that use colours to represent a range of
values could make good use of a uniform colour
space.

Because of the disadvantages of the RGB colour
space, several other colour models have been
developed. The user specifies a colour by using a
particular colour model, and this colour is then
converted into RGB and applied to the hardware.

A study of the literature on the use of colour in
raster graphics showed the lack of a comprehensive
survey of these colour models and their usefulness.

Quastiones Informatice 6 (1) 33-53, May 1988

This paper attempts to meet this need. Four
applicable colour models (in addition to the RGB
model) are described and compared, and their use in
colour assignment are discussed. The last part of the
paper is an extract from an article by G M Murch
[2], giving valuable guidelines for the effective use
of colour in computer graphics.

The study on the use of colour was motivated by
work done on DTM’s in the Computer Science
Division of the National Research Institute for
Mathematical Sciences, where a library of colour-
handling routines was needed for the DTM package.
All the colour models presented here were
implemented for the Ikonas RD3000 raster graphics
system. The routines were written in the SCRAP
language [3] and combined in a library called IKSP
(Ikonas Support Package) [4].

2. What is Colour?

This section briefly discusses some of the
physiological aspects of colour. More detail may be
found in [2,5].

2.1 Hue, saturation and brightness

The distinction between chromatic colours such as
green and yellow and achromatic colours namely
black, grey and white is that chromatic colours have
a hue component while achromatic colours have
none. Hue is the term used to distinguish between
colours such as red, blue and yellow, and is an
attribute of the wave length of the light rays.
Saturation (or purity) refers to the extent to which a
colour departs from a neutral grey and approaches a
pure spectrum colour. A pure colour (that is, one
with no white light added) has total saturation, while
white light has zero saturation. Brightness (also
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Figure 1 Physical interpretation of hue, purity and luminance (adapted from [6])

called luminance, lightness or intensity) corresponds
to the total energy or amount of light in a colour.

In the literature different meanings are attached to
the terms lightness, brightness, luminance and
intensity. Normally, brightness and lightness refer to
objects that are light reflectors, while luminance and
intensity are used for light sources. The lightness of
an object depends on the amount of light reflected by
the object and is a property of the object itself. The
brightness of an object depends on the amount of
light illuminating the object. If the amount of light
illuminating an object is increased, the brightness of
the object will increase, but its lightness will stay
the same. The luminance of a light source refers to
the amount of light energy emitted from the source
per unit area, while intensity refers to a hardware
function that can be set programmatically or
manually.

It must be noted that the terms intensity and
lightness used for the HSI and HSL models are used
as defined in the descriptions of these models and not
in the sense described above. In section S, Guidelines
for effective colour use, the other terms for
brightness are used as defined above.

2.2 Physiological aspects of colour

The colour seen by human beings is the result of the
physical properties of light entering their eyes. The
wavelength of visible light ranges from 400 nm
(violet) to 700 nm (red). Figure 1 shows the relation
between the physical properties of light and the hue,
purity and luminance of a colour.
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The retina of the human eye contains two types of
sensors, called rods and cones. The rods are used for
night vision, while the cones contain photopigments
that translate light wavelengths into colour
sensations. These photopigments are sensitive to red,
green or blue light. Because of the variation in the
distribution of both photopigments and cones across
the retina, we have different response characteristics
for each colour (see figure 2) [6]. The combination of
these responses results in the sensation of a specific
colour.

It is important to note the difference between the
colour on a raster graphics display unit and that on a
surface such as a painting. The colour display unit
uses additive colour mixing, while the colours in a
painting are obtained by subtractive colour mixing.

Additive colour mixing starts with black and
obtains a colour by mixing coloured lights. Red,
green and blue are well known examples of the so-
called additive primaries. Their individual
contributions are mixed together to form an additive
mixture with a certain colour. If the three primaries
are mixed together in equal proportions, white light
is obtained.

Subtractive colour mixing starts with white light
and obtains a colour by subtracting colours from the
white light. For example, a piece of paper will be
blue if all the colours other than blue are subtracted
from the white light illuminating it. Examples of
the so-called subtractive primaries are cyan, magenta
and yellow, which are the complementary colours to
red, green and blue respectively. The relationship
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Figure 2 Response characteristics of the human eye (adapted from [6])

between these additive and subtractive primaries can

be expressed by

HEHIEE

v

Figure 3a Additive colour mixing with red, green and
blue as primaries

3. Colour Models

In this section the RGB, HSI, HSL, CNS and LUV
colour models are outlined and compared. A general
description of each model is given, together with the
relevant conversion routines and a discussion of the
model’s use.

It is interesting to note that the HSI conversion
routines given here and those given in [6,7,8] are
equivalent, although they seem to differ with regard
to the definition of hue. The conversion routines for
HSL given here and in [6,8,9] are also equivalent
(except that [8] differs with regard to the definition
for hue). Finally, the seemingly different definitions
given by [6] for the hue component of HSI and HSL
are identical.

Throughout this section it is assumed that

max = the maximum value of {R,G,B}

mid = the middle value of {R,G,B}

Quastiones Informatice 6 1 1988

where each primary ranges between 0 and 1. The
colours obtained by mixing additive or subtractive
primaries are illustrated in figure 3.

¥

Figure 3b Subtractive colour mixing with cyan,
magenta and yellow as primaries

min = the minimum value of {R,G,B}.
3.1 RGB Model

3.1.1 General description

A colour raster graphics display unit is coated with
phosphor that emits light when struck by the
electron beam of the display unit. Three different
types of phosphor, each emitting one of the three
primary colours, are used. These primary colours,
red, green and blue, (R,G,B) can be combined with
positive weights to obtain a large range of colours.
However, some visible colours cannot be defined in
terms of positive weights for the (R,G,B) primaries.
This is why the Commission Internationale
L’Eclairage (CIE) in 1931 defined the three primary
colours (X,Y,Z) as the international standard for
specifying colour (see [5]). These primaries can be



combined with positive weights to define all the
light sensations that we perceive with our eyes.

The geometric model associated with the RGB
model is a cube (see figure 4) with a primary along
each of the three axes. The value of each primary
ranges between 0 and 1. The nine corners of the cube
correspond to black, white, the three additive
primaries, and the three subtractive primaries.

s Oven

Blue l |
1

White

7{Magents

Green ’_ —t —
1

/
/ ed

—_——

Yellow

Black

Figure 4 The RGB colour cube

3.1.2 Converting between XYZ and RGB
A set of routines is needed to convert between the
(X,Y,Z) primaries of the CIE and the (R,G,B)
primaries of colour display units.

LET

P = matrix of chromaticities of phosphors

used in the display unit
X; Xg Xp
= [ ¥Y: Ye Yo ]
1'(xx+Yr) 1'(xg+yg) 1'(Xb+yb)

P! = inverse of matrix P

X
V= [YO] _ vector of tristimulus values of CIE

z:,) = standard illuminant divided by 100

Cg|= Py

— ch
=P [CgG]
c,B

X = cxR + ¢ x,G + cpXx,B
giving Y = ¢,y,R + ¢;y,G + c,y,B
Z =czR + ¢c2,G + cpz,B

The value of P depends on the colour display unit
(see [S] for more detail). The standard for
chromaticities of colour television were set by the
U.S. National Television System Committee
(NTSC) in 1953. According to this standard,
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However, the chromaticities of the phosphors now
commonly used in colour television deviate

somewhat from the NTSC standard:
0.68 0.28 0.15
P =P2 =10.320.60 0.07
0.00 0.12 0.78

The values used for the vector V depend on the
light source illuminating the colour display unit.
Normally, this is taken as one of the CIE standard
light sources corresponding to average daylight,
namely C or D65. The current standard practice is to
usc the D65 standard illuminant. Tables of the so-
called tristimulus values for CIE standard illuminants
arc given in [S] for the CIE 1931 Standard
Colorimetric Observer and for the CIE 1964
Supplementary Standard Colorimetric Observer.
Preference should be given to the 1964 data when
areas of the same colour are large (that is, more than
2 c¢m in diameter). The 1931 data are more suitable
for smaller colour areas (that is, less than 2 cm in
diameter). See [5] for a detailed discussion of standard
light sources.

The tristimulus values, divided by 100, of the C
and D65 standard illuminants are as follows.

0.98041 0.95017
V=V1l=|1.0 , V=V2=11.0

1.18103 1.08813
C Illuminant D65 Illuminant
1931 Observer 1931 Observer

0.97298 0.94825

V=V3i={1.0 ,V=V4=11.0

1.16137 1.07381
C Illuminant D65 Illuminant
1964 Observer 1964 Observer

If the second set of values for P (P = P2) is used, as
well as the 1964 data for D65 (V = V4), the
following is obtained:

X= 0437509R + 0.331566G + 0.179175B
Y = 0.205887R + 0.710498G + 0.0836149B
Z= 0.1421G+  0.931709B

The inverse transformation is given by

R=287574X - 1.25391Y -  0.440496Z
G=-0.848557X + 1.80318Y + 0.00135981Z
B= 0.129418X - 0.275013Y + 1.07309Z
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Figure 5 The HSI colour model. H, S, and I are defined using the geometric model

3.1.3 Use of the RGB model

The shortcomings of the RGB colour model, namely
its lack of naturalness and uniformity, have already
been mentioned.

However, many applications still use this model.
The RGB model, being hardware oriented, needs no
time-consuming conversions. Furthermore, there is a
considerable amount of knowledge available on the
eye’s response and sensitivity to colours specified as
(R,G,B) triples. In some instances interpolation done
in RGB space may still be preferred. For example,
the shadow series for a colour illuminated by a single
light source is determined by linear interpolation
between the particular colour and black in RGB space
[8].

3.2 HSI Model

3.2.1 General description

The HSI (hue, saturation and intensity) model [6,7,8]
is intended to appear more natural to the user, as it is
based on the intuitive appeal of tint, shade and tone
used by the artist. In the literature different names are
used for the three components, but here the terms
hue, saturation and intensity are used.

14
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The subspace within which the colour model is
defined is a hexcone (figure 5). A formal derivation
of the model can be found in [7]. Only a general
description is given here.

