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ABSTRACT 

This study reports on an investigation into the manner in which mathematical symbols 

influence learnersô understanding of mathematical concepts. The study was conducted in 

Greater Sekhukhune and Capricorn districts of Limpopo Province, South Africa. Multistage 

sampling (for the district), simple random sampling (for the schools), purposive sampling (for 

the teachers) and stratified random sampling with proportional allocation (for the learners) 

were used. The study was conducted in six schools randomly selected from rural, semi-urban 

and urban settings. A sample of 565 FET learners and 15 FET band mathematics teachers 

participated in the study. This study is guided by four interrelated constructivist theories: 

symbol sense, algebraic insight, APOS and procept theories. The research instruments for the 

study consist of questionnaires and interviews. A mixed method approach that was 

predominantly qualitative was employed. An analysis of learnersô difficulties with 

mathematical symbols produced three (3) clusters. The main cluster consists of 236 (41.6%) 

learners who indicate that they experience severe challenges with mathematical symbols 

compared to 108 (19.1%) learners who indicated that they could confidently handle and 

manipulate mathematical symbols with understanding. Six (6) categories of challenges with 

mathematical symbols emerged from learnersô encounters with mathematical symbols: 

reading mathematical text and symbols, prior knowledge, time allocated for mathematical 

classes and activities, lack of symbol sense and problem contexts and pedagogical approaches 

to mathematical symbolisation. Two sets of theme classes related to learnersô difficulties with 

mathematical symbols and instructional strategies emerged. Learners lack symbol sense for 

mathematical concepts and algebraic insight for problem solving. Learners stick to 

procedurally driven symbols at the expense of conceptual and contextual understanding. 

From a pedagogical perspective teachers indicated that they face the following difficulties 

when teaching: the challenge of introducing unfamiliar notation in a new topic; reading, 

writing and verbalising symbols; signifier and signified connections; and teaching both 

symbolisation and conceptual understanding simultaneously. The study recommends teachers 

to use strategies such as informed choice of subject matter and a pedagogical approach in 

which concepts are understood before they are symbolised. 
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1. CHAPTER 1: INTRODUCTION 

 

This chapter introduces the study. The background of the study together with an 

explanation of the context and focus of the study are discussed. The chapter also 

discusses the problem statement and research questions. The purpose, significance of the 

study and its limitations and delimitations are also discussed. Research assumptions are 

described and the researcherôs position is clarified. The chapter concludes by defining the 

key terms of the study and a description of the organisation as well as the contents of 

study chapters. 

 Introduction  1.1

The challenges and difficulties associated with the teaching and learning of mathematics 

are multidimensional. One of the obstacles envisaged in this study is the use of 

mathematical symbols. Research on learnersô understanding of mathematical symbols at 

secondary level reveals that the conciseness and abstract nature of symbols can be a 

barrier to learning (Adu & Olaoye, 2014). Symbols form the foundation of mathematical 

communication. However, the increase in symbol load due to unfamiliarity and increased 

density may cause learners to lose confidence and develop negative conceptions about 

mathematics (Bardinia & Pierce, 2015). Many mathematical symbols and notations are 

figured routinely by learners as they learn mathematics in classroom contexts. 

Mathematical symbols obscure learners from understanding mathematical concepts and 

sometimes lead to misunderstandings (Buhari, 2012). 

 

The main distinguishing feature of mathematics is the property of having an extensive 

symbol system. Mathematics is abstract and ñpureò and its subject matter is cognitive 

(Hegel, 2010). Abstract symbols reside within a complex system of rules and internal 

relationships that make it possible to both communicate and generate powerful 

mathematical ideas (Drouhard & Teppo, 2004). Knowledge of mathematics symbols is 

important for understanding mathematical concepts. Learners need to acquire the ability 

to use mathematical symbols and representational forms in ways that represent their use 

across the mathematical communities (Jao, 2012). The use of mathematical symbols is to 

represent relations, patterns, expressions, formulas, diagrams, drawings and to support 



2 

 

 

thinking. Mathematical symbols provide shorthand for representing mathematical 

processes and concepts. Learners experience difficulties when using symbols, and to gain 

that confidence, they need to understand their meanings. From my experience as a high 

school mathematics teacher, I discovered that learners experience difficulties in using 

symbols to understand mathematical concepts. This intrigued me to investigate further 

into these challenges and instructional strategies that mathematics teachers can use to 

mitigate the effects of symbolic obstacles.   

 

Mathematics derives much of its power from the use of symbols but their conciseness and 

abstractness can be a barrier to learning (Arcavi, 2005). Mathematical symbols give 

meaning to the subject, but present pedagogical strains to mathematics education 

especially in Algebra (Szydlik, 2015). Mathematical symbols make mathematics a highly 

specialised and technical language that is difficult to decode (Dale & Tanner, 2012). This 

specialisation presents problems to learners when interpreting and conceptualising 

mathematical texts, particularly word problems (Jan & Rodrigues, 2012). Mathematical 

language coupled with its symbolic syntactic structure, presents challenges to learners 

whose first language differs from the medium of instruction (Garegae, 2011). Bell (2003) 

also asserts that mathematics vocabulary, special syntactic structures, mathematical 

inference and discourse patterns in written text compound the difficulties learners 

experience when learning mathematics.  

 

The use of mathematical symbols presents multifaceted problems but the researcher 

suspects that one factor, though not fully investigated, is a barrier caused by the transition 

in the use of symbols between senior and FET band in secondary school mathematics. 

The problem is heightened by variation in symbol use between mathematics and other 

science subjects. The issue of reading, recognising and understanding symbols underpins 

all mathematics topics. A study conducted by Hiebert (2013) reveals that the use of 

mathematical symbols is one of the reasons why learners experience difficulties. Learners 

who expressed dislike for mathematics pointed out at symbolisation as one of major 

reasons for their distaste of the subject (Peter & Olaoye, 2013). Chirume (2012) viewed 

learning mathematics as a complex process and highlighted the challenges of 

mathematical symbolisation as the first hurdle that learners must overcome in order to 
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succeed in the subject. Mathematical symbols together with a variety of representations 

provide tools for conveying mathematical knowledge. However, as noted by Koedinger, 

Alibali & Nathan (2008) learners have trouble in understanding mathematical concepts 

and processes due to symbols and representations that are not part of their formal reality.  

 

Research has shown that learners prefer a symbolic strategy even when a different 

representation would be more helpful; although learners may attempt to use more than 

one strategy, they often regress to using the symbolic representation (Senk & Thompson, 

2006; Huntley & Davis, 2008; Moreno, Ozogul & Reisslein, 2011). Mathematical 

symbols are essential ingredients of mathematical language that constitute the 

components of mathematical language that enable teachers and learners to engage in 

discourse about abstract mathematics concepts (Berger, 2004). Symbols also serve as 

tools through which mathematical thoughts and ideas are communicated (Chae, 2005). 

They provide shorthand for representing complex word-names, abstract mathematical 

processes and concepts. They provide a means of manipulating mathematical concepts 

and processes in accordance with specific rules in a condensed form (KôOdhiambo & 

Gunga, 2011).  

 

Most mathematical activities eventually lead to mathematical ideas that are eventually 

represented as symbolic objects (Altun & Yilmaz, 2011). Whitebread, Basilio, Kuvalja 

and Verma (2012) emphasised that the growth of modern scientific disciplines depends 

on mathematics and their evolution is measured by their growing reliance on symbols. It 

is therefore reasonable to infer that learnersô difficulties with understanding mathematical 

concepts have their origins in the problem of symbolisation. For many learners, 

mathematics is seen as a óforeign languageô (Adoniou & Yi, 2014:3). Unfamiliar symbols 

and representations of mathematical concepts present barriers to understanding (Naidoo, 

2016). There is scant literature and knowledge of how the symbolic language of 

mathematics obscures learners from understanding mathematical concepts (Maguire, 

2012). This gap requires an understanding of how learners interact with and perceive the 

symbolic and abstract nature of mathematics.  
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Mathematical symbols are a crucial component of the subject. They facilitate the 

representation of mathematical operations to the external environment (De Cruz & De 

Smedt, 2013). They provide an external representation of abstract mathematical objects. 

Bellotti (2011) maintained that symbols allow mathematical objects to exist independent 

of their concrete representations. In this view, mathematical symbols do not only express 

mathematical concepts but they constitute mathematical concepts themselves (Lolli,   

Panza & Venturi, 2014). Mathematical symbols can also be viewed in two ways: as 

epistemic actions, which enable complex concepts to be represented physically and as a 

notational system that frees up cognitive resources to offload abstract ideas into the 

environment (Coolidge & Overmann, 2012). Freeguard (2014) also submitted that 

symbols build an intimate relationship between mathematical concepts and mathematical 

cognition. Despite all these advantages, the consensus among researchers is that the use 

of mathematical symbols continues to be an obstacle that cannot be soon eliminated from 

mathematics classrooms (Schleppegrell, 2010; Cobb, Yackel & McClain, 2012). 

Traditional teaching has not particularly encouraged the development of sense of 

symbols, nor has it developed habits of mind for inducing the interplay between 

representations.   

 

Mathematical symbols serve as means of perceiving, recognising, and creating meaning 

out of patterns and configurations drawn from real-life experiences or communication 

(Radford, 2008). This is where the strengths of symbols lie; they enable us to solve 

problems without making reference to concrete objects. Mazur (2014) concurs with this 

assertion, arguing that mathematical symbols have a definite purpose, that is, to unpack 

complex information in order to facilitate understanding. Presmeg (2006) and Sfard 

(2008) also made similar sentiments, arguing that mathematical symbols provide a 

language to record mathematical ideas and processes. Another essential point proposed 

by Gray and Tall (1992) is that symbols are treated as objects in mathematics, and 

mathematicians manipulate them as if they are the objects signified. OôHalloran (2005) 

brought another dimension of symbolism as an information dense language. According to 

this view, symbolism can be regarded as a language with specialised strategies for 

organising meaning. Hammill (2010) also argued that because of mathematical 

symbolism, operations, relations, and existential meaning can be operated on to solve 
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mathematical problems without resorting to their concrete world. Nunes, Bryant and 

Watson (2007), however contend that learning mathematics through symbolisation is a 

complex exercise due to the detachment of algebra from the original meaning of a 

problem. 

The use of mathematical symbols also allows the essence of mathematical thought to be 

recorded and passed on from one generation to another (Firth, 2011). Symbols enable 

mathematical thinking to be recorded in a compressible way (Gray and Tall, 2007). 

Without proper knowledge and understanding of symbols, it would be very difficult for 

learners to express mathematical procedures or relations (Moschkovich, 2008). The use 

of symbols and the process of symbolisation pave way for a symbolic logic and the 

discourse of modern mathematics (Sarukkai, 2005). Mathematics register is dominated 

by symbols, hence it is imperative that learners understand and use them fluently. Lee 

(2010) urged that the most important thing about written statements in symbolic form is 

the meaning that the symbol invokes in the mind of the learner. Thomas and Hong (2001) 

concurred with Gray and Tall (2007) that some symbols invoke action or processes while 

others are perceived as objects or concepts. 

 The efficacy of mathematical symbols is variously interpreted in literature (Pyke, 2003). 

Symbols can be used as names or labels for mathematical objects ideas and processes. 

They also play the role of signifiers and as a form of shorthand during classroom 

communication or instruction. Symbols also provide entities that are used to present and 

simplify the solution process during problem solving. Barwell (2007) and Karam ( 2014) 

concurred that symbols are used to reveal structure of mathematical objects as well as 

displaying their relationships. Mathematical symbols can be utilised as the semiotic 

resource through which mathematical solution processes can be presented (OôHalloran, 

2005). Meaney (2005) asserts that the high symbolic density of mathematical language 

allows great flexibility in the way symbols are used. In order to deal with this complexity, 

learners should possess specific skills of drawing meanings. Meaney (2005) and 

OôHalloran (2005) shared common views pertaining to the challenges of mathematical 

symbolisation. They argued that symbolisation is not taught as a way of developing 

mathematical language. As a result, learners struggle to master it. The teaching of the 

symbolic component of mathematics text is often neglected and not planned for and 
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teachers take a naïve approach that language-reading skills are transferable through 

reading mathematics. Shepherd (2005) reported that English reading skills are taught in 

confined ways that cannot be transferred to content areas such as mathematics.  

 

With these mixed interpretations and functions, it is not a surprise that the symbolic 

language of mathematics brings a lot of misunderstandings and present difficulties for 

learners (Stacey & MacGregor, 1997). Chae (2005) concurred with Hiebertôs (1997) 

explanation that the challenges of using symbols as learning tools are attributed to the 

fact that meaning does not reside in symbols, but something one makes from signs. There 

is also a consensus view among researchers that mathematical meaning is not attached to 

symbols automatically and that without meaning, symbols cannot be used effectively 

(Redish & Gupta, 2009; Chirume, 2012). A mathematical symbolôs potential to effect 

meaning and convey an idea depends on how the interpreter reads the symbol, the so-

called symbol-object relation (Mingers & Willcocks, 2014). The interpretation of new 

mathematical ideas creates new symbols. In mathematics, new symbols are created 

through interpretation and communication with old symbols (Steinbring, 2006). Symbols 

themselves have the potential of generating new meanings and challenging old ones 

(Preucel & Bauer 2001).  

 

Nicol, Oesterle, Liljedahl and Allan (2014) highlighted that the symbolic language makes 

mathematics more powerful and applicable by removing subjective elements that can be 

found in vernacular. However, the powerful and yet de-contextualized language presents 

difficulties for novice mathematics learners. Mathematical symbolism exerts cognitive 

demands on learners to the extent of treating symbolic representations as mathematical 

objects or operations (De Cruz, 2006). Furthermore, Limjap (2009) observed that 

modifying a learnerô informal interpretations of certain symbols and replacing them with 

formal symbols present further cognitive burdens on learners. 

 

Experts in mathematics such as teachers are able to manipulate and to understand 

mathematical concepts through its symbolic representations, while learners experience 

challenges in this endeavour. Mathematics deals with relationships between numbers, 

categories, geometric forms and variables. These relationships are linked and expressed 
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symbolically. Since the relationships are abstract, they are only accessed through 

language and a unique symbol system (Zeljiĺ, 2015). Mathematical symbols are 

interpreted linguistically. This contradicts the commonly held view that mathematics is a 

language free area (Wilburne & Napoli, 2008). Tsanwani (2009) strongly argued that 

learning mathematics depend on learnersô language competences. Henry, Baltes and 

Nistor (2014) observed that low language proficiency and mathematical 

underachievement are highly correlated.  

 

Kirschner, Sweller and Clark (2006) noted that if learners fail to solve a mathematics 

problem successfully; the teacher might think that the learners need more time to practice 

or understand. However, Kenney ( 2008) argues that allowing more time and practice 

while learners are in a confused state may aggravate the confusion with understanding 

mathematical symbols. When introducing a new topic teachers often fail to teach three 

essential things: new symbols “ȟ—ȟ ȟὥὲὨ Њȟ new words (parallel, tangent, and 

normal), phrases (sum of, product of), mathematical terms (function, domain, and 

derivative) and new grammar (expressing equations in a logical and consistent manner). 

 

 According to Sloutsky, Kaminski and Heckler (2005) learners bring to the classroom and 

sometimes stick to misinterpretations and misconceptions of some symbols as a result of 

their previous encounters in earlier mathematics classes. Learners over rely on the syntax 

of natural language (English) to understand and make sense of the language of 

mathematics (Chirume, 2012). Firouzian (2014) also describes another common 

difficulty, called ñmanipulation focus,ò in which learners select their strategies and 

procedures to problem solving based on the given symbols and pay little attention to the 

meanings of the symbols. Teaching by simply pointing out that the rules are not the same 

is not guarantee that they will understand the symbolic notations. Lack of fluency with 

the symbolic language of mathematics negatively affects learnersô problem solving skills 

(Peter & Olaoye, 2013). Consequently, this causes learners to look for alternative ways of 

solving mathematical problems without paying attention to the meanings of symbols. 

 

Mathematical language derives some of its meanings from natural language and 

kinaesthetic actions such as counting, dividing and measuring (Christie & Maton, 2011). 



8 

 

 

However, learners lack the skills to transfer such actions into symbolic forms. The 

grammar of mathematical symbolism is specially organised. Symbolism allows relations 

between mathematical objects to be rearranged and simplified in a logical manner. The 

grammatical strategies found in mathematical symbolism are the opposite of what is 

found in scientific language. Mathematical symbolism works through deep embedding of 

configurations of mathematical concepts and processes (OôHalloran, 2011). It preserves 

mathematical objects and the processes such that they can be reconfigured to solve 

problems, according to pre-established results, laws and axioms. Mathematical 

symbolism has a range of grammatical strategies which make the preservation, 

rearrangement and simplification of mathematical processes and participant 

configurations possible, such as generalised participants, use of spatial notation (for 

example, division and powers) and brackets, ellipsis of processes and rules of order 

which stipulate the sequence in which mathematical processes unfold. The sequence of 

unfolding processes in mathematical statements is not linear, but it is predetermined in 

specific ways by mathematical rules.  

Mathematical symbolism is a carefully designed tool that aids logical reasoning (Sapire 

& Reed, 2011). It does this by encoding of mathematical concepts and processes in a 

format that facilitates their rearrangement. It is this rearrangement that brings about 

understanding. However, it can act as a cognitive barrier to understanding mathematical 

concepts (Heeffer, 2013). There are on-going debates pertaining to when and how to 

introduce symbolism within the school curriculum. If it is introduced too early, (Heeffer, 

2014) argued that learners may lack the maturity to understand and reason symbolically. 

However, (Zvawanda, 2014) had a contrary view, he argued that if symbols are 

introduced too late, some mathematical methods and concepts cannot be taught as they 

rely on symbolism.  

 Background of the study 1.2

The history of mathematics education in South African secondary schools is characterised 

by changes in curriculum. The Curriculum Assessment Policy Statement (CAPS) 

curriculum is the fourth wave of curriculum reforms in the post-apartheid South Africa. A 

number of curriculum reforms have been designed to suit both international and national 

shifts and developments in mathematics education, theory and practice. Classroom based 
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and content-based research has played an insignificant role in the direction or form taken 

by the curriculum over time (Guomundsdottir, 2015). None of these curriculum shifts has 

emphasised on the need to address why learners continue to struggle with the transition 

from arithmetic to algebra. 

   

The Trends in International Mathematics and Science Study Repeat Survey (TIMSS-RS) 

of the world wide trends in scholastic performance in Mathematics and Science revealed 

that South African learnersô performance in mathematics is poor (Mullis, Martin, Foy & 

Arora, 2012). South African learners perform poorly in tests that measure knowledge of 

basic mathematical skills (Spaull, 2013). Further evidence of South African learnersô 

underperformance in mathematics were recorded in summative national and international 

assessments such as the Programme for International Student Assessment (PISA), 

Southern Africa Consortium for Monitoring Education Quality (SACMEQ) and national 

assessments such as the Annual National Assessments (ANA), and the National Senior 

Certificate (NSC) examinations. Sepeng and Madzorera (2014) also contributed to the 

debate by revealing that South African learners struggled to deal with problems related to 

mathematical symbols and communication. Moreover, the Annual National Assessment 

(ANA) revealed that, ñthe overall performance of learners was very low with average 

scores of 30%ò (DBE, 2011, p. 2). In addition, poor performance in higher grades 9-12 is 

linked to poor performance in algebra (Mashazi, 2014). 

Bernstein (2013) reported that the high failure rate in Mathematics at secondary school 

level in South Africa remains unacceptably high. The matric pass rate is far below the 

national expected standard (DoE, 2015).  Reddy & van Rensburg (2011) analysed the 

mathematical performance of the South African schooling population and concluded that 

the national average mathematics performance score for different grade levels across the 

schooling system is similar and stable, ranging from 30% to 40% across all the grade 

levels. This raises the question of whether improved schooling makes any difference in 

performance (Reddy & van Rensburg, 2011). Good matriculation results, especially in 

Mathematics and Science determine whether a learner will be accepted in the sought-after 

technological and scientific fields of study at tertiary institutions. These fields of study 

are largely out of reach for many black learners. The lack of adequate basic academic 
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skills and competencies to transition from secondary to tertiary education coupled with a 

lack of adequate support systems further prevent many potential mathematics and science 

graduates from completing their studies. This gives learners limited opportunities to study 

Mathematics and Science further and secure employment. This is so because many 

learners from rural and township secondary schools fail to achieve university entry of 

which a pass in Mathematics is one of such requirements (Moloi & Strauss, 2005).  

A study of South African secondary school learners conducted by Spangenberg (2012) 

revealed that many learners lack basic knowledge and skills for problem solving. Mogari, 

(2014) made similar sentiments arguing that there are deficiencies in knowledge of basic 

mathematical concepts. Teaching of basic mathematical concepts is superficial and 

promotes rote memorisation of mathematical concepts. Senoamali (2016) blamed most 

mathematics teachers for teaching to the test and this practice impacts negatively on the 

learnersô conceptual understanding. The quality of performance reflected in the 2014 

Annual National Assessments (ANA) demonstrates learnersô lack of conceptual 

understanding (DBE, 2014). 

Makgato (2007) and Pooran (2011) investigated the problem of mathematics 

underachievement in South African secondary schools. Their findings include poor social 

background, lack of support materials, and poor quality of teaching and language of 

instruction. Mathematics teaching and learning in South African secondary schools is 

susceptible to poor instruction, teachers continue to present in a way that strongly 

encourages reticence, conformation to rules and use of sophisticated language (Maree & 

De Boer, 2003). There is little emphasis on conceptual understanding. Moyer (2001) 

reiterated that teachers do not emphasise the utilisation of mathematical symbols to 

construct concepts.  

Mwakapenda (2008) noted that the approaches to mathematics teaching and learning in 

South Africa have little emphasis on conceptual understanding. Concepts are not 

adequately connected with symbols together with their meanings. Mulwa (2015) also 

revealed that learnersô performance is highly correlated to their understanding of 

mathematical concepts and symbols. Furthermore, Bardini and Pierce (2015) highlighted 

the importance of paying attention to potential barriers to learning because of heightened 

complexity in the use of symbols. Mathematical language uses symbols and notations that 
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are not common in ordinary English and the various languages across South Africa. 

Maree et al, (2006) argue that learners from impoverished backgrounds lack informal 

mathematics knowledge which is a prerequisite for developing strategies for solving 

formal mathematical problems. Many learners have difficulty with the new and more 

intense ways in which symbols are used at secondary school level. This leads to a 

decrease in positive affect, which in turn discourages enrolment in mathematics related 

fields.  

Despite all these efforts by researchers to get to the root causes of poor performance in 

mathematics at secondary school level, few attempts have been made to research and 

assess learnersô challenges in the different mathematics curricula. No attempt has been 

made to look into the specific challenges that teachers and learners face when 

implementing the curriculum. The high failure rate in secondary school mathematics and 

cognitive gaps in the conception of mathematical concepts are attributed to learnersô 

failure to acquire the language system of mathematics that is dominated by unfamiliar 

and confusing symbols (Nunes & Bryant, 2015). Mathematics presents many unique 

challenges during teaching and learning. The most noticeable barrier to communication is 

that mathematics is heavily laden with symbolism (Sheikh & Randa, 2013).  

 

When learners are introduced to a new mathematical concept for the first time, the new 

symbols involved overwhelm them and concentrate on symbols instead of the meanings. 

(Arcavi, 1994) argued that a strong symbol sense ought to be developed. However, 

Steinbring (2012) warns that there is a danger of acquiring meaning by considering 

concrete materials as other forms of representation. In order to acquire meanings for 

symbols, Brown, McNeil and Glenberg (2009), recommend that teachers should engage 

learners in ways that promote the connection of abstract symbols and their concrete 

representations. However, the potential for these connections to create understanding is 

complicated by the fact that concrete materials themselves are representations of 

mathematical relationships and quantities. Thus, the usefulness of concrete materials as 

referents for symbols depends both on their embodiments of mathematical relationships 

and on their connections to written symbols. 
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Mathematical knowledge is normally conveyed and imparted in classrooms in the form of 

symbols. Mathematics classes rarely use discourse and talk as modes of instruction 

(Walshaw and Anthony, 2008). Mathematics teachers seldom engage learners in 

mathematical discourse. Teachers tend to direct and dominate classroom activities instead 

of engaging learners through discourse. The National Council of Teachers of 

Mathematics (NCTM, 2000) encouraged teachers to use classroom discourse in math 

classes, to support both learnersô ability to reason mathematically and their ability to 

communicate that reasoning. Mathematics teachers are expected to emphasise and 

inculcate knowledge of how to use the unique symbols of mathematics. Buchanan ( 2007) 

reveals that learners often struggle with reading, verbalising and writing in mathematics. 

These skills are important in the mathematics classroom. One of the new goals for 

learning in the Curriculum Assessment Policy Statement (CAPS) requires learners to 

develop the power to use mathematical signs, symbols, concepts and terms of 

mathematics (DB E, 2010). This is best accomplished if instruction allows learners the 

opportunity to read, write, and discuss ideas in which the use of the language and 

symbols of mathematics becomes natural.  

Meiers, Reid, McKenzie and Mellor (2013) note that learners devote little time working 

with mathematical text. Learners need to develop special skills of reading, verbalising 

and writing mathematics. Learners lack strategies for articulating word symbols that 

guide thought and allow for the attachment of mathematical meaning (McIntosh, Jarrett 

& Peixotto, 2000). Woolley (2011) viewed reading as part of thinking that involves 

interpreting symbols, decoding meanings of symbols, and extracting ideas from symbols. 

Learners should be able to handle mathematical ideas through the manipulating abstract 

symbols and notation. These efficient, but abstract, symbols and notation present a 

special concern to the mathematics teacher. The ability to decode mathematical symbols 

and to associate meaning with them is a special prerequisite to mathematics learning. 

Learners see mathematics an intimidating subject which is difficult to understand, 

difficult to master while teachers find it difficult to teach. Learners find mathematics as a 

completely different language to learn. Meanings of mathematical symbols are not static 

(Pimm, 2002). In some cases, they represent operations (Usiskin, 2015) while in other 

situations they constitute concepts (Stahl, 2007). Furthermore, operations performed on 
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symbols and using symbols are interchangeable and require different operations in 

different contexts (Sherman and Bisanz, 2009). 

 

According to Chae (2005), mathematical symbols serve two fundamental functions based 

on two types of connections. Symbols are used as communication tools to convey 

mathematical ideas (concept or objects) or actions (processes). Symbols have also a 

private function in which symbols are used to organise and manipulate ideas based on the 

connection within the symbol system. Similarly, Gray and Tall (1994) regard symbols as 

pivots between processes and concepts in the notion of ñproceptò. According to the 

ñproceptò view of mathematical symbols, they provide a link between the image (of a 

symbol) and the interiorised operations for carrying out mathematical processes. 

 

Anthony and Walshaw   (2009) advocate for classroom practices that encourage learners 

to demonstrate multiple ways of presenting and representing mathematical concepts, 

promoting mathematical discourse, language and symbolic proficiency. The challenges of 

teaching and learning mathematics involve difficulties that are inherent in the nature of 

the subject, particularly the symbolic, abstract and visual nature of mathematics (Adler & 

Pillay, 2007). Given these perceived challenges, why should teachers continue to teach 

mathematics to learners who have not acquired the language and symbol system of the 

subject? It is against this background that the researcher decided to obtain an in-depth 

understanding of the challenges posed by mathematical symbolisation. The study aims to 

explore, find, and suggest possible instructional strategies to mitigate the aforementioned 

problems. 

 Context of the Study 1.3

Mahn and Steiner (2013) argue that learnersô mathematical production and thinking 

modes depend on the social and cultural contexts in which they develop. Presmeg (2007) 

concedes that mathematics, long considered value- and culture-free, is indeed a cultural 

product, and hence that the role of culture-with all its complexities and contestations is an 

important aspect of mathematics education. Thus, learning mathematics in a particular 

social and cultural context is some kind of enculturation (van Schaik & Burkart, 2011). 
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Hence, it is therefore important to include and discuss the context and sites in which this 

study was undertaken. 

 The study was conducted in Greater Sekhukhune and Capricorn districts of Limpopo 

Province, South Africa, where the researcher observed that learners had problems in 

understanding mathematical concepts due to, among other factors the symbolic language 

of mathematics text. Limpopo province is mainly rural and participants for the study were 

drawn from rural, semi-urban and urban backgrounds. Learners from semi-urban schools 

either commute from surrounding rural villages or live in the service centres. 

Mathematics performance is poor in Limpopo Province schools, especially in schools that 

are based in former homelands and townships (Mouton, Louw & Strydom, 2013). A 

study by Sinyosi (2015) also highlighted some socio-cultural factors that hinder learners 

from learning mathematics. Most schools in Limpopo Province are located in 

impoverished areas where learning resources are limited and scarce. On average, learners 

in the province perform significantly lower than the national average in National 

examinations (Reddy et al, 2012).  

The matric results of 2015 indicated that Limpopo Province had the worst performance in 

mathematics with 32.4% of the learners achieving a mark of 40% and above (Gavin, 

2016). Rammala (2009) posited that learnersô poor performance in mathematics could be 

linked to multiple factors such as: poverty, lack of resources and infrastructure of schools, 

low teacher qualification, and poor learning cultures in schools. Language proficiency 

was also identified as a contributory factor. From a socio-cultural point of view, Weeks 

(2012) argued that creating an ideal learning environment is necessary to allow a dynamic 

interaction between teachers and learners. The quality of tasks selected by teachers 

should provide learners with opportunities to create their own knowledge during 

interaction with peers (Moreeng & Du Toit, 2013). However, this cannot be said of 

learners in rural settings. They need the teacher to guide them to unpack meanings of 

mathematical symbols and understand concepts. 