The vertical axis represents the intensity of the
colour, where intensity may be seen as the distance
from black. On the vertical axis itself the colour will
be achromatic, going from black (at I = 0) through
grey to white (at I = 1). The hexcone is defined such
that the length of a side of a hexagon disk (RY, for
example) is the same as the value of I for that disk.

The saturation (S) of a colour is defined as a ratio
depending on the horizontal distance from the vertical
axis of the hexcone. In figure 5 the saturation of the
colour at P will be the ratio WP/WQ. The value of S
is O at the vertical axis and 1 on the triangular sides
of the hexcone.

The third component defining a colour is its hue. In
the hexcone model the hue depends on the angle
around the vertical axis, starting at red and moving in
an anticlockwise direction (by convention). The hue
value ranges between 0 (which is red) and 6 (which is
again red). In figure 5 the hue of the colour at P will
be the ratio SP/ST.

I = max
max - min
S = max
H= f(h), where
h = Mid - min
max — min

Figure 6 Bar representation of colour components and their relation to
hue (H), saturation (S) and intensity (I)
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3.2.2 RGB to HSI conversion

In the RGB colour space a colour can be represented
by three bars (figure 6). The colour is obtained by
mixing R, G and B in the proportions implied by the
height of the three bars. The intensity (I) of the
colour is then defined as the height of the bar: I =
max.

The height of the smallest bar is min, and the RGB
triple (min, min, min) is the grey which desaturates
the colour. The saturation of the colour is defined as
the ratio of the non-grey part of the colour to its
whole:

S = (max — min)/max. For the case where R =G =
B =0, S is also defined to be 0.

Subtraction of the grey level (min, min, min) from
the colour leads to the observation that a hue is
determined by two primary colours only, namely the
maximum and middle values of R, G and B. Hue H
therefore depends on the ratio h, where h = (mid -
min)/(max — min).

In the hexcone model, the hue is a modular
function, cycling through red, yellow, green, cyan,
blue and magenta. This must be mapped onto a
hexagon plane of the hexcone model. Figure 7 shows
how the R, G and B components vary in the different
sectants. The change in value for each component is
given separately in figure 8a. The hue ratio h, which
oscillates between 0 and 1, is also depicted.

The hue of a colour is defined as a different function
of h for each sectant (see figure 9). Thus the value of
H ranges between 0 and 6. Because this function is
noncontinuous and the human system tends to
enhance these variations, a hue series will exhibit
Mach banding. This may be overcome by using a
sinusoidal function h', where h' = (1 — cos(rh))/2 [8].
Figure 8b shows the values of each component when
this function is used.

Segment | Hue ratio | Definition | Range

(h) of Hue (H)] of H
R-Y 0-1 h 0-1
Y-G 1-0 2-h 1-2
G-C 0-1 2+h 2-3
C-B 1-0 4-h 3-4
B-M 0-1 4+h 4-5
M-R 1-0 6-h 5-6

Figure 9 Definition of the hue component (H) in
terms of the hue ratio (h)

If S = 0 (that is, max = min), the value of H is
undefined. For practical purposes, however, H is set
to 0 (red) whenever S = 0. This gives us the
following:

GIVEN: R, G, and B, each in [0, 1]

DESIRED: H in [0, 6), S and L in [0, 1]

FORMULA:

I = max
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{___max—mm if max # 0
S= max
0 if max = 0
0 ifS=0
h ifR>G2>B
2-h ifG>R2>B
H= 2 +h ifG>2B >R
4 —h ifB>G>R
4 +h ifB>R2>2G
6 —h ifR2B>G
where
mid min cpqs .
— if linear hue variation
ax — min
h= [ mld mm)]
=l 1 -cos
Tmax — min

if sinusoidal hue variation

3.2.3 HSI to RGB conversion
This is simply the inverse of the RGB to HSI
conversion.

G_H

B M

GIVEN: Hin [0, 6), S and I in [0, 1]

DESIRED: R, G, and B, each in [0, 1]

FORMULA:

max = [

min = max (1 - S)

mid = min + fract(max — min)

where

distance from nearest primary (¢.g. GH)
length of segment (e.g. GY)

vemss({ 34 ] )

if linear hue variation
L;lt-arccos(l -2 xh)
if sinusoidal hue variation
SELECT | H] FROM

fract =

CASE 0: (R,G,B) « (max, mid, min) {RY}
CASE 1: (R,G,B) « (mid, max, min) {YG})
CASE 2: (R,G,B) « (min, max, mid) {GC)
CASE 3: (R,G,B) « (min, mid, max) {CB}
CASE 4: (R,G,B) ¢« (mid, min, max) {BM}
CASE 5: (R,G,B) « (max, min, mid) {MR)

ENDS
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Figure 10 Correspondence between the artist’s tint, tone and shade and
the HSI model’s hue, saturation and intensity

3.2.4 Use of the HSI model

When implemented, the routines to convert between
HSI and RGB must make provision for the fact that
most hardware requires non-negative integer
parameters. As the use of integers causes a loss of
accuracy, a conversion from RGB to HSI and back to
RGB will not always return the same RGB values.
However, the resolution of the hardware is normally
such that this error is invisible to the human eye.

It must also be noted that, because of the nature of
the HSI model, more than one HSI value will be
mapped onto the same RGB value. On the other
hand, this RGB value will be mapped onto one HSI
value only. The convention that H= 0 when S = 0
may be changed to fit the application [7].

The biggest advantage of the HSI model is its
intuitive appeal to the user. The correspondence
between hue, saturation and intensity and the artist’s
use of tint, shade and tone (see figure 10) makes the
HSI model very suitable for painting on a raster
screen. This model has also been used in a program
teaching colour theory to art students [10].

In [7,11], an example of so-called “tint painting” is
given. Here the “tint” (hue and saturation) of a
picture is changed, but the grey level (intensity) is to
stay the same. This is done by the conversion of the
RGB values of the pixels undemeath the “paint
brush” to HST and the extraction of their I values.
These I values are then combined with the H and S
of the new tint and converted to obtain a new RGB
value for the pixels.

From the tint painting example it is clear that the
conversion must be fast. To this end HSI is very
suitable, because it is possible to do the conversion
without using floating point arithmetic.

In the HSI model the pure, maximally saturated
hues are at S =1 and I = 1. This is an advantage
(when compared with HSL) if potentiometers are
used to specify the colour model parameters.

A disadvantage of the HSI model is that it is not
possible to go, for example, from black through dark
green, green and light green to white by changing
only one parameter (as can be done with HSL). Both
S and I have to be changed. An advantage (over
RGB, for example) is that it is possible to g0
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through all the hues at a certain saturation and
intensity by changing only the value of H.

The HSI colour model is not a uniform colour
space. Colours that are equidistant in the model are
not necessarily perceived as being equidistant by the
human eye. This is especially noticeable in the green
region of the colour space.

The sinusoidal hue variation attempts to improve
the uniformity of the hue component. The effect of
the sinusoidal function is that the hues are placed
nearer to one another at the red, yellow, green, cyan,
blue and magenta regions, and spaced wider in the
red-yellow, yellow-green, green-cyan, cyan-blue,
blue-magenta and magenta-red regions. However,
whether one compares the distances in the uniform
LUYV colour space or the visual results, there does
not seem to be a real improvement.

When interpolation between two colours in a
colour space is done, the intermediate points differ
for each colour space. In some instances of
interpolation, the HSI colour space may be preferred
[8]. Interpolating between a colour and an unsaturated
blue in HSI simulates the effect of atmospheric
scattering more closely than similar interpolation in
(say) RGB [12]. HSI allows one to keep the
saturation and intensity constant while interpolation
is done between two hues, whereas this is difficult to
achieve in RGB space.

The HSI model can be used for colour assignment
[13] and will give better results than the RGB model
in most cases. In 4.2 this topic is discussed further.

3.3. HSL Model

3.3.1 General description

The HSL (hue, saturation, lightness) colour model
[6,8,9] is used by Tektronix Inc., and is similar to
the HSI model. Lightness (L) is defined in such a
way that it is possible to go from black through
green to white by only changing the value of L.

The HSL has a double hexcone as colour subspace.
The hexcone of the HSI colour model is deformed
into a double hexcone by “pulling” the white
upwards (see figure 11). The representation of hue
and saturation in the hexcone is the same as in the



Fig 11

HSL colour model.

The pure colours
at L = 0.5,

HSI model. The lightness is still represented by the
vertical axis, with black at L = 0 and white at L = 1,
but the fully saturated colours are at L = 0.5. Note
that a fully saturated colour at L = 0.5 and S =1 in
the HSL model will have I=1 (notI1=0.5)and S =
1 in the HSI model.

3.3.2 RGB to HSL conversion
In the HSL colour model the definition of the hue of
a colour is exactly the same as in the HSI colour
model. As stated above, the definition of L is
changed (from the definition of I) to form a double
hexcone. The definition of S is adjusted accordingly.
GIVEN: R, G, and B, each in [0, 1]
DESIRED: H in [0, 6), S and L in [0, 1]
FORMULA:
[ = max + min

2

Jax - min ifL<0.5

max + min
S=qmax—min_ ...,

2 — max - min

0 ifL=0orL =1

0 ifS=0

h ifR2G =B

2-h ifG>R=>B
H=< 2 + h ifG>2B >R

4 —h ifB>G>R

4 +h ifB>R2>2G

6 -h ifR2B>G
where
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are

- -

-
|

Black (L = Q)

mid — min ipqe . .
— if linear hue variation
max - min

h=9 m1d min
=11 -cos
2 max — min

if sinusoidal hue variation

Note that L is now halfway between max and min.
The denominator of § therefore includes both max
and min (in contrast to the HSI definition of S). If S
= 1 on the lower half of the hexcone (L < 0.5), at
least one of R, G or B is 0. If S = 1 on the upper
half of the hexcone (L > 0.5), at least one of R, G or
Bis 1.

3.3.3 HSL to RGB conversion
This is simply the inverse of the RGB to HSL
conversion.

G_H Y




GIVEN: Hin [0, 6), S and L in [0, 1]
DESIRED: R, G, and B, each in [0, 1]

FORMULA:
max =L +L xS if L<0.5
L+S-LxS if L > 0.5

min = 2 x L — max
mid = min + fract(max — min)
where

fract = distance from nearest primary (e.g. GH)

length of segment (e.g. GY)

el sl

if linear hue variation
L:—tarccos(l -2xh)
if sinusoidal hue variation
SELECT |H] FROM

CASE 0: (R,G,B) « (max, mid, min) {RY}
CASE 1: (R,G,B) « (mid, max, min) (YG)
CASE 2: (R,G,B) « (min, max, mid) {GC})
CASE 3: (R,G,B) « (min, mid, max) {CB})
CASE 4: (R,G,B) « (mid, min, max) {BM)
CASE 5: (R,G,B) « (max, min, mid) {MR)}

ENDS

3.3.4 Use of the HSL model

The HSL conversion routines have the same accuracy
problems as the HSI routines when integer
parameters are used. Also more than one HSL value
is mapped onto the same RGB value. As with HS],
the convention that H = 0 when S = 0 can be
changed to fit the application.

The advantage of the HSL model (as with HSI) is
its intuitive appeal to the user. It has the “natural”
components of hue, saturation and lightness. An
improvement on HSI is that a given tint (a H and S
value) can be varied from almost black to almost
white by only the L value being changed. This
corresponds to our natural colour language, since we
talk of dark green, green and light green. This is
probably the reason why the HSL model is used by
Tektronix and the CORE system [9]. For the same
reason the HSL model is used as the basis of the
CNS model, where colour is specified in natural
language (see 3.4).

The HSL model can be used in painting routines in
a way similar to the HSI model. A picture may be
“painted” darker or lighter by only the L value being
changed. The RGB value of a pixel underneath the
paint brush is converted to HSL, the L value is
replaced by the L value of the paint and the pixel is
given the corresponding new RGB value. The speed
of this operation should be adequate because the HSL
conversion is simple and straightforward.

The advantage of the HSL model can also be a
disadvantage. In some applications it would be better
if the fully saturated hues were at L = 1 and not at L
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= 0.5. An example is when potentiometers are used
to specify the parameters of HSL.

The hue component in HSL and HSI is exactly the
same. The sinusoidal hue variation effects no
noticeable improvement, while interpolation that
keeps the saturation and lightness constant and only
changes the hue is possible. Colour assignment (see
4.3) can be done in a similar way as for the HSI
model.

The HSL colour space is not a uniform colour
space. Uniform steps in L, for example, do not
appear to be uniform to the human eye.

3.4. CNS Model

3.4.1 General description

The Colour Naming System (CNS) is not a colour
model in its own right, but a naming system built
upon the HSL colour model [14]. It allows the
specification of colours by use of their “natural”
English names. A common English term is used to
describe each of the lightness, saturation and hue
components of a colour.

There are five possibilities for the lightness
component, namely very dark, dark, medium, light
and very light. If this component is not specified,
medium is used. Four saturation levels are possible,
namely greyish, moderate, strong and vivid, with
vivid being the default term.

Hue names are formed from seven generic hues,
namely red, orange, brown, yellow, green, blue and
purple. These terms, together with black, white and
grey constitute the basic colour terms in English;
pink is specified as light red, which is easily
understood. Chromatic hue names are formed by the
combination of the generic hue names that are
adjacent on the HSL hue circle. ‘Half-way’ hues (for
example, yellow-green) or ‘quarter-way’ hues (for
example yellowish green) may be formed. The
yellow-green hue will be half-way between yellow
and green on the hue circle and yellowish green will
be half-way between yellow-green and green.

Achromatic hue names are formed by black, white
and grey, the latter being formed together with a
lightness term (for example, light grey). Figures 12
and 13 illustrate the syntax of the CNS model.

3.4.2 CNS to RGB conversion

A colour specified in CNS notation is first converted
to HSL, and then the HSL to RGB conversion
routine is used. The conversion to HSL is done by
the mapping of the CNS lightness and saturation
terms onto corresponding L and S values of the HSL
colour model. Similarly, the CNS generic hues are
mapped onto corresponding H values of the model.
The ‘half-way’ and ‘quarter-way’ hues are mapped
onto H values half-way and quarter-way between the
generic hues as shown in figure 13.
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Fig 12 CNS syntax
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ORANGE-
YELLOW

ORANSISH YELLOW YELLOWNISH ORANGE

GREENISH YELLOW

YELLOW-GREEN

YELLOWISH GREEN

PURPLISH BLUE BLUISH PURPLE

BLUE-
PURPLE

(a) Chromatic hue names

GREEN

LIGHT BLUE

LIGHT MODERATE GREEN

REDDISH ORANGE

VERY LIGHT VIVID BLUE-PURPLE
BLACK

DARK GREY

(b) Examples

F1g 13 CNS syntax examples
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3.4.3 RGB to CNS conversion

The conversion from RGB to CNS is the inverse of
the CNS to RGB conversion. First a conversion
from RGB to HSL and then a mapping from HSL to
the CNS syntax is done. Because of the coarse
resolution of CNS, many HSL colours will be
mapped onto the same CNS colour as, for example,
only five terms for lightness are possible in CNS. If
a value is between two terms, the term that is the
nearest to the actual value is selected.

3.4.4 Use of the CNS Model

The advantage of the CNS model is the ease with
which it can be used. Colours are specified by using
their English names and not by giving numeric
values. The disadvantage is the coarse resolution
imposed by the limited number of English terms
used. In spite of this coarse resolution, a study has
shown the superiority of the CNS model over the
RGB and HSI models in the identification of colours
[14].

As soon as the user requires a finer resolution for
the specification of colours, the CNS model is
unable to cope. A solution is to use the HSL model
for finer resolution, since the CNS model uses the
HSL model as basis. It remains difficult, however, to
specify a range of colours in CNS (for example, all
the colours from dark green to light green). This
shows that the CNS model’s use is limited to the
specification and/or identification of one colour at a
time,

Another disadvantage of the CNS model is in its

v, 5%, 160) irite

Cyan
(83, -80, —18)

AL

implementation. It is difficult to calibrate the model,
that is, to specify the values to be used for all the
lightness and saturation terms and for brown. For
example, a set of lightness values that is acceptable
for green is not necessarily acceptable for blue.

3.5. LUV Model

3.5.1 General description

The LUV colour model [5,15,17] differs from the
other colour models in that it is not intended to make
colour specification more “natural” to the user. Its
aim is rather to provide a uniform colour space, by
which is meant a colour space in which differences in
the human perception of colours correspond
approximately to Euclidean distances.

The LUV model (see figure 14) was developed on
an experimental basis and does not have a
straightforward natural interpretation such as the HSI
model. Its three components are called L, Uand V.L
gives the luminance of a colour and is similar to I of
HSI and L of HSL. The U component gives the
chromaticity variation approximately from green to
red, and V gives the chromaticity variation
approximately from blue to yellow.

For the LUV colour space to appear to be uniform
to the human visual system, environmental factors,
such as the phosphors used for the colour display
unit and the properties of the light source
illuminating the display unit, must be taken into
account. Since this is a science in itself, only the
formulas used are given here. Reference [5] gives an

£

fad X P,

-200
Figure 14 LUV colour space showing the boundaries of the RGB colour cube and
the position of the basic colours (adapted from [5])
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excellent exposition on this subject, while [16]
discusses the use of uniform colour spaces for
computer graphics.

3.5.2 RGB to LUV conversion

Before the formulas are discussed, it must be noted
that the values of LUV are not in the [0,1] range.
Each component has a different range, depending on
the values chosen for the matrix P and the vector V.
If P2 and V4 are used (see 3.1.2), L will range
between 0 and 100, U between —93 and 204, and V
between —132 and 104. The ranges could be changed
to be positive integers, without loss of uniformity,
by a constant being added. To improve on the
resolution, each component can be multiplied by the
same constant. This will still preserve uniformity.

GIVEN: R, G, and B, each in [0, 1]

DESIRED: L in [0, 100], U in [-93, 204], and V
in [-132, 104], using P=P2 and V = V2 (see 3.1.2)

FORMULA:

LET

X = 0.437509R + 0.331566G +  0.179175B
Y = 0.205887R + 0.710498G + 0.0836149B
Z= 0.1421G +  0.931709B
X %Y
U=X+ 15Y + 3Z =X + 15Y + 3Z
4Xp
U= Xy T 15Yo + 329 - 01978645
9Yy
V0= Xo T Isv g T 3z = 04694914
Yo=1
THEN
1
Y \& LY
L= 116(Y0)3 ~16  ifg=>001
U=13L(u - ug)
V =13L(v-vg)

3.5.3 LUV to RGB conversion

The LUV to RGB conversion is simply the inverse
of the RGB to LUV conversion. It must be noted,
however, that not all the LUV values within the
given ranges can be converted to be valid (that is in
the [0,1] range) RGB values. This is due to the form
of the RGB colour cube in the LUV colour space
(see figure 14).

GIVEN: L in [0, 100], U in [-93, 204], and V in

[-132, 104], using P=P2 and V = V2 (see 3.1.2)
DESIRED: R, G, and B, each in [0, 1]
FORMULA:

LET
L + 16)3

Y=Yo| T3¢
9(U + 13ugl)

X=7V+ 3vol)
39L X
Z_( + 13vgL ~ S)Y_?
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where
Yo=1
4Xo na
0= X T 1570 + 32 - 1778645
9Yo
Vo= X+ 1507 325" 0.4694914
THEN
R= 287574X - 1.25391Y - 0.440496Z
G=-0.848557X + 1.80318Y + 0.00135981Z
B= 0.129418X - 0.275013Y + 1.07309Z
NOTE:

Input is illegal if one of the following is false:
1.L=0=U,V,R,G,B,=0
2.V+13vygL=0=L =0

3.R,G,Bin [0, 1]

3.5.4 Use of the LUV model

The LUV model is an approximation of a uniform
colour space and is recommended by the CIE for use
in colour difference evaluation. Unfortunately, it is
still only an approximation. If a better uniform
colour space model were to be defined, all the
advantages of the LUV model would still hold for the
new model since the LUV model’s advantages stem
from its uniformity, not from the LUV model as
such.