 The missing phenomenon 1.4

The key to comprehending mathematical concepts lies in understanding and interpreting 

symbols and the role they play in conceptual development (Limjap, 2009). It is essential 
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for learners to understand the role and meaning of symbols and be able to appreciate their 

usefulness in problem solving. Symbols are the backbone of mathematical language and 

are vital tools that make it a universal science (Jamison, 2000). Learners concentrate on 

the procedures of manipulating symbols in problem solving instead of understanding their 

meanings (Koedinger & Nathan, 2004). Learners sometimes mistakenly treat symbols as 

mathematical ideas yet they are representatives of the intangible or abstract ideas. This 

research investigates learnersô understanding of mathematical concepts through 

symbolisation. More importantly, the research expands into the process of mathematical 

abstraction by looking at the ways in which symbols facilitate or obscure learnersô 

understanding of mathematical concepts, problem solving and solution processes.  

Reading mathematics text requires learners to master the distinct and special-purpose 

symbolic language of the subject (Selden & Shepherd, 2013). The findings of this 

research could possibly provide teachers with insights into learnersô difficulties with 

multiple representations of mathematical processes and concepts. The knowledge of these 

difficulties enables teachers to provide learners with multiple ways of representing 

mathematical ideas in a manner that facilitates understanding. By identifying learnersô 

difficulties in connecting mathematical concepts and their meanings, teachers can 

anticipate the problems and learning gaps that learners are likely to encounter and suggest 

remedies for such difficulties. Preventing learners from obtaining partial and surface 

understanding help them to achieve a robust understanding of the mathematical concept 

or process and its symbols in breadth and depth. 

 Problem Statement 1.5

In an ideal mathematics learning situation, learners are expected to be competent in 

representing mathematical situations and recognising structure and meaning in symbolic 

expressions (Moschkovich, 2008). Learning mathematics with understanding involves 

acquiring the knowledge of concepts and mastering the skills of encoding symbol 

meanings. Learning mathematics requires learners to be efficient and fluent in using 

symbols, and to manipulate symbols effectively to discover and make new mathematical 

concepts (Tarasenkova, 2013). However, this is not the case in most South African 

mathematics classrooms. Many learners find mathematics overwhelming because it is 

highly symbolic, contains unfamiliar notations and conventions (Chinn, 2016). Even 
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more, the symbolic formulation is dense with meaning, and learners are often disinclined 

to unpack meanings. As a consequence, learners resort to meaningless ósymbol pushingô, 

which obscures further mathematics learning (Thompson, Cheepurupalli, Hardin, Lienert 

and Selden, 2010). Many learners experience mathematics as ñrules without reason or 

marks without meaningò (Mueller, Yankelewitz & Maher, 2010). Learners do not make 

connections among and between concepts and symbolic expressions. De Lima & Tall 

(2008) also reported that learners mentally use symbols and manipulate them according 

to rules without grasping their meanings. Learners do not reason about an overall goal or 

the concepts involved in a problem, but instead they look for an implied procedure 

inherent in the symbols.  

The researcher observed that most learners have challenges in understanding 

mathematical concepts due to syntactic features of the subject. The researcher speculated 

that learnersô failure to conceptualise mathematical concepts could be linked to 

unfamiliar symbols which are confusing and sometimes contradictory. As learners 

interact with symbols they have to endow them with meaning, understand the context in 

which they are used as well as recognising concepts, models and actions associated with 

the symbols. A similar claim was made by Lockhart (2009) who cited mathematical 

symbolism as an obstacle to mathematical learning and teaching. Mathematical symbols 

obscure learners from understanding mathematical concepts and processes as well as 

limit ing their problem-solving endeavours (Heeffer, 2012). Thus, learners struggle to 

understand mathematical concepts especially algebra due to lack of knowledge of 

algebraic symbols. This problem emanates from the fact that symbols assume dual roles: 

they represent mathematical processes and concepts (Tall, 2008). Symbolic language 

remains a challenge for South African learners such that teachers continuously pursue 

effective instructional strategies to curb this problem.  

Mathematics is more than just numbers; it involves symbols, terminology and syntax 

which complicate concepts for most learners. Thus, the problems addressed in this study 

relate to the nature of challenges that learners experience with symbolic representations. 
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The following questions summarise the problem statement for this study: 

a) What challenges do secondary school learners encounter when interpreting and 

using mathematical symbols to understand mathematical concepts and problem 

solving procedures? 

b) What instructional strategies can mathematics teachers use to mitigate the effects of 

symbolic obstacles? 

 

The study focuses on the problems relating to how learners interpret and use the 

language, symbols, and syntax of mathematics when reading mathematics text, during 

problem-solving and algebraic reasoning. Communication in mathematics is strongly 

correlated to a learnerôs problem solving and reasoning abilities (Neria & Amit, 2004). 

As a result, it is importance for teachers to be aware of these difficulties. Misconceptions 

about the use of the symbols and syntax of mathematics force some learners to develop 

informal techniques for understanding and solving problems (Reynders, 2014). 

As a consequence of learnersô symbolic illiteracy, mathematics has become one of the 

most unpopular subjects in South African secondary schools (Spaull, 2013). Learners do 

not perform well in the subject (Mogari, Coetzee & Maritz, 2009). The spectrum of 

causes associated with this poor performance includes among other things, deficits in 

learning mathematical concepts (Carnoy & Chisholm, 2008). The other causes of poor 

performance were cited by Ramohapi, Maimane and Rankhumise (2015) as: learnersô 

attitudes towards mathematics; the use of English as a medium of instruction; teachersô 

lack of content knowledge and pedagogy; learning resources and support from parents. 

 Purpose Statement 1.6

The purpose of this study is to obtain insights into learnersô difficulties with mathematical 

symbolism. It also examines how teachers teach symbolism and recommends 

instructional strategies and practices to address learnersô shortcomings. The study sought 

to obtain in-depth understanding of how secondary learners perceive mathematical 

concepts focusing on how they interpret mathematical symbols. The study further 

enquires on how symbolism influences learnersô problem-solving approaches or reading 

mathematics text. The key attributes that teachers should attend to include the symbol 
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sense that learners exhibit during problem solving. In particular, the study intends to 

inform mathematics teachers on how symbols can help learners to construct meanings of 

mathematical concepts. It can be argued that a better conceptual understanding of 

symbolism by teachers will prepare them for possible difficulties that learners will 

confront in the classroom. 

The study also sought to sensitise teachers on the need to select instructional activities 

that support the development of algebra as a sense-making activity. Kieran (2004) 

emphasised that the transition from arithmetic to algebra requires teachers to focus 

learnersô attention to how they build meanings for algebraic concepts and processes. 

There is need for teachers to guide learners to see algebraic symbols as tools for thinking 

rather than as bags of tricks. Algebraic symbols should not be viewed as procedural tools 

but as representational aids. According to Sfard (2000), algebraic symbols do not speak 

for themselves or have meanings inherent in themselves. They depend on what learners 

are prepared to notice and able to perceive. In other words, meaningfulness is derived 

from the ability to see abstract ideas beneath the symbols. 

  Rationale of the study 1.7

This study is important due to the fundamental educational necessity of understanding the 

challenges faced by learners, and to provide clear and coherent instructional symbol 

usage to facilitate meaningful learning and teaching of mathematical concepts in general. 

Confusion and misconceptions resulting from the improper or inconsistent use of symbols 

are detrimental to a learnerôs attempt to define the content presented in any given learning 

environment. Rubenstein and Thomson (2001) stressed that learners who cannot develop 

fluency with the use of mathematical symbols are prone to slow growth in their 

mathematical development. Radford (2008) also stressed the importance of investigating 

the way learners interpret mathematical symbols and how teachers present such symbols 

to learners when they attempt to endow them with meaning when learners encounter them 

for the first time. 

This study is also crucial since it sought to establish the extent and manner of use of 

mathematical symbols at secondary school level and to establish the perceived level of 

learner confusion as a result of the use of such symbols. It is anticipated that such 
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determination will influence the manner in which teachers choose to present such 

symbols in future classes. Findings from the inquiry of this nature can also contribute to 

the body of knowledge regarding the best instructional practices for teaching mathematics 

and to the field of mathematics by answering the aforementioned research questions. 

This study is significant to both mathematics teachers and learners. For the teachers the 

research serves to inform and potentially modify their pedagogical practices to reduce 

potential learner confusion due to mathematical symbolisation. For learners the study 

seeks to reduce or diminish their level of mathematical confusion due to the use of 

mathematical symbolisation and potentially lead to an increase in conceptual 

understanding and achievement in examinations. Finally, since the study is exploratory in 

nature the results may serve as a foundation for further investigation and inquiry. 

 Research Questions 1.8

Algebra is a branch of mathematics that uses symbols or letters to represent variables, 

values or numbers. Mathematical symbols are an integral part of Algebra used to express 

operations, relationships and to solve problems. Learners need to master the symbolic 

language of mathematics because symbols are the standard nomenclature used in 

mathematical discourse, reasoning and problem solving. Bakker, Doorman and Drijvers 

(2003) maintain that there is no Algebra without the use of mathematical symbols. The 

intertwinement of symbols, representation and meaning presents additional problems for 

mathematics education. Mathematicians, teachers and instructional designers regard 

symbols as carriers of meaning (Stacey, Chick & Kendal, 2006). Learners, however, lack 

the necessary mathematical background to interpret symbolic representations. Teachers 

should therefore explain symbolic representations to learners and demonstrate how to use 

them in problem solving.   

The present study specifically focused on FET learners who encounter problems with 

mathematical symbols; what they mean and how to use them in problem solving. At FET 

level, more complicated and sophisticated symbols are introduced to lay a foundation for 

advanced mathematical concepts. The research presumes that learnersô experiences with 

mathematical symbolism occur in lessons. Experiences consist of participating during 

classroom engagement, reading mathematics text, doing hands-on activities, observing 
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how the teacher and other learners use symbols. Thus, the study is based on learnersô 

attempt to grasp mathematical concepts through symbolisation during classroom 

activities or extracting meanings from textbooks.  

The following research questions guided this study: 

a) What challenges do secondary school learners encounter when interpreting and 

using mathematical symbols to understand mathematical concepts and problem 

solving procedures? 

b) What instructional strategies can mathematics teachers use to mitigate the effects 

of symbolic obstacles? 

Sub- problems 

a) How do learners connect symbols and their meanings? 

b) How do learners use conventional mathematical symbols in problem solving?  

c) In what ways are learnersô problem-solving goals and activities influenced by 

mathematical symbols?  

d) How do teachers connect learnersô informal and formal conceptions of mathematical 

symbolism? 

 

The first research question investigates the challenges secondary school learners 

encounter when interpreting mathematical symbols during problem solving or decoding 

meanings from textbooks. The expectation is that if learners are competent, fluent and 

capable of communicating using mathematical symbols and notation, their performance 

in mathematics shows improvement (Blanton & Kaput, 2005). Learners acquire notations 

and symbols for mathematical concepts and processes during engagement in 

mathematical activities in the classroom setting and as they read mathematics textbooks. 

However, if  teachers simply cue up procedures for learners to perform the appropriate 

calculations, understanding will be jeopardised. In some cases, teachers interpret 

problems for their learners; this deprives learners the opportunity to learn autonomously.  

Mathematics lessons are characterised by classrooms discourse that involves decoding 

information, compressing long mathematical sentences, representing, and analysing data. 

These processes utilise and exploit the spatial features of mathematical symbolisms. The 
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problems of failing to use and interpret symbols hinder conceptual understanding in most 

mathematics classes. Chow (2011) noted that, if  learners are thoroughly taught the 

meanings of the symbols, and know how to use them, the compact form makes it easier to 

recognise critical relationships. The correct interpretation of these conventions reveals the 

power of mathematical symbolism. Chirume (2012) pointed out the weaknesses and 

problems of mathematical symbolisation are centred on using, reading and interpreting 

mathematical symbols. A number of researchers explained how the use of mathematical 

symbols influences conceptual understanding and mastery in mathematics:  

Å Garegae (2011) argues that mathematical symbols and language are seldom used 

at home so individual study with a textbook is a challenge. Learners studying 

alone do not know how to read and endow meanings to symbols they encounter 

during reading.  

Å Chirume (2012) reveals that learners struggle to read mathematical symbols with 

comprehension due to their prior encounters with those symbols on previous 

grades or classes. 

Å  According to Tall (2009) symbols, have dual functions: they play the role of 

objects or concepts of mathematics or as ideas and processes that they represent. 

 

The second research question seeks to investigate the possible instructional strategies that 

teachers can utilise in order to curb the effects of symbolic obstacles. One central 

argument raised by Bruner and Haste (2010) is that learners attach personal and informal 

meanings to abstract symbols. The transition from informal symbols and ways of thinking 

to formal school mathematics presents teachers and learners with pedagogical and 

learning problems. Carruthers and Worthington (2006) further highlighted this problem. 

They argued that the symbol system is not fully understood. For example, meanings 

letters of alphabet and numerals have no specific meaning, but convey information when 

they are combined in systematic ways. It is therefore important for learners to not only 

make sense of individual symbols but also need to understand them when used within a 

system. 

 

Studies on the development of symbol writing indicate that learners bring forth strategies, 

which teachers can support to enhance their understanding. For instance, Machaba and 
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Lenyai (2014) suggest teachers should ensure that they make connections between 

learnersô informal knowledge and the abstract system of mathematical symbolism. Hand 

and Taylor (2008) argued that the gap in knowledge and symbol use between learnersô 

informal approaches and formal procedures is a critical cause of learnersô failure to 

understand mathematics. Fisher (2010) echoed the same sentiments, arguing that such 

connections are imperative since they prepare learners to be critical mathematical 

thinkers rather than mindless manipulators of mathematical procedures. However, 

determining ways of fostering these connections is a challenge for teachers but failure to 

do so magnifies learnersô difficulties with mathematics symbolism. Novak and Cañas 

(2008) observe that even though teachers make efforts to illustrate the symbols and 

operations with pictures and other concrete objects, it has been observed that learners 

continue to struggle to establish crucial links. Whilst researchers emphasise and 

encourages learners to use their own marks, teachers find this highly challenging as 

majority of learners rely on textbooks as sources of knowledge (Botes & Mji, 2010). The 

use of manipulatives is a vital way to engage various senses when learning mathematical 

concepts. Bruins (2014) maintains that instruction-involving manipulatives helps to 

engage as many senses as possible. Such an approach helps to simplify the abstract to be 

more concrete and understandable to the learner.  

 

 Sub-research questions seek to investigate the challenges learners encounter as they link 

mathematical symbols and problem solving procedures. The aim is to investigate 

learnersô experiences in making connections, if ever they are able to do so, for example, 

how concepts and skills from one strand of mathematics are related to those from another 

(Fogarty & Pete, 2009). As learners make such connections, they begin to realise that 

mathematical concepts are not learnt in isolation, but knowledge from one area of 

mathematics a prerequisite to understand another. Establishing relationships among 

symbols, procedures and concepts also helps deepen learnersô mathematical 

understanding (Mwakapenda,  2008).  

 

 Hypothesis 1.9

Tests of hypotheses were conducted to test the effects of moderating variables of the 

study units. Participants for the study were drawn from different genders, different age 
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groups, different grade levels, different physical locations as well as a variety of language 

backgrounds. These variables can influence the findings of this study, hence and thus 

produces an interaction effect. It is therefore essential to investigate their influences on 

learnersô responses.    

The following hypotheses were envisaged in this study:  

H0: There are no gender differences in learnersô difficulties with mathematical 

symbolisation. 

H1: There are gender differences in learnersô difficulties with mathematical 

symbolisation. 

H0: There is no grade, age, language, residential area differences with regard to 

learnersô difficulties with mathematical symbolisation. 

H1: There are grades, age, language, residential area differences with regard to 

learnersô difficulties with mathematical symbolisation. 

 Definitions of Terms 1.10

Mathematical Symbols  

Cobb (2000) defined symbols: 

ñéany situation in which a concrete entity such as a mark on paper, an 

icon on a computer screen, or an arrangement of physical materials is 

interpreted as standing for or signifying something elseò (p. 17). 

However, the above definition is wide as it applies to both mathematical symbols and 

contemporary symbols. So in order to define symbols in a mathematical context Cobbôs 

(2000) definition was modified to: 

ñé. a concrete entity that stands for or signifies a mathematical idea or 

object or concept or processò. 

Teachers should bear in mind that an entity like ίὭὲ is not a symbol at all for a learner 

is seeing it for the first time. HoweverȟίὭὲ is a symbol for a learner who knows its 

meaning.  

q

q
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In the context of this study, the term symbol also refers to mathematical entities such as 

letters ( mhcba ,,,, ) numbers ( ),3: ep , arithmetic signs ȟȟȟὼȟȾ ȟ parentheses ( ), 

square root signs ( ) and all other symbolic inscriptions found in mathematics 

textbooks. Symbols are a form of representation; hence, it is important to define the term 

representation. 

Furthermore, as Langer (2009) explains, 

 ñésymbols are not proxy for their objects, but are vehicles for the 

conception of objects. To conceive a thing or a situation is not the same thing as 

to óreact toward itô overtly, or to be aware of its presence. In talking about things 

we have conceptions of them, not the things themselves; and it is the conceptions, 

not the things, that symbols directly ómeanô.ò (p: 60-61). 

Representation  

Goldin and Kaput (1996) defined representation as:  

ñéa configuration of some kind, that, as a whole or part by part, 

corresponds to, is referentially associated with, stands for, symbolises, 

interacts in a special manner with, or otherwise symbolises something 

elseò (p. 398).  

A representation can be also viewed as the mediator that links the mathematical concept 

and its rea-life object. Objects inscribed in textbooks such as formulae, tables, graphs, 

numerals and equations are all mathematical representations used to represent real life 

ideas and relationships. A representation is a form of symbolisms that plays a crucial role 

in teaching and learning mathematics. Without representation, mathematics would be 

totally abstract and inaccessible (Bolden, Barmby & Harries, 2013). 

 

There are two categories of mathematical representations: external representations 

(notation systems) and internal representations (mental structures). External 

representations are physical objects such as symbols, equations, algebraic expressions, 

graphs, or diagrams that teachers write or draw as a way of illustrating a mathematical 

idea to their learners. On the other hand, internal representations are mental constructs of 

mathematical ideas developed through interaction with external representations (Goldin 

& Shteingold, 2001). This study focuses mainly on external representations that learners 
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can read in textbooks, write in their books and verbalise as they read and communicate 

mathematical concepts and processes. However, there is a thin line between the two, as 

external representations build internal representations, which are mental constructs that 

help us to remember concepts.  

 Multiple representations are the different ways of symbolising and describing the same 

mathematical entity (Cobb, Yackel & McClain, 2012). They are used to represent the 

same concept or process in different ways.  

Sign and Symbol  

There is a difference between a mathematical sign and a symbol. It is important to clarify 

the difference between the two. A sign is what is often mistakenly perceived of a symbol. 

Cassirer (1944) describes the difference between signs and symbols in this way. ñSignals 

and symbols belong to two different universes of discourse: a signal is a part of the 

physical world of being; a symbol is a part of the human world of meaning. Signals are 

ñoperatorsò; symbols are ñdesignators.ò Signals, even when understood and used as such, 

have nevertheless a sort of physical or substantial being; symbols have only a functional 

value.ò (p. 32). A sign is the perceptible aspect of a symbol (Jolley, 2014). It is a written 

mark, or a sound. A symbol is a sign or a mark together with its meaning. 

 

According to Sebeok (2001), a symbol is a combination of a sign together with its 

meaning or sense. A symbol can be perceived as something that stands or suggests an 

idea or object or process due to relationship, association, convention, or accidental but 

not intentional resemblance. Mazur (2014) argues that the above definition does not quite 

fit the collective experience of its use. He extended it to include some cultural and non-

arbitrary, something representative of an object or concept that it does not resemble in 

sound or look and something that gives no preconception of the thing it resembles.  

Syntax refers to the ways in which words are arranged according to the rules of a given 

language (Webster & Fisher, 2003);  

Notation is system that uses symbols to record mathematical concepts (Webster & Fisher, 

2003). 

The symbolic structure refers to a situation in which a learner is attending to a group of 

symbols that are being used together in a representation instead of focusing on a single 

symbol (Holloway, Battista, Vogel & Ansari, 2013).  
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Syntactic structure refers to symbolic structure of a mathematical concept or process 

together with the relations, rules, and formal grammar that accompany it Goldin and 

Kaput (1996).  

óSymbol loadô refers to learnersô experience of the changes in symbols, frequency of 

symbol use, and the various meanings of symbols that they need to deal with as they 

progress in mathematics. Bardinia and Piercea (2015) highlighted that the increase in 

symbol load due to unfamiliarity and increased density may cause learners to lose 

confidence and subsequently choose a study path that minimises their need for 

mathematics. 

Symbol density refers to the óthe number of symbolsô in a mathematical text. 

Symbol familiarity  

Pimm (2002) provides a framework for explaining how familiarity with symbolism 

develops. He identified three attributes of a mathematical symbol as: materiality , which 

refers to what the symbol looks like, and syntax, which deals with how the symbol is 

combined with other symbols, and meaning. 

The word ñunderstandingò is widely used in this study. It can mean many things. In the 

teaching and learning domain, it refers to the acquisition and retention of mathematical 

ideas. For this study, the definition is derived from the work of Dewey (1910) and Piaget 

(1978).  

For Dewey (1910), understanding means 

 ñé.to grasp a meaning, to understand, to identify a thing in a situation in 

which it is importantò (p. 118). 

 Thus, a learner shows understanding of a mathematical concept if he is able to able to 

give its meaning and express it using appropriate symbols.  

 

According to Piaget (1978) understanding means being able to explain how things work 

or does not work. Understanding cannot be separated from the realm of reason. A learner 

is considered to have shown understanding of a mathematical concept or process if s/he 

can provide a correct mathematical conception and communicate ideas consistent with 

what is accepted by the mathematical community. According to Sfard (1994), 

understanding can be conceived of as grasped meaning. It is a mediation process between 
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the individual mind and the universally experienced. It involves building links between 

symbols and certain mind-dependent realities. 

 

Mathematical symbolisation is the replacement of a mathematical object or process by a 

symbol. There are different kinds of such replacement. For example, one can replace 

`height' by h, a number by `n', a particular number ónine' as 9, the idea of `variable in an 

equation' by x, the concept of relation or mapping by f (as in function), a derivative by 

Ὢ¡(x) and so on. In most cases such replacement or naming is conventional and arbitrary. 

The process of symbolisation should not and does not modify or distort that which it 

stands for. This character has often been interpreted as the óstrengthô of symbolisation in 

logic and mathematics (Sarukkai, 2008). Every mathematical concept or process requires 

certain symbols to code knowledge. However, symbols do not have meaning in 

themselves. The meanings have to be constructed by the learner using suitable reference 

contexts. Meanings of mathematical symbols are actively constructed by the learner or 

teacher as interrelationships between sign symbol systems and reference contexts 

(Steinbring, 2008).  

 

The next terms are related to the theoretical framework(s) used in this study. 

The phrase, symbol sense, refers to a list of attributes and competencies about the use of 

symbols. It involves the learnerôs ability to appreciate the power of symbols, to have a 

feel of when the use of symbols is appropriate or inappropriate and an ability to handle 

and understand of symbols in different contexts (Pope & Sharma, 2001). Symbol sense 

also emphasises on the development of skills for using symbols and understanding of the 

situation. A common assumption made by many researchers is that a learner with symbol 

sense is less likely to encounter difficulties in understanding mathematical concepts or 

processes due to symbol barrier. 

 

A mathematical concept is a general idea behind an equation, problem or formula in 

mathematics. A math concept is the 'why' or 'big idea' of mathematics. A learner who 

understands mathematical concepts can operate at higher levels of advanced learning that 

involves abstract thinking and dominated by symbols. Understanding mathematical 

concepts replaces learning by rote memorisation of procedures and answers to problems. 
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According to Cruz and De Smedt (2013), a learner who understands a concept is able to 

re-identify entities with fair reliability under a wide variety of conditions. Understanding 

a math concept, means being able to think about and process mathematical facts 

abstractly.  

  

Conceptual understanding refers to the learnerôs ability to comprehend key ideas and to 

draw inferences about those ideas. It also involves being able to strategically use them to 

solve problems and to learn new concepts and avoid common misunderstandings. 

 

Mathematical context: The term ócontextô means several things when used in an 

educational setting. Fraser and Greenhalgh (2001) viewed context as the learning 

environment or situation in which learning takes place while Van Den Heuvel-Panhuizen 

(2005) described it as a characteristic of a task presented to learners. These characteristics 

include words and pictures that help learners to understand the task, or concerning the 

situation or event in which the task is situated. In this study context refers to the situation 

in which some symbols are used. 

 

Algebra is branch of mathematics in which arithmetic relations are generalised and 

explored by using letter symbols to represent numbers, variable quantities, or other 

mathematical entities. Algebra can be viewed as a human activity that deals with the 

construction of tools and knowledge that can be used for solving recognisable problems 

(Drijvers, 2011). On the other hand, algebra can be viewed as a brain activity that deals 

with the abstract world of mathematical object (Hansen & Gray, 2010).  

 

A ñproceptò is word derived from the work of Gray and Tall (1994) which refers to a 

combination of: a process (for example addition) which produces a mathematical object 

(sum) and a symbol(s) which is/are used to represent either process or object.  

 

A multiple meaning mathematical symbol refers to a mathematical symbol, which can 

represent more than one mathematical entity, or a symbol for which multiple instructional 

definitions exist (Phillips, 2008). Some symbols have different meanings in different 

contexts. Multiple meanings of letter symbols are a source of difficulties in algebra. Note, 
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however, that this is also, what makes algebra a powerful language and thinking tool. 

Multiple meanings can create obstacles in mathematical conversations because learners 

often use colloquial meanings while the teacher (or other learners) may use mathematical 

meanings (Moschkovich, 2007). 

 

 Significance of the Study  1.11

This study contributes to the understanding of challenges that learners and teachers 

encounter in the learning and teaching of mathematical concepts through symbolisation. 

It also explores how learners perceive and think about mathematical symbols and how 

such processes are affected by how they interpret mathematical symbols. The aim was to 

identify and describe the challenges that secondary school learners encounter when 

interpreting and using mathematical symbols to understand mathematical concepts and 

problem solving procedures. Specifically, the researcher sought to obtain insights into 

learnersô perceptions about working on and communicating with mathematical symbols 

during mathematical engagements in different settings as well as using textbooks. 

Furthermore, the study suggests instructional strategies that mathematics teachers can use 

to mitigate the effects of symbolic obstacles. 

 Limitations of the study 1.12

Researches, both qualitative and quantitative have limitations and delimitations. The 

limitations of the study are those characteristics of design or methodology that set 

parameters on the application or interpretation of the results of the study; that is, the 

constraints on generalizability and utility of findings that are the result of the devices of 

design or method that establish internal and external validity.  Limitations refer to the 

scope of the study (Simon & Goes, 2013). Creswell (2002) defines limitations as 

potential weaknesses in a study that the researcher has control over. These constraints 

affect the generalizability and utility of findings that are the result of the ways in the 

design of the study was chosen and/or the method used to establish internal and external 

validity.  

 

In this study, the researcher combined both probabilistic and non-probabilistic sampling 

procedures. Thus, the outcomes of this research cannot be generalised to all the FET 
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learners in Limpopo province, but can only be used as a guide for further study. A 

longitudinal study could have been conducted over an extended period to obtain topic-

specific difficulties with mathematical symbols; however, this was not possible due the 

limited time allocated for research activities in the selected schools. The study only included 

learners drawn from the FET phase in the selected districts of Limpopo province. The study 

was also restricted to learners enrolled in the FET phase. Limpopo province is mainly rural; 

hence, participants were drawn mainly from rural settings.  

 Delimitations of the study 1.13

Delimitations refer to the boundaries set by the researcher in order to control the range of 

a study (Sharma, 2014). In this instance, the delimitations in social research refer to the 

various boundaries used in the study such as the participants, instruments used, and the 

geographical placement. The delimitations are characteristics of the study that can be 

controlled by the researcher such as limiting the scope and defining the boundaries of the 

study (Simon & Goes, 2013). This study was delimited to questioning learners enrolled in 

grade10-12 and teachers teaching mathematics at this level. Furthermore, the area of 

mathematical symbolisation is broad and can be studied from different perspectives. This 

study has been narrowed to explore and gain insights into learners and teachersô 

perceived mathematical symbolisation challenges. The study is specifically intended to 

provide information that may be used to change the complexion of mathematics 

instruction especially in South African rural secondary schools. The results of this study 

can be generalised to other South African provinces with same characteristics especially 

rural settings. However, the results may not be generalised to urban and white dominated 

schools. 

  

 Assumptions of the Study 1.14

According to Creswell and Plano Clark (2007), most research studies are grounded in a 

variety of assumptions and all designs are confined by sundry limitations. According to 

Leedy and Ormrod (2010):  

ñéassumptions are so basic that, without them, the research problem itself 

could not existò (p. 62).  
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A number of assumptions peculiar to this study and to studies of this nature were 

identified. This study utilised a survey research design, which rely mainly on 

questionnaires and interviews for data collection. One assumption that was made in this 

study was that the information supplied by participants was accurate and truthful. The 

researcher also assumed that the questions in both instruments were sufficiently valid, 

reliable and addressed the issues under investigation based on the pilot survey findings. 

The inclusion criteria of the sample were appropriate and therefore, assure that the 

participants have all experienced the same or similar phenomenon of the study. 

Prospective participants for the study were deemed suitable since they had enough 

exposure and experience with the symbolic language of mathematics. A mixed methods 

research approach (MMR) was utilised based on the assumption that the use of both 

quantitative and qualitative approaches provides a better understanding of research 

problems than either approach alone.  

 Overview of thesis chapters 1.15

This thesis is divided into six chapters.  

Chapter 1  

This chapter introduces the study. It begins by presenting a synopsis of the background 

and motivation for the study as well as highlighting some of the problems faced by 

learners in learning mathematics through symbolisation. Some of the learnersô challenges 

were identified and highlighted from the researcherôs experiences as a mathematics 

teacher. The research questions and hypotheses were also stated and briefly discussed. 

 

Chapter 2  

This chapter reviews the literature on the issues and challenges currently experienced in 

mathematics education due to mathematical symbolisation. Key aspects and themes were 

outlined in relation to how they influence learnersô understanding of mathematical 

concepts. The chapter also discusses, in detail, the theoretical perspectives that underpin 

this study, namely, Arcaviôs (1994) symbol sense, Pierce and Staceyôs (2001) framework 

for algebraic insight, Dubinsky and McDonaldôs (2002) APOS theory and Tallôs (2004) 
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Procept Theory. These frameworks provide explanations for associating mathematical 

symbols and their meanings. Symbol sense and Algebraic insight are problem-solving 

frameworks while APOS and Procept are frameworks of conceptual growth. The four 

frameworks allow researchers to evaluate learnersô understanding of mathematical 

symbols and observe the way learners learn. Furthermore, they help teachers to cover a 

wide spectrum of representations in the classroom that would help learners build 

symbolic fluency.  

In Chapter 3 

In this chapter, the methods used to collect data in this study are outlined. The main 

theoretical influences on the methodology of the study as well as the processes of data 

collection and analysis are discussed. The chapter highlights issues related to data 

collection methods, research approach, ethical issues, trustworthiness and generalisability 

in research. This study proposes a mixture of qualitative and quantitative researches. The 

collection of data report is a hybrid consisting of questionnaire and focus group 

interviews. 

Chapter 4 

This chapter presents and analyses data associated with learnersô challenges with 

mathematical symbols and teachersô instructional strategies to alleviate the difficulties. 

The organisation of the report is a hybrid form consisting of descriptive and statistical 

reports. Responses from questionnaires and interviews were analysed and categorised 

into themes, which are eventually used to report the findings.  

 

Chapter 5  

This chapter discusses the findings in relation to the research questions, the literature 

reviewed and the conceptual frameworks that guide the study. Lessons emerging from the 

study are discussed in relation to the two domains of interest in this study: mathematical 

symbolisation challenges and teachersô instructional practices. 

Chapter 6  
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This chapter summarises the main conclusions concerning learnersô challenges with 

mathematical symbols and teachersô instructional strategies, arrived at in this study. This 

chapter also sets out limitations of the study, implications of findings, directions for 

further research and concluding remarks.  

 Summary 1.16

This chapter introduces the study on the challenges experienced by learners due to 

mathematical symbolisation. The focus of the study is to gain insights into learnersô 

difficulties with mathematical symbolisation and sensitise teachers so that they can 

prescribe appropriate intervention strategies. The chapter also outlined the background, 

the problem statement, the motivation for the study. Pertinent research questions and the 

general and specific objectives were also addressed. A brief outline of the chapters of the 

study was also provided. This chapter provided a summary of what the study intends to 

investigate. The next chapter reviews the literature and the conceptual framework related 

to the study. 
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2. CHAPTER 2: LITERATURE REVIEW 

 

The review of literature in this study is organised thematically. The discussion is 

organised around themes and theoretical concepts related to challenges and instructional 

strategies for teaching mathematical symbolisation. This structure is preferable to the 

chronological organisation because it enables the researcher to define the theories and 

constructs that are important to the study (Levy & Ellis, 2006). The sequence of themes 

moves from broad to specific in a funnel approach where the discrete sub-concepts and 

themes are funneled from higher-level concepts to the specific cases upon which this 

research is based. 

The chapter provides an overview of current and previous research on mathematical 

symbolisation. It connects and correlates the current study to findings of previous 

relevant research and expert opinion on symbolism. It provides a justification for the need 

to review literature concerning the symbolisation challenges experienced by learners and 

the instructional practices on the use of mathematical symbols. The chapter also discusses 

and connects a number of frameworks that guide the study. The purpose of reviewing 

literature is to survey previous studies on knowledge regarding the challenges of 

mathematical symbolisation and link it with current trends and classroom practices. The 

review looks at the nature of mathematical symbolism, the role of symbolism and 

learnersô difficulties with symbolism. It also provides detailed insights into the reasons 

why learners have trouble with symbols when learning mathematical concepts and during 

problem solving. The reviewing literature was done to guide the selection and 

identification of key data collection requirements for the research to be conducted, and it 

forms part of the emergent research design process (Giles, King & de Lacey, 2013). 

The discussion of literature is divided into sections and each section revolves around a 

theme. In the first section, the discussion involves literature about the use of symbolic 

representations in mathematics. It discusses literature related to: (a) the processes of 

mathematical symbolisation in mathematics education, (b) the challenges and difficulties 

experienced by learners in learning mathematics concepts through symbolisation (c) 

instructional strategies for teaching mathematics through symbolisation (d) connections 

among symbols and concepts. The second section discusses the pedagogical strategies 
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recommended by various researchers for teaching and learning mathematical concepts 

and symbols for understanding. The third section discusses the conceptual framework and 

theories that support the teaching and learning of mathematical concepts through 

mathematical symbolisation. Four (4) conceptual frameworks: Symbol sense symbol 

sense (Arcavi, 1994), Algebraic Insight framework (Pierce & Stacey, 2001), APOS 

theory (Dubinsky & McDonaldôs, 2002) and Procept Theory (Gray & Tall, 1994) were 

condensed into a quadrilateral frame of theories and serve as lens for focusing and 

guiding this study. 

  Mathematical Symbolisation 2.1

 Santos and Thomas (2011) define symbolisation as a process that involves forming a 

correspondence between a mathematical concept and its meaning. Chandler (2007) 

conceives a symbolic representation as an externally written or spoken symbol that stands 

for something other than itself. According to Godino, Godino, and Batanero (2003) 

symbolisation refers to the relationship between the represented and the representing 

worlds. Symbolic representations such as formal equations and line graphs eliminate 

extraneous surface details, are arbitrarily related to their referents, and represent the 

underlying structure of the referent more efficiently. Thus, they allow greater flexibility 

and generalizability to multiple contexts, but may appear as meaningless symbols to 

learners who lack conceptual understanding (Nathan, 2012).  

 

Symbolisation is  also viewed as a process involving assigning meanings and defining 

relationships between mathematical objects and their external representations (Thomas, 

2003). Symbols are used by teachers and other experts in mathematics to code problem-

solving situations and context into symbolic forms. These forms allow the problem to be 

solved without reverting to the original real-life problem situation. Symbolic forms or 

representations take various forms such as graphs, symbols, language and organisational 

schemes that describe the concept. According to Kollár (2014), symbolisation is 

engrained in a learnerôs ability to interact with the external environment. Symbolisation 

produce mental structures, which when acted upon by the mind produce mental or 

cognitive structures (Fiorini, Gärdenfors & Abel, 2014). Thus, meanings of mathematical 
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concepts evolve through the association of mental operations with mathematical symbols 

(Kvasniļka, 2008). 

Mathematical symbols serve several roles such as illustrating and describing the structure 

of mathematical concepts, manipulation routines such as addition, subtraction, division 

and multiplication (Steinbring, 2006). Mathematical symbols allow teachers to express 

mathematical concepts compactly and help learners to make reflections about 

mathematics. Mathematical symbols allow thought and solution processes to be 

expressed permanently (Rubenstein & Thompson, 2001). Ganesalingam (2013) describes 

mathematical symbols as characters of written mathematic statements that are important 

for the construction of mathematical knowledge. Written mathematics differs from other 

disciplines with the property of having vast amounts of symbols. Farrugia (2013) also 

singles out the symbolic feature of mathematics as the subjectôs most apparent and 

distinctive feature. The symbolic language of mathematics often presents learners with 

challenges as they try to write, read and verbalise these symbols. 

 

Delice and Aydin (2006) found that learners conceive symbols as objects with some 

meaning rather than thinking of process-object duality. At high school level, it has been 

observed that, the processes of manipulating symbols meaningfully with correct 

procedures and notation varies from learner to learner (Fyfe et al, 2014). Learners have 

difficulties in expressing their thoughts using appropriate mathematical symbols. When 

learners memorise mathematical expressions, they conceive symbols as objects with 

some meaning rather than thinking of process-object duality. According to Santos and 

Thomas (2001), learnersô inability to see a mathematical concept from two perspectives, 

the symbolic and its description form seem to limit learners during problem solving.  

 

Symbols are special features of mathematical representations. Harel and Kaput (2002) 

describe symbols as strings of characters used to represent a mathematical process or 

object. The symbols are the mathematical marks that do not constitute ordinary language, 

and are manipulated according to certain well-defined rules. Even though symbols have 

specific mathematical meanings, learners often have their own constructed meanings that 

are shaped by socio-cultural factors, experiences, knowledge and cognitive abilities. 

Learners understand mathematics if they are actively engaged in the construction of new 
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knowledge from past experiences. Hence, learnersô past encounters with some of the 

mathematical symbols and concepts influence their understanding of new symbols and 

concepts (Luna & Fuscablo, 2002).  

2.1.1 Mathematical symbols and symbol systems  

There is a need to clarify the distinction between symbols, symbol systems and symbol 

products. A symbol is any entity or object, whether material or abstract that stands for 

another object (DeLoache, 2004). Langer (2009) defined a symbol as an ñan instrument 

of thoughtò, that enables us to think about something and to form a concept in the 

absence of that object itself. They are, according to Vygotsky (1978), ñtools for the 

mind.ò Symbols create those possibilities of thought that are uniquely human. Pierce 

(2006) asserts that symbols have a triad-meaning, which suggests that meaning arise from 

a relationship among three things: the object or referent, the person (interpreter) and the 

sign. The sign presents the object in the mind of the interpreter. Meaning thus depends on 

the mental image or thought of the person in relation to the sign and the object the sign 

represents. The most distinctive feature of Peirce (2006) account is best thought of as the 

understanding that we have of the sign/object relation. The importance of the interpretant 

for Peirce (2006) is that signification is not a simple dyadic relationship between sign and 

object: a sign signifies only what is being interpreted. This makes the interpretant central 

to the content of the sign, in that, the meaning of a sign is manifest in the interpretation 

that it generates in sign users.  

 

Systems of symbols are human inventions and thus are cultural tools that have to be 

taught. Mathematical symbols are human-made tools that improve our ability to control 

and adapt to the environment. Each system makes specific cognitive demands on the 

learner, who has to understand the systems of representation and relations that are being 

represented. Learners can behave as if they understand how the symbols work while they 

do not understand them completely: they can learn routines for symbol manipulation that 

remain disconnected from meaning. Learners acquire informal knowledge in their 

everyday lives, which can be used to give meaning to mathematical symbols learned in 

the classroom.  
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Mathematical symbols do not necessarily need to have any logical or natural connection 

to the things they represent (Wolfram, 1999). Symbolic systems provide the structuring 

matrices of human consciousness. Symbols for mathematical concepts assume various 

forms such as diagrams, pictures, variables, tables and numbers. A symbol system is a 

combination of symbols that are arranged in as specific manner according to some rules 

(Pollatsek & Treiman, 2015). Symbol systems sustain entire realms of thought in pure 

abstraction (mathematics comes to mind). In so doing they create additional ranges of 

human consciousness that simply would not exist in their absence. Moreno-Armella, 

Hegedus and Kaput (2008) add that symbols are meaningful if they correspond to known 

fields of reference. The field of reference gives meaning to symbols and rules for 

combining them. Symbols are entities that the mathematics community created in order to 

communicate mathematical knowledge with other experts in the subject. Symbols are part 

of mathematical language with unique meanings that others in the field can understand, 

interpret, appreciate, criticise or transform.  

 

Another way of comprehending mathematical symbols is to consider the context in the 

symbol is being used and topics being studied (Szydlik, 2015). As reported by Ongstad 

(2007), meanings are also derived from convention, that is, meaning of particular 

symbols were decided and agreed upon by mathematicians and scientists. Symbol 

systems are those cognitive ñtoolsò that, often in written form, allow us to record and 

communicate ideas without the immediate presence and participation of actual things in 

the environment. Symbols allow us to entertain ideas because they serve to evoke those 

ideas. 

 

One area of mathematics that requires learners to be fluent and competent with symbols 

is problem- solving. Problem- solving is a critical mathematics skill that requires learners 

to convert a problem from a symbolic representation to an alternative form. Many South 

African secondary school mathematics learners lack this skill and problem-solving 

continues to be a serious challenge for them especially in financial mathematics and 

applications of derivatives (Brijlall & Ndlovu, 2013). To solve problems in mathematics 

learners, need to be competent in the three senses: number, symbol and function. If 

learners do not recognise a symbol or misinterpret the vocabulary of a symbol, their 



39 

 

 

performance may suffer (Powell, 2011). A study conducted by Shavelson, Webb and 

Lehman (2000) indicates that learnersô understanding of mathematics content depends on 

how learners decode and symbolically represent information to themselves (aptitude). 

Consequently; learnersô understanding of a mathematical concept depends on their 

interpretation of symbols used in instruction. Learnersô understanding and interpretation 

of mathematical concepts depend on their preferred mode of representation. 

2.1.2 Meaning of mathematical symbols 

The term ósymbolô refers to different things in the branches of mathematics. In 

mathematics and other scientific fields, it refers to a mark that is mapped to some referent 

object or point (Deacon, 2011). It can be combined with other marks according to 

specific rules. In this way, a symbol is conceived as a code that represents a mathematical 

concept. In the context of this study, a mathematical symbol contains two ideas: that of 

the signifier and that of the signified. Developing meanings of symbols is a compound 

process of conjectures, analyses, and descriptions of the sense, in this case, the concept 

that the symbol might represent. Studying the development of the meaning of symbols 

has strong implications for the study of understanding.  

 

Harel, Fuller and Rabin (2008) suggested that meanings of mathematical concepts are 

best learned by paying attention to the context in which they are used. They noted that 

learners manipulate symbols without a meaningful basis that is grounded in the context of 

the symbols. This behaviour of operating on symbols as if they possess a life of their 

own, rather than treating them as representations of entities in a coherent reality, is 

referred to as the non-referential symbolic way of thinking (Harel et al, 2008). Sapire 

(2011) observed that when reading symbols, words, and letters do not make or carry 

meaning until the reader associate them with real life contexts. Thus mathematical 

symbols are brought to existence through associations and ideas that learners and teachers 

bring into mind during the teaching and learning process. As recommended by Phillips 

(2008) mathematics teachers need to keep this in mind before they attempt to introduce 

mathematical symbols in general. 
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Mathematical symbols are important for representing mathematical ideas and problem 

solving procedures but the learner interacting with them has to endow them with 

meaning, has to keep the context in mind, and recognise models and actions associated 

with the symbol. It is also worth mentioning that symbols are not the main goal of 

learning mathematics, they are not static (Langer, 2009). In some cases, they represent 

processes of mathematics, and in other instances, they represent mathematical objects 

(Gray & Tall, 1991). Symbols at times are construed as óobjectsô which can be used 

without having to root them back in any model or context. Thus, there are dangers of 

being misled if teachers look at learnersô symbolic representations and manipulations and 

assuming that these reveal what they know about mathematics. Based on the findings of 

Naidoo (2009) it can be argued that many learners are proficient in using the rules for 

manipulating symbols without having a strong sense of what the symbols represent. 

 

According to Amit and Neria (2004), the meanings of mathematical symbols are derived 

from four main sources: algebraic structure (letter-symbol form), other mathematical 

representations, and problem context and real-life applications. A number of researchers 

have attempted to distinguish between the meanings attached to features of symbolic 

inscriptions. Skemp (1987) describes two levels of structure related to features of 

symbolic inscriptions: surface structures and deep structures. Surface structures involve 

the written symbols, whereas the more difficult deep structures of language are those that 

involve the conceptual meanings of the symbolic inscriptions. In a similar manner, 

Yerushalmy (2005) differentiates between two levels of meaning learners attach to 

symbolic inscriptions. At the lower level is syntactic manipulation in which learners 

operate with basic algebraic rules such as order of operations. These are constructed from 

common mathematics instructions such as expanding brackets, collecting like terms, 

reducing to lowest terms and taking out the common factors. The other set of meanings 

for mathematical symbols is derived from semantic interpretations of higher cognitive 

properties of algebraic expressions such as number of zeros of a polynomial, degree of a 

polynomial, remainder, parameters, or constraints. 

 

Perceptual symbolism is another source of difficulty for learners (Ottmar, Landy & 

Goldstone, 2012). Perceptual symbols are symbols that arise from performing a 



41 

 

 

mathematical action. In an action such as counting, the symbols usedρȠςȠσȠτȣȢ are 

thinkable concepts, such as number. A symbol such  represents both a process 

(integration) to be executed and the resulting thinkable concept (integral).Tall (2008) 

refers to such an amalgamation of symbols, processes, and concepts as ñproceptò. 

2.1.3 Learning mathematics through symbolisation 

 

Kenney (2008) viewed mathematical symbols as the objects of mathematical language 

that facilitate communication between teachers and learners. The function of symbols in 

the teaching and learning process is well documented in literature. However, their impact 

on conceptual understanding and learner achievement remain largely unexplored. Bergen 

(2002) and Azzarello and Edwards (2005) acknowledge that linking mathematical 

concepts and operations or processes to mathematical symbols is a complex intellectual 

activity. This is because symbols lack a one-one correspondence with their meanings or 

references. The semiotic structure of mathematical concepts and processes causes 

conceptual difficulties for learners due to the multiple ways in which symbols are used. 

Symbols perform multiple functions such as naming, labelling, signifying, 

communicating, simplifying, representing, revealing structure, and displaying 

relationships (Moschkovich, 2015). Symbolisms play a crucial role in teaching and 

learning mathematics. They allow communication of mathematical ideas to the learners 

in a coherent and consistent way and provide a common language that the members of 

teaching-learning community use to express their thoughts, to share their ideas with the 

others, and to reflect collectively upon a mathematical notion being investigated (Bayazēt 

& Aksoy, 2010). Because of the multiplicity of interpretations and meanings of 

mathematical symbols, it is not surprising that the symbolic language of mathematics 

confuses learners (Kailikole, 2009).  

 

Expert mathematicians or mathematics teacher are able to manipulate mathematical 

representations, whereas learners struggle. As learners are schooled they learn the 

symbols, they learn the meaning of the symbol and the use of the symbol. These 

meanings and uses are established in relation to the other symbols in the system. The 

whole gestalt of meanings has to be negotiated, revisited from time to time, and adjusted 
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as necessary. Once the symbolic connection has been established between the symbol and 

its object, then we are able to set the objects aside and operate only with the symbols. 

This defines abstract thought. 

 

In classroom contexts where learnersô experiences differ, new symbol are variously 

interpreted. During mathematics classes, learners try to assimilate new symbols to their 

existing schemas, which may bring clusters of templates where it may fit, evoking 

meaning within available schemas derived from individual prior experiences. The 

meaning constituted by the symbol is adopted when learners discuss its meaning among 

themselves, or with the teacher, through negotiation. Thus, the negotiation of meaning 

between the teacher and learners is essential, as the teacher directs to learners to 

understand the symbol, together with its meaning. Sfard (2000) recommends that 

conversational feedback play a central role in discursive and experiential background for 

the introduction of the symbol. 

Mathematical symbols paved the way for the translation of human activities into 

symbolic models. Symbols are needed to deal with quantity, shape and change. This is 

how mathematics was born. Mathematics is a symbolic version of nature built on basic 

intuitions. When learners are dealing with a certain symbol for the first time, the 

reference field can be very narrow. However, as they progress with learning, they become 

more proficient with its use, and the corresponding reference field begins to widen. 

Various researchers have stressed that the symbolic formulation of relations between 

variables raise specific problems for novice learners (Azzarello, 2006; Radford, 2008). 

Although particular difficulties experienced by learners have been widely reported and 

documented by the aforementioned works, Radford ( 2011) argues that more research is 

still needed since learners continue to struggle to endow symbols with meaning. 

The history of mathematics evolved through a series of attempts to represent the 

mathematical concepts symbolically. Despite concerted efforts to produce clear and 

concise symbolically representative systems, most attempts have resulted in imperfect 

representations. Such imperfect systems ended up with too few symbols, too many 

symbols, unclear symbols, or symbols which carry multiple meanings. For example, the 

ancient Babylonians failed to create a symbol to represent the quantity zero. This 
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omission led to confusion and uncertainty regarding the precise quantity embodied by 

various symbolic representations (Cajori, 1993). Similarly, the Romans never developed 

a symbol for zero and introduced an additional element of confusion by allowing the 

symbols Ὅ ρȟὠ υȟ ὢ ρπȟὒ υπȟὅ ρππȟὈ υππ ὥὲὨ ὓ

ρπππ to embody multiple meanings as both letters of the alphabet and numerals 

(Keppie, 2002). 

Attempts to develop symbolic representations in the various cultures such Chinese, 

Sumerian, Greek, Phoenician, and Cadmea cultures led to further communicative 

complications and confusions. According to Sun (2006), most mathematical symbols 

have multiple meanings, inconsistent and ambiguous. For example, the ancient Sumerians 

had six different symbols, used interchangeably to represent the modern day letters O and 

U (Waddell, 2004). Thus the impact of incomplete or overabundant and multi-meaning 

symbolic systems and the detriments of employing unclear symbols are important and 

certainly worthy of studying. These detrimental effects of symbolic representations 

infiltrate classroom discourse, influence instructional practices and affect learning 

outcomes. The confusion associated with the use of multiple meaning symbols has 

detrimental effects on learnersô conceptions and understanding of mathematical concepts. 

There is limited research on instructional use of multiple meanings and abstract nature of 

math symbols as well as their impact on learnersô comprehension of mathematical 

concepts.  

The development of mathematical symbols is a result of conventions by the mathematics 

community, comprised of mathematicians, teachers and theorists. Conventions are agreed 

by the mathematics community and lead to the use of certain symbols to represent 

mathematical properties, operations, or concepts, thereby endowing such symbols with 

meanings beyond the symbols themselves. Many researchers have conducted studies on 

the impact of symbols on mathematics education (Rubenstein & Thompson, 2001; 

Adams, 2003; Steinbring, 2006). Another group of scholars (Shaftel, Belton-Kocher, 

Glasnapp & Poggio, 2006) investigated the instructional use of multiple meaning of 

mathematical words, but very little has been explored on perceived learner confusion 

resulting from the use of such symbols in trying to understand mathematical concepts as 

well as instructional strategies to foster understanding. 
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2.1.4 Multiple meanings of symbols 

The multiple meaning nature of a mathematical symbol is another feature of 

mathematical symbols that confuses most learners (Chirume, 2012). The cognitive 

objects to which the symbols and words refer are constructs that reflect different webs of 

meaning that, for each individual, might be said to be part of their personal system of 

algebra (Drouhard & Teppo, 2004). Mathematics, as a scientific field requires learners to 

think and organise their thinking in terms of symbols, concepts and abstract ideas. 

Garrison and Mora (1999) describe mathematics as a subject in which ideas, words and 

relationships are compressed into a single symbol. For instance, a set of parentheses () 

has at least five different meanings depending on the context and situation under 

consideration. Such multiple meanings have the potential of introducing confusion and 

disorientation for mathematics learners as they attempt to remember all the applications 

of the same symbol and the appropriate circumstance in which to use each one.  

Parentheses are used as grouping symbols in order to facilitate the order of operations 

when simplifying mathematical expressions. They are also used to indicate multiplication 

between two terms. Another common use of parentheses is to indicate a point on a graph 

such as . Parentheses are also commonly used in function notation to define 

relationships between variables. This particular representation possesses the greatest 

potential for learner confusion in that, at first glance, two terms separated by parentheses 

appears to be representing multiplication, since  or . King (2002) 

observes that many novice algebra learners not only struggle with the concept of 

functions but also mistake function notation  as a multiplication indicator . 

Finally, parentheses can be used to indicate a range of numbers on a number line such as 

in σȟυȢ This particular symbolic presentation is designed to convey the meaning that 

one wishes to consider all of the real numbers which are greater than three and less than 

five σ  ὼ  υȢ  It is particularly problematic since it takes on the exact form used to 

indicate a point on a graph. 

Working fluently the language of mathematics requires learners to develop a strong 

symbol sense (Essien, 2011). Symbol sense involves having an ability to create symbolic 

relationships that represent written information; experiencing different roles played by 

)5,3( )(xf
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symbols; and appreciating the power of symbols as tools for displaying and explaining 

relationships expressed using natural language (Arcavi, 2005). However, it is not easy for 

learners to connect natural language and symbolic representations, particularly in the 

context of word problems. Mathematics is a language in itself, composed of natural 

language and a symbolic system of mathematical signs, graphs, and diagrams (Hammill, 

2010).  

Mathematical language is heavily dependent on the symbolic language that includes 

syntax and organisation of symbols and the natural language of instruction 

(Moschkovich, 2007). On the other hand, mathematical notation enables ideas and 

concepts to be expressed unambiguously and to enable and encourage a corresponding 

way of thinking. Mathematical symbols are essential for coding, constructing and 

communicating mathematical knowledge. However, they do not carry mathematical 

meaning and conceptual ideas themselves. Instead, meaning is negotiated through 

interaction with the symbol and its reference.  

Schleppegrell (2007) explains that an interplay between symbolic and natural language is 

clearly present when solving word problems where learners are required to decode not 

only the language of the question and the overlaying context, but must also have 

knowledge of and be able to represent words with the appropriate mathematical symbols 

needed to effectively solve the problem. Recent developments in mathematics have 

shown that many learners encounter difficulties when making connections between words 

and mathematical symbols in word problems (Reynders, 2014; Sepeng and Madzorera, 

2014). Some of the suggested reasons for added difficulties for learners on word 

problems include a lack of built-in contextual clues found in literary narratives 

(Fernandes, Anhalt & Civil, 2009), unfamiliar cultural contexts and interpretations 

(Solano-Flores & Trumbull, 2003), reading comprehension issues (Schleppegrell, 2007), 

and the artificial contexts of word problems (Wiest, 2001). 

Many countries, including South Africa adopted the Arabic system of numeration, 

thereby making symbols universal in mathematics. However, this symbol universality 

across languages is heavily criticised for encouraging teachers to move too quickly to the 

symbolic expressions before the conceptual foundation has been built (Sloutsky, 

Kaminski & Heckler, 2005). It encourages learners to acquire the skills for manipulating 
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symbols without a proper conceptual foundation. Consequently, this limits their progress 

into higher mathematics, since they lack the basis for conceptual foundation for advanced 

mathematics. Learners should access the language of mathematics through multiple 

semiotic systems that fulfil different functions: (a) natural language introduces, 

contextualizes, and describes a mathematical problem; (b) symbolism is used for finding 

the solution of the problem; and (c) visual images deal with visualizing the problem 

graphically or diagrammatically (de Oliveira & Cheng, 2011). All of these systems may 

involve vocabulary, sentence structures, contexts, and representations that are new or 

unfamiliar to learners.  

Clement (2004) noted that learners often find it relatively easy to represent mathematical 

concepts in a variety of modes such as manipulatives, pictures, diagrams, spoken 

languages. However, the same cannot be said about the written form that is dominated by 

symbols. It is this symbolic nature of mathematics that scares them. Previous studies on 

mathematical symbolism have demonstrated a series of misconceptions learners have 

when using mathematical symbols. For example, Knuth, Stephens, McNeil and Alibali 

(2006) outlined learnersô misconceptions with the equal sign. Primary school learners 

often misinterpret the equal sign  as an operational instead of a relational symbol. 

Learners often view symbols as labels for objects (Christou, Vosniadou & Vamvakoussi, 

2007). Many learners mention the use of symbols as the origin of their difficulties, saying 

that they understood mathematics algebraic symbols were introduced (Christou and 

Vosniadou, 2005).  

Another difficulty that learners experience when using symbols is the use of symbols is 

known as ólack of closureô error (Herscovics & Linchevski, 1994). This error is 

committed when a learner does not accept symbolic expressions as final answers. For 

example, when simplifying:
 

, learners may proceed further to solve 

for ὼ,   Christou et al. (2007) suggested that learners view mathematics as 

an empirical subject, where mathematical  calculations must always lead to numerical 

answers only. When learners are introduced to a new topic, they face the difficult task of 

assigning meanings to new symbols and assigning new meanings to old symbols, which 

they learned in the previous topics. A study by Chow (2011) reveals that learnersô 
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misconceptions, errors, and cognitive dissonance with the use of symbols originate from 

the inappropriate transfer of prior knowledge from previous encounters. 

An interplay between symbolic and natural language is clearly present when solving 

mathematical word problems where learners must be able to translate not only the 

language of the question and the overlaying context, but should also have knowledge of 

and be able to represent words with the appropriate mathematical symbols needed to 

effectively represent the situation and answer the question. For some learners, 

mathematics presents a ñthird languageò which is heavily symbolic and too specific 

(Reynders, 2014). Some of the suggested reasons for added difficulties for learners on 

word problems include a lack of built-in contextual clues found in literary narratives 

(Kenney & de Oliveira, 2012), unfamiliar cultural contexts and interpretations (Wilburne, 

Marinak & Strickland, 2011), reading comprehension issues (Schleppegrell, 2007), and 

the artificial contexts of word problems (Wiest, 2001). 

2.1.5 The influence of symbols in algebraic thinking 

If learners are unable to see abstract ideas beneath the symbols, they develop an 

impoverished understanding of algebraic concepts (MacGregor & Stacey, 1997). As 

learners progress into secondary and tertiary scientific fields, symbols play an 

indispensable role in representing mathematical concepts. The transition from arithmetic 

thinking to algebraic thinking requires learners to make sense of the symbolic notation. 

Brijlall and Ndlovu (2013) lamented of the cognitive gap between learnersô arithmetic 

and algebraic thinking. They noted that learners lack skills to operate with or on the 

unknown as they move to algebraic thinking. They reported that learners are not able to 

view literal symbols as generalized numbers and unable to operate with the symbols 

themselves. If learners are not given sufficient time to develop this type of meaning, 

many will struggle to progress from arithmetic thinking to algebraic thinking. As a result, 

when learners fail to construct meaning for the new symbolism and they resort to 

performing meaningless manipulations of symbols without understanding their meanings. 