The LUV model is not very suitable for interactive
applications. Its conversions are relatively slow (a
cubic root must be computed), and it is difficult to
acquire a “feeling” for the model, that is, to know
where certain colours are located in the colour space.

Another disadvantage is the fact that each
component of the LUV model has its own range. If
R, G and B range between 0 and 1, L, U and V will
range between 0 and 100, ~93 and 204, and —132 and
104 respectively.

In order to provide a uniform colour space, the
LUV model must be sensitive to environmental
factors. This further complicates matters. External
factors, such as the phosphors used in the colour
display unit and the light source illuminating the
display unit, all have an influence on the colours
perceived by the human eye.

In spite of the disadvantages, the LUV model can
be useful for uniform colour space applications, such
as automatic colour assignment (see 4.4). An
example is the assignment of colour to a vegetation
DTM. Typically, one would want the different
vegetation areas to be displayed with colours that are
as different as possible. This could be done by
spacing the colours as far as possible from one
another in LUV space.

For a digital elevation model (showing the heights
of an area) one would want the colours to show the
increase in height. This may be done by selecting
colours along a line in LUV space. If the intervals
between the colours on the line are equal to one
another, the height increase will be represented



A}V H

= arctan (%)

4

S = (u? + v2)
L = L
U
L =L
Inverse: U = S cos (H)
v = S s8in (H)

Fig 15

Definition of HL S and L in
terms of the LUV colour model

H = arctan (E:—:-)
R= [(u-a)2 + (v-b)
L =L

2]!

VC

Inverse:
L = L
uUue=a+ R cos (H)
Vv =>b+R 8in (H)

Fig 16

Definition of H,

the center of the circle at

uniformly. That is, small difference in colour will
imply a small difference in height.

In [17] a natural, user-friendly way of specifying
LUV colours along a curve is given. For a given L
value the U and V components are specified in polar
coordinates, called S (saturation) and H (hue) (see
figure 15). L, S and H are similar to the HSL model,
except that uniformity is preserved for each
component. The advantages of this are obvious.

The size of the hue circle could be improved if
centres other than (0,0) are used (figure 16). This
will increase the colour space utilisation at the cost
of saturation changes along the circumference of the
hue circle.

If an image has to represent three input functions,
the LUV model could be used, together with
statistics on the input functions, to provide an
“optimal” colour assignment [15]. Refer to 4.4 for
more detail on this.
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R and L with
(a, b)

3.6 Choosing the Right Colour Model

The selection of a colour model depends on the
intended application. An application where the user
interactively specifies or changes colours may be
best served by one of the HSI, HSL or CNS models.
The CNS model allows the use of natural English
names, but has a coarse resolution. The HSI and
HSL models allow fine resolution and appear natural
to the user. The HSI model corresponds to the artist's
use of tint, shade and tone. The conversions needed
for the HSI and HSL models are fast, and both
models can be used in painting programs. Whether
HSI and HSL should be used depends on whether the
user wants the fully saturated colours to be at I = 1
(for HSI) or at L = 0.5 (for HSL).

For applications needing a uniform colour space,
the LUV model is the obvious choice. It must,
however, be remembered that the conversions needed
for this model are slower than for the other models.



4. Colour Assignment

In this section it is assumed that the hardware used
for colour display consists of a frame buffer and a
colour lookup table (colour map or luvo). Each pixel
in the frame buffer points to a location in the colour
map that contains the colour description of the pixel.
In this way the colours may be changed without the
picture being changed. The size of the colour map is
much less than that of the frame buffer. Typically,
the frame buffer may have a size of 512 by 512,
giving 262 144 pixels, while the colour map may
have only 256 entries. These values will be used in
the following discussion.

4.1 Displaying Multi-Image Pictures

The process of displaying digital multi-image
pictures on the hardware described above can be seen
as consisting of two steps, namely quantisation and
colour assignment {18].

Quantisation is the process of assigning
representation values to ranges of input values. For
example, the 262 144 possible pixel values of the
frame buffer must be limited to 256 — the size of
the colour map — and all other pixel values must be
mapped onto these 256 values. Colour assignment is
then simply the assignment of representative colours
to the colour map by using one of the colour
models.

Typical applications where these steps are needed
are: mapping of a video image with R,G,B
components onto a k-sized colour map [16]; the false
colouring of satellite images; and the combined
display of several DTM’s, such as DTM’s of the soil
type, vegetation and slope of an area.

A more formal description of the process of
combining and displaying m input images is as
follows (see also figure 17).

112}11] Luvo
2la]1 1B
1al1] 2H T (1.4, 2)
114112 Luvo Eé' ?' é; 9 tuples of
2B - (1. 2. 1) from the input
2112 (1: 2: 1) images
(2, 1, 2)
21111 Luvo (4, 2, 1)
2|21 1E3 ///’
1]214] 2
Three input
(a) images
(4, 4, 2) 141x
(1.2, 1) 4x —~ > (1,2 1)
(2, 1, 1) 1x
(2, 1, 2) 2x (2, 1, 2)
(2,2, 2) 1x e

(c) the 9 tuples

212]|1| Luvo

21211} 1 (4, 2, 1)
2 1,2

A 2 ( )

(f) The new image

Histogram of Mapping

2 tuples

(d) selected
Luvo Luvo
1 — 1 |black
2 — 2 {green

(g) Colour assignment

Figure 17 Combining 3 input images (size 3 x 3) into one
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80° 120° 72° 72°
144°, 144°
® [ ) [ ] [ ]
216 218
240 88°
N =2 N =3 N = 4 N=25

Figure 18 Polar coordinate system for N = 2,3,4 and §

1. Input: Start with n tuples of size m, where a
tuple consists of the m input values that have to be
represented by one pixel in the final image.

2. Quantisation: Quantise the n tuples to k tuples,
where k is the size of the colour map. This is done
in three steps (see [18]):

(a) Obtain the distribution of the n tuples (a
histogram of the tuples).

(b) Select k tuples based on the tuple
distribution. Typically, select the k tuples
that occurred most frequently.

(c) Map all the other tuples onto the k tuples
selected in (b), and create a new image.

3. Colour assignment: Assign k colours to the k
tuples by using the RGB, HSI, HSL or LUV model.
Some of the more detailed requirements for this
process might be:

(a) Use a set of colours with an easily
remembered order, showing the order of the
tuples.

(b) Select colours that are perceived as being as
different as possible by the user.

(c) Ensure that the colours preserve the distance
between the tuples.

4.2 Colour Assignment using the HSI Model

For multi-image pictures the colour of an entry in
the colour map might be defined as a function of all
the image components. For three or less image
components a straightforward assignment of a colour
component (hue, saturation or intensity) to an image
component may be done. The RGB colour space may
also be used in this way, but the use of the HSI
colour space is said to give better results. This is
evident if there is only one image component
because the hue colour component has a large
dynamic range. According to [6], about 128 hues can
be distinguished by the human eye.

For two image components saturation is usually
selected as the second colour component because
most displays offer the smallest number of
discernable steps along the intensity range. If colours
differ only in saturation, we can distinguish from 16
(for yellow) to 23 (for red and magenta) colours.
Three image components will use hue, saturation and
intensity.

It is also possible to assign one colour component
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as a function of more than one image component. In
this way more than three image components can be
displayed at the same time. Some information will
be lost because more than one set of image
component values will be mapped onto the same
colour, but such a multi-image colour picture can
still be useful for four or five image components.

The colour assignment for two to five image
components may be defined as follows [13]:

I=max {C;)

S= max {C;} - min {C;}

max {Cj}
N
C;sin6;
i=1
H = arctan N
ZCicosei
i=1
WHERE

N = number of image components (2 <N <5)

C; = value of image component i (1 <i<N)

6; = direction of component image axis in polar
coordinate system (see fig. 18)

(0°, 90°) if N=2

o J07 120°, 2407 if N=3

(01,02, .-.00 =4 (0° 72°, 144°,216")  if N=4
(0% 72°,144° 216° 288°) if N=5

For N = 3, the choice for the angles of the
component axes corresponds to the primary colours.
Arrangements where two component axes are directly
oppositc one another in the polar system are avoided
as the two components will cancel one another, since
sin(180 + k) = —sin(k) and cos(180 + k) = —cos(k).

4.3 Colour Assignment using the HSL Model
The colour assignment used for the HSI model may
be adjusted for use with the HSL model. However,
for the latter model the difference between the S and
L colour components may not be as obvious as with
the HSI model. If there are two image components
that are assigned directly to a colour component, the
H and L components may be preferred to the Hand S
components. This is because L offers a wide range,
going from black through the pure colour to white.
If a colour component is assigned as a function of



more than one image component, the assignment
will be as follows:
_max {C;j} + min {C;}

L 2
max {C;} — min {C;} .
max {Cj}+ min {C;} FL<S
S= max {C;} —min {C;} .
2 - max {Cj} - min {C;} >3
0 ifL=0orL =1
N
C;sin®;
i=1
H = arctan N
zcicosei
i=1
WHERE

N = number of image components (2 <N < 5)

C; = value of image component i (1 <i< N)

6; = direction of component image axis in polar
coordinate system (see fig. 18)

(0°, 90°%) if N=2
5 4(0%, 120°, 240%) if N=3
1,02, ...8) = 3 9" 720, 144°,216°)  if N=4

(0°,72°,144°,216°,288°) if N=5

The definitions of S and L differ from the HSI
assignment, while the H component is exactly the
same.

4.4 Colour Assignment using the LUV Model

In a manner similar to that for the HSI and HSL
colour models, colour assignment in LUV space may
be done by the assignment of L, U and V to each of
the three image components. In the LUV space the
axis offering the greater colour variation lies along
the U axis (that is, green to red) while the least
variation is found along the L axis (black to white).
If this colour assignment is used, some problems
may arise because even if the individual values of L,
U and V are within the specified limits, the point
they represent in LUV space may be outside the
limits. This is because of the form of the RGB
colour cube in LUV space (see figure 14).