2.1.6 Mathematical symbols and signs 

It is important to provide a clarification of what mathematical symbols and signs are. Jao 

(2012) described symbols as abstractions entities that represent of mathematical ideas, 
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concepts, or processes. This study adopts Foucault (1966) and Presmeg (2006)ôs 

definitions that regard a symbol as a signifier that represents, signifies, or replaces a 

mathematical idea, concept, or process. Rouse (2000) also defined a mathematical 

symbol as a character that is used to indicate a mathematical relation or operation. 

Combining the two definitions, Redish and Gupta (2009) concluded that mathematical 

symbols have a definite initial purpose: to methodically unpack complex information in 

order to facilitate understanding. Steinbring (2006) described mathematical signs as 

means of communicating abstract mathematical ideas (oral function), of indicating 

(deictic function) and of writing (symbolic function). Mitchelmore and White (2008) 

referred to mathematical symbols as shorthand marks that are used to represent 

mathematical concepts, ideas and processes. Hiebert (1988) defined symbols as entities 

that represent mathematical ideas or processes. Researchers in mathematics education 

have concurred that the development of mathematical notation is closely connected with 

the overall development of the concepts and methods of mathematics (Cajori, 2010).  

The connection between the meaning of a concept and its mathematical symbol is not 

always obvious. Various notions of the meaning of symbols have been studied in 

mathematics education. Sowa (2010) identified mathematics as one area that lacks a one-

to-one correspondence between mathematical symbols and the words/concepts they 

represent. In order to understand mathematical symbols and their meanings there are two 

things to help us; the context in which we are working, or the particular topics being 

studied, and convention, where mathematicians and scientists have decided that particular 

symbols will have particular meanings. Tall (2004) hinted that mathematics is powerful 

because of its symbolism. He noted two contrasting effects that written symbols have for 

learners as a two-edged sword: they can help them cope or they can overwhelm them. 

Thus, mathematical symbols, interpreted as either processes or objects, symbols allow a 

duality of thought. According to Tall (2004) this view is a perceptual divide: only those 

who come to think flexibly about processes and objects become successful in 

mathematics. Gray and Tall (1991) define a ñprocept ñas a combination of a process and 

a concept in which a mathematical process and object/ product is represented by the same 

symbol. Thus according to this view the symbol for a procept can evoke either process or 



49 

 

 

concept. For example the sight of the symbol, Ὢ ὼ έὶ    invokes the process of 

differentiation and a derivative at the same time. 

2.1.7 The nature of mathematics  

By tracing the history and developments in mathematics, one gets the impression that the 

essence of modern mathematics is symbolic mathematics. Mathematics is the 

construction of knowledge that deals with qualitative and quantitative relationships of 

space and time (Mdaka,  2006). Thus, mathematics is a language that has its own symbols, 

syntax, grammar, and a variety of representations.  It also relies on an intensive use of 

different types of symbols to represent variables, signs for numbers, diagrams, formulas, 

and algorithms. The dominant entities that dominate mathematics are numbers and 

algebra. These involve processes that are eventually symbolised into both process and 

concepts. However, the dual use of a symbol as either process or concept causes great 

difficulty for many learners. Tall (1992) asserts that symbols on their own cannot provide 

a complete environment for mathematical thinking. They are more powerful if they do so 

in a flexible proceptual way. The power is further enhanced if there are alternative 

representations available that increase the flexibility of thinking.  

Mathematics can be viewed as a human cultural activity that deals with patterns, 

problem-solving, and logical thinking in an attempt to understand the world and make use 

of that understanding (Adler, 2006). This understanding is expressed, developed and 

contested through language, symbols, and social interaction. Mathematical literacy 

provides powerful numeric, spatial, temporal, symbolic, communicative, and other 

conceptual tools, skills, knowledge, attitudes and values to analyze; make and justify 

critical decisions; and take transformative action in society. Reynders (2014) observed 

that one of the problems for mathematics learners is related to syntax, the sentence 

structure and semantic components of language in the mathematics classes. The lack of 

one-to-one correspondence between mathematical symbols and the concepts they 

represent was singled out as one feature that present problems to learners.  
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2.1.8 Differentiating symbol systems 

Researchers proposed two dimensions that can be used to differentiate symbolic systems: 

resemblance and notationality (Blumson, 2014). Resemblance refers to the extent to 

which symbols resemble their referents. Symbols that resemble or look like their referents 

are called iconic symbols or replica models, for example, geometrical shapes such as a 

rectangle to represent a rectangular field. The advantage of using iconic models is the 

models' correspondence with the reality of appearance. In other words, the model user 

can tell exactly what the proposed object will look like. Schematic models are more 

abstract than physical models. While they do have some visual correspondence with 

reality, they look much less like the physical reality they represent.  

Graphs and charts are schematic models that provide pictorial representations of 

mathematical relationships. Symbols that do not represent their referents are referred to as 

analogues. Various researchers classify mathematical symbols and systems differently. 

Sowell (1974) classify symbols as concrete, pictorial and abstract while Shavelson, 

Webb, and Lehman (1986) classifies symbols as representational (realistic depictions), 

conventional (symbols stand for ideas or events in a particular culture), connotative 

(symbols results from the distortions of conventional symbols) and qualitative (symbols 

represent some idea or feeling). However, this classification was heavily criticised by 

Goodman (1968) and Salomon (1979) who argued that resemblance is not a satisfactory 

way of defining symbol systems. They argued that resemblance is ambiguous since 

symbols can represent their references in multiple ways. They further argued that symbol 

systems can be notational, non-notational or somewhere between these two extremes. 

 Shavelson, Webb and Lehman (1986) provided an exhaustive distinction between 

notational and non-notational systems. In notational systems, the symbols are discrete and 

discontinuous and there is a oneïto-one correspondence between symbols and their 

referents. In non-notational systems, symbols are not disjointed but are continuous and 

each element does not correspond to one and only one referent. For example, pictures are 

non-notational because each element could represent many things, for example, a line can 

represent length, depth and the picture could lead to many interpretations. However, 

notationality was criticised for being too abstract to help define taxonomies of symbol 

systems for particular knowledge domains. Harkin and Rising (1974) classified 
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mathematical symbols into five categories: ambiguous symbols, synonymous symbols, 

archaic symbols, inappropriate symbols and contradictory symbols. 

Ambiguous Symbols 

This class of symbols consists of symbols whose meanings are not clear when the symbol 

is used in isolation. Context clues are necessary for clarification. A dash  is an 

example of an ambiguous mathematical symbol that carries three distinct meanings. It 

carries meaning if it is part of a chain of symbols that represent a mathematical concept 

or process. For example, it can denote the binary operation of subtraction in 35- , in 

another context it is used to indicate a negative integer , , and it can be used  as 

an additive inverse (opposite) of a number, for example, ς  ςȢ It can also 

represent a range as ρπ ςπ in grouped data. 

Sajka (2003) observe that, one of the learnersô difficulties in understanding the concept of 

function stems from its dual nature. In fact, Dede and Soybas (2011) note that a function 

can be understood in two essentially different ways: (i) structurally, as an object; and (ii) 

operationally, as a process. In the first instance, the function is a set of ordered pairs, and 

in the operational way, it is a computational process or well defined method for getting 

from one system to another. These two ways of understanding functions, although 

apparently ruling out one another, however, should complement each other and constitute 

a coherent unit. For example, the function 32)( += xxf  has two meanings. The first 

meaning is ñhow to calculate the value of the function for particular arguments (evoking 

the process), secondly it encapsulates the whole concept of function for any given 

argument (thus presenting the object). Therefore, the function )(xf  represents both a 

process and a concept. In addition, in the context of functions, when we write ώ, 

sometimes we are referring to a certain value of the function; at other times, we are 

referring to the ordinate of a certain point in the coordinates system, and yet in other 

times we are referring to an argument. The interpretation depends on the context, which 

can confuse a learner. This notation of function is ambiguous and presents some 

difficulties among learners. For Sajka (2003), the causes of learnersô symbols difficulties 

also depend on the contexts in which the symbols are worked in mathematics classes, and 

on the teachersô limited choices of mathematical tasks. For some learners, the concept of 

4- 3-<
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a function is often linked to the concept of formula, and sometimes learners connect the 

concept of function to the graphing process, where a formula is necessary to draw it. 

 Synonymous Symbols 

Synonymous symbols are multiple representations or a group of symbols that are 

associated with the same concept. For example, a linear function may be expressed in 

different ways or notations. These different notations and symbols invoke different 

conceptions of the concept. For example, the line with gradient of three and passing 

through the point πȟρ  can be expressed in different ways: ώ σὼ ρ; Ὢὼ σὼ ρ 

and ὪȡὼO σὼ ρ. 

Archaic Symbols 

The language of mathematics is archaic. The notation used to describe mathematical 

objects and processes is confusing. The names that are assigned to the symbols and 

concepts are poor. Names are important. They drive our thoughts. However, when names 

become disconnected to the things they represent, they become a source of confusion 

(Lockhart, 2009). It is easy to forget if the symbols are separate from the references. For 

example, the sine of angle  
Ø

BCA  in a triangle ὃὄὅ drawn on the chalkboard is easier to 

conceptualise than ίὭὲ —. 

Inappropriate Symbols 

Inappropriate mathematical symbols refer to symbols that encourage misconceptions due 

to the learner's level of intellectual attainment (Post, 1988). For example, a learner may 

think that letters of the alphabet represent objects or numbersȟὬ  height,ὦ ς, since ὦ 

is the second letter of the alphabet. Learners may also simplify the expression ςά 

 υ  χά in two different mathematical contexts. These contexts are expanding brackets 

containing unknown and simplifying expressions by collecting like terms. Appropriate 

use of symbols should begin early in the primary grades; however, in the search by 

human intelligence or coherence in our world, misconceptions play an important 

transitional role. The world of the learner is particularly full of relativism. A learnerôs 

cognitive growth depends on his/her ability to establish the gross essence of concepts on 

an intellectual as well as a perceptual and an emotional level. The entire situation can be 
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viewed as a structure of ideas in which he seeks those connections that seem most 

pervasive. 

Contradictory Symbols 

Contradictory mathematical symbols are symbols that have different meanings in forms 

or different topics. They are designated as inconsistent symbols (Lankham, Nachtergaele 

and Schilling, 2007). Many symbols mean different things in different contexts or topics. 

For example, the use of parentheses is a frequent source of confusion. For example, 

ςσ  φ (product) but fxxf ¸)( (function). To solve this confusion, learners must 

pay attention to the context in which mathematical symbols are used (Reys, Lindquist, 

Lambdin and Smith, 2014). When learners fail to give meaning to a symbol by drawing 

upon the context in which it occurs, they often give up on developing understanding of 

the symbols. Instead, they simply look for clues as to what algorithm the symbol 

suggests. 

2.1.9 The Role of Symbols 

Cockcroft (1982) viewed mathematical symbolism as both the strength and weakness of 

mathematical communication. Grey and Tall (1994) took this fundamental paradox a 

stage further; and regard mathematical symbolism as a major source of both success and 

distress in mathematics learning. Mathematics is taught symbolically because symbolic 

representations are the most effective way of recording mathematics and transferring 

mathematical knowledge from one generation to another (Anthony & Walshaw, 2010). 

Symbols are valuable in showing what one cannot say. They express inexpressible 

concepts, abstract ideas, and particularly complex significations that are difficult to 

articulate (Burbidge, 2013). Symbols are way of representing and expressing 

mathematical thoughts, knowledge, and communicate in discourse. Learnersô ability to 

use symbols expands their cognitive and communicative power. Symbols are a means of 

taking the present into the future, the past into the present (Bevan, 2016). Symbol enables 

the present generation of mathematicians to learn from the proceeding generations. 

Because symbols are such an important source of learning and knowledge, it is important 

for learners to become symbol-minded (DeLoache, 2004). Symbols play a crucial role in 

advanced mathematical thinking by providing flexibility and reducing cognitive load. 
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They have a dual nature since they signify both processes and objects of mathematics 

(Güçler, 2014). It is important to note that the key to understanding mathematics lies with 

the interpretation and distinguishing between the concept and processes, and not really, in 

the nature or amount of symbols and the role they play.  

However, to understand mathematical concepts learners must appreciate the role and 

meaning of symbols and to appreciate their usefulness. Symbols are useful as substitutes 

for abstract ideas. Arcavi (1994) and Pimm (1995) concur that at times learners work 

manipulate symbols correctly and efficiently without paying much attention to their 

referents. This practice has its roots in symbol pushing. Symbol pushing involves 

concentrating on the symbols rather than interpreting the symbols as representing 

concepts (Hersh, 2013). Crooks and Alibali (2014) reported that mathematical thinking is 

conceptual thinking and not procedural thinking. Symbols can be transformed or replaced 

while the meaning remains the same. Understanding mathematical symbols by ñsymbol 

pushingò is not real understanding. Teachers should strongly discourage this style of 

learning since it is unproductive in the long run and lead to erroneous conclusions such as 

ὼ ώ Ѝὼ   ώ  as a result of over-generalising the rules such as, ωὼώ = 

Ѝω Ѝὼ ώ  σὼώ. It is important to note that the key to comprehending 

mathematics lies with the interpretation of the concept and not really in the nature or 

amount of symbols and the role they play. Symbols do not have meanings of their own; 

this has to be produced by the learner by means of establishing mediation to suitable 

reference contexts. 

Another key argument raised by researchers is that learners have a tendency to wait for 

the teacher to interpret symbols for them and to show them how they are used in 

problem-solving (Bakker, Doorman & Drijvers, 2003 Advocates of constructivist 

philosophy argue that human mind does not hold abstract notions; rather it possesses 

symbolism that contains distilled meaning of mathematical concepts (Gray et al, 1999).  

Constructivists argue that it is not ideal for learners to understand concepts and symbols 

by being simply told what to know. Symbols and syntactic rules of mathematics do not 

have meaning for learners until they are interpreted by the individual (Lee & 

Hollebrands,  2008). Learners have a tendency to bring their own interpretations of 

symbols to the classroom, based on their previous encounters symbols in past math 
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classes (Saraiva & Teixeira, 2009). Learners depend on the rules and syntax of English to 

interpret mathematical language in order to unpack meanings of mathematical concepts 

(Cook, 2013). 

Rubenstein and Thompson (2001) listed the different roles for mathematical symbols. 

Some of the roles include naming concepts, stating relationships between concepts, 

indicating mathematical operations and processes, abbreviate words, and indicate 

grouping. However, they failed to highlight the multiple roles that symbols play within a 

single mathematical statement. Other researchers (Ursini & Trigueros, 2004; Bardini, 

Radford & Sabena, 2005) posit that letter symbols can be used in algebra as generalized 

numbers, parameters, unknown numbers, and variables. For example, in representing the 

equation of a line as , the learners must differentiate the letters ώ and ὼ as 

variables and the letters ά and ὧ as parameters that define the gradient and intercept of a 

line. It is therefore imperative for learners to be able to appreciate the different roles 

played by letters, operators, and other notational devices in order to communicate fluently 

in mathematics. 

Various attempts have been made to define and describe symbol sense. For example, Fey 

(1990) described symbol sense as:  

ñéan informal skill required to deal effectively with symbolic expressions 

and algebraic operationsò (p. 80). 

  Arcavi (1994) defines it as: 

 ñéa quick or accurate appreciation, understanding, or instinct regarding 

symbols that is involved at all stages of mathematical problem solvingò (p. 

31). 

Kinzel (2001) described symbol sense as a sense of ñalgebratizingò a situation: creating 

algebraic expressions that accurately represent relevant quantities within a situation. 

Equally important is the fact that such representational awareness should be accompanied 

by the skill to manipulate and interpret these expressions. In this regard, the combination 

of awareness and skill seems to imply a sense of symbols and their role in a mathematical 

activity. If learners are to be competent and fluent users of symbols they should have 

cmxy +=
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notational options available and be able to judge when such options are appropriate or 

not.  

In order to work fluently with mathematical symbols learners, need to develop a strong 

symbol sense (Rubenstein, 2009; Chirume, 2012). None of these researchers has 

attempted to provide an exhaustive definition of symbol sense, arguing that doing so is 

difficult since symbol sense is closely related to other senses such as number or function 

senses. Instead, they listed features of what it means for a learner to have symbol sense. 

The list of these characterisations include among others: knowing when to use symbols 

during problem solving and when to abandon them for better tools; understanding the 

need to continuously reflecting on meanings of symbols and compare with oneôs own 

expectations and intuitions; and having an appreciation of the communicability and 

power of symbols to display and prove relationships. Arcavi (1994) noted that learners do 

not see mathematical symbols as tools for understanding, communicating, and making 

connections, even after several years of study. He views the development of symbol sense 

as an important component of meaning making in mathematics. Symbol sense makes 

provision for learners to read and the meaning of a problem and checks the 

reasonableness of the solution process. Pierce and Stacey (2001) expanded the symbol 

sense framework and emphasise the need for learners to distinguish between meanings of 

letters as symbols and operators. 

  

2.1.10  The importance of symbols in mathematics 

 

Mathematical symbols and signs are mainly viewed as ñinstrumentsò for coding and 

describing mathematical knowledge, for communicating mathematical knowledge as well 

as for operating with mathematical knowledge and generalizing it (Steinbring, 2006). 

Mathematics requires certain sign or symbol systems in order to keep a record of and 

code the knowledge. Mathematics is primarily made up of two basic entities: numbers 

and symbols. Symbols are found in simple mathematics, algebra, geometry, calculus and 

statistics. Symbols are essentially representative of a value and without mathematical 

symbols, one cannot perform mathematics operations and procedures.  
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Lester (2007) points out that symbols support understanding and provide a universally 

accepted way of showing certain mathematical functions and patterns. In order to 

understand a mathematical concept, as opposed to rote memorization of rules without 

reason, Skemp (1971), posits that it is crucial and good instructional practice for teachers 

to link abstract mathematical symbolism with representations from the everyday world 

whenever this is possible. The fundamental need in mathematics at all levels of learning 

is the ability to represent the relationship between a sign and the number or value it 

refers. Certain ideas and concepts can be clearly illustrated only by the creation and use 

of symbols. Measuring the relationship between numbers and representing the 

relationship symbolically not only serves to simplify the process but also gains a better 

understanding of the concept than a wordy description of the same. This is where the 

issue of languages comes in. 

2.1.11 Algebraic Reasoning and Symbolisation 

 

According to Blanton and Kaput (2005), algebraic reasoning involves generalising 

mathematical ideas from a set of instances, establishing those generalisations through the 

discourse of argumentation, and expresses them in formal ways using appropriate 

symbols. Zorn (2002) refereed to this kind of meta-knowledge as symbol sense. Drijvers 

(2011) viewed algebraic reasoning as the literacy that operates in the background without 

our conscious awareness during problem solving. Algebraic reasoning can be construed 

as the learnerôs ability to model a situation using appropriate functional relationships and 

symbols. It involves formalising experiences and ideas into a symbol system (Lapp, 

Ermete, Brackett & Powell, 2013). It bridges the cognitive gap between arithmetic in 

primary school grades and abstract algebraic topics such as functions, calculus and other 

topics in secondary grades.  

 

The use of formal symbolic representations, such as equations, gives learners to access 

abstract concepts. It provides a foundation for the development of abstract mathematical 

understanding. Algebraic reasoning provides tools for mathematicians to explore the 

structure of mathematics and supports mathematical thinking. Koedinger, Alibali & 

Nathan (2008) advised that teachers should focus on developing learnersô algebraic 
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reason prior to formal symbolic representation and manipulation. Algebraic reasoning is a 

facet of symbol sense. Algebra requires learners to decode the symbolic language of 

algebra (Bednarz, Kieran & Lee, 2012). The main aim of learning algebra is to develop 

symbol sense. This is because learnersô ability to recognise and generalise mathematical 

situations depends on their competence in using symbols. Symbol sense and algebraic 

reasoning provide learners with the ability to represent and draw inferences about 

algebraic relations and functions.  

2.1.12 Switching Representations 

 

Mathematical ideas and modelling are usually represented in the form of numeric, 

geometric, graphical, algebraic, pictorial, and concrete representations. Based on the 

findings of Flanders (2014), it can be argued that learners have problems of switching 

from one representation to another (triangulation), recognising the connections between 

representations, and using the different representations appropriately and as needed to 

solve problems. Learning the various forms of representation helps learners to understand 

mathematical concepts and relationships; communicate their thinking, arguments, and 

understandings; recognise connections among related mathematical concepts; and use 

mathematics to model and interpret mathematical, physical, and social phenomena. When 

learners are able to represent concepts in various ways, they develop flexibility in their 

thinking about those concepts. They are not inclined to perceive any single representation 

as ñthe mathò; rather, they understand that it as one of representations that help them to 

understand a concept. 

  Challenges of teaching mathematical symbolisation 2.2

Rubenstein and Thompson (2001) identified the challenges to mathematical 

symbolisation as: (a) the same symbol may have different meanings, (b) multiple symbols 

may represent the same concept, (c) symbols that are used as specific variables in specific 

contexts, and (d) the family to which a function belongs is embedded in its 

symbolization. Koedinger, Alibali and Nathan (2008) cited the use of symbolism in 

mathematics is as the main reason for the lack of understanding and difficulties in 

learning mathematics. Learners who express hatred for and aversion to mathematics cited 

its reliance on symbolism as the main reason for their distaste. There is a strong emphasis 
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placed on symbolic or abstract representations of problems (Bryant, 2011). When 

learning new concepts, learners are quickly rushed into using those symbolic 

representations, before they ever understand what the symbols represent. Therefore, 

mathematics becomes an overwhelming mental exercise in the memorization and 

manipulation of symbols.  

 

Steinbring (2006) indicates that attempts to expound mathematics concepts without using 

symbolism yield nothing. There are ongoing debates on the question of when and how to 

introduce symbolism within the mathematics curriculum. Heeffer (2013) argued that if it 

is introduced prematurely learners might lack the maturity to understand and reason 

symbolically. On the other hand, if  it is delayed, some mathematical concepts cannot be 

taught as they rely heavily on symbolism. Current understanding of symbolism provides a 

picture that they pose threats as well as opportunities for the mathematics curriculum. 

Teachers should take cognisant of the fact that symbolism does not act in a completely 

abstract way. An insight in how perceptual processes direct learnersô understanding of 

symbolism prepares teachers for possible mistakes and difficulties in classroom practice. 

Historical epistemology and cognitive psychology drawn from recent findings singled out 

symbolism as a conceptual barrier in understanding mathematical concepts (Heeffer, 

2013). The following section discusses some of the challenges of mathematical 

symbolisation identified in literature.   

2.2.1 Lack of correspondence between symbols and referents 

 

Written mathematical symbols play an important role in the teaching and learning of 

mathematics, but learners often experience challenges in constructing mathematical 

meanings of symbols (Yetkin, 2003). One such challenge identified in literature is that 

learners do not make connections between symbols and their meanings or referents 

(Adams, Thangata & King, 2005; Hammill, 2010). Studies by Heath (2010) have also 

proven that symbols are effective when learners understand the connection between the 

symbol and the mathematical concept. Heath (2010) further argued that it is more 

important for learners to understand what the symbol means than its name. Marshall 

(2006) urged mathematics teachers to help learners to understand symbols and avoid rote 
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instruction. He recognised that when learners work with symbols, they must know what 

they mean and where they come from.  

Learners should be able to make use of mathematical concepts using symbols in many 

settings. Learners derive meaning for the symbols from either connecting with other 

forms of representations such as graphs, concrete objects, pictures and spoken language 

or establishing connections within the symbol systems (Hiebert & Carpenter, 1992). 

However, there is a drawback in using these representations to facilitate learning written 

symbols; they have limited potential to create understanding of written symbols, since 

they are representations themselves. McNeil, Uttal, Jarvin and Sternberg (2009) report 

that learners experience difficulties in understanding the meaning of a written symbols if 

the referents do not well represent the mathematical meaning or if the connection 

between the referent and the written symbol is not appropriate. Pimm (1995) advises: 

 ñéthrough working with symbols we gain experience of the thing 

substituted for. However, we also lose sight of the fact that what we have 

is a symbol and not the real thing we originally desiredò (p.109).  

Pimm (1995) emphasizes the importance of keeping track of symbol meaning during 

teaching. Similarly, van Oers (2000) considered symbols and meanings to be 

ñinextricably linkedò (p. 148), and considers reflection on the relationship between 

symbols and their referents to be a critical part of constructing meaning. Van Oers (2000) 

also argued that it is not enough for learners to be able to use symbols correctly; but they 

must also understand their meanings in order to determine their relevance in a particular 

situation.  

Azer, Guerrero and Walsh (2013) also stress the importance of reflection on connections. 

They suggest that teachers should be explicit about what is being represented by symbols 

and should encourage learners to continually reflect on symbol meanings. Sajka (2003) 

studied learnersô misunderstanding of the symbols used in functional notation and 

identification of their possible sources. He posits three kinds of sources: the intrinsic 

ambiguities of the mathematical notation; the restricted contexts in which some symbols 

occur in teaching, and a limited choice of mathematical tasks at school; learnersô 

idiosyncratic interpretation of school mathematical tasks. 
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2.2.2  Dual nature of mathematical symbols 

 

The use of symbols can be described in two ways: as processes and as objects. This dual 

nature describes a symbol serving both as an indicator of a particular operation (process) 

and an object upon which to be operated, can be an additional difficultly for learners 

trying to interpret and work with mathematical symbols (Kenney,  2008). For example, a 

symbolic expression such as Ὢὼ σὼ ρ  can be interpreted as a rule for a procedure, 

or as an object that can be manipulated (Kinzel, 1999). Saraiva (2009) concluded that 

learners face many difficulties when they attempt to understand it and when they need to 

indicate the chain of symbols that are connected with it. Rojano (2002) also reminds 

mathematics teachers to be cautious of the change in meaning of mathematical symbols 

during the transition from arithmetic to algebra. The transition phase presents obstacles in 

the subjectôs evolution towards the acquisition of algebraic language and reasoning. The 

differences in meaning of some symbols present difficulties for learners in algebra, 

challenging the old idea that algebra could be conceived, for teaching purposes, as ñan 

extension of arithmeticò (p.145). 

From a procept standpoint of mathematical logic, the following main groups of 

mathematical symbols can be noted: symbols designating objects (
dx

dy
), symbols 

designating mathematical operations or processes (ñ dxxf )( ), and symbols designating 

relations ( )(1 xf - . A fourth group borders on these three main groups of mathematical 

symbols: auxiliary symbols that establish the sequence in which symbols are combined. 

For instance, parentheses, which indicate the order in which operations are performed, 

provide an adequate idea of such symbols. Researchers unanimously agree that recalling 

or recognising symbols is not complex (Quinnell & Carter, 2012). However, learners 

struggle with the semantics and meanings of symbols or the concepts that they represent 

(Hourihan,  2009). Quinnell and Carter (2012) further noted that the syntax of symbols 

further brings additional complexities for learners. They also presented compelling 
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evidence that learners struggle with decoding and verbalising mathematical symbols 

relevant for their grade level. 

2.2.3  Attributing personal meaning to mathematical symbols 

 Another source of learnersô difficulties with symbolism cited by Howard (2008) is that 

learners apply personal meanings to symbols. According to Kenney (2007), mathematical 

notations can only become representations if  someone endows and constructs an 

interpretation for them. For someone who has not developed meaning for them, they are 

regarded as potential representations. Learnersô interpretations always differ based on 

their prior experiences they bring to the classroom. Knowledge of mathematical symbols 

is also based on learnersô experiences when they met the symbol for the first time. As 

Schleppegrell (2007) pointed out, learners have informal ideas about symbols and their 

uses in mathematics. Learnersô prior experiences often hinder their understanding of 

mathematical language and notation. For example, Kinzel (1999) found that when told to 

use the letter h for height in a word problem, some learners assigned the value 8 to h 

because it is the eighth letter of the alphabet. Van Oers (2000) explains that such 

interpretations are promoted in daily life with puzzles and games that involve using ὥ

ρȟὦ ς, and so on. Anthony and Walshaw (2009) suggest that teachers need to guide 

learners to identify and use the conventions of mathematical language.  

According to Kilpatrick, Swafford and Findell (2001), many learners who have trouble 

with mathematics bring to school informal conceptions of mathematical understanding. 

Consequently, they encounter difficulties in connecting this prior knowledge base to 

formal procedures, language, and symbolic notation system of school mathematics. 

Teachers should therefore pay attention to the informal ideas that learners bring to the 

learning situation. Teachers should strive to close this gap between informal and formal 

mathematical conceptions.  

 

There is growing literature on mathematical symbols that support that learnersô inability 

to comprehend mathematical symbols hampers their aspirations to pursue mathematics 

related careers (Holtman et al, 2008). The findings on a research conducted by Kalloo 

and Mohan (2011) confirm that many learners were able to do mathematics up to 

introduction of algebra. The ability to manipulate symbols according to rules is an 
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important skill of mathematics. If l earners lack this skill, they find it difficult to 

understand the concepts. Symbols allow complicated concepts and procedures to be 

eventually compressed and represented symbolically in a way that can hardly be 

conveyed in words.  

The progression through to secondary school marks a growing collection of new and 

advanced notation and symbols. Sepeng and Madzorera (2014) noted that the abundance 

of symbols carries the potential to confuse and disorient learners who are attempting to 

understand and comprehend mathematical concepts. A study conducted by Heath ( 2010) 

reveals that a learner who cannot establish the meaning of signs and symbols struggle 

with mathematical concepts. Thus, from a teaching perspective, Naik, Banerjee and 

Subramanian (2004) support the view that before introducing new mathematical symbols 

it is important to consider meanings of symbols, context and the topic under study.  

2.2.4 The uniqueness and complexity of mathematical language 

Mathematical language is dominated by symbols and unique notation that can only be 

interpreted by mathematically literate people (Baber, 2011). Algebra is one branch of 

mathematics where this language is mostly dominant. Researchers have noted that the 

confusion between mathematics symbols and their meanings is the root cause of 

difficulties experienced by learners in understanding mathematical concepts (Saraiva & 

Teixeira, 2009; Chirume, 2012). The sight of the symbols often produces disturbance to 

cognition. According to Biro et al (2005) mathematics is a language that has its own 

vocabulary, symbols and tools that are used in specific circumstances.  

Mathematics language is unique and complex. The use of symbols and abstract notations 

adds uniqueness and complexity to the mathematical register. Quinnell and Carter ( 2012) 

adds that learners are able to think mathematically in the absence of symbols; however, 

communicating using written mathematical ideas cannot be achieved without the use of 

mathematical symbols. Mathematics language problems are evident when learners have 

difficulties in using mathematical symbols, expressing mathematical concepts to others, 

and listening to mathematics explanations. Learners also struggle with reading or writing 

word problems and writing and expressing math ñsentencesò, (Garnett,1998). Proficiency 

in mathematical language provides the link between the concrete and the abstract 
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mathematical representations. At advanced levels of mathematics learning, language aids 

mathematical thinking, manipulating concepts and ideas without relying on concrete 

materials. Teaching approaches based on lecture, demonstration and worksheets should 

be used with caution since they limit learnersô language development and conceptual 

growth.  

2.2.5 The symbolic nature of mathematical concepts 

All mathematical activities are eventually expressed in terms of symbols and symbolic 

expressions (Corry, 2015). The many diverse activities of mathematicians have symbolic 

inscriptions as their common features.  Modern disciplines that depend upon mathematics 

could be measured by their growing reliance on symbols. It is reasonable to conjecture 

that much of the difficulties experienced by learners in mathematics, and the lack of 

popularity of the subject in higher education could be linked to the problem of 

symbolisation. Behind the formal symbols of mathematics, lies a wealth of experience 

that provides meaning for those symbols. Scott-Wilson (2014) noted that rushing learners 

into the world of symbols impoverishes the background experiences and lead to trouble in 

advanced mathematics. They recommended that it is essential to provide learners with 

time to talk about their activities and developing their own informal records using 

concrete manipulatives before introducing the formal symbols of adult mathematicians. 

There are two approaches in which learners acquire the meaning of mathematical 

symbols: nominalism and conceptualism. The distinction between nominalism and 

conceptualism is most evident in the way proponents of each account for the meaning of 

mathematical symbols. The nominalist argues that the meaning of mathematical symbols 

is derived from the context in which the symbols are used. Rotman (2000) argues that on 

one hand, symbols can be construed as means to think about mathematical relations and 

objects, and on the other, they are the products of such thinking since new mathematical 

signs are generated. If a learner is asked to calculate the area of a triangle, for example, 

the meaning of the symbols ͼὃͼ ͼὬͼ ὥὲὨ Ȱὦ ͼ would be derived from the area formulas in 

which these symbols appear. There is no need to argue that the symbols refer to 

postulated cognitive entities.  
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From the conceptualist point of view, the meaning of a mathematical symbol cannot be 

totally specified by describing the behaviour of those who use the symbol. When a 

learner is asked to calculate the area of a rhombus, for example, the meaning of the 

symbols ͼὃȟͼ ͼὬͼ and ͼὦͼ is derived, not just from the area formulas that the learner 

manipulates, but also from the mathematical ideas to which these symbols refer. 

Conceptualists view mathematical symbols as cognitive constructs (Gärdenfors, 1997). 

For the conceptualists, the concept is more important than the symbols used to construct 

it.    

2.2.6  Mathematical symbols and contexts 

Mathematical symbols mean different things in different contexts (Haylock and 

Cockburn, 2008). Similarly, learners hold various conceptions of symbols, letters and 

signs in different settings. Effective learning of mathematics requires learners to acquire 

conceptual understanding about the use of the symbols and the context in which they are 

used. Sapire (2011) posited that when learners memorise rules for moving symbols 

around on paper they may be learning something other than mathematics. Moreover, 

using symbols without understanding their meanings is detrimental to learnersô relational 

understanding of Mathematics. Wilson and Peterson (2006) pointed out that teaching 

abstract idea without paying attention to meaning deter conceptual understanding. They 

suggested that if teachers intend to enhance learnersô understanding of mathematical 

concepts then they should engage them with a deeper understanding of the use of 

symbols and their meanings in different contexts. 

 

According to Sullivan (2011), to foster symbolic literacy, teachers should be aware of 

how they approach the symbols of mathematics. Phillips (2008) maintained that 

mathematical symbols themselves bear neither meaning nor any purpose until someone 

endows such meaning or purpose through relational conveyance. In mathematics 

classrooms, teachers are the agents of the endowment. Teachers tend to depend on their 

education, experience, and textbook information to assign meaning to symbols, but 

research has shown that the assignment of such meaning requires deeper thought and 

analysis. Mathematical symbols do not have meaning until they are meditated by the 

epistemological nature of the subject into reference contexts (Steinbring, 2005). It is 
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therefore important for teachers to keep this in mind before they attempt to introduce new 

mathematical symbols. 

Teachers should provide clear and coherent instructional symbol usage to facilitate 

meaningful learner understanding and comprehension of mathematics in general. Phillips 

(2008) argued that the ability to use symbols enables learners to imagine, select, and 

create and to define the situations to which they respond. Any ambiguity or confusion 

resulting from the improper or inconsistent use of such symbols would be detrimental to 

learnersô attempt to conceptualise mathematical concept. 

2.2.7 Learnersô prior knowledge of Algebra 

Stacey and MacGregor (1997) provide evidence that learners have misconceptions about 

the use of mathematical symbols. Prior research points to the many difficulties learners 

have with the formal and abstract concepts in linear algebra. A study conducted by Sin 

(2006) reveals that learners have misconceptions about the use of symbols. This 

negatively affects their understanding of mathematical concepts. In his study, Ali (2011) 

argues that the problems encountered by the learners in understanding mathematical 

concepts originate from their lack of prior knowledge and could be a result of teaching 

they experience in learning mathematics prior to secondary schooling level. 

 

Nalube (2014) suggested that primary school teachers need to encourage learners to 

develop skills for observing patterns and relationships. The next step is to model the 

situation, first in words, and later moving towards standard notational representations. As 

learners make sense of simple relationships and practice verbalising those relationships, 

they gain experience with the concept of abstraction from the earliest grades, which 

prepares them for the increasingly rigorous use of symbolic notation in later grades. 

Learners are often asked to perform actions in questions like simplify, evaluate and solve 

rather than actually using algebraic concepts and symbols to represent and solve real or 

relevant situations (Egodawatte, 2011). Learners lack exposure to the process of algebraic 

thinking and reasoning, the rules for manipulating and interpreting symbolic expressions 

have little meaning and are simply rules to memorise, or ñrules without reasons.ò Instead, 

as suggested by the NCTM (2000) standards, learners need exposure to the process of 
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modelling real-life contexts, beginning with a situation, representing and generalizing the 

mathematical relationships with symbols, and using equations to model the situation. 

 

Nunes, Bryant and Watson (2009) recommended that in order to understand algebraic 

symbolisation, learners should have knowledge of operations and be fluent with the 

notation. The symbols and their meanings are successfully understood when learners 

know what is being expressed and have time to become fluent at using the notation. 

Learners lack prior experience of recognising the different roles of letters as: unknowns, 

variables, constants and parameters. These meanings are not always distinct in algebra 

and do not relate unambiguously to arithmetical understandings. Mapping symbols to 

meanings is not learnt in a one-off experience but it is a process. Welder (2006) asserts 

that prior to learning algebra; learners must have an understanding of numbers, ratios, 

proportions, and the order of operations, equality, algebraic symbolism, algebraic 

equations and functions. Barsalou (1999) also mentioned that the introduction to algebra 

marks a cognitive milestone for learners. Learners begin to explore the more abstract 

concepts of numeric relationships, representations and symbolism. Prior to algebra, 

learners must have essential prerequisite knowledge. 

2.2.8 Mathematical language is compact and precise 

Mathematical language consists of strings of formal symbols that can be processed 

according to some grammatical rules, and, conversely, generation of new strings 

according to the grammatical rules (Gärdenfors, 1997). The language of mathematics is 

unique and complex (Moschkovich, 2010). Mathematical language is used by 

mathematicians to communicate mathematical ideas among themselves. This language 

consists of a substrate of some natural language (English) using technical terms and 

grammatical conventions that are peculiar to mathematical discourse supplemented by a 

highly specialized symbolic notation for mathematical formulas.  

A notable feature of mathematical register is the use of symbols. Symbols communicate 

complicated mathematical concepts clearly and efficiently. Their uniformity enables 

people to share mathematical and scientific knowledge (Krippendorff, 2012). Whilst it is 

possible for learners to think mathematically in the absence of symbols, the written 

communication of mathematical ideas cannot be achieved concisely without the use of 
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mathematical symbols (Quinnell & Carter, 2012). Further, it is possible to suggest that 

the fear and dislike of mathematics can be attributed to learnersô inability to decode fully 

the symbols inherent in this area of mathematics. Written text can be defined as symbols 

or signs that convey mathematical meaning (Siegel, 2006). These symbols can take on 

many forms, such as letters, numbers, mathematical signs. These symbols have specific 

meanings. Meanings, however, are not arbitrary. Once the meanings of the symbols have 

been established and acknowledged, learners need to be able to understand these 

combinations of symbol strings in mathematical concepts and procedures. 

Mathematics text is best described as compact, dense and precise (Österholm & 

Bergqvist, 2013). This means that a lot of information can be represented by a few 

symbols.  The English text can be understood despite spelling mistakes and wrong word 

usage, comparable errors in the use of mathematical symbols can have a significant 

influence on the meaning. However, minor changes in the use of symbols can cause 

major changes in the meaning of a mathematical statement. Teachers usually hold the 

assumption that mathematical symbols and notations are figured routinely by learners as 

they learn mathematics in the school contexts. However, on the bases of the evidence 

currently available in most classes many learners are struggling to understand the 

meaning of those mathematical symbols and notations, and sometimes lead them to 

misunderstandings (Buhari, 2012). 

2.2.9 The dynamic natures of mathematics register 

Another noticeable challenge of mathematical notation and symbol system is that it is 

constantly evolving (De Cruz & De Smedt, 2010). Mathematical notation evolves 

constantly as people continue to invent new ways of approaching and expressing ideas. 

There is abundant evidence that supports the view that mathematicians continually invent 

new notations to present innovative concepts and ideas together with new symbols 

(Kaput, Noss & Hooleys, 2002). Mathematical ideas can exist independently of the 

notation that represents them. However, the connection between meaning and notation is 

subtle, and part of the power of mathematics to describe and analyse derives from its 

ability to represent and manipulate ideas in symbolic form. 
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 Modern mathematical symbols are a product of centuries of refinement (Schliemann & 

Carraher,  2002). Mazur (2014) also investigates the subconscious and psychological 

effects that mathematical symbols have on mathematical thoughts, moods, meaning, 

communication, and comprehension. He considers how symbols influence conceptual 

understanding through similarity, association, identity, resemblance, and repeated 

imagery, how they lead to new ideas by subconscious associations, how they make 

connections between experience and the unknown, and how they contribute to the 

communication of basic mathematics. 

2.2.10  Communicating mathematically 

The issues around communicating mathematically include what it means to be able to 

communicate mathematically, why it is important and what are the implications for 

classroom practice. The term communicating mathematically is being used in this thesis 

to mean using mathematical language and representations to formulate and express 

mathematical ideas in written, oral and diagrammatic form in a way that is acceptable to 

the wider mathematical community. Communicating mathematically involves more than 

having the ability to apply mathematical conventions and linguistic formulations 

appropriately. It includes knowing mathematics in depth and breadth (that is, 

internalization) and thinking mathematically (Khisty & Morales, 2004). Communicating 

mathematically comprises a particular type of discourse and register (Schleppegrell, 

2007). Depending on the context, the meanings that emerge in discourse are multiple, 

changing, situated, and determined socially and culturally (Adjei, 2013). Communicating 

mathematically and doing mathematics are inseparable. Both involve acting, as well as 

using tools, symbols and objects. Gwengo (2013) argues that the ability to communicate 

mathematically enables learners to contribute effectively in the negotiation of 

mathematical meaning and better understanding of the mathematical concepts. 

Communication in mathematics can be referred to as the ability to represent mathematical 

ideas in multiple ways and to make connections among different representations 

(Clement, 2004). NCTM (2000) noted that the rules for interpreting and manipulating 

mathematical symbols are not always in agreement with the way relationships are 

expressed through the English language. Tanner (2003) describes mathematical language 

is a collection of symbols, letters, or words with arbitrary meanings that are governed by 
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rules and used to communicate concepts. Language can be thought of as a system of 

communication that uses symbols to convey deep meaning. Symbols can be words, 

images, body language and sounds. Language is symbolic in that the symbols used have a 

deeper ñsymbolic and semanticò meaning beyond their literal meaning. It consists of 

words or symbols that represent objects without being those objects. This can cause 

difficulties for learners. 

According to Braiden (2011), the processes of language and mathematics diverge above 

the level of symbolic processing. Competence in one does not correlate with competence 

in the other. This divergence is partly due to differences in syntax. The syntax of 

language and syntax of mathematics both evolve from the ability to process symbols. 

Both need to be taught and learned. Good writing, reading and grammatical skills do not 

in and of themselves translate into good arithmetic computation and problem solving 

skills. However, poor language skills do correlate with poor mathematical skills, 

suggesting that both require a basic level of competence in symbol processing, that is, 

deriving meaning from symbols. Being able to think mathematically is reflected by the 

ability to read & comprehend mathematical symbolism in much the same way one reads 

words in English. 

With regard to reading Daroczy, Wolska, Meurers and Nuerk (2015) argue that 

mathematics is an abstract and cognitive process that requires a working knowledge of 

the interaction of numerous discrete skills. Mathematical symbols tend to be more precise 

than language. Multiple interpretations and ambiguity are not generally considered as part 

of mathematics register or computation until it is used as a tool in such fields as statistical 

inference. There is danger of pre-maturely focusing on symbols. Symbols are abstract and 

have no meanings. The symbols that learners read and write must have meaning to them. 

Starting with the abstract nature of symbolism will almost assuredly lead to failure.  

Mathematical symbols become meaningful if teaching begins with concrete and semi- 

concrete examples that can be attached to meaningful verbal comprehension (Fite, 2002). 

2.2.11  Informal and formal mathematics controversy 

A critical analysis of the results of a study conducted by OôToole (2006) provides 

confirmatory evidence that learners who encounter difficulties with mathematical 
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symbols bring to school a strong foundation of informal mathematics understanding. 

They encounter challenges when trying to connect this knowledge to the more formal 

symbolic notation of school mathematics. Many learners struggle to understand the new 

world of written mathematical symbols onto the known world of quantities, actions as 

well as the peculiar mathematics language. Learnersô confusion with the conventions of 

written mathematical symbols is normally sustained at the primary school level by the 

practice of workbooks filled with problems to be solved (Fuchs & Fuchs, 2007). This 

kind of instruction encourages learners to act as problem solvers rather than as 

demonstrators of mathematics knowledge.  

Chirume (2012) acknowledged that learners see written mathematical symbols as an 

unfamiliar foreign language causing considerable difficulties for their understanding of 

Mathematics. Carruthers and Worthington (2005) pointed at the gap between learnersô 

self-invented strategies and school-taught, formal mathematical symbols as a likely cause 

of learnersô difficulties with school mathematics. Worthington and Carruthers (2003) also 

made the same sentiments, arguing that making connections between formal 

mathematical symbols and the learnerôs own informal mathematics is imperative. Doig, 

McCrae and Rowe (2003) propose that meaningful mathematics learning occurs when 

learners associate some personal experience negotiated through social experience with 

others symbols. The consensus view amongst researchers seems to be that the clash 

between learnersô self- invented strategies and formal mathematical symbols is one cause 

of the conflict. 

From a Vygotskian perspective, symbols or graphical representations close the gap 

between óenactive, perception-bound thinking and abstract symbolic thinkingô (van Oers, 

1997, p.237). A study conducted by Deloache (1991) reveals that learners are able to 

represent a mathematical concept in two different ways. This flexibilit y of meaning and 

object allows learners to understand that written mathematical symbols stand for 

something other than themselves. Deloache (1998) points out that the symbol system is 

not fully transparent. For example, letters of the alphabet and numerals have no inherent 

content or meaning, but convey information in systematic ways. Learners not only have 

to make sense of individual symbols or in isolation but need to understand their role 

within a system whether for example, letters within a written word, marks that denote 
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parts of a drawing or a mathematical symbol within a written calculation. Understanding 

abstract symbols in written language or mathematics begins long before learners enter 

school: they have a ópre-historyô that Vygotsky (1978) believed originates in both gesture 

and the alternative meanings that learners assign to objects within their play. 

 

Lee and Ginsburg (2007) outline three features of learnerôs written symbolism in 

mathematics, namely, understanding of written symbolism generally lags behind learnersô 

informal arithmetic, learners interpret written symbolism in terms of what they already 

know and good teaching attempts to foster connections between the learnersô informal 

knowledge and the abstract and arbitrary system of symbolism. From these three features, 

one gets the impression that learners possess considerable informal mathematics by the 

time they start formal learning.  

There has been what Munn (2001), describes as óa considerable gap in our knowledge of 

how learners develop the ability to use number symbols and the development of learnersô 

use and understanding of written numeralsô (p. 35). Supporting learnersô early writing 

and reading is problematic for some mathematics teachers and it appears that introducing 

abstract symbolism of mathematics is more so. Primary school teachers emphasise on the 

concrete approach to teaching mathematics. Thus, most of the work is left for secondary 

school teacher to introduce the bulk of mathematical symbols. Carruthers and 

Worthington (2006) observe, even though teachers illustrate the symbols and operations 

with pictures and objects, many learners still have trouble with establishing important 

links. Determining ways to foster these connections has been a challenge for teachers but 

Hughes (1986) observed that failure to do this is likely to be where many learnersô 

difficulties lie. 

2.2.12 The Abstract and Virtual reality of mathematic al concepts 

According to Decon (2011), abstraction is a characteristic feature of the symbolic 

representation of mathematical concepts. This is an essential feature of mathematics, and 

again is one part that makes mathematics incomprehensible to learners. Abstraction in 

mathematics is the process of extracting the underlying essence of a mathematical 

concept, removing any dependence on real life objects with which it might originally 

have been connected, and generalizing it so that it has wider applications or matching 
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among other abstract descriptions of equivalent phenomena (Saitta & Zucker, 2013). 

Mason (2004) perceives abstraction as a spiral process. It is an on-going process in 

mathematics. Unlike most other subjects, mathematics is a quest for abstract principles, 

without any necessary connection to concrete facts. Many mathematical topics and 

concepts exhibit a progression from the concrete to the abstract. At the lowest level, one 

begins by manipulating concrete objects (for example, a sequence of numbers). After a 

while, one ñgets a sense ofò those objects and begins to be able to articulate rules and 

properties that describe those objects (for example, certain terms in the sequence are 

divisible by a number). Although most learners easily pick up elementary knowledge 

through the use of concrete objects, they should be encouraged to use symbols and other 

mathematical notation to represent their understanding. Reading mathematics requires 

learners to develop skills at the symbol processing level (Große, 2014). Symbol 

processing involves the ability to derive meaning from symbols, whether they are words, 

letters, numbers or equations. If a learner lacks the ability to process symbols, then he/she 

cannot read nor do mathematics. 

Abstraction in mathematics is based on the assumption that mathematics is self-

contained, that is, is an abstract mathematical object takes its meaning only from the 

system within which it is defined (Duval, 2006). Having rules, symbols and properties to 

work with instead of the real objects themselves is one level of abstraction. A limitation 

in coping with abstraction presents the greatest barrier to handle mathematical procedures 

and concepts. The disadvantage of abstraction is that highly abstract concepts are difficult 

to learn. Mitchelmore and White (2004) propounds that a certain degree of mathematical 

maturity and experience may be needed for conceptual assimilation of abstractions. He 

further proposed that learners must be encouraged to move from concrete examples to 

abstract thinking. 

Tillema (2007) viewed mathematics as a science focusing on symbols in a sense. He 

noted that the comprehension of the symbols used in mathematics is particularly 

important for understanding the universal and abstract language of mathematics. Arcavi 

(1994) introduces the notion of symbol sense as a ñédesired goal for mathematics 

educationò (p.32). Pope and Sharma (2001) expanded the symbol sense notion to 

incorporate the ability to appreciate the power of symbols, to know when the use of 
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symbols is appropriate and ability to manipulate and make sense of symbols in a range of 

contexts. Symbol sense actually develops skills of using of symbols and understanding 

the situation where they are useful and where they are not. The assumption of symbol 

sense is based on the premise that a learner with symbol sense is less likely to experience 

difficulties in understanding abstract concepts. Symbol sense actually develops skills on 

the use of symbols and understanding of the situation. According to Santos and Thomas 

(2001), mathematicians seek precision and unique definitions, but cognitively they seem 

to use symbols ambiguously to represent either processes to do mathematics or concepts 

to think about. He argues that mathematicians and other experts in mathematics have a 

sense of symbols that enables them to handle symbols in a flexible and imaginative 

manner. 

In mathematics, unlike other science subjects, objects do not have a tangible existence 

and are not directly accessible to perception. The only way to access them is via symbolic 

representations (Fagnant, 2005). In contrast to other school subjects, the "objects" dealt 

with in mathematics are symbols that do not refer to specific objects or events in the real 

world. The representation and processing of knowledge in mathematics is abstract and 

requires more abstraction in the domain of mathematics than in other subjects in the 

school curriculum. Mathematics belongs to what Sfard (2000) calls ñvirtual realityò as 

opposed to actual reality (p. 39). Actual reality communication may be perceptually 

mediated by the objects that are being discussed, whereas in the virtual reality discourse 

perceptual mediation is scarce and is only possible with the help of what is understood as 

symbolic substitutes of objects under consideration. Symbols are therefore an integral 

part of mathematical reasoning.  

Cobb (2000) advocates the idea according to which ñthe ways that symbols are used and 

the meanings they come to have are mutually constitutive and emerge togetherò (p. 18). 

When teaching symbolisation, teachers should not concentrate on symbols and their 

meanings but rather on the activity of symbolising and meaning making (Yackel, 2000). 

Fagnant (2005) summarises learnersô difficulties at the symbolisation stage: learners are 

not always capable of producing a correct number sentence when they are confronted 

with a problem, even if they have solved it correctly. In other words, learners experience 



75 

 

 

difficulti es in making connections between their informal approaches to problem solving 

and their use of mathematical symbolism. 

 

Drawing from Reynders (2014), learners' difficulties in learning written symbols, 

concepts, and procedures in mathematics has been a source of concern for many 

researchers. Standard written symbols in school mathematics textbooks play an important 

role in the learning of mathematics, but learners may experience difficulties in 

constructing mathematical meanings of symbols. Learners tend to derive meaning for the 

symbols from either connecting with other forms of representations (for example physical 

objects, pictures and spoken language) or establishing connections within the symbol 

systems (Yetkin, 2003). Meanings of numerical and operational symbols are constructed 

by connecting with concrete materials, everyday experiences or language (McNeil, Uttal, 

Jarvin & Sternberg, 2009). An understanding of a mathematical concept might therefore 

involve facts about that concept, pictures, symbols or procedures learners might draw on 

in order to explore the concept, and how we have felt in the past working with that 

concept. In order to improve learnersô understanding of mathematical concepts, teachers 

need to link together these separate representations to create a more complex 

understanding about that concept (Barmby, Harries, Higgins & Suggate, 2007). 

 

 Instructional Strategies 2.3

One of the challenges of mathematics teaching is to create instructional sequences in 

which learners generate, refine, and extend their intuitive and informal thinking to more 

sophisticated and formal ways of reasoning (Rasmussen & Blumenfeldg, 2007). The 

design of such learning sequences requires teachers to carefully analyse learnersô existing 

or informal knowledge that can be leveraged for the development of formal or 

conventional mathematics. An important aspect of mathematics learning suggested by 

Quinnell and Carter (2012) is the need to give learners opportunities to read, write and 

verbalise symbols and explanations to aid learning. Learners have a tendency to 

undervalue, and often avoid entirely, expressing their mathematical thoughts verbally 

(Duval, 2006). Learners often struggle to sound out symbols. Asking learners to read 
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mathematical expressions and problems aloud is one way to identify misconceptions 

(Rubenstein & Thompson, 2001).  

2.3.1 Precision with mathematical symbols 

 Teachers should approach mathematical symbolism with caution. Mathematical symbols 

need to be written very carefully taking into account the size, position, and order 

(Rubenstein & Thompson, 2001). Links and connections need to be made among 

symbolic, written, graphic, and oral language. Rubenstein and Thompson (2001) 

suggested that learners should draw examples and counter examples of statements such 

as, or write symbolic statements that apply to certain diagrams, or practice by reading and 

writing statements containing symbols. Bossé and Faulconer (2008) recommend that the 

development of a learnerôs power to be fluent in mathematics involves learning the signs, 

symbols and terms of mathematics. This is best accomplished in problem situations in 

which learners have an opportunity to read, write, and discuss ideas in which the use of 

the language of mathematics becomes natural. As learners communicate their ideas, they 

learn to clarify, refine, and consolidate their thinking. 

Communication in mathematics can be referred to as the ability to represent mathematical 

ideas in multiple ways and to make connections among different representations 

(Clement, 2004). The NCTM (2000) notes that the rules for interpreting and manipulating 

mathematical symbols are not always in agreement with the way relationships are 

expressed in English language. Mathematical language is a collection of symbols, letters, 

or words with arbitrary meanings that are governed by rules and used to communicate 

concepts. It consists of words or symbols that represent objects without being those 

objects. This can cause difficulties for learners. 

According to Matejko and Ansari (2016) the processes of language and mathematics 

diverge above the level of symbolic processing. Competence in one does not correlate 

with competence in the other. This divergence is partly due to differences in syntax. The 

syntax of language and syntax of mathematics both evolve from the ability to process 

symbols. Both need to be taught and learned. Good writing, reading and grammatical 

skills do not in and of themselves translate into good arithmetic computation and problem 

solving skills. However, poor language skills do correlate with poor mathematical skills, 

suggesting that both require a basic level of competence in symbol processing, that is, 
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deriving meaning from symbols. Being able to think mathematically is reflected by the 

ability to read and comprehend mathematical symbolism in much the same way one reads 

words in English. 

2.3.2 Classroom Discourse 

 

Another important aspect of learning mathematics is to equip learners with the skills to 

communicate what they know, or think. One of the recommended ways is to encourage 

communication from all learners is through classroom discussion or small group work 

(Ololube, 2015). There has always been the notion that learners learn best when they 

actually have to teach or explain a concept to their peers (Kihlstrom, 2011). This means 

being able to verbalise what they know. Therefore, teachers need to encourage their 

learners to verbalise their own knowledge so that they can learn more efficiently. 

Learners on the listening end also benefit from hearing explanations from their 

classmates. When learners listen to each other, they often benefit from hearing concepts 

being explained from different points and in ways that might be closer to their ways of 

thinking. When learners listen effectively, they generate questions to further their 

thinking. 

The process of attaching appropriate meanings to mathematical symbols may be 

undermined by teaching that is heavily weighted in favour of instrumental learning 

(Goldstone,  2012). Such a learning environment encourages a process-oriented view of 

mathematics where the object of study is not cognitively engaged, and hence pseudo- 

conceptions are more likely to occur. Once these pseudo-conceptions are in place they 

can be very resistant to change and may act as cognitive obstacles when a learner is 

encouraged to perceive a mathematical object, such as an equation, via its properties. 

2.3.3 Timeous introduction of symbolism 

 

Reacting to the difficulties demonstrated by learners, several researchers (Radford, 2006; 

Drews, 2007; Mduli, 2014; Boorman, 2015) recommend early teaching of problems in 

order to give a variety of meanings to mathematical symbolism. Why have these 

recommendations not always been followed? For Berliner and Calfee (2013), a persistent 
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idea in educational thinking is that knowledge should first be acquired, and that 

applications for reasoning and problem solving should be delayed. However, the creation 

of links between problems and mathematical symbols is a complex process that cannot be 

reduced to a simple translation. 

Doig, McCrae and Rowe (2003) recommended that learners should understand symbols 

by making connections within the system. Mathematics teachers should be mindful of 

these difficulties and provide learners with opportunities to make connections within 

symbol system. It has been well documented that it is key to support learners so that they 

form links between their own informal mathematics and the abstract symbolism of 

school-based mathematics (Worthington & Carruthers, 2003). Learnersô difficulties in 

learning written symbols can be reduced by creating learning environments that help 

learners build connections between their formal and informal mathematical knowledge 

and by using appropriate representations relevant to the given problem context.  

With regard to reading Daroczy, Wolska, Meurers and Nuerk (2015) argue that 

mathematics is an abstract and cognitive process that requires a working knowledge of 

the interaction of numerous discrete skills. Mathematical symbols tend to be more precise 

than language. Multiple interpretations and ambiguity are not generally considered as part 

of mathematics register or computation until it is used as a tool in such fields as statistical 

inference. There is danger of pre-maturely focusing on symbols. Symbols are abstract and 

have no meanings. The symbols that learners read and write must have meaning to them. 

Starting with the abstract nature of symbolism will almost assuredly lead to failure. 

Symbols become meaningful if teaching begins with concrete and semi-concrete 

examples that can be attached to meaningful verbal comprehension. 

 One way to help learners with potentially confusing symbolism is to provide a historical 

insight into the development of those symbols. For example, a story about the 

development of Leibniz notation might help learners understand the integral notation. 