If there is only one image component, colours may
be assigned by going along a line (or circle, or some
similar shape) in LUV space. If the colours are
assigned at regular intervals along the line, the
colours should appear to be equidistant to the human
eye (because of the uniformity of LUV). For two
image components a plane (or other geometric
figure) in LUV space has to be used.

A method for assigning LUV colours to an image
with three components is given in [15]. This method
uses statistics on the distribution of the image
components’ values. A transformation that will fit
the component space “optimally” into the LUV
colour space is deduced. The formulas used are as
follows:
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GIVEN:

L 58.1135
Ul = 1219842 | = mean values of regular
|V -5.7558

samples in the displayable LUV space (using D65
for the 1984 observer) .

[do1 50.5489
do2 | = | 46.6821 | = standard deviations of the
18.6878

samples in LUV space in decreasing order.

-0.884021 0.456285 0.101593
0.440185 0.885696 —0.147548

matrix such that each column is a normalised
eigenvector of the covariance matrix for the
displayable LUV space. The eigenvectors are ordered
such that their eigenvalues are in decreasing order.
Set of (f1,f2,f3) triples. formed by the three image
components f1, f3, and f3.

[ 0.157303 0.0857109 0.983824]
RO = =

DESIRED:
The (L, U, V) triple corresponding to (f1,f2,f3),
using a data dependent conversion that does not
preserve distances,

FORMULA:
As above, calculate the following for the f;f,f3

space:

f1 d
[ f—z} = mean distribution, [di] = standard
f3 d
deviation

R = matrix of normalised eigenvectors similar to
Ry, but for this space (inverse is R-1),

The conversion is given by:

do _ _
L d_lldgz 0" fi-fi) TL
[Uj,:Ro OEO R f-fo|l+| U
Bl el

To preserve distances, replace the ddlﬁ values with

their minimum.

S. Guidelines for Effective Colour Use

The following guidelines are based on [2] (see also
[19] and [20]) with some remarks added from own
experience. The guidelines are listed according to
their area of derivation physiological, perceptual, or
cognitive.

5.1 Physiological Guidelines

Avoid the simultaneous display of highly saturated,
spectrally extreme colours. It is said that extreme
colour pairs, such as red and blue or yellow and



purple, should be avoided since they cause frequent
refocusing and visual fatigue. This strain on the eye
is not always felt immediately, but may show itself
in the long run. However, desaturation of spectrally
extreme colours or the reduction of their intensity
will reduce the need for refocusing.

Avoid pure blue for text, thin lines, and small
shapes. Our visual system cannot deal adequately
with detailed, sharp, short-wavelength stimuli.
However, blue does make a good background colour
and is perceived clearly out into the periphery of our
visual field.

Avoid adjacent colours differing only with regard to
the amount of blue. Edges that differ only with
regard to the amount of blue will appear indistinct.
This is especially visible in the blue-green and
yellow-white (where blue is added) regions.

Older viewers need higher levels of brightness to
distinguish colours.

Colour changes appearance as ambient light level
changes. Displays change colour under different kinds
of ambient light — fluorescent, incandescent, or
daylight. Appearance also changes as the light level
is increased or decreased. On the one hand, a change
is due to increased or decreased contrast, and on the
other, it is due to a shift in the eye’s sensitivity. The
background colour of a display has similar effects.

The magnitude of a detectable change in colour
varies across the spectrum. Small changes in hue are
more detectable in yellow, magenta and cyan-blue
than in green and the extreme reds and purples. Small
changes in saturation are more difficult to detect in
yellow, green and blue than in red-yellow, cyan-blue
and blue-magenta. Intensity changes are more visible
in green and yellow than in blue.

Difficulty in focusing results from edges created by
colour alone. Our visual system depends on a
difference in brightness at an edge to effect clear
focusing. Therefore, multi-coloured images should be
differentiated on the basis of brightness as well as of
colour.

Avoid red and green in the periphery of large-scale
displays. Owing to the insensitivity of the retinal
periphery to red and green, these colours should be
avoided in saturated form, especially for small
symbols and shapes. Blue and especially yellow are
good peripheral colours.

Opponent colours go together well. Red and green
or yellow and blue are good combinations for simple
displays. The opposite combinations — red with
yellow or green with blue — produce poorer images.

For colour-deficient observers, avoid single-colour
distinctions.

5.2 Perceptual Guidelines

Not all colours are equally discernible. Perceptually,
we need a large change in wavelength to perceive a
colour difference in some portions of the spectrum
and a small one in other portions. Colour differences

Quazstiones Informatice 6 1 1988 51

are perceived more readily in the yellow-red, cyan-
blue and blue-magenta colour regions.

Luminance does not equal brightness. Two colours
of equal luminance but different hue will probably
appear to be of differing brightness. The deviations
are most extreme for colours towards the ends of the
spectrum (red, magenta, blue).

Different hues have inherently different saturation
levels. Yellow in particular always appears to be less
saturated than other hues.

Lightness and brightness are distinguishable on a
printed hard copy, but not on a colour display. The
nature of a colour display does not allow lightness
and brightness to be varied independently (see 2.1 for
the definition of these terms).

Not all colours are equally readable or legible.
Extreme care should be exercised with text colour
relative to background colours. In addition to causing
a loss in hue with reduced size, inadequate contrast
frequently results when the background and text
colours are similar. As a general rule, the darker,
spectrally extreme colours such as red, blue magenta,
brown, etc., make good backgrounds while the
brighter, spectrum-centred, and desaturated hues
produce more legible text.

Hues change with intensity and background colour.
When grouping elements on the basis of colour,
ensure that backgrounds or nearby colours do not
change the hue of an element in the group. Limiting
the number of colours and ensuring that they are
widely separated in the spectrum will reduce
confusion.

Avoid the need for colour discrimination in small
areas. Hue information is lost in small areas. In
general, two adjacent lines of a single-pixel width
will merge to produce a mixture of the two. Also,
the human visual system produces sharper images
with achromatic colours. Thus, for fine detail, it is
best to use black, white, and grey, while chromatic
colours should be reserved for larger panels or to
attract attention.

5.3 Cognitive Guidelines

Do not overuse colour. The best rule is probably to
use colour sparingly. The benefits of colour as an
attention getter, information grouper, and value
assigner are lost if too many colours are used.
Cognitive scientists have shown that the human
mind experiences great difficulty in maintaining
more than five to seven elements simultaneously; so
it is best to limit displays to about six clearly
discriminable colours when a definite meaning is
associated with each colour. In some applications,
such as where different shades of the same colour is
used, this rule does not apply.

Be aware of the nonlinear colour manipulation in
video and hard copy. Video or hard-copy systems
cannot match human perception and expectations in
all respects.



Group related elements by using a common
background colour. Cognitive science has advanced
the notion of set and preattentive processing. In this
context, you can prepare the user for related events
by using a common colour code. A successive set of
images can be shown to be related by the use of the
same background colour.

Similar colours connote similar meanings.
Elements related in some way can convey the
relationship by means of the similarity of their hues.
The colour range from blue to green is experienced as
being more similar than that from red to green. The
saturation level can also be used to connote the
strength of relationships.

Brightness and saturation draw attention. The
brightest and most highly saturated area of a colour
display immediately draws the viewer's attention.
Yellow and green are good examples of this.

Link the degree of colour change to event
magnitude. As an alternative to bar charts or tic
marks on amplitude scales, displays can portray
magnitude changes with progressive steps of
changing colour. A desaturated cyan can be increased
in saturation as the graphed elements increase in
value. Progressively switching from one hue to
another can be used to indicate passing critical levels.

Order colours by their spectral position. To increase
the number of colours on a display requires that a
meaningful order be imposed on the colours. The
most obvious order is that provided by the spectrum
with the mnemonic ROY G. BIV (red, orange,
yellow, green, blue, indigo, violet). This is the same
as the hue range of the HSI and HSL colour models.

Warm and cold colours should indicate action
levels. Traditionally, the warm (long wavelength)
colours are used to signify action or the requirement
of a response. Cool colours, on the other hand,
indicate status or background information. Most
people also experience warm colours such as red as
advancing toward them, hence forcing attention, and
cool colours such as blue as receding or drawing
away.

Do not mix the decorative use of colour with
planned colour cueing. The logical side of our brain
looks for meaning in the use of colour and will get
tired and frustrated if none could be found [20].

The three-dimensional appearance of objects can be
enhanced by the use of variations in the degree of
saturation and/or intensity. Foreground colours are
commonly rendered in bright colours and the
background colours progressively reduced in
saturation (or intensity) as the distance from the front
increases [19].

6. Conclusion

While these guidelines offer some suggestions, they

should certainly not be taken as binding under all

circumstances. There are too many variables in
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colour display, colour copying, human perception,
and human interpretation for any hard and fast rules
to apply at all times, thus leaving open the way for
experimentation,
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Effective Computer Applications

by Peter Pirow, 1986, Woodacres Publishers, 230 pages, ISBN 0 620 09323 4

Dr. Peter Pirow has made a most original and
sorely needed longitudinal, case-history research
contribution to the cost-effectiveness of business
information systems in particular, and to the study of
the social use of computers in general. Effective
Computer Applications reflect a massive rescarch
effort spanning a 28 year period, incorporating a
selection of 857 case studies in South Africa over an
astonishing variety of applications and organisations.
The extensive case study empirical data base was
subjected to diversified hypothesis testing to
determine various socio-economic and technical
facets of computer system performance effectiveness.
This carefully crafted work, including a wide-ranging
general history of information and computers, and a
special history of computer developments and
applications in South Africa, is a remarkable
intellectual tour de force and an exemplary,
interdisciplinary scholarly task.