Another way to alleviate confusion is to explicitly point out to learners that symbols often 

have different meanings in different contexts, and that alternate symbolism often exists 

with the same meaning. Unpacking complex symbolism piece by piece can also enhance 

learnersô understanding. This includes breaking the expression into smaller reference 

units that are easy to understand. By habitually unpacking symbolic statements' 
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meanings, learners can more readily attach meaning to symbols and extract meaning from 

symbolic expressions. Mathematics teachers will find that a new culture emerges in their 

classrooms when they are conscientiously and consistently sensitive to learners' 

meaningful use of symbols. Learners will make connections between mathematics 

concepts and the symbolism used to represent these concepts. As a by-product, learners 

will develop symbol sense and will become better symbolic reasoners. 

2.3.4 Connecting manipulatives and written mathematical symbols  

The manipulation of concrete objects is not, in itself, enough to give learners the   

opportunity to understand abstract, symbolic representations of mathematical ideas (Blair, 

Blair & Schwartz, 2012). It is critically important that learners understand these symbolic 

representations as they advance through school (Uttal, OôDoherty, Newland, Hand & 

DeLoache, 2009). Manipulating concrete objects in order to understand mathematical 

concepts is certainly important, particularly in the early stages of learning, but learners 

must be able to connect concrete and symbolic representations. Thus, the essential duty 

for mathematics teachers is to help learners to understand, and to manipulate, symbolic 

representations. 

 Learners need repeated experiences and a wide variety of concrete materials to make 

these connections strong and stable. Teachers often compound difficulties at this stage of 

learning by asking learners to match pictured groups with number sentences before they 

acquire sufficient experience of relating varieties of physical representations with the 

various ways of stringing mathematics symbols together, and the different ways we refer 

to these things in words. The fact that concrete materials can be moved, held, and 

physically grouped and separated makes them much more vivid teaching tools than 

pictorial representations. 

 Because pictures are semi-abstract symbols, if introduced too early, they may confuse 

the delicate connections being formed between existing concepts and the new language of 

mathematics. Similarly, Marshall and Paul (2008) note that structured concrete materials 

are beneficial at the conceptual development stage for mathematics topics at all grade 

levels. Concrete objects provide a way around the opaqueness of written mathematical 

symbols. Evidence from research indicates that learners who use concrete materials 

actually develop more precise and more comprehensive mental representations often 
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show more motivation and on-task behaviour, better understanding of mathematical 

ideas, and are able to apply these to real-life situations (Hiebert & Grouws, 2007).  

According to DeLoache (2004) the concept of dual representation can shed light on this 

fundamental problem. The central tenet of this concept is that all symbolic objects have a 

dual nature; they are simultaneously objects in their own right and representations of 

something else. To use a symbolic object effectively, one must focus more on what the 

symbol is intended to represent and less on its physical properties. Symbols may be 

difficult to teach to learners who have not yet grasped the concepts that they represent 

(Ball, Thames & Phelps, 2008). At the same time, the concepts may be difficult to teach 

to learners who have not yet mastered the symbols. This scenario presents teachers with a 

dilemma of how to sequence concepts and symbols during teaching.  

 

Hiebert (1988) proposes a theory that may help to explain learners' ñoverly mechanical 

behaviourò of learning. The theory is based on how learners develop competence in 

dealing with the written symbol systems of mathematics. Hiebert (1988) suggests a series 

of cognitive processes whose cumulative effect yield competence with written 

mathematical symbols. He identified five major types of processes:(1) connecting 

individual symbols with referents; (2) developing symbol manipulation procedures; (3) 

elaborating procedures for symbols; (4) routinizing the procedures for manipulating 

symbols; and (5) using the symbols and rules as referents for building more abstract 

symbol systems. 

Connecting symbols with referents: In school mathematics, written marks in textbooks 

represent quantities or operations (processes) on quantities. To connect written symbols 

with appropriate referents, learners must be familiar with the relevant quantities and 

actions on the quantities, and they must be familiar with the written characters that will 

be used to stand for the quantities and actions. Then they must create a correspondence 

between the written characters and the quantities or actions to which they refer. 

Familiarity with quantities that can be used as referents is part of many learners' informal 

knowledge. Learners often engage in activities with materials and ideas to find how 

many, how much and when. These everyday experiences generate knowledge of 

quantities and actions on quantities that can provide the initial referents for written 
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mathematical symbols (Nunes, Bryant & Watson, 2007). Learners competence with 

written symbols develops as construct connections between individual symbols and 

familiar referents. Meanings for individual symbols are created as connections are 

established between the written marks on paper and the quantities or actions that they 

represent (Pape & Tchoshanov, 2001). The process involves building bridges between 

symbols and referents and crossing over them mentally many times. 

The significance of the connections between numeric symbols and quantities is that they 

provide mental paths from the symbol to the referent. Learners can recall the mental 

image of related quantities and reason directly about the quantity to solve the problem if 

it is presented to learners in the form of written symbols (as in ordinary classroom 

lessons). The advantage is that the quantities serve as "conceptual entities" (Greeno, 

1983), as cognitive objects that the problem solving procedures take as arguments. For 

learners who are new to the domain, such conceptual entities are likely to support the 

problem solving process. 

Developing symbol manipulation procedures: The second cognitive process required to 

continue the development of competence with symbols is directed towards the 

development of symbol procedures. The procedures are formulated by manipulating the 

referents of the individual symbols, observing the result, and then paralleling the action 

on referents with an action on symbols. 

 Routinizing symbol procedures: The symbol system is used more efficiently if the 

procedures are well practiced. When procedures are practiced so often, they can be 

executed automatically, with little conscious thought, and then the user achieves maximal 

efficiency. 

Building more abstract symbol systems: Symbol systems themselves develop by 

building on one another (Goldin & Kaput, 1987). Learners' competence with symbols 

continues to develop as more abstract systems are encountered, and the ways in which 

they build on earlier familiar systems are recognised. One way in which later systems can 

build on earlier ones is through the transfer of meaning directly from the early symbols 

and rules to the later system. A second way is through the recognition of a 

correspondence between two different symbol systems. Learners can transfer meaning 

from a familiar symbol system to a new, more abstract system if they have established 
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meanings for the familiar symbols (the first two processes have been thoroughly 

engaged), and if they recognise a mapping between the systems so that the familiar 

symbols and rules can serve as referents for the new system. 

2.3.5  Strategies for teaching mathematical symbolisation 

 

Teachers should be aware of the difficulties that symbolism creates for learners. 

Symbolism is a form of mathematical language that is compact, abstract, speciýc, and 

formal. Mathematical symbolism is largely limited to the mathematics classroom. 

Therefore, opportunities to use that language should be regular, rich, meaningful, and 

rewarding. According to Bruner (1960) learning should proceed from concrete to 

abstract. Mathematical symbolism and mathematical understanding are intertwined, but 

meaning must generally precedes symbolisation (Rubenstein & Thompson, 2001). 

Teachers should engage learners in contexts, problems, and activities that move them 

from familiar to newer mathematical ideas; this stage is called the enactive stage. The 

products from these activities may then be expressed in tables or pictures, the iconic 

stage. Ultimately, learning is expressed in common oral English with mathematical 

vocabulary and, in written English with mathematical symbols; this stage is called the 

symbolic stage. 

Mathematics teachers need to verbalise everything they write and be precise and fluent in 

mathematical language. It is very important for all learners to use as many senses as 

possible when learning new mathematics concepts. They need to read a new mathematics 

problem, write it, listen to it, tactically explore it through manipulatives, and when 

possible move their body and/or manipulative through space. 

The poor performance of South African learners in mathematics can be traced to the 

methods used to teach mathematics at the primary school level (Siyepu, 2013). The focus 

is on specific problems and does not building on the theoretical foundations necessary for 

understanding general mathematics at higher level (Wilson, 2006). These foundations can 

only be built with a mathematics program that teaches concepts and skills, and problem-

solving (Daro, 2006). The reform movement in mathematics education can be traced to 

the mid-1980ôs and was a response to the failure of traditional teaching methods, the 

impact of technology on curriculum and the emergence of new approaches to the 
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scientific study of how mathematics is learned (Battista, 1999). Learners must be able to 

read, write and discuss mathematics, use demonstrations, drawings and real-world 

objects, and participate in formal mathematical and logical arguments. Meaningful 

mathematics learning is a product of purposeful engagement and interaction that builds 

on prior experience (Romberg, 2000). 

 

Sabean and Bavaria (2005) compiled a list of the most significant principles related to 

mathematics teaching and learning. The list includes expectations that teachers know 

what learners need to learn based on what they know. Teachers ask questions focusing on 

developing conceptual understanding, experiences and prior knowledge provide the basis 

for learning mathematics with understanding, learners provide written justification for 

problem solving strategies, problem based activities focus on concepts and skills, and that 

the mathematics curriculum emphasizes conceptual understanding. 

 

2.3.6  Teaching reading in mathematics 

Of all the content-area texts that secondary school learners read, mathematics is arguably 

the most difficult (Barton, Heidema & Jordan, 2002). Learners face challenges when 

reading mathematics text. Mathematics is a language that requires the use of vocabulary 

and symbols to translate problems from word form to algebraic form. Adams (2003) 

characterised mathematics as a language of words, numerals, and symbols that are at 

times interrelated and interdependent and at other times disjointed and autonomous. 

Adams (2003) states that weakness in learnersô mathematics ability is often due in part to 

the obstacles they face in focusing on these symbols as they attempt to read the language 

of mathematics.  

Textbooks are commonly written in a concise manner using symbols and diagrams. The 

conceptual density of mathematics text is one of the major challenges. Metsisto (2005) 

maintains that mathematics texts contain more concepts per line, sentence, and paragraph 

than any other kind of text. In addition, reading mathematics requires special reading 

skill, skills that learners may not have used in other content areas. For example, in 

addition to comprehending text passages, learners must be able decode and comprehend 

scores of scientific and mathematical signs, symbols, and graphics. Learners also need to 
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read and interpret information presented in unfamiliar ways not only from left to right, 

but also right to left (number lines), top to bottom (tables), and even diagonally (graphs). 

Further, learners must learn how to read text that is organized differently from that in 

other core subjects. For example, reading limits of functions present challenges for some 

learners: ÌÉÍO ςὼ σὬ can be read as the limit of ςὼ σὬ as Ὤ tends to zero or the 

limit as Ὤ  tends to zero of  ςὼ σὬ. 

Given these challenges, it is no wonder why one should ask the question: ñhow can 

teachers help learners become more successful at reading and learning mathematics 

textsò? In response to this, Burton, Heidema and Jordan (2002) suggest that teachers can 

incorporate reading as part of instruction to help learners activate prior content 

knowledge, master vocabulary, and make sense of unfamiliar text styles. Vacca and   

Vacca (2005) also contended that a learner's prior knowledge is the single most important 

resource in learning mathematics text.  Each learner actively draws on prior knowledge 

and experience to make sense of new information. The more knowledge of symbols and 

skills that learners bring to a text, the better they will learn from and remember what they 

read. Activating learners' prior knowledge prepares them to make logical connections, 

draw conclusions, and assimilate new ideas. 

The ability to read, write, and verbalise mathematical terms is often overlooked during 

instruction. These skills are necessary for learners to be able to understand and 

communicate during mathematical discourse. One strategy that can be of great assistance 

in learning to speak, read, and write the language of mathematics is diagramming.  

Rubenstein and Thompson (2000) suggest that diagramming is a tool that learners can use 

to make connections between different mathematical vocabularies. From reading, to 

writing, to verbalising, learners throughout history have struggled with mathematics. 

Moreover, teachers should remember that there is no one list of strategies that is all-

inclusive.  The possibilities are endless.  The main challenge is that learners who do not 

know how to read, write, or verbalise mathematical terms and ideas have an even harder 

time trying to learn how to do the actual mathematics.   

The Curriculum and Evaluation Standards for School Mathematics (NCTM, 1989) in 

America proposed the need for learners to learn to communicate mathematically. They 

proposed that: 
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ñé The development of a learner's power to use mathematics involves learning the signs, 

symbols, and terms of mathematics. This is best accomplished in problem solving 

situations in which learners have an opportunity to read, write, and discuss ideas in 

which the use of the language of mathematics becomes natural. As learners communicate 

their ideas, they learn to clarify, refine, and consolidate their thinkingò (p. 6).  

However, Callan (2004) later noticed that it is rare to find a mathematics classroom in 

which reading experiences are thoroughly integrated into mathematics instruction. Borasi 

and Siegel (2005) then proposed that learners could use transactional reading strategies to 

learn from any kind of mathematical texts. These strategies engage readers in active 

meaning-making in the sense that interpretations are constructed through reflective 

thought motivated by ambiguity. Later, Duke and Pearson (2008) argue that it is not only 

what learners read, but also how they read that could make a difference in their learning.  

2.3.7 Scaffolding 

Proponents of the constructive theory argue that learning occurs when individual is 

prompted to move past current levels of performance and develop new abilities (Ertmer 

and Newby, 2013). Thus, the provision of external support from the instructor, peers, 

experts, artifacts or tools is essential for learners to construct knowledge. The guidance 

that the teacher extends to the learners is termed scaffolding Hammond and Gibbons 

(2005). It is assumed that through scaffolding, learners can become independent learners. 

Scaffolding techniques such as clarifying doubts, inviting responses, focusing on task, 

reinforcing important facts and evaluating learnersô works can be used by teachers to 

enhance understanding. The teacher initially provides extensive instructional support, or 

scaffolding, necessary to help learners build their own understanding of new concepts or 

skills. Scaffolding is a term in the world of education that exists in modern constructivist 

theory of learning. In learning, scaffolding takes a very important role in the development 

of learner learning. Each time the learners reach a certain developmental stage in learning 

which is characterized by the fulfilment of indicators in certain aspects, the learners will 

require scaffolding. Bassiri (2012) suggests that scaffolding is the concept of learning 

with assistance (assisted learning).  
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According to Vygotsky (1986), the functions of higher mental, including memory and the 

ability to direct attention to specific goals and the ability to think in symbols, is a 

behaviour that requires assistance, especially in the form of media. Scaffolding is derived 

from the view that learning mathematics needs a multiway interaction, teacher-learner, 

learner-learner, learner-teaching materials so that learners-based on experience-can 

develop mathematical knowledge and strategies to respond to mathematical problem 

given. Allowing learners to work out mathematical problems using symbols initially and 

then discussing the reasoning may also be an effective way to scaffold mathematical 

understanding. Hammond and Gibbons (2009) views scaffolding as a form of support in 

which learners take increased responsibility for their learning. Vygotsky (1986) coined 

ñthe zone of proximal developmentò to describe the gap between what a learner can do 

independently and what they can do with help. Teachers need to provide high levels of 

support when necessary while ensuring that learners are challenged enough to make 

progress. 

 Challenges related to learning mathematical symbols 2.4

2.4.1 Difficulties of learning written mathematical symbols 

Learning mathematics with understanding is the vision of school mathematics  

recommended by the National Council of Teachers of School Mathematics (2000). 

Learners struggle with a very narrow form of mathematical language, namely formal 

symbolism. The special written symbolism of mathematics is the hardest form of 

language for learners to learn. In order to design and develop learning environments that 

promote understanding efficiently, teachers need to be aware of learners' difficulties in 

learning mathematics.  

Standard written symbols play an important role in learning of mathematics, but learners 

may experience difficulties in constructing mathematical meanings for symbols. Learners 

derive meaning for the symbols from either connecting with other forms of 

representations (e.g. physical objects, pictures and spoken language) or establishing 

connections within the symbol systems (Yetkin, 2003). Meanings of numerical and 

operational symbols such as ςȟτȟσȾτȟςȢτȟ and   are constructed by connecting with 

concrete materials, everyday experiences or language. For example, the symbol ͼ
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ͼ takes meaning if it is connected with the joining idea in situations like "I have four 

marbles. My mother gave me five more marbles. How many marbles do I have 

altogether?" Although these representations facilitate learning written symbols, the 

potential for them to create understanding of written symbols is limited, since they are 

representations themselves. Learners might have difficulty in understanding the meaning 

of a written symbol if the referents do not well represent the mathematical meaning or if 

the connection between the referent and the written symbol is not appropriate (Yetkin, 

2003). For example, geometric regions are the models most commonly used to represent 

fractions. These models represent the part-whole interpretation of rational numbers. 

However, the symbol  ╪

╫

   also refers to a relationship between two quantities in terms of 

the ratio interpretation of rational numbers. Similarly,  ╪

╫

   may be used to refer to division 

operation. For this reason, teachers need to use other types of representations such as sets 

of discrete objects and the number line to promote conceptual understanding of the 

symbol   ╪

╫

  . 

One of the reasons advanced for the difficulty in understanding symbols comes from the 

fact that in their standard form, written symbols might take on different meanings in 

different settings. For instance, in solving the equation  ὼ is an unknown that 

does not vary, whereas it varies depending on y in the equation  (Janvier, 

Girardon & Moorland, 1993). In order to understand mathematical symbols, learners 

need to learn multiple meanings of the symbols depending on the given problem context. 

Therefore, they should be provided with a variety of appropriate materials that represent 

the written mathematical symbols, and they should also be aware of the meaning of 

mathematical symbols in different problem contexts. Furthermore, concepts are learned 

best when they are encountered in a variety of contexts and expressed in a variety of 

ways, for that ensures that there are more opportunities for them to become imbedded in a 

student's knowledge system (Bransford, Brown and Cocking, 1999). 

Learners also build understanding for written symbols by making connections within the 

system. For example, a numeral such as σςυτ can express the number of the units of any 

power of ten. In other words, it represents three thousand, two hundred, fifty-four units as 

,432 =+x

yx =+32
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well as three hundred twenty-five tens; thirty-two hundred; and three thousand. Although 

these patterns are evident for adults, learners might not easily construct these 

relationships by themselves (Whitebread, 2012). Therefore, teachers should be aware of 

these difficulties and provide learners with opportunities to recognise the patterns and 

make connections within symbol system. Developing understanding in mathematics is an 

important but difficult goal. Being aware of learner difficulties and the sources of the 

difficulties, and designing instructions to diminish them, are important steps in achieving 

this goal.  

Because mathematics is so often conveyed in symbols, oral and written communication 

about mathematical ideas is not always recognised as an important part of mathematics 

education. Learners do not necessarily talk about mathematics naturally; teachers need to 

help them learn how to do so (NCTM, 2000). As learners progress through the grades, the 

mathematics about which they communicate should become more complex and abstract. 

Learners' repertoire of tools and ways of communicating, as well as the mathematical 

reasoning that supports their communication, should become increasingly sophisticated. 

To this regard, Hattie and Donoghue (2016) encourages teachers to establish classroom 

cultures that foster learning for learners to develop ability of effective communication 

that promotes deeper learning, but this condition alone is not sufficient to make learning 

with deeper understanding take place. Learners whose primary language is not English 

may need some additional support in order to benefit from communication-rich 

mathematics classes, but they can participate fully if classroom activities are 

appropriately structured (Ferreira, 2011). 

Wilder (2013) discusses how human beings possess ñsymbolic initiativeò that enables 

them to ñassign symbols to stand for objects or ideas, set up relationships between them, 

and operate with them on a conceptual levelò (p. 5). He credits much of mathematics 

achievement to this uniquely human capacity. Human beings possesses what is called 

symbolic initiative; that is, they assign symbols to stand for objects or ideas, set up 

relationships between them, and operate with them as though they were physical objects.  
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2.4.2 Verbalisation challenges 

 

Verbalisation challenges involve translating mathematical symbols into spoken language. 

Verbalisation refers to the surface structures used to transmit ideas (K'Odhiambo & 

Gunga, 2010). Thompson and Rubenstein (2000) posit that if a learner does not know 

how to read mathematics aloud; it is difficult to register the mathematics. Reading is a 

link to understanding. Some symbols require multiple words to pronounce, and others are 

verbalised in multiple ways. At times, the verbalisation of a symbol changes depending 

on the context. Learners may need to be reintroduced to verbalisations of familiar 

symbols when they are doing more advanced work (Maharaj, 2008). Therefore, learners 

must not only recognise the symbols, but they must also learn to associate them with 

particular concepts, procedures and the words used to express those concepts. 

Verbalising mathematics is a skill that learners must develop. Learners need to routinely 

participate in dialogue and discussion on mathematics related topics and also to discover 

methods in mathematics. Studies, conducted by Siegel and Fonzi (1995), reveal lack of 

verbal exchange between learners and their peers, and also with their teachers within the 

classroom, and instead portrayed classrooms as a standard input/output situation. 

Teachers should learn to give up part of the educational reigns of their classroom and 

allow the learners to become more than just passive receivers of the materials at which 

they need to become skilled in. Engaging learners in talking about mathematical concepts 

is one of the ways to engage in formative assessment. An additional benefit is that 

learners may themselves realise what they do not understand. This allows them to adjust 

their own reasoning, and over time it may improve their metacognitive abilities. Teaching 

through discussion supports robust learning by boosting memory, deeper reasoning, 

development of language and social skills (Coe, Aloisi, Higgins & Major, 2014). 

 Another aspect of verbalising mathematics is the use of correct terminology and 

vocabulary. If learners do not speak the language of mathematics, how do they 

understand the mathematics? Mercer and Sams (2006) feel the need for learners and 

teachers to converse using terms that are functional, not only for communication but for 

reasoning. Part of understanding mathematics is being able to use its vocabulary correctly 

in daily conversation. Teachers need to be aware that learning vocabulary is not just 
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learning definitions. ñJust giving learners vocabulary lists with definitions, or asking 

them to look up definitions, is not enough for them to develop the conceptual meaning 

behind the words or to read and use the vocabulary accuratelyò (Kenney, Hancewicz, 

Heuer, Metsisto & Tuttle, 2005:26). Teachers and learners should correctly use the 

vocabulary daily in their classroom interactions. This inclusion will help make the 

vocabulary a natural part of learnersô spoken language and will aid in their understanding. 

ñMathematics is a foreign language for many learners; it is learned at school and is not 

spoken at home. Mathematics is not a ófirstô language; that is, it does not originate as a 

spoken languageò (Kenney, Hancewicz, Heuer, Metsisto & Tuttle, 2005:6). Learners 

need to recognise that for them to learn the material; they have to become participants, 

not observers, of their education process. They must be active learners. 

Mathematics is often conveyed in symbols, the oral and written communication about 

mathematical ideas is not always recognised as an important part of mathematics 

education. Learners do not necessarily talk about mathematics naturally; hence teachers 

need to help them learn how to do so (OôConnell and Croskey, 2007). As learners 

progress through the grades, the mathematics that they communicate becomes more 

complex and abstract. Learners' repertoire of tools and ways of communicating, as well as 

the mathematical reasoning that supports their communication, should become 

increasingly sophisticated. Support for learners is vital. Eisenchlas, Schalley and 

Guillemin (2013) recommend that learners whose primary language is not English may 

need some additional support in order to benefit from communication-rich mathematics 

classes, but they can participate fully if classroom activities are appropriately structured. 

The language policy in South Africa stipulates that English language is the medium of 

instruction at the secondary school level (Mncwango, 2012). But, mathematics is 

conceived everywhere in the world has a subject with internationally accepted 

terminologies and a symbol system that has condensed meaning (Wasike, 2006). These 

symbols and terminologies are not familiar and sometimes have contradicting meanings 

with ordinary English especially in the area of statistics. 

Learners need to learn mathematical symbols and ideas so that they can communicate 

with others mathematically. As learners strive to express and expand their mathematical 

understanding through the communication of their ideas, they learn to clarify, refine, and 
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consolidate their thinking (NCTM 2000). Mathematics is a communication system that 

can be used to describe and communicate life experiences, yet Mulwa (2014) further 

discerns that communication about mathematics requires genuine negotiation and sharing 

of meaning. The meanings are conveyed through symbols. Learnersô literature involving 

mathematics provides a common, natural context for the sharing of mathematics. 

Mathematical discourse not only promotes learnersô oral language skills, but it also 

advances learnersô abilities to think and communicate mathematically (Moyer, 2000). 

 

Communication is an essential part of mathematics through which ideas become objects 

of reflection, refinement, discussion, and amendment. The communication process also 

helps build meaning and permanence for ideas and makes them public. When learners are 

challenged to think and reason about mathematics and to communicate the results of their 

thinking to others orally or in writing, they learn to be clear and convincing. Listening to 

others' explanations gives learners opportunities to develop their own understanding. 

Conversations in which mathematical ideas are explored from multiple perspectives help 

the participants sharpen their thinking and make connections. Learners who are involved 

in discussions in which they justify solution especially in the face of disagreement will 

gain better mathematical understanding as they work to convince their peers about 

differing points of view (Smith, Silver & Stein, 2005). Such an activity helps learners to 

develop a language for expressing mathematical ideas and an appreciation of the need for 

precision in that language. 

 

 Learners who have opportunities, encouragement, and support for speaking, writing, 

reading, and listening in mathematics classes reap dual benefits: they communicate to 

learn mathematics, and they learn to communicate mathematically (Falk-Ross & Evans, 

2014). There is little research on how mathematics teachers and learners acquire 

verbalisation. Research on learnersô handling of the verbal and symbolic elements of 

mathematics language often focused on learnersô comprehension and response to 

mathematical texts, rather than learnersô own generated verbal utterances. 
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2.4.3 Reading challenges 

Reading challenges refers to difficulties learnersô encounter when reading mathematical 

concepts in textbooks. Mathematics is a language that can neither be read nor understood 

without initiation (Simonson & Gouvea, 2003). The issue of reading, recognising and 

understanding symbols underpins all mathematics topics (Bardinia & Pierce, 2015). 

Reading is a skill that goes beyond pronouncing and attaching meaning to symbols. 

Reading in mathematics entails more than a mechanical or manipulative approach to 

numbers. Reading a mathematics text requires an understanding of symbols in order to 

master two basic processes: classification and the study of relationships. Therefore, any 

approach to improving reading skills in mathematics must focus primarily on 

comprehension, on understanding abstract ideas in order to improve learnersô 

understanding of concepts.  

Reading a mathematical text requires a reading protocol, which is a set of strategies that a 

reader must use in order to benefit fully from reading the text. Reading a mathematics 

text requires cross references, reflecting, scanning, pausing revisiting and re-reading. In 

mathematical writing, mathematicians appear to prize conciseness and precision of 

meaning (Shepherd, Selden & Selden, 2009). Most mathematics textbooks used in South 

African secondary schools contain a text exposition of concepts and processes, 

definitions of key terms and vocabulary, theorems related to the concepts and less formal 

mathematical assertions, graphical representations, figures, tables, worked examples, and 

exercises at the end of a sub-unit or concept and a summative exercise or topic at the end 

of the topic.  

Mathematics textbooks contain many confusing symbols that function as ideographs 

rather than letters. An ideograph is a graphic symbol that represents an idea or concept. 

Some ideograms are understandable only by familiarity with prior convention; others 

convey meaning through pictorial resemblance to a physical object, and thus may also be 

referred to as pictograms. The meaning of such complexes cannot be ñspelled or sounded 

outò while learners read. Reading mathematics text requires analysis and the generation 

of meaning from a symbol system and involves two types of comprehension: literal, 

including word meanings, sentence meanings, and getting the main idea; and inferential, 

including drawing conclusions, making judgments, and using symbolic language (Randi, 
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Newman & Grigorenko, 2010). Reading mathematics can be challenging. Some 

mathematical words have more than one meaning, depending on the branch of 

mathematics, for example, ñinverseò in arithmetic and in functions. In arithmetic the 

inverse of ς is    (fraction or reciprocal) while in functions the inverse of the function 

Ὢὼ  σὼ ρ is not   but  Ὢ ὼ  . 

Some adjectives used in mathematics can substantially change the meaning of some 

words, such as ñvalue of  σὼ ρò or ñabsolute value of  σὼ ρò. Learners must 

comprehend the words, symbols, signs and sentences they are reading in order to 

understand the concept.  Zambo and Cleland (2005) argue that reading activities such as 

relating the symbols to personal experience, and concentration-type games have a place 

in mathematics instruction when vocabulary development is an objective. 

According to Tall and Gray (2001) many learners have difficulty moving beyond simple 

arithmetic to understanding the symbolic nature of algebra and variables. Anthony and 

Walshaw (2009) posit that providing learners at any age with opportunities to converse, 

read, and write about mathematics enhances the development of concepts. When concept 

development is the desired goal, verbal interaction among peers is a tremendous 

facilitator (Dennen, 2004). However, few learners get the chance to verbalise 

mathematical understandings and symbols. Pillay and Adler (2015) indicate that school 

mathematics learning is dominated by teacher presentations and independent silent work. 

Group discussions are no longer a common feature of modern classrooms. It is important 

that both teachers and learners acknowledge that errors and misinterpretations are a 

natural and valuable, part of the learning process. The ability to share one's ideas and 

justify them to others helps develop a solid understanding of those ideas. 

The National Council of Teachers of Mathematics (2000) contends that learners who 

have opportunities, encouragement, and support for writing, reading, and listening in 

mathematics classes reap dual benefits. They communicate their ideas to others and they 

learn to communicate mathematically. Barton and Heidema (2002) further pointed out 

that: 

 ñééThey learn to use language to focus on and work through problems, to 

communicate ideas coherently and clearly, to organize ideas and structure arguments, to 
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extend their thinking and knowledge to encompass other perspectives and experiences, to 

understand their own problem-solving and thinking process as well as those of others, 

and to develop flexibility in representing and interpreting ideas (p. 4). 

For the learner, reading the mathematics textbook or handouts or extended response 

problems presents built-in challenges. The vocabulary of mathematics can be confusing, 

with some words meaning one thing in one mathematical context and another in everyday 

settings. Symbols can look alike, and different symbols can represent the same operation. 

Graphs vary in format, even when representing the same data. 

The ability to read mathematics is an extremely important and necessary skill for learners 

to master. Learners who can read and comprehend mathematical text and language are 

better able to understand and succeed in mathematics (Buchanan,  2007). Weinberg and 

Wiesner (2011) explored the potential for mathematics instruction using reading 

strategies based on the transactional reading theory. They explained what makes reading 

mathematics text a more complicated endeavour than reading other types of text as well 

as what skills are needed to be able to understand it successfully. The key to successful 

reading of technical mathematics texts lies in the learnerôs ability to decode mathematical 

symbols and the special and unique language used in such texts.  