Voluminous descriptive statistics are presented,
highlighting case history population parameters and
characteristics, and quantitative measures of computer
system success and failure. Numerous statistical tests
are made of leading hypotheses and organisational
performance measures culled from the scientific
literature, with additional hypotheses and models
from Dr. Pirow’s rescarch. These statistics include
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parametric, non-parametric, correlational and
multivariate techniques appropriate for the empirical
samples. The longitudinal quantitative analyses over
almost a three-decade time period is clearly a major
contribution to the world literature in business
information systems. The case history and
quantitative methodology is of great value, and I felt
that it should have been explicated more fully for
applied scientific practitioners, particularly in
connection with empirical reliability and validity of
the various measures of performance effectiveness.

The book concludes with a thoughtful analysis of
the complex reasons why so many information
systems fail and others succeed in various
organisational contexts. Dr. Pirow particularly
singles out the massive impact of computer illiteracy
on system failures, and provides broad educational
recommendations for achieving “computeracy” at the
national level. He ends on a fitting sober, scientific
note that the proverbial wisdom appearing in
newspapers, magazines, and articles, based on
“cxpert” opinion as to what works and what does not
work in computer systems, “can only be tested by
means of a study of a substantial number of
applications”, as he has done in this monumental
work.

Hal Sackman, School of Business, California State
University
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1. Introduction

The goal of this study is the definition of a context-
dependent logical security model. This model will
use the current state of the protected environment to
determine whether a new access relation between two
entities in the environment may be established, or
whether such an existing relationship may be altered.
Furthermore, when new entities are introduced into
the environment, the current protection state will
also be used in determining the relationship between
the new and existing entities. A motivation for this
is to formalise the definition of the access rights of
new users in a protected system. Instead of having to
manually determine the access rights of each user,
the protection system will define the access rights in
view of the current system context. This study will
provide the basis for a logical formulation of such a
model.

Firstly, current models of access control were
studied, to find a suitable framework for development
of the envisaged model. It was found that the T/G
(Take/Grant) and S/R (Send/Receive) models [4,3]
showed promise, for the following reasons

- it is possible to ignore the subject/object
distinction,

- the graph-theoretic approach and related graph-
rewriting rules pointed to the possible incorporation
of a suitable graph grammar, that would make a large
body of proven theory available for use in the study.

- the T/G and S/R models are enjoying considerable
attention. New results, that appear quite frequently,
may lead to new ideas in this study.

We will now give short summaries, first of the
T/G model (from [4]), and then of the S/R model
(from [3)).

The object of the T/G model is to model a
protection system. This is done by using a two-
coloured, directed graph, wherein subjects and objects
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graph grammars, Grammatical protection systems,

are represented by different coloured nodes of the
graph, and where the capability of node a to access
node b is indicated by an edge from a to b. The set o
of rights that a can exercise in accessing b (such as
read, write) is denoted by labelling the edge from a to
b with a, as follows:
o
o0—— 0
a b

The set o of rights is a subset of the fixed and
finite set of rights R = (read, write, append, execute
(programs), take, grant}. The read, write, append and
execute rights are called the inert rights, while the

_take and grant rights may be seen as "active" rights,

in that they allow the modification of the protection
graph structure.

The T/G model also defines certain graph rewriting
rules, two of which correspond to the take and grant
rights. Informally, if node a has the take right to
node b, and the grant right to node c, node a may
take any subset of the rights of node b for itself, and
give (grant) any subsct of its own rights to node c.

There are two more rewriting rules in this
formulation of the T/G model, namely the create and
remove rules. The create rule adds a new node to the
graph, with a labelled edge from the node that
initiated the creation operation to the newly created
node. The remove rule alters the labelling of an edge
of the graph (i.e. an alteration of the access rights of
the start node of the edge) by removing a subset of
rights from the set of rights denoted by the edge
label.

The T/G operations will later be more formally
defincd.

Like the Take/Grant (T/G) model, the purpose of
the Send/Receive model is the modelling of the
transfer of access rights between subjects in a
protected system.



In the S/R model for protection, several
shortcomings of the Take/Grant model are addressed,
including selectivity, locality/modularity, and
unidirectionality of flow of rights (see [3] for more
detail).

We shall now give a brief definition of the S/R
model, from [3]. In this model, a protected system
consists of typed objects. With each object x we
associate a set of (attribute, value) tuples, describing
the attributes of the object, as well as a (possibly
empty) set of (object, access right set) tuples, called
tickets, which denotes the fact that x can access the
given object with any of the rights in the set access
right set. The access right set is a subset of a fixed
and finite set of rights R = {read, write, append,
execute (programs), send, receive}. Finally, an object
also possesses a (potentially empty) set of rule
rights, called activatorsirules. An activator takes the
following (simplified) form:

CAN A(ay, ..., ap IF Q(ay, ..., ap).

This means that the holder of the activator may
perform action A on the arguments (logical
entities/objects) at, ..., ak, provided that the
predicate Q is satisfied.

In the rest of this paper, we shall refer to activators
as rules.

Three basic rules are defined in the S/R model.

The first rule, called the CAN-SEND rule,
facilitates the control of movement of rights out of
an object’s domain, enabling the holder thereof to
send rights to another object. The rule takes the
following form:

CAN SEND p.:P TO 5:S IF Q(p, 5).

p and s are free variables and are only present if they
are used within the predicate Q. P and § are tuples,
called templates, of the form (T, R), where (for P) T
represents the type of the object p, and R represents
the set of rights of p that may be sent to the object
s. These templates (called patterns in [3]) are matched
by a ticket (object, access right set) when the object
is of type T and the access right set is contained in
the set R. S will always have the form (T, send).
This type of rule may be activated only if its holder
possesses tickets that match P and S, and Q(p, s) is
satisfied.

The second rule enforces control over the
movement of rights into an object’s domain,
enabling its holder to receive rights from another
object. The rule takes the following form:

CAN RECEIVE p:(T, R) FROM s:(T, receive) IF

Q@, 5).
This rule may be activated only if its holder
possesses the receive right to the object s from
which it wants to receive a ticket of the form (T, R),
and if the predicate Q is satisfied.

Finally, there is a CREATE operation for the
creation of new objects. It is assumed that if an
object x wants to create a new object y, x receives
the tickets (y, send), (y, receive), and y receives the
tickets (x, send), (x, receive), so that full
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bidirectional transfer of rights is possible. The form
of the CAN-CREATE rule is not defined in [3], and
for the purposes of this article we define it as
follows:

CAN CREATE p:(T, R) WHEN (T, create) IF Q(p,

s).
This means that the holder of the rule can create an
object p of type T subject to the condition that the
predicate Q is satisfied. The set K, is a subset of the
set of rights possessed by the holder of the CAN-
CREATE rule.

Finally, in order for a ticket (¢, 7) to be transferred
from an object x to an object y, the following must
be true:

- x must possess the tickets (¢, 7) and (y, send), as
well as an appropriate CAN-SEND rule, that is
satisfied by these tickets.

- y must possess the ticket (x, receive), as well as an
appropriate CAN-RECEIVE rule, that is satisfied by
the tickets (x, receive) and (1, r).

As was said earlier, the incorporation of a formal
graph grammar is indicated by the graph-theoretic
approach and rewriting rules of the T/G model. Of
existing graph grammars, the so-called NLC-(Node-
Label Controlled) grammars [1] seem to be the most
applicable. An important motivation is that the
grammars were extended by von Solms [6,7,8] to
include permitting and forbidding node contexts in
their productions. As context dependency is a
fundamental aspect of the grammar to be used, the
grammar was found to be very acceptable in this
regard.

We shall now proceed with the necessary
definitions for simulating the T/G model, and then
discuss some of the aspects of the resulting model,
which we will call the CSM (Context-dependent
Sccurity Model). This model is fully described in
[10].

2. Extending NLC-grammars to Formalise
the T/G Model

For the definition of a node-labelled undirected graph,
an NLC grammar and related concepts, see [1].

Definition 2.1 (from [1])
A NLC-grammar with node context is a system
G=(Z, A, P, C, Z) where
T is a nonempty finite set of labels, called the total
alphabet
A is a nonempty finite subset of Z, called the
terminal alphabet
P is a finite set of productions, of the form (d, D,
(Z1; Ip)) with
de X
D a graphover X
Z:l y22 c z
I, N X, =, where



Z) is called the permitting- and X, the
forbidding (node) context
C is a subset of £ x X, called the connection
relation
Z is a graph over X, called the axiom.

Definition 2.2
Let R be a finite, nonempty set of symbols, called
the set of rights. Let H be a graph over I, and let e =

oO——o0

L I, be a subgraph of H, consisting
of any two connected nodes of H and the edge
between them. We associate with the edgeof e an a
C R, called the edge classification. We denote this by
a tuple (I}, I, , o), called an edge context. The edge
context is denoted graphically by adding the labels
11,00 to the edge, as follows:

1 1,00
0— 7 M o
h )

The edge context (I, , I, B) is written

IZ’B
o0———9
Iy N

We say that /; owns the set o of rights with respect
to /. The "owner" of the rights is therefore indicated
by being the first element of the tuple.

The set Ay of all possible edge contexts of a graph
H is defined as

00— — o

AH = {(li’ 1)’ Ot) | Ii 1_[ is an edge of H, i
#j, 0 R},
where R is the set of rights associated with the
grammar that generated H.

For a grammar G, A is defined as

Ag={( o)1, I, e X, 4 #l, a C R},
where R is the set of rights associated with G.

Definition 2.3
A NLC-grammar with node- and edge context is a
system
G=(Z,A,P,C, Z, R) where
Z is a nonempty finite set of labels, called the total
alphabet
A is a nonempty finite subset of X, called the
terminal alphabet
P is a finite set of productions, of the form
(d’ D’ (El ; ZQ) » (Al N AZ)) with
de X
D a graph over X, where with every edge of D
we associate an edge classification o € R,
applicable to one of the nodes of the edge.
21!22 o z
Zl M EQ =0
X, is called the permitting and X, the
forbidding node context
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A1A3 € Ag. Aj and A, is called the permitting
and forbidding edge contexts, respectively.
Also, AN AN=0

C is a subset of £ X X, called the connection
relation

Z is a graph over Z, called the axiom

R is a finite, nonempty set of symbols, called the
set of rights.