The ability to read and understand mathematical text also benefits learners in their daily 

school work, examinations, and even college entrance tests or other types of assessments. 

Teaches need to teach learners the skill of how to read and understand mathematics as a 

language to learners. One way to do this is by treating mathematics as a second language 

that needs to be taught, learned, practiced and understood. Mastering the skills to read 

and comprehend mathematical text is not a natural skill, but instead a skill that must be 

practised and learned. Adams (2003) outlined some of the skills that learners lack when 

reading mathematics text. He argued that reading is often excluded or given little 

attention in mathematics classes. Reading mathematics is a multidimensional task 

because the reader is challenged to acquire comprehension and mathematical 

understanding with fluency and proficiency through the reading of numerals and 

symbols, in addition to words. Many learners have weakness in their mathematics ability 

due in part to the obstacles they face in focusing on these symbols as they attempt to read 

the mathematical language. 
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One of the tools for helping learners to succeed at reading the mathematical text is to 

teach them how to read the text and then constantly practice this skill (Buchannan, 2007). 

Teachers need to teach the skill of how to read and understand mathematics as a language 

to learners. One way to do this is by treating mathematics as a second language that needs 

to be taught, learned, practiced and understood. Mastering how to read and comprehend 

mathematical text is not a natural skill, but instead a skill that must be learned. Learning 

to read mathematical text and write mathematical ideas in written expressions seem to 

have a symbiotic relationship with each other. If a learner can do one skill, it makes the 

other skill easier, and vice versa (Rosa & Orey,  2010). Reading mathematics is different 

from reading a novel because mathematical writing is very different from fiction and 

even most types of nonfiction. Mathematical writing is concise and dense. New concepts 

build logically upon previously introduced concepts. Specialized vocabulary, abundant 

symbols, and detailed diagrams challenge the reader.  

Shepherd, Selden and Selden (2009) summarised learnersô difficulties in reading 

mathematics textbooks as: (1) learners bring insufficient prior knowledge as a result of 

underdeveloped concept images; (2) learners struggle with the syntax and precision of 

mathematical definitions, examples, and lack exposition in mathematical writing; and (3) 

grounding the abstractness of mathematical ideas in concrete objects or actions while 

reading.  

2.4.4 Writing Challenges 

Writing challenges refers to inability to produce appropriate symbols for a given 

mathematical situation. With regard to learnersô own writing Phillips (2008) suggested 

that writing sentences helps learners write correct symbolic expressions. However, many 

learners struggle to effectively communicate mathematical ideas in writing. Most learners 

believe that this ability is not important. Mathematical writing, however, has its own 

particular style. The focus of good mathematics writing is on clarity and precision.  

By habitually unpacking symbolic statements' meanings, learners can more readily attach 

meaning to symbols and extract meaning from symbolic expressions. Mathematics 

teachers will find that a new culture emerges in their classrooms when they are 

conscientiously and consistently sensitive to learners' meaningful use of symbols. 
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Learners will make connections between mathematics concepts and the symbolism used 

to represent these concepts. As a by-product, learners will develop symbol sense and will 

become better symbolic reasoners. Many learnersô progress in mathematics is hampered 

by math symbols. To battle symbol confusion; learners should familiarise themselves 

with symbols in advance and perhaps even write out in words what they mean. For 

example, they can write out that an exponent means, ñMultiply a number by itself.ò That 

way, learners will be able to understand and quickly interpret symbols on mathematics 

tests and will not allow the language of math to confuse them. 

2.4.5 Multiple Representations of mathematical concepts 

Kirsh (2010) defined multiple representations as external mathematical embodiments of 

ideas and concepts that provide the same information in more than one form. 

Mathematical concepts or processes may be represented in a number of different ways. 

These include verbal, symbolic (numerical or algebraic), pictorial/diagrammatical 

(geometrical), as a table of values (spreadsheet), graphical or as a physical model. They 

are used to understand, to develop, and to communicate different mathematical features 

of the same object or operation, as well as connections between different processes.  

Teachers should use multiple representations of mathematical ideas and concepts when 

teaching mathematics and encourage learners to use multiple representations to help solve 

mathematical problems. Research focusing on the use of multiple representations in 

teaching and learning reveals that learners learn more readily under this regime and gain 

deeper mathematical understanding (Kaput & Goldin, 2002). Hegedus and Kaput (2007) 

found convincing evidence that learners using dynamically-linked representations gained 

in understanding by seeing how a change in one representation produced changes in the 

others. Studies by Chittleborough and Treagust (2008) provided a great deal of evidence 

to support the argument that learners working with multiple representations gain a deeper 

understanding of the mathematical concepts involved. 

 Hoong, Kin and Pien (2015) reveal that learners learn through several modes of 

representations. Similarly, Kaput (1989); Skemp (1987); Hiebert and Carpenter (1992), 

illustrate that multiple representations of concepts can be utilized to help learners to 

develop deeper, and more flexible understanding. Bal (2015) argues that representations 
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are inherent in mathematics; they provide multiple concretisations of a concept; they 

could be used to mitigate certain difficulties; and they are intended to make mathematics 

more attractive and interesting. Dreher, Kuntze and Lerman (2015) listed some potential 

benefits of multiple representations: (a) they provide multiple concretisations of a 

concept, (b) selective emphasis and de-emphasis different aspects of complex concepts, 

and (c) facilitate cognitive linking of representations.  

Goldin and Shteingold (2001) classify representations as external and internal. An 

internal representation consists of mental images corresponding to internal formulations 

constructed out of reality (signified). External representations refer to external symbolic 

entities such as symbols, schema and diagrams that are used to represent a certain 

mathematical reality. External representations are the means by which mathematical ideas 

could be communicated and they are presented as physical objects, pictures, spoken 

language, or written symbols. External representations such as pictures, diagrams, and 

physical models are grounded in familiar experiences, connect with learnersô prior 

knowledge, and have an identifiable perceptual correspondence with their referents (Fyfe, 

McNeil, Son & Goldstone, 2014). However, they may contain extraneous perceptual 

details that distract learners from relevant information or inhibit transfer of knowledge to 

novel situations (Sloutsky & Heckler, 2008).  

External representations act as stimuli on the senses and include charts, tables, graphs, 

diagrams, models, computer graphics, and formal symbol systems.  They are often 

regarded as embodiments of ideas or concepts. External representations are the symbols 

(signifiers) while internal representations are called the signified. Mason (2002) presented 

the idea that teaching schemes are a spiral movement.  As they pass through the spiral, 

learners have mental transformations from using manipulable external representations to 

gain meaning of internal representations to symbolic representations. Symbolic 

representations such as formal equations and line graphs eliminate extraneous surface 

details, are more arbitrarily related to their referents, and represent the underlying 

structure of the referent more efficiently (Chu, 2015). Thus, they allow greater flexibility 

and generalizability to multiple contexts, but may appear as meaningless symbols to 

learners who lack understanding of the symbols (Nathan, 2012). 
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Stylianou (2010) further elaborate on the two forms of representation as: External 

representations are the representations we can easily communicate to other people; they 

are the marks on the chalkboard, paper, the drawings, the geometry sketches, and the 

equations. Internal representations are the images we create in our minds for 

mathematical objects and processes. Goldin and Shteingold (2001) expand the discussion 

on the types of representation arguing that: external systems of representation range from 

the conventional symbol systems of mathematics (such as base-ten numeration, formal 

algebraic notation, the real number line, or Cartesian coordinate representation) to 

structured learning environments (for example, those involving concrete manipulative 

materials or computer-based micro worlds).  Internal systems, in contrast, include 

learnersô personal symbolisation constructs and assignments of meaning to mathematical 

notations, as well as their natural language, their visual imagery and spatial 

representation, their problem-solving strategies and heuristics, and (very important) their 

affect in relation to mathematics. (p. 2).  

 In trying to relate internal and external representations in mathematics, Goldin and 

Shteingold (2001) propose two important terms in their discussion: homonymy and 

synonymy. The first phenomenon in mathematics is found when one representation has 

two different meanings.  That is, from an external representation there are two different 

internal representations.  The second term refers to when one mental object is denoted in 

many representations: from two different external representations there is one internal 

representation. According to Goldin and Shteingold (2001) homonymy, as well as 

synonymy cannot be avoided in mathematics. Learners show certain preferences for 

certain external representations. Hart (1991) studied learnersô preferred representations 

and observed that they vary depending on the problem. Her findings are complementary 

to Arcavi (1994)ôs attributes of symbol sense: 

1. Learners seek alternate representations when they are not successful at finding 

solutions using symbols.  

2. Learnersô choice of representation depends on the complexity of the symbolic 

information provided. 

3. Some learners do not prefer certain representations because they do not recognise 

them as viable choices. 
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4. Learners lack confidence in using certain representations.  

5. Learners who are not conversant with graphs do not choose to use the graphical 

representation. 

2.4.6 Abstraction in mathematics 

Abstraction in mathematics means extracting the underlying essence of a mathematical 

concept (Hollihan & Baaske, 2015). Their meanings are defined within the world of 

mathematics, and they exist quite apart from any external reference. It removes any 

dependence on real world objects with which the concept might have been connected to 

(Joan, 2015). One of the features that make mathematics difficult is that it deals with 

abstract concepts that are represented by abstract symbols.  Mathematics concepts are 

modelled at the abstract level using only numbers, notation and mathematical symbols. 

Mathematical cognition only takes place after converting mathematical symbols into 

appropriate inner codes (De Cruz & De Smedt, 2013). At the elementary level, these 

symbols may not be adequately explained and thus learners fail to perform mathematical 

operations when the abstractions are more complex.  

The abstract nature of mathematical symbols and concepts is one of the reasons why 

mathematics is so difficult. Abstraction is one of the underlying powers of mathematics 

(Wilson, 2006). Most of the strands of mathematics begin with the study of real world 

problems, before the underlying rules and concepts are identified and defined as abstract 

structures. Abstraction and mathematical symbolisation are ongoing processes in 

mathematics and the historical development of many mathematical topics exhibits a 

progression from the concrete to the abstract. For example, physical manipulatives act as 

teaching aids that can help learners to understanding mathematical concepts. They are 

not, in and of themselves, mathematics, but are teaching tools to help get to the heart of 

mathematics. 

 THEORETICAL FRAMEWORK  2.5

This study is guided by four interrelated constructivist theories. In the constructivist 

perspective, the learner must be actively involved in the construction of one's own 

knowledge rather than passively receiving knowledge. The teacher's responsibility is to 

arrange situations and contexts within which the learner constructs appropriate 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Essence
http://en.wikipedia.org/wiki/Abstract_structure
http://en.wikipedia.org/wiki/Abstract_structure
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knowledge. According to the constructivist theory of learning learners are viewed as 

active mathematical thinkers, who try to construct meaning and make sense for 

themselves of what they are doing, based on their personal experience (Shuard, 1986). 

Understanding the nature of learnersô challenges with mathematical symbols is complex, 

and there is a need for organisational structures such as frameworks to examine the nature 

of learnersô reasoning about symbols and understand what this entails about conceptual 

understanding. This theoretical analysis aims to suggest a framework that teachers and 

learners can use to construct meanings for mathematical symbols that aid understanding 

of mathematical concepts. This study is guided by a combination of symbol sense 

(Arcavi, 1994), Algebraic Insight framework (Pierce & Stacey, 2001), APOS theory 

(Dubinsky & McDonaldôs, 2002) and Procept Theory (Gray & Tall, 1994). These 

frameworks are interrelated and all shed light into the aspects of symbol sense that are 

challenging for learners as they reason and use symbols in mathematical activities and 

problem solving. These frameworks are described in detail below. 

2.5.1  Symbol Sense Framework 

The proponents of the symbol sense framework are Fey (1990) and Arcavi (1994). 

Symbol sense is considered as the heart of algebraic competency (Arcavi, 1994). It is 

difficult to define symbol sense because it interacts with other senses like number sense, 

function sense, and graphical sense in problem-solving situations. Arcavi (1994) made a 

remarkable attempt to characterise symbol sense through a rich variety of examples and 

illustrations of mathematical behaviours (Zehavi, 2002). Kinzel (2001) describes symbol 

sense as the combination of notational awareness of expressions and the skill to 

manipulate and interpret these expressions. Boero (2001) uses the terms ñtransformation 

and anticipationò to analyse behaviours in algebraic problem solving. He refers to the 

continuous tension between ñforeseeing and applyingò as a dialectic relationship. Zorn 

(2002) viewed symbol sense as the ability to extract mathematical meaning and structure 

from symbols, to encode meaning efficiently by symbols, and to manipulate symbols 

effectively to discover new mathematical meaning and structure. In order to be proficient, 

mathematics learners must acquire an understanding of letters, variables and objects 

(Arcavi, 2005).  
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Arcavi (2005) argues that having ósymbol senseô is central to mathematics learning and 

good teaching aims to achieve ósymbol senseô. Symbol sense is an essential prerequisite 

for advanced mathematics and science and is the primary purpose of algebra (Sullivan, 

2013). Some keys themes for teaching symbol sense were suggested by Fey (1990) and 

Arcarvi (1994). Arcavi (1994) modified the list proposed by Fey (1990) and considers 

that the symbol sense must include, among others, an understanding of and an aesthetic 

feel for the power of symbols, which brings the idea of visual salience (Kirshner & Awtry 

(2004); an ability to manipulate and to "read" symbolic expressions as two 

complimentary aspects of solving algebraic problems. Arcavi (1994) further asset that 

knowing the algebraic manipulations to solve problems it is not enough, instead it is 

necessary to understand the meaning of the symbols. He identified four key behaviours: 

reading instead of manipulation of the symbols; reading and manipulation; reading as the 

goal for manipulation, reading for reasonableness. 

 

Goldin (2002) explains that communication in mathematics is viable if symbolic systems 

are understood and relations between systems could be used to enhance symbolic 

understanding. Holmqvist et al, (2011) define symbol sense as a complex and 

multifaceted "feel" for symbols. Zehavi (2002), like Arcavi (2005) conceded that it is 

difficult to define symbol sense because it interacts with other senses like number, 

function and graphical in problem-solving situations. In an attempt to define symbol 

sense, Hawkins and Allen (1991) described it as an accurate choice of symbols to 

represent a mathematical situation or concept. Pope and Sharma (2001) provided a 

comprehensive definition in which they defined symbol sense as the ability to appreciate 

the power of symbols, to know when the use of symbols is appropriate, and to manipulate 

and make sense of symbols in a range of contexts. Thus, there is no concise definition of 

symbol sense but descriptions of behaviours that illustrate whether a learner has symbol 

sense or not. 
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Arcavi (1994) characterised symbol sense as an: 

 

a) understanding of situation and stage where symbols can be and should be used in 

order to display relationships; 

b) ability to abandon certain symbols in favour of other approaches in order to make 

progress in solving a problem; 

c) ability to carry out mathematical processes and to ñreadò symbolic expression as 

complementary aspects of solving algebraic problems; 

d) awareness that one can initiate symbolic relationships that express the verbal or 

graphical information needed to make progress in solving a problem; or  

e)  ability to select a possible symbolic representation of a problem. 

 

Learning algebra requires learners to have symbol sense (Naidoo, 2009). Algebra 

involves much more than mastering basic skills; it also involves choosing sensible 

strategies to tackle problems, maintaining an overview of the solution process, creating a 

model, taking a global view of expressions, wisely choosing subsequent steps, 

distinguishing between relevant and less relevant characteristics and interpreting results 

in meaningful ways. Symbol sense is regarded as a type of meta-knowledge in algebra. 

Symbol sense involves the flexible algebraic expertise or algebraic literacy that often 

operates in the background without our conscious awareness. Based on insight into the 

underlying concepts, it directs the implementation of the basic routines. It plays a role in 

planning, coordinating and interpreting basic operations and consists of three interrelated 

skills: 

i. The strategic skills and heuristics to approach a problem; the capacity to maintain 

an overview of this process, to make effective choices within the approach, or if a 

strategy falls short, to seek another approach. 

ii.  The ability to view expressions and formulas globally, to understand the meaning 

of symbols in the context and to formulate expressions in another way. Process-

object duality plays a role in that skill. 
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iii.  The capacity for algebraic reasoning. This often involves qualitative reflections on 

terms and factors in expressions, symmetry considerations or reasoning with 

particular or extreme cases. 

Arcavi (1994) states that many learners fail to see symbols as tools for understanding, 

communicating, and making connections, even after several years of study. He sees 

development of symbol sense as a necessary component of sense-making in mathematics. 

He argues that having ósymbol senseô is a fundamental requirement for the study of 

mathematics especially algebra.  

 

Bergsten (2000) describe symbol sense as an appreciation for the power of symbolic 

thinking, an understanding of when and why to apply it, and a feel for mathematical 

structure. Adams, Pegg and Case (2015) compared symbol sense with number sense and 

found it to be a higher level of mathematical literacy. Wu (2009) explains that 

communication in mathematics is viable if symbolic systems are understood and relations 

between systems could be used to enhance symbolic understanding. Arzarello, Ferrara, 

Robutti and Sabena (2009) urged learners to acquire skills in manipulating various 

symbols in order to solve a mathematical problem or to prove a formula. Research has 

revealed how learners interpret and make use of mathematical symbols, a facet of the 

work on symbol sense. Arcavi (1994) described it as ñmaking friends with symbolsò (p. 

25), including an understanding and feel for symbols, how to use and read them. While 

solving a mathematical problem, the learner is required to analyse, identify and recognise 

the relevance of critical areas of a mathematical representation. Kenney (2008) adopted a 

symbol sense framework constructed using the work of Pierce and Stacey (2001, 2002) 

and Arcavi (1994, 2005), to investigate learnersô reasoning with mathematical symbols at 

different problem solving stages. She identified the following components of symbol 

sense: 

1. Friendliness with symbols 

This includes understanding of and an aesthetic feel for the power of symbols, how and 

when symbols can and should be used in order to display relationships, generalizations 

and proofs that otherwise are hidden and invisible. Arcavi (1994) found that most learners 
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lack substantial background in algebra and do not resort to symbols as tools to enable 

them to investigate it in a general way.  

 In some cases, invoking mathematics symbols may be costly in terms of the amount of 

work and time required to execute the mathematics task compared to other approaches. 

Thus, researchers claim that learners who know how to perform algebraic manipulations, 

but do not consider the possible relevance of symbols to reveal the structure of a problem 

that has aroused their curiosity, did not fully develop their symbol sense (Drijvers, 2003; 

Arcavi, 2005). Having symbol sense includes the relevant invocation of algebra; that is, 

to have symbols readily available as possible sense making tools. A further indication of 

lack of symbol sense is also noticed when, in the process of solving mathematical 

problems algebraically, learners are usually unable to recognise and express solutions in 

symbolic forms or having symbolic as final answers. Even when symbols are used, and 

the solution they yield is recognised, it would be desirable that learners appreciate the 

"power of symbols": Only with the use of symbols, a conjecture or an argument can be 

conclusively accepted or dismissed.  

 

Arcavi (2005) further posits that symbol sense should include, beyond the relevant 

invocation of symbols and their proper use, the appreciation of the elegance, conciseness, 

the communicability and the power of symbols to display and prove relationships in a 

way that arithmetic cannot. Thus symbol sense requires learners to invoke symbols when 

they are appropriate and it requires them to abandon symbols when they are likely "to 

drown" in complicated technical manipulations. The ability to discard the almost 

unavoidable initial temptation to proceed mostly symbolically, in favour of the search for 

another approach, requires a healthy blend of "control" with symbol sense. Control refers 

to ña category of behaviour which deals with the way individuals use the information 

potentially at their disposal (Schoenfeld, 2014. It focuses on major decisions about what 

to do in a problem, decisions that in and of themselves may ñmake or breakò an attempt 

to solve a problem. To sum up, this component or theme of symbol sense implies that 

learners should cultivate a culture of trying alternative ways to represent the problem, in 

the belief that more elegant and straightforward approaches may exist and should be 

considered. 
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2. Manipulating and óreading through ósymbolic in solving algebraic problems 

 One of the strengths of symbols is that they enable us to detach from, and even "forget", 

their referents in order to produce results efficiently. On the one hand, the detachment of 

meaning coupled with a global ógestaltô view of symbolic expressions is needed for the 

manipulations to be relatively quick and efficient (Drijvers, 2011). On the other hand, the 

reading of and through the symbolic expressions towards meaning adds layers of 

connections and reasonableness to the results. An observation made by Chirume (2012) 

on learners performing tasks involving symbols indicates automatic manipulation of 

symbols without understanding their meanings. Another strategy used by learners 

involves the use of the a-priori inspection of the symbols with the anticipation of gaining 

a feel for the problem and its meaning, and its a-posterior checking to contrast meaning-

making with symbolic manipulations are instances of symbol sense (Hurlburt, 2009).  

For example when solving the equation,  learners should try to óreadô 

meaning into the symbols. One might notice that, whatever ὼȟ since the numerator is half 

the denominator; this equation cannot have a solution. Tall (1996) claim that this a-priori  

inspection of the symbols with the expectancy of gaining a feel for the problem and its 

meaning is another instance of symbol sense. This also corresponds to algebraic 

expectation of the Algebraic insight framework. 

3. Initiating symbolic relationships 

This refers to the ability to successfully initiate mathematical symbolic relationships that 

express verbal or graphical information needed to make progress in a problem. This 

scheme shows a higher cognitive level of symbol sense than the ones discussed above. It 

suggests that, given the symbols, learners with symbol sense should be able to "read" 

meaning from the symbols themselves. It proposes that symbol sense also includes: 

firstly, an appreciation that an ad hoc symbolic expression can be created for a desired 

purpose and that one can engineer it; secondly, and more specifically, the realization that 

an expression, with certain characteristics is what is needed; finally, symbol sense should 

include the ability to engineer that expression successfully. 
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4. The ability to select symbolic representation for a problem 

A learner who has symbol sense should be able to assign a symbol for a certain variable, 

situation, idea or process and have the courage to recognise and have dissatisfaction with 

that choice to search for better ones. This re-conceptualisation emerged from regarding 

equivalent symbolic expressions as possible sources of new meanings.  

 5. Reflecting on the meanings of symbols during problem-solving 

This involves checking for symbol meanings during the implementation of a procedure, 

the solution to a problem, or, during the inspection of a result. When learners translate a 

situation into symbols, the first step is to choose what and how to represent. The choices 

that learners make crucially affect their solution process as well as the results. In this 

regard, a learner with a developed symbol sense makes the appropriate choice by taking 

into account the goal of the problem. The choice of symbols may not only obscure part of 

the situation, but it may also impede the whole solution process. 

6. Symbols have different roles and meanings in different context 

This component of symbol sense involves the realisation that symbols play different roles 

in different contexts such as, variables or parameters (Gutiérrez, Leder and Boero, 2016). 

Thus, learners should develop an intuitive feel for those different contexts. In this case a 

learner is expected to appreciate the desirable components of symbol sense which 

consists of the "in-situ" and operative recognition of the different (and yet similar) roles 

which symbols can play in high school algebra. This entails that the learner with symbol 

sense should be able to sort out the multiplicity of the meanings of symbols depending on 

the context. In addition, the ability to handle different mathematical objects and processes 

involved (Tarasenkova, 2013). In order to understand mathematical symbols, Yetkin 

(2003) recommends that learners should be exposed to multiple meanings of the symbols 

in different problem contexts. 

 Reflections on symbol sense 

A number of researchers attempted to review the symbol sense framework. Arcavi (2005) 

further characterises (5) and (6) as showing a higher cognitive levels of symbol sense 

than (1) and (2). Kinzel (2001) describes symbol sense as the combination of notational 

awareness of expressions and the skill to manipulate and interpret symbolic expressions. 
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Pierce and Stacey (2002) adopt Arcaviôs work in suggesting a practical research 

framework called algebraic insight as a subset of symbol sense, and their focus was 

mainly on algebraic expectations. 

 

Zorn (2002) takes a broader view of advanced symbol sense to mean ñ...the general 

ability to extract mathematical meaning from and recognize structure in symbolic 

expressions, to encode meaning efficiently in symbols, and to manipulate symbols 

effectively to discover new mathematical meaning and structureò (p. 4). Zehavi (2004) 

coined the term advanced symbol sense to refer to problem-solving behaviours that 

involve masterful insight and judgment of the problem and its solution. A further 

reflection by Naidoo (2009) on the attributes of symbol sense revealed that the six 

components of ósymbol senseô are interrelated and closely linked. In other words, if a 

learner has one component then she/he will probably display other components. 

However, lacking one component might result in not having any of the components. In 

other words, if a learner shows ófriendliness with symbolsô then the learner is likely able 

to manipulate and read symbolic expressions. 

 

Inculcating symbol sense 

There are ongoing debates on whether symbol sense is taught or is just acquired 

naturally; the so-called nature or nurture controversy. The debate is centred on the 

following questions: Is symbol sense something that only mathematically able people 

develop by themselves, or can most people develop it at least partially? Can symbol sense 

be taught? Arcavi (2005) proposes that: symbol sense can be nurtured, and one necessary 

condition for symbol sense to develop is to provide supportive instructional practices. 

Bokhove and Drijvers (2010) describe symbol sense as an intertwinement between 

procedural skills and conceptual understanding as complementary aspects of algebraic 

expertise. Good teaching aims to address both procedural skills and symbol sense in 

algebra, as they are intimately related: understanding of concepts makes basic skills 

understandable, and basic skills can enforce conceptual understanding (Arcavi, 2005). 

Teachers should discourage from jumping to symbols, but to make sense of the problem, 

to draw a table, a graph or a picture, to encourage them to describe what they see and to 

reason about it. 
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2.5.2 Algebraic Insight Framework 

The proponents of the symbol sense framework are Pierce and Stacey (2001). The 

Algebraic Insight framework is embedded in the Symbol Sense framework. Algebraic 

Insight is the subset of symbol sense that enables the partnership of the thinking involved 

at all stages of mathematical problem solving including formulating the problem and 

interpreting the solution. The theory helps in the formulation of mathematical solutions to 

problems (Pierce & Stacey, 2001). The framework breaks algebraic insight into two 

components: ability to link representations (symbolic, numeric, graphical); and algebraic 

expectation, the cognitive skill required to monitor symbolic work. Pierce and Stacey 

(2001) describe algebraic insight as the algebraic knowledge and understanding which 

allows a learner to correctly monitor algebraic expressions during problem solving. 

According to Pierce and Stacey (2004), the algebraic insight, has two aspects: ñalgebraic 

expectationò and ability to link representations. The term algebraic expectation refers to 

the thinking process that takes place when an experienced mathematician figures out the 

result they expect to obtain as the outcome of some algebraic process. Pierce and Stacey 

(2004), divide the algebraic expectation into three elements: a) recognition of 

conventions and basic properties, which common instances are the knowledge of the 

meaning of the symbols, the order and the properties of operations; (b) identification of 

structure, which common instances are the identification of objects and of strategic 

groups of components and recognition of simple factors ; c) identification of key features, 

related to the identification of the form and the dominant term, as well as the union of the 

form with the type of solution.  

Algebraic expectation focuses on the application of Algebraic Insight within the symbolic 

representation of a mathematical problem. For example, an estimate of the product of 

5000 and 4200 will be in millions. Algebraic expectation may involve expecting the 

product (
22 xx+- ) ( )9234 -+- xxx  to be a polynomial of degree seven or the 

expansion of ρ ςὼ  has φ terms one of which one is a constant. It is important to note 

that Algebraic expectation does not produce an approximate solution but rather noticing 

conventions, symbols, structure and key features of an expression that determine features 
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which may be expected in the solution. Algebraic is characterised by the following 

features: 

Ability to recognise of conventions and basic properties 

Learners must recognise the conventional meaning of symbols used in algebra. This 

involves both operators and ólettersô. While the operators ȟȟ and ὼ should be familiar 

from arithmetic the convention in pen and paper algebra of implicit multiplication, where 

 means  times , is a source of confusion. Letters are used in a number of ways in 

algebra. For example, a standard quadratic function is commonly expressed as  =

. This requires a learner to recognise that the letters ,  and  are 

parameters while  and  are variables, two different meanings for letters in the same 

algebraic sentence. Thus, a learner with algebraic expectation has knowledge of meanings 

of symbols, order of operations and properties of operations. 

Ability to identify structure 

Recognising structure of an algebraic expression can mean seeing at a glance, a learner 

can realise that 13 -x  is a common factor, in the expression  but 

looking at and noting that the bracketed objects differ. 

Ability to identify key features 

When solving equations, identification of key features may lead to expectation about the 

type of solution, number of solutions, type of solution, whether a point is maxima and 

minima, domain and range. Identifying the correct form of equation helps the learner to 

apply associated knowledge required to solve the problem. For example,   is a 

linear equation in  while  is a quadratic equation. A learner with a good 

algebraic insight can realise that the first equation has one unique solution while the 

second equation has at most three distinct solutions.  

 

Ability to link representations 

 

The ability to link representations involves the learnersô ability to move cognitively 

between symbolic (algebraic) representations and graphical or numeric representations. 

Such linking is also concerned with expectations, but expectations across representations. 

xy x y

y
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Algebraic Insight is shown when a learner has expectations about graphs and tables that 

are linked to features of the symbolic representation of the problem. For example, upon 

recognising the function 13)( += xxf , the learner can tell that the graph of this function 

is a straight line of gradient σ and a  ώ intercept of  ρȢ 

 

Furthermore, the learner should be able to tell that the orientation of the graph stretches 

from the bottom left corner to upper right corner of the Cartesian plane. Pierce and Stacey 

(2001) describe algebraic insight as the algebraic knowledge that enables a learner to 

correctly use conventional mathematical symbols. It involves knowledge of linking 

multiple representations. A mathematical idea can be represented symbolically, 

graphically, numerically, or in other ways. Having algebraic insight involves being able 

to anticipate what the graphical or numerical representation looks like given a symbolic 

representation, or vice versa.  