The meaning of the permitting and forbidding
node/edge contexts in definition 2.3 is as follows: A
production may be applied if

- all of the nodes specified in the permitting node
context Z; appear somewhere in the current graph

- none of the nodes specified in the forbidding node
context X, appears anywhere in the current graph

- for every edge context (I, I, o) that appears in
the set A; of permitting edge contexts, there exists an
edge somewhere in the current graph between two
nodes labelled /; and /,, having an edge classification
o.

- for every edge context (13, I, B) that appears in the
set A, of forbidding edge contexts, there does not
exist an edge anywhere in the current graph between
two nodes labelled I3and I, having an edge
classification f.

Three types of productions can be identified:

1. Normal productions
2. Edge generation productions
3. Edge removal productions.

A direct derivation step is performed by applying a
normal production. Let H be a graph over X, with v
€ Vy, and Wy(v) = 1. Choose a production (/, D, (L,
3 22) , (A1 5 Ap) € Py, the contexts of which are all
satisfied. Apply the production as follows:

(1) Remove v and all edges incident to v from H,
resulting in the graph H\v. _
(ii) Replace v with an isomorphic copy D of D.
(iii) Establish edges between Hw and D in the
following manner:
Letx € Vi, ye Vg, with ¥ p(x)=1 and
Yu(y) = L.
Create an edge between x and y iff there was
an edge between y and v in H and (. h)e C.

In order to prevent unauthorised access from taking
place, connection of nodes in Hw to nodes in D may
be forced to be done explicitly. In such a situation,
step (iii) in the application of a normal production,
as defined above, would be replaced by
(iii) Establish edges between H\v and v in the
following manner:

Letx € Vp,.

Create an edge between x and v iff there was

an edge between x and v in H.
The set of connection relations, C, would therefore
not be used at this stage in the determination of
connections between nodes in Hw and nodes in D.
After (the modified) step (iii) has been executed, any



node in H\v wishing to gain access to a node in D
would explicitly initiate an edge creation production
to create an edge to the node in D. In this way all
access to new nodes can be simply but rigorously
controlled.

The different types of productions will now be
discussed in greater detail.

1. A normal production
is of the form

(,D, (Z1: L), (A5 A)) _
where D is an arbitrary graph over the set Z. Let D
be the isomorphic copy of D that is to replace v;
then V5N Vy, = @. This type of production is
denoted by P,

This type of production is used where at least one
new node is to be introduced into the graph (created).
The graph D may consist of one or more nodes, and
may contain isolated (unconnected) nodes. A normal
production cannot establish edges between existing
nodes in the graph; the edge generation production is
to be used in such a case.

2. An edge generation production
is of the form

l,0

o0————0

(llv [1 12’ (zl ’ 2;Z) » (Al N AZ))

IZ’B

o—o0

Wilhll l2€ Az,VﬁE R,le ZI’ and
is denoted by P,

It is assumed that identical labels in the above
production refer to the same nodes.

The function of this type of production is the
generation of an edge between two existing nodes
labelled /; and I;. This does not exclude the
possibility that an edge between the nodes /; and /,
already exists, although we shall see later that it is
possible to establish a precondition that no edge may
exist between two nodes at the time that a new edge
is added between the two nodes.

The creation of the edge is initiated by the node
labelled /; in order to gain access to the node labelled
I,. The owner of the edge (I,) gives the take, grant, as
well as all other "inert" (read, write, append, execute)
rights to the edge classification.

The edge generation production can be graphically
illustrated as follows:

- l 1,0

0 o o—0

11 1 2 = ll 12
where the nodes labelled /; and /, are existing nodes
in an arbitrary graph.

3. An edge removal production
is of the form
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L9
o0————-0
(i Iy b, (Z1: %), (A5 AY)
with (I;,1,,B) € Ay, B € R, and is denoted by P..

It is assumed that identical labels in the above
production refer to the same nodes.

The function of the edge removal production is to
remove an existing edge from the graph, in order to
indicate that no relation between the two nodes exists
anymore.

The edge removal production can be graphically
illustrated as follows:

LB L,9

o0—————o0 0—— ———0

11 l 2 = l 1 12
where the nodes labelled [/, and /; are existing and
connected nodes in an arbitrary graph.

A fourth production type may also be introduced.

4. Edge classification update production
This type of production is of the form
LB
o0——0
(i, 1y b, (Z1;5y), (A1 5 A)) with
(I,12,Y) € A4, and is denoted by P,.

It is assumed that identical labels in the above
production refer to the same nodes.

The function of this type of production is to reflect
a change in the relationship between two nodes by
altering the edge classification, while leaving the
nodes and the edge between them intact. When the
edge classification becomes empty, it is indicated
that no relationship between the two nodes currently
exists, although the edge between the nodes is still
shown.

The edge classification update production can be
graphically illustrated as follows:

II’Y Ilv[3

o—0 o0—0

ll l 2 = 11 12
where the nodes labelled I; and /, are existing
(connectcd) nodes in an arbitrary graph.

Another way to handle the removal of edges is to
usc the edge classification update production to,
modify the classification of an edge to be the empty
sct. In this case, an empty edge classification will
denote the situation in which no relation is defined
between two nodes, although an edge is shown
between them.

Although it may seem that the edge removal
production, in contrast to the edge classification
update production, would make it possible to
distinguish between an isolated node and a node that
is connccted but with no defined access relations,
there is no practical difference between these two
situations.

Another remark that is relevant to productions, is
that in the NLC-grammars, the sets Vi, and V



must be disjoint, i.e. the only node of the graph (to
which the production will be applied) that may
appear in the right-hand side of the production is the
node that appears on the left-hand side of the
production, i.e. the node to be replaced. This
condition is removed from the CSM, so that the
necessary T/G operations may be naturally modelled.
It is possible, however, to replace any production
that does not obey this rule with a set of productions
that do. For more detail, sce [8].

Lastly, the following note can be made about the
labels of nodes. It is assumed that every label denotes
a class of node, e.g. the class of all students. In order
to be able to refer in a production to a specific node,
a production must first be executed that assigns a
unique label to the node. Identification of the node
that should receive the unique label can be done by
using the node and edge contexts. When the
operations necessitating the unique identification of
the node have been carried out, the original label of
the node may be restored.

3. Modelling of the T/G operations in the
modified NLC-grammar

The basic T/G operations will now be formalised in
the modified NLC-grammar.

There are four basic operations in the T/G model,
namely the Take, Grant, Create, and Remove
operations. They are defined as follows: [3]

Let H be graph, with x, y, and z € Vy, Wu(x) =/,
W¥n(y) = 2, and ¥y(z) = Is.
LetR={1,g,c,d,r,w,a,e} with
t = “take” right
g = “grant” right
¢ ="“create” right
d ="“remove” (“delete”) right
r = “read” right
w = “write” right
a = “append” right
e = “execute” right

1. Take
Let there be an edge between x and y with edge

‘classification o with te o, as well as an edge

between y and z with an edge classification B with y
< B. An application of the Take rule establishes a
new edge between x and z with classification . The
rule can be read as "x takes (y to z) from y". The
graphical representation of this rule is as follows:

Ly
ho o bp | ho LB |
O O 0] O O 0
11 12 13 = 11 12 13

This operatidn is modelled in the CSM by means
of the following production:
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ll’y

o———0
PBE PH=(Ilvll lBa(;)’
I, lz,B 11,8
O 0 0O —0 00— 0
h L L L); 13))

V & ¢ R, t € q, using the graphical representation of
a production, and

Pg = (lla (ll’ I3v 'Y)' ( > )’ (ll’ 12: a)’ (121 13’ B) ' (ll’ 13,
S) VOcR,te a

using the "edge context" representation of a
production. The graphical representation will be used
in the rest of this paper, because it is more legible.

2. Grant

Let there be an edge between x and y with edge
classification «, with g € a, as well as an edge
between x and z with edge classifcation [, with that
c B. The Grant rule defines a new edge between y
and z with classification y. This operation can be read
as "x grants (y to z) to y". The graphical
representation is as follows:

Lj LB
| 11 ,o | ' Il»a I27Y |
(o} O 0 O 0O 0
ll 12 13 = 11 12 13

The following CSM production models this
operation:

1217
oO—————0
Poe Py=(h L L (),
11,(1 II’B 12,8
o 0 o0 0 O 0
h L L L) 13)

V3dcR,gea,ych.

3. Create
Let there be a node x € Vy in the current graph. The
Create rule adds a new node n, with Wy(n) = I, to the
graph, and creates a new edge with classification A
between x and n. This can be read as "x creates (A to
n)". The graphical representation of this rule is as
follows:
I 1 ,7\.
o o0—0
l 1 = l 1 14

The following CSM production models this

opceration:
LA
o——————0

Pn € PH = (11, 11 141 ( > 14)’ ( , ))
4. Remove
Let there be an edge between x and n with an edge
classification o, with B ¢ . The Remove operation
removes the set B of rights from o. This rule may be
read as "x removes (B to n)". This operation can be



handled by the CSM edge classification update
production. The graphical representation is as
follows:
Ilra llva—ﬁ
o0————0 o0—0
Il 14 = ll 14

The following CSM production models this
operation:
Il,a—B Il,a
o0——0 o0——0
Poe Py=(, 1 L, G, (4 143)

A similar operation can be used for the addition of
rights to an existing edge classification.

The basic T/G operations have now been defined.
Note that the node- and edge contexts in the above
operations may contain additional nodes and/or edge
contexts in real situations, in order to model other
constraints dictated by such a situation.

We now proceed to extend the CSM to model the
S/R situation. This model is fully described in [11].

4. Extending NLC-grammars to Formalise
the S/R Model

Definition 4.1
Let R be a finite, nonempty set of symbols, called
the set of rights. Let H be a graph over Z, and let
o——0

e=1 1 12
be a subgraph of H, consisting of any two connectcd
nodes of H and the edge between them. We associate
with the edge of eana,aBandayy cR.a, B and g
together constitute the classification of the edge.

We denote this by a tuple (1, [, o, B, %), called an
edge context. The edge context is denoted graphically
by adding the labels /;,0,8,x to the edge, as follows:

11 ’a’Byx
I b

We say that /; owns the set o of rights with respect
to I, and the set B serves the function of qualifying
the rights in a. That is, if there are any rights within
o that operate on other rights, then the rights that are
operated upon is given in B and ¥ respectively, as
will be shown later. The "owncr" of the rights is
indicated by being the first element of the tuple.

The set Ay of all possible edge contexts of a graph
H, and the set Ag of all possible cdge contexts of all
graphs generated by a grammar G, is defined in the
sane manner as in the CSM.

Before we define the grammar that will be used to
formalise the S/R model (we shall call it the ECSM
- Extended Context-dependent Security Model), a few
other preliminary definitions are necessary. We
associate with each label / in the protection graph a
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set of attributes, denoted by I{A,, ..., A;}. The value
of the attribute A; is denoted by a;. The set of all
possible values of an attribute g; is denoted by 7XA)).
We define the attribute set A4 as the set of all
possible attributes in the system. The power set of
A denoted by A 9).

Definition 4.2

An attributed label | is a label that has associated
with it a set of attributes, denoted by

I{A, ..., A},

such that Ay, ..., A, € 4,1 € I, where 4 is a set of
attributes, and I is a nonempty, finite set of node
labels.

Definition 4.3
A NLC-grammar with node- and edge context is a
system
G=(AP,C,Z,R, A where
X is nonempty finite set of attributed labels, called
the total alphabet
A is a nonempty finite subset of Z, called the
tcrminal alphabet
P is a finite set of productions, of the form
(da D’ (Zl > 2’2) ’ (Al > AZ))
de X
D a graph over X, where with every edge D we
associate an edge classification a, B,  with o,
B,x < R, applicable to one of the nodes of
the edge;
2l ’22 = z
N 22 =0
X, is called the permitting and X, the
forbidding node context
A, A, c Ag. A{ and A, are called the
permitting and forbidding edge contexts,
respectively. Also, A; N A, =@,
C is a subset of X x Z, called the connection relation
Z is a graph over X, called the axiom
R is a finite, nonempty set of symbols, called the set
of rights
A is a finite, nonempty set of attributes.

Definition 4.4
Let x,y € Vy, where H is a graph over X, with W(x)
= [, and Wy (y) = l,. We say that x matches y if
l) 11 = 12
ii) The value g; of every attribute A; of [, is
the same as the value of the corresponding
attribute of ;.

The mcaning of the permitting and forbidding
nodc/cdge contexts in definition 4.4 is as follows. A
production may be applied if

- all of the nodes specified in the permitting node
context &, are matched by nodes in the current graph

- none of the nodes specified in the forbidding node
context X, is matched by any of the nodes in the
current graph



- for every edge context (I, l, a, B, ) that appears
in the set A; of permitting edge contexts, there exists
an edge somewhere in the current graph between two
nodes labelled /; and /; having an edge classification
o, B, x.

- for every edge context (3, Iy, €, ¢, Y) that appears
in the set A, of forbidding edge contexts, there does
not exist an edge anywhere in the current graph
between two nodes labelled /5 and I, having an edge
classification €, ¢, .

As in the CSM, four types of productions can be
identified:

1. Normal productions

2. Edge generation productions

3. Edge removal productions

4. Edge classification update productions.

A direct derivation step is performed by following
the same steps as in the CSM.

The different types of productions will now be
discussed in greater detail.

1. A normal production
is of the form

(D, (Z1: X)), (A15 Ap) _
where D is an arbitrary graph over the set I. Let D
be the isomorphic copy of D that is to replace v,
with V5N Vi, = @. This type of production is
denoted by P,

This type of production is used where at least one
new node is to be introduced into the graph (created).
The graph D may consist of one or more nodes, and
may contain isolated (unconnected) nodes. A normal
production cannot establish edges between existing
nodes in the graph; the edge generation production is
to be used in such a case.

2.An edge generation production
is of the form

llaa’Bvx
oO—0
(G b, (Z13 2y, (A5 A)
1118,¢1Y
oO—— 0
with 11 126 A2,V€,¢,’Y€ R,12€ 21,
and is denoted by P,

It is assumed that identical labels in the above
production refer to the sane nodes.

The function of this type of production is the
generation of an edge between two existing nodes
labelled /, and /,. The creation of the edge is initiated
by the node labelled /; in order to gain access to the
node labelled /5. The owner of the edge (/) gives the
send and receive, as well as all other "inert" (read,
write, append, execute) rights to the edge
classification.

The edge generation production can be graphically
illustrated as follows:
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houBy
o o o— 0
L I, = I I,
where the nodes labelled /; and /, are existing nodes
in an arbitrary graph.

3. An edge removal production

is of the form
1L,.2.2,9
o0—————0
(ll’ ll 12’ (Zl s z2) > (Al . AZ))

with (I;,5,0B,%) € Ay, a.B,x € R, and is denoted by

) od

It is assumed that identical labels in the above
production refer to the same nodes.

The function of the edge removal production is to
remove an existing edge from the graph, in order to
indicate that no relation between the two nodes exists
anymore.

The edge removal production can be graphically
illustrated as follows:

IhavB’x 11,@,@,@

o—M0 o0—————0

l 1 12 = 1 1 12
where the nodes labelled /; and /, are existing and
connected nodes in an arbitrary graph.

4. Edge classification update production
This type of production is of the form
II ,Q,B X
00— 0

(. 4 b, (B3 L), (Ar; Ap) with
(1.1,8,0,Y) € A, while at least one of the following
statements is true:

ya+#e
i)B#o¢
i) x 2y
This type of production is denoted by P,.

It is assumed that identical labels in the above
production refer to the sane nodes.

The function of this type of production is to reflect
a change in the relationship between two nodes by
altering the edge classification, while leaving the
nodes and the edge between then intact. When all the
sets in the edge classification becomes empty, it is
indicated that no relationship between the two nodes
currently exists, although the edge between the nodes
is still shown.

The edge classification update production can be
graphically illustrated as follows:

11,€,¢,Y ll’a’ﬁ"y
O—0 o—— o0
l 1 l 2 = I 1 12

where the node labelled /; and I, are existing
(connccted) nodes in an arbitrary graph.

The observations that were noted in relation to the
CSM productions also apply here.



5. Modelling the S/R Operations within the
NLC-grammars

Let H be a graph, withx, y, and z € Vg, ¥u(x) = L,
Yu(y) = b, ¥(2) =1

Before we start to model the S/R operations in the
defined grammar, a brief explanation of the edge
classification is in order. We said that, given an edge
between two nodes labelled /; and [ with edge
context (;, o, B, %), the role of the sets Band g isto
qualify certain rights within the set o. We now
define these sets to be used as follows: if the send
right appears within o, the set B contains the set of
rights that /; may send to I,. Likewise for  and the
receive right: if receive € o, ) contains the set of
rights that /; may receive from /. If any other rights
appear within o, they have their usual meaning, and
need not be qualified.

1. Send

Let there be an edge between x and y with edge
context (I3, I, o, B, %) with send € o. Let there also
be an edge between x and z with edge context (I;, I3,
g, 0, y) with n c € and < B. Lastly, let there be
another edge between y and x with edge context (I,
I1,1, ¥, ) with receive € 1,11 C X.

The send operation establishes a new edge between
y and z with edge context (I, I, M, D, D). (The
reason for the empty sets in this context is that they
correspond to qualifiers or rules in the S/R model,
and the transportation of these rules is not possible
in our formulation of the model). In this production,
x sends y the set 1 of rights, which x has on z, for y
1o operate on z. The graphical representation of this
operation is as follows:

Ledy _h.eoy
| 1,0B.x | | hoBx 22 |
[¢] —O 10]
lzl llz Iy = Tz, Izz Iy
hly.x IPRRTA'S

We model this operation by means of the following
production:

[2,1],@,@
o———— 0
Pg € PH = (127 12 13’ ( 5 )1
11 ’a’B’x ll a£,¢,Y IZ’l»WaK
00— 0 O ——0 O 0
(h b I EN)) h}:))

withn ce,nc P, M cx, send e a, receive € L.

2. Receive

Let there be and edge between x and y with edge
context (I, l, a, B, x) with that receive € a. Let
there also be an edge between y and z with edge
context (I, I3, €, ¢,7v), withm c g, and N C X.
Lastly, let there be another edge between x and y
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with edge context (I, I, 1, Y, X) with send € 1,1
WThe receive operation establishes a new edge
between x and z with edge context (I, /3,1, D, D).
(The reason for the empty sets in this context is the
same as given above). In this production, x receives
from y the set | of rights with which to operate on
z. The graphical representation of this operation is as
follows:
Lngg

ll’a7B’x 12£’¢1'Y | ll’a’ﬁ’x 12,8,4),".’ I
0

) o )
Tl 1 \[12 [3 = |l 1 F 13
Luy.x Liyx

We model this operation by means of the following
production:

R RZX %]
oO———0
PEG PH’:(I‘,I] 13’(;)’
Il’a’B7x 129€’¢,‘Y 12"’“,1'(
(s, 0 O -0 O— 0‘
(th b, Ll L1}

withn ce,nCy NSV, send € 1, receive € Q.

3. Create

Let x be a node in a graph H. The Create operation
adds a new node n to the graph, with Wy(n) = I, as
well as one edge between x and n with edge context
(4, ls, o, B, x) witha =R,B =% =R - (send,
receive}, and a second edge between n and x with
edge context (4, I, €, 0, Y) such thate =, ¢ =B, y=
x (this is done to make full bidirectional transfer of
rights possible). This operation is denoted
graphically a follows:

| Lo |
(¢} o————0
11 = 11 14

This operation is implemented by the following
production:

| 147(11B»x '
o0——-O0

PnG P}{'—'(ll,ll I4v(v)’(v))

with 14 € 22

6. Conclusion

There are still some issues to be investigated, and the
most important of these would be the development
of a grammar suitable for the modelling of protection
heuristics, and for the definition of a security model
that incorporates the use of expert systems theory.
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