 

Pierce and Stacey (2001) recommended learners to recognise the meanings of both letter 

and operator symbols in order to inform their understanding of transitions between 

symbols and graphs or tables. Recognising and understanding of the structure of 

mathematical concept are features of problem solving (Pierce & Stacey, 2001; 

Rubenstein & Thompson, 2001; Neria & Amit , 2004; Kieran, 2007a). Arcavi (1994) 

considers the ability to identify symbols to reveal the structure of a problem as an 

important part of symbol sense, and Pierce and Stacey (2001) stress that, a structural view 

of expressions will inform algebraic expectation. Thus, the two theories blend well.  

 

Ability to link of Algebraic and graphical representations 

The ability to link algebraic and graphical representations of a mathematical concept 

involves associating algebraic form to the shape and key features such as orientation, 

intercepts and asymptotes. Linking of shape to form is shown when a learner looks at a 

function like recognises that this is the graph of the sine function in 

which the modulus has been doubled and translated by σπЈ to the right. In general, 

identifying form provides enough information about a graph to be able to draw the basic 

shape óin the airô with a hand wave. 

)30sin(2)( 0-= xxf
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Ability to link symbolic and numeric representations 

 

The ability to link symbolic and numeric representations is shown when a learner links 

number patterns to formula. For example a learnerôs ability to link symbolic and numeric 

representations is shown when a learner can represent the pattern: ςȟτȠ φȠ ψȣȢ as

. Algebraic insight framework is a framework for reflecting symbol sense at the solving 

stage. The framework addresses ways of planning, assessing, and reflecting on learnersô 

understanding when working with mathematical symbols to solve mathematical 

problems. Blending this framework and expanding it to include aspects of symbol sense 

at all levels of problem solving assists in the task of identifying learnersô progress in 

developing activity-effect relationships (Simon et al, 2004). In analysing learnersô 

competency with mathematical symbols the researcher can look for signs of recognition 

of conventions, understanding of the meaning of symbols and order of operations. The 

researcher can also look for instances of learnersô verbalising or indicating connections 

that they are making between what is being done on paper and what is needed to meet 

their goal. This framework provides observable aspects on which the researcher can focus 

when interviewing and working with learners in the study. 

 

There are limitations to the Pierce and Staceyôs Algebraic insight framework as a lens for 

describing learnersô reasoning about symbols since it is designed to apply only to 

elements of symbol sense at the stage of solving an already formulated problem. It does 

not describe the activity in other stages of problem solving, such as formulating the 

problem and interpreting the solution. This is the problem-solving stage where learners 

seem to have challenges (Evans and Swan, 2014). Kenney (2008) expanded the Algebraic 

Insight framework by incorporating features for identifying learnersô uses and 

understanding of symbolic structures in the other stages of problem solving. However, 

her frameworks were criticised for lacking the back-and-forth movement between 

representations that is typical of learnersô reasoning about symbols. Although her 

framework was useful in identifying and categorising some aspects of symbol sense, it 

was criticised for not providing a lens for examining some of the challenges in learnersô 

reasoning about symbols that she found in her study. The current research seems to need 

nTn 2=
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a framework that can incorporate these two frameworks, hence the need to envisage other 

frameworks. 

2.5.3  ActionïProcessï ObjectïSchema (APOS) Theory 

APOS theory is grounded in the philosophical beliefs of constructivism and focuses on 

the mental constructions made by learners as they attempt to make sense of mathematical 

concepts. The proponents of this theory are Dubinsky and McDonald (2001). APOS is an 

attempt to understand the mechanism of reflective abstraction, introduced by Piaget 

(1968) to describe the development of logical thinking in learners. It is resolutely 

grounded in the tenets of constructivism, contending that learning is not passively 

received but rather constructed by an active participant.  

APOS is an acronym that stands for the types of mental structures (Action, Process, 

Object, and Schema) which learners build in their attempt to understand mathematical 

concepts (Brown, De Vries, Dubinsky, Mathews & Thomas, 1996; Dubinsky & 

McDonald, 2001). Arnon et al. (2014) state that ñéAPOS is a theory which explains how 

learners learn mathematical conceptsò (p.1). According to the APOS-theory the learner 

constructs a mathematical concept so that an action performed to an object is interiorized 

to a process which then encapsulates to an object (Hähkiöniemi, 2006). APOS theory is a 

useful theoretical framework for studying and explaining learnersô conceptual 

development. It is closely related to Piagetôs (1968) notions of reflective abstraction; it 

claims that mathematical knowledge develops as learners perform actions that become 

interiorized to form a process or a concept, which eventually leads learners to a higher 

level of awareness or object understanding of a mathematical concept. Finally, the learner 

organises these mental images to make a schema that enables him to conceptualise a 

mathematical situation.   

APOS theory claims that mathematical objects are constructed by reflective abstraction in 

the sequence A-P-O-S, beginning with Actions that are perceived as external, interiorised 

into internal Processes, encapsulated as mental Objects developing within a coherent 

mathematical Schema. APOS theory views mathematical knowledge as an individualôs 

tendency to deal with perceived mathematical problem situations by constructing mental 

actions, processes, and objects and organizing them in schemas to make sense of the 
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situations and solve the problems (Dubinsky and McDonald, 2001). Mathematical 

knowledge in this theory is modelled through those constructions by making inferences 

from learnersô activity with specific mathematical tasks. APOS theory proposes that a 

learner should possess certain mental structures to make sense of a given mathematical 

concept. It is therefore recommended that before teaching a concept, the teacher should 

design suitable learning activities to support the construction of these mental structures. 

APOS is a cognitive theory (Arnon et al, 2013). Objects in this framework are considered 

as mental objects that individuals construct in order to learn about mathematical objects, 

as defined by the mathematics community. The theory proposes that mathematical 

knowledge is constructed by making mental actions, processes, and objects and 

organising them in schemas to make sense of the situations and solve problems. APOS 

theory is a tool that objectively explains learner difficulties with a broad range of 

mathematical concepts and to suggest ways that learners can learn these concepts. It can 

inform teachers on the pedagogical strategies that lead to marked improvement in learner 

learning of complex or abstract mathematical concepts and learnersô use of these 

concepts to prove theorems, provide examples, and solve problems. There seems to be 

considerably widespread agreement that mathematical ideas begin with human activity 

and move from there to abstract (Dubinsky, 1991).  

 

 

Figure 2-1: Construction of mathematical knowledge 
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APOS claims that for one to understand a mathematical concept, one must begin by 

invoking previously constructed mental or physical objects in the learnerôs mind to form 

actions. Actions would then be interiorised to form processes that are then encapsulated 

to form objects. These objects could be de-encapsulated back to the processes from which 

they are formed, which would be finally organised in schemas. Jojo (2014) stated a 

learner who has developed a schema for a concept has developed a process or object 

conception of the concept, that is, the learner can understand the concept as a process or 

as an object.  

 

APOS theory claims that the formation of a mathematical concept involves transforming 

existing objects into new objects. An action is any transformation of objects according to 

an explicit algorithm in order to obtain other objects, and is seen as being at least 

somewhat externally driven. As an action is repeated and the individual reflects upon it, it 

may be interiorized into a mental process. An important characteristic of a process is that 

the individual is able to describe, or reflect upon, the steps of the transformation wholly 

in her/his mind without actually performing those steps. Additionally, once a mental 

process exists, it is possible for an individual to think of it in reverse and possibly 

construct a new process (a reversal of the original process) (Font et al., 2008). 

When a learner becomes aware of the process as a totality and is able to transform it by 

some action, we say that the process has been encapsulated as an object. When necessary, 

an individual may de-encapsulate an object back to its underlying process. In other 

situations, the individual may think of the transformation in terms of actions. A schema 

for a certain mathematical concept is an individualôs collection of actions, processes, 

objects and other schemas linked consciously or unconsciously in a coherent framework 

in the individualôs mind. The research method or investigative approach of this 

framework consists of three-step cycles. The first step is a theoretical analysis of the 

actions, processes, objects, and schemas that a learner may construct in order to learn a 

given/specific mathematical concept. 

According to Berger (2005), the use of a symbol to refer to an object prior to ófullô 

understanding resonates with how a learner makes a new mathematical object meaningful 

to herself. In practice, the learner starts communicating with peers, with teachers or the 
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potential readers using the signs of the new mathematical object before she has full 

comprehension of the mathematical sign. This communication with signs gives initial 

access to the new object. According to Vygotsky (1986), the central role in concept 

formation is a functional use of the word, or any other sign, selecting distinctive features 

and analysing and synthesizing them. He also argued that the learner does not 

spontaneously develop concepts independent of their meaning in the social world. The 

meaning of a concept is óimposedô upon the learner and this meaning is not assimilated in 

a ready-made form.  

A learner is expected to construct a concept whose use and meaning is compatible with 

its use in mathematics and is accepted by the mathematics community. To do this, a 

learner needs to use the mathematical symbols in communicating with more socialised 

others (including the use of textbooks which embody the knowledge of more learned 

others). In this way, concept construction becomes socially regulated. Vygotsky (1978) 

regarded all higher human mental functions as products of mediated activity. The role of 

the mediator is played by psychological tools, such as words, graphs, algebraic symbols, 

or a physical tool. Vygotsky (1978), views action mediated by symbols as the 

fundamental mechanism which links the external social world to internal human mental 

processes and he argues that it is by mastering semiotically mediated processes and 

categories in social interaction that human consciousness is formed in the individual 

(Berger, 2005). 

The constructs of APOS theory 

Mulqueeny (2012) summarised the four constructs of APOS theory of conceptual 

understanding as follows: 

The action construct 

An action is a physical or mental manipulation that transforms objects. Learners develop 

an action construct of a mathematical concept if they have an external perception of the 

mathematical concept. This means an individual can only carry out symbolic 

manipulations via specific external cues and detailed step by step procedure. A learner 

whose knowledge of algebra is limited to an action conception reacts to external cues of 

mathematical symbols by giving precise details on what steps to take. Learners who have 
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an action conception of symbols see algebraic expressions as commands to follow a 

certain procedure. In order to alleviate learnersô misconceptions at the action level 

teachers need to address the symbols. Working blindly with symbols that are not 

understood leads to incorrect solution processes. Learners tend to invent their own 

procedures to deal with or avoid symbols they do not fully understand. For example, an 

expression such as ÓÉÎς— consists of three distinct pieces, each of which needs attention. 

This cognitively obscures the learner and challenges the teacher in terms of finding a 

convincing explanation that can be understood by learners. The symbol ñsinò does not 

offer any intuitive notion of an action while ñςȱ means doubling the angle —. The whole 

expression can be mistakenly as ςίὭὲ—. Learners struggle to see how this new 

information can ñfitò into their existing cognition. 

The process construct 

A process is an action that takes place entirely in the mind. Exteriorisation occurs when 

the individual reflects upon the action that he or she is performing. A learner who is at the 

process level of understanding can ñreflect on, describe, or even reverse the stepsò of a 

previously learnt concept without actually performing those steps. A learner who has 

acquired the processes level can view the function q2sin  as a sine function in which the 

angle has been doubled or )sin( qq+ . If a learner has moved to this next level of 

understanding, they should be able to apply the identity:  

ABBABA cossincossin)sin( +=+  to get qqqqqq cossincossin)sin( +=+ qqcossin2= . 

A learner with a process conception is able to see that the expression stands for 

compound angle, which in this case is a double angle. Teachers therefore need to focus 

their attention to this kind of learnersô use of symbols as this has a potential to support the 

development of symbol sense (Bills, 2001) and scaffold the learner to a process level of 

understanding. 

The Object construct 

A process is encapsulated into a cognitive object; the learner is able to reflect on many 

different representations of the concept. Dubinsky (1991) speculated that encapsulation is 

difficult to see and researchers can only infer that this level of understanding has been 

achieved from statements made by a learner. Asiala (1996) described this phenomenon as 
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the ability of a learner to ñreflect upon operations applied to a particular process and 

become aware of the process as a totality. A learner with an object construct realise that 

the ίὭὲὩ of a doubled angle is not the same as twice the ίὭὲὩ of the angle ÓÉÎς—

ςίὭὲ—Ȣ Sfard (1991) describes this ability as structural thinking. Seeing a mathematical 

concept as an entity enables the learner to ñrecognise the idea at a glance and manipulate 

it as a whole, without going into detailò (Sfard, 1991, p. 4). At this developmental stage, 

thinking is detailed and dynamic. The learner is able to move freely from object to 

process. Once this is achieved, the concept is said to be at the object level. Thus, the 

learner should be able to see that ÓÉÎς— ÓÉÎ— — ςίὭὲ—ÃÏÓ—, without invoking 

the identity ABBABA cossincossin)sin( +=+ . 

The schema construct 

A schema is a collection of cognitive objects and internal processes for manipulating 

these objects (Brijlall  &  Ndlovu,  2009). According to Dubinsky (1991), a schema helps 

learners to:  

ñ... understand, deal with, organise, or make sense out of a perceived 

problem situationò (p.102).  

Skemp (1981) considers a schema as a conceptual structure stored in memory. He argues 

that a schema integrates existing knowledge and, even more than a concept, greatly 

reduces cognitive load. Skemp argues that inappropriate early schemas will make the 

assimilation of later ideas much more difficult, perhaps impossible. A learner who has 

developed a schema for the double angle identity should realise that   ÓÉÎς—

ςίὭὲ—ÃÏÓ— without reverting to the double angle identity,

ABBABA cossincossin)sin( +=+ . 

Sfard (1991) pointed out that concepts can be conceived in two fundamentally different 

ways: as processes (operationally) or objects (structurally). In APOS, theory action and 

process can be regarded as operational conceptions, while object and schema are 

structural conceptions. Sfard (1995) used the term ñreificationò to characterise the ñact of 

turning computational operations (processes) into permanent object-like entitiesò 

(objects). The development of mathematics often proceeds by taking processes as 

operators and then turning them into objects. Examples of processes as operators are 
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counting, calculating using a formula (for example, using the ὲ  term Ὕὲ of a 

sequence to generate successive terms) and differentiating; while examples of resulting 

objects are numbers, algebraic expressions (for example, the ὲ  (general) term of a 

sequence) and the first derivative ( ) or  Ὢ¡ὼ  of a function . Therefore, reification, 

which refers to a transition from an operational to a structural mode of thinking, is a basic 

phenomenon in the formation of a mathematical concept since it brings the concept ñ... 

into existence and thereby deepens our understandingò (Sfard & Linchevski 1994, p.54). 

Both operational (procedural) and structural thinking are important in mathematics since 

both contribute to the hierarchical structure of algebra, which is used to represent 

mathematical concepts symbolically. 

Tall (2004) introduces the idea of three worlds of mathematics, the embodied, symbolic 

and formal. The worlds describe a hierarchy of qualitatively different ways of thinking 

that individuals develop as new conceptions are compressed into concepts that are more 

thinkable. The embodied world, containing embodied objects, is where we think about 

the things around us in the physical world, and it ñincludes not only our mental 

perceptions of real-world objects, but also our internal conceptions that involve visuo-

spatial imageryò (Tall, 2004, p. 30). The symbolic world is the world of procepts, where 

actions, processes and their corresponding objects are realized and symbolised. 

According to Tall, Thomas, Davis, Gray and Simpson (2000) the formal world of 

thinking comprises defined objects, presented in terms of their properties, with new 

properties deduced from objects by formal proof.  

APOS theory is similar to the concept image that Tall and Vinner (1981) introduce in 

ñConcept image and concept definition in mathematicsò with particular reference to 

limits and continuity. The development of a schema occurs during a process called 

reflective abstraction (Arnon, Cottrill & Dubinsky, 2013). Reflective abstraction is a 

concept introduced by Piaget (1978) to describe the construction of logico-mathematical 

structures by an individual during the course of cognitive development. Piaget (1978) 

made two important observations. Firstly, that reflective abstraction has no absolute 

beginning, but is present at the very earliest ages in the coordination of sensori-motor 

structures (Piaget & Beth, 1966, pp. 203-208). Secondly, that it continues up through 
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higher mathematics to the extent that the entire history of the development of 

mathematics from antiquity to the present day may be considered as an example of the 

process of reflective abstraction (Piaget, 1985). This process utilizes two mechanisms: 

projection unto a higher level of abstraction and reflection aimed at reconstruction and 

reorganisation into larger systems. The process of reflective abstraction is the means by 

which concepts can evolve from actions to processes to objects and finally into schemes. 

These processes are termed exteriorisation, encapsulation and schematization, 

respectively. 

Interiorisation  

Transformation of an action is the process by which a physical series of actions can be 

performed in the mind without the need to be prompted or having to perform every 

learner step. For example, φ ψ ρτȟ can be done mentally without counting pebbles. 

Once achieved, it can be said that a given action has been interiorized into a process. For 

an action to be interiorized into a process it must be repeated and the learner reflects upon 

it. When the learner is able to describe, or reflect upon, the steps of the transformation 

wholly in her/his mind using abstract symbols without actually performing those steps, 

we conclude that the actions have been interiorized into a process. 

Encapsulation 

When a learner becomes aware of the process as a totality and can apply actions to it, the 

process is encapsulated and an object is constructed. Thus, a mathematical process is 

encapsulated when the given mathematical concept exists abstractly without the need to 

perform any specific actions or steps. At this stage, the concept gains invariant properties. 

Once this is achieved, the concept can be transformed and new actions can be learned 

using the encapsulated mathematics process, now said to be at the object level. For 

example, a learner knows how to find the derivative () or  Ὢ¡ὼ  of a functionὪὼ, use 

it to find turning points, to determine concavity, points of inflection and n
th
 derivatives. 

Schematisation 

 Schematisation is the process by which multiple objects, processes, and actions, form a 

coherent body, called a schema, where concepts can be manipulated and related to one 
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another. Schematisation implies the possibility of thinking of a schema as a whole, to act 

on it or make transformations on it and study its properties. It also involves the possibility 

to dissect, break down, examine its parts, and reassemble it as a whole. García, Llinares 

and Sánchez-Matamoros (2011) characterized the derivative schema is in terms of the 

learnersô ability to explicitly transfer the relationship between a function and its first 

derivative to the derivative function and the second derivative. 

Designing and implementing instruction according to APOS 

The design of instruction based on APOS is based on the assumption that learning is a 

non-linear process. APOS theorists claim learners gain partial knowledge and repeatedly 

return to this knowledge in an attempt to organise their knowledge structures. The learner 

first develops partial understanding, repeatedly returns to the same idea, and periodically 

summarizes and tries to pull the ideas together. APOS theory assumes moreover that 

learning is fundamentally dependent on cognitive conflicts whose overcoming requires a 

ñre-equilibrationò of previously developed mental constructions (Piaget, 1985). Cognitive 

conflicts may arise when the learnerôs ideas contrast ideas of others. Therefore, in a 

classroom based on APOS theory, learners are usually organized into groups where they 

can work cooperatively and are encouraged to reflect on procedures that they perform. 

This is intended to drive the learners into an environment where their mental 

constructions can disequilibrate, or start to contradict each other in the learnerôs mind. 

The effort to overcome those contradictions may lead to the formation of new mental 

constructions. According to Dubinsky (2010), APOS theoryôs application to teaching and 

learning is based on two assumptions mathematical knowledge and learning. 

Implications of the assumptions 

One of the implications of the assumptions made above is that a learner must possess the 

appropriate mental structures to make sense of a given mathematical concept and its 

symbolic structure. Maharaj (2013) also studied learnersô mental structures for 

understanding the limit process and found that many learners lack mental structures at the 

process, object and schema levels. The mental structures refer to the likely actions, 

processes, objects and schema required to learn the concept. The theory requires teaching 

and learning to be structured in such a way that before a given mathematical concept is 
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taught or learnt the likely mental structures needed to support understanding should be 

detected, and then suitable learning activities should be designed to support the 

construction of those mental structures. Thus, the assumptions imply the selection of 

teaching strategies that help learners to build appropriate mental structures, and guiding 

them to apply these structures to construct new understanding of mathematical concepts. 

Instructional approaches suitable for APOS theory requires teachers to start with a 

breakdown of the topic or concept into simpler concepts which are combined to give the 

overall picture. The teacher should anticipate a set of mental constructions that learners 

might form as they begin to explore the concepts. This provides an initial theoretical 

perspective used to guide instruction. The theory proposes that teachers begin instruction 

by giving explicit directions, enabling learners to carry out routine procedures. Repeating 

these actions, coupled with teacher-guided questioning and cueing strategies that 

encourage reflection provides a framework for the development of an action conception 

of the concept. At this level, teachers will in fact giving learners tools to think with. 

When leaners no longer need external cues to manipulate mathematical symbols, they 

begin to realise that symbolic notation is related to the concept, interiorize these actions 

to form processes which in turn form concept images.  

APOS and mathematical representation 

Representation is an essential tool for expressing mathematical concepts and thoughts 

when learning mathematics. Representations and symbol systems are fundamental to 

mathematics as a discipline since mathematics is "inherently representational in its 

intentions and methods"(Kaput, 1989, p. 169). Panasuk (2010) views representation as an 

attribute of mathematical concepts, which are defined by three variables: (i) the situation 

that makes the concept useful and meaningful, (ii) the operation that can be used to deal 

with the situation, (iii) and the set of symbolic, linguistic and graphic representation that 

can be used to represent situations and procedures. Hiebert and Carpenter (1992) propose 

a framework for understanding based on the constructivist perspective that sheds light on 

how mathematics understanding occurs. Representations are essential elements for 

supporting learners' understanding of mathematical concepts and relationships; in 

communicating mathematical approaches, arguments, and understandings to one's self 

and to others (Clement, 2004). Hiebert and Carpenter (1992) make a distinction between 
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the external and internal representation of mathematical ideas, pointing out that, to think 

and communicate mathematical ideas, learners need to represent them in some way. 

External representation refers to observable symbols, figures and tables, models, and 

images (Adu-Gyamfi & Bossé, 2014). Communication requires that the representations 

be external, taking the form of spoken language, written symbols, drawings or concrete 

objects.  Internal representation refers to the mental images constructed by a learner. 

Learners can use external representation to produce an internal representation of 

mathematical concepts. When the various changes in the internal representation of a 

mathematical concept and the functional relationships among these changes can be 

developed, we can say that this concept has been learned (Kaput, 1987). Goldin (2001) 

identifies five different forms of internal representation systems: (a) verbal/syntactic, (b) 

imagistic, (c) formal notational, (d) strategic and heuristic, and (e) affective. According to 

Goldin (2001) the study of learnersô conception and understanding of a concept should 

focus on studying learnerôs internal representations. This is done by interpreting learnersô 

interaction with, discourse about, or production of external representations. A concept is 

learned when a variety of appropriate internal representations have been developed with 

functioning relationships among them. 

External and internal systems of representation and their interaction are essential to 

mathematics teaching and learning (Goldin & Shteingold, 2001). Internal representations 

are usually associated with mental images individuals create in their minds. Bruner 

(1966) proposed to distinguish three different modes of mental representations: the 

sensory-motor (physical action upon objects), the iconic (creating mental images) and the 

symbolic (mathematical language and symbols). Panasuk (2010) posits that internal 

representation is an attribute of high-order human cognitive processes; it involves 

abstraction to represent the entity of the object of communication in symbols. Pape and 

Tchoshanov (2001) described mathematical representation as an internal abstraction of 

mathematical ideas or cognitive schemata that the learner constructs to establish internal 

mental network or representational system Hiebert and Carpenter (1992). Thus, one can 

assert that internal representation and abstraction are closely related mental constructs. 

External representations are associated with the knowledge and structure of the 

environment, physical symbols, objects, or dimensions as well as external rules, 
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constraints, or relations embedded in physical configurations (Khosla, Sethi and Damiani, 

2013). Goldin and Shteingold (2001) suggested that an external representation "is 

typically a sign or a configuration or signs, characters, or objects ñand that external 

representation can symbolise something other than itselfò (p. 3). Most of the external 

representations in mathematics (for example, signs of operations, symbols or composition 

of signs and symbols used to represent certain relationships) are conventional; they are 

objectively determined, defined and accepted. In distinguishing internal representations 

and external representations, Kaput (1999) used the term "fusion" to emphasize the 

actions surrounded by the experience of internalising the external representation. Through 

classroom discourse and various experiences, teachers facilitate interaction between 

external representations and the learners' internal representation systems and assist the 

learners in the process of building into their internal mental structure the images of the 

external representations (Goldin and Shteingold, 2001, p.2). For instance, to introduce the 

notion of multiplication, the teacher gives certain meanings and interpretations to the 

multiplication symbol (ὼ) as an external representation (external abstraction) that replaces 

repeated addition symbols (for exampleȟ 34444 ³=++ ). 

Because of interaction of "learners' personal symbolisation constructs" with the external 

representation (Goldin & Shteingold, 2001, p. 2), multiplication sign, learners build into 

their mental structure the image of the operation of multiplication that becomes their 

internal representation. Goldin and Shteingold (2001) stress that learners' internal 

representations are affected by their visual imagery, natural language, problem solving 

abilities and their attitude toward mathematics. Mathematical relationships, principles, 

and ideas can be expressed in multiple representations including visual representations 

(i.e. diagrams, pictures, or graphs), verbal representations (written and spoken language) 

and symbolic representations (numbers, letters). Each type of representation articulates 

different meanings of mathematical concepts. 

According to Goldin (1998) representation systems are proposed to develop through three 

stages, so that first, new signs are taken to symbolise aspects of a previously established 

system of representation. Then the structure of the new representation system develops in 

the old system and finally the new system becomes autonomous. Therefore, a 

mathematical concept can be represented in multiple ways. Different forms of 
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representation can be used to express or build the same concept, and each representation 

has advantages that make it superior to other representations. In discussing these 

advantages, Tall (2004) felt that graphical representations provide qualitative and 

comprehensive insight, quantitative results, and symbols provide a powerful capacity for 

manipulation. APOS and representation theories allow researchers to examine the same 

phenomenon from two different but complementary viewpoints. In APOS theory, by 

using actions or processes of representation to describe the theory, reflection on actions 

can produce meaningful viewpoints or properties, causing the actions to become 

internalized as processes. By integrating representation theory, the researcher can clarify 

the role of these actions by emphasizing the necessity of distinct viewpoints or properties. 

APOS theory can be used to describe the relationship between two objects in the same 

schema, or the relationships among objects, processes, or actions with different 

representations. For example, symbolic representations of a cubic function are  or  

Ὢ ὼ . The symbols of its derived functions are  or  =)(' xf 3  .  

2.5.4 The Procept Theory 

Another theoretical framework adopted in this study is Procept Theory. The proponents 

of this theory are Gray and Tall (1994).  Procept refers to the dual nature of mathematical 

symbols both as a process (such as addition) and as a concept (the sum) (Tall, 1992). The 

notion of procept helps to explain the dual nature of mathematical symbols. The procept 

theory enables us to think about different kinds of encapsulation in different contexts and 

to see how learners face cognitive difficulties related to symbolism (Tall, 1995). It 

includes different symbols and different processes that give rise to the same mental object 

in the mind of learner. This phenomenon of the duality and ambiguity of mathematical 

notation perceived as procedure and concept has been proposed by Gray and Tall (1991) 

as an explanation of an underlying cause of learners' success or lack of success in 

mathematics.  This theory postulates a duality between a process and a concept in 

mathematics. One way in which this duality becomes apparent is that a single symbol is 

often used to represent both a process (such as the addition of two numbers ρςχ and 

the sum of that process (the sum of ρω), which is the object. 

  

3xy=

23x
dx

dy
= 2x
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Gray and Tall (1994) described this dual nature of symbols as a ñproceptò. In an attempt 

to define procept, they introduced the term elementary procept. It consists of an 

amalgamation of three components: a process that produces a mathematical object (or 

concept) and a symbol that represents either the process or the object (Gray & Tall, 1994). 

The processes often begin as step-by-step procedures that are slowly routinized into 

processes that can be thought of as a whole without needing to carry them out. Symbols 

allow the mind to pivot between the procedure and process on one hand and the mental 

concept on the other. A procept conceives symbols flexibly both as processes to do and 

concepts to think about. This flexibility allows more powerful mental manipulations and 

reflections to build new theories.  

 The Procept theory suggests that there is a non-linear progressive and recursive 

relationship between signifier (symbol) and signified (object) in constructing and 

communicating a mathematical object. A symbol that evokes a process or product is 

called a procept. Such a symbol stands dually for both a process and a concept. It gives 

great flexibility in mathematics. This flexibility makes matters particularly difficult for 

the learner. Learners who implicitly sense the flexible power of symbolism succeed in 

understanding mathematical concepts, while those who do not, are likely to fail. In a 

sense, if a symbol is used as a signifier to refer to a signified, that is, procept, a successful 

learner should be able to see process acting on an input to produce an output as concept. 

Moreover, later on, the learner can perform actions/transformations on the signified they 

already perceived. The symbol xD  in  ù
ú

ø
é
ê

è
-+ 3

2

1
2 42 xxDx  represents both a process of 

differentiating a function and derivative of the function. 

According to Gray and Tall (2001) the concept acquisition can start by an action 

performed on an object, but also by making a perception of an object. Gray and Tall 

(2001) call this kind of perceived objects embodied objects. The embodied objects are 

mental constructs of perceived reality, and through reflection and discourse they can 

become more abstract constructs, which do not anymore refer to specific objects in the 

real world (Gray & Tall 2001). Hence learnerôs conception can start to develop from 

perceptual or from symbolic representations, and it is important to connect these 
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representations. Table 2.1 below summarises some of the symbolic expressions or 

phrases that represent both mathematical processes and objects. 

 

Table 2-1: Procept theory- processes and objects 

Expression Process Concept/Object 

υ σ Addition sum 

υ ὼ σ Multiplication product 

σȾτ Division Fraction/ ratio 

τ Adding  four Positive number 

σ υὼ 
adding σ to the product of 

υ and ὼ 
Algebraic expression 

“ approximating “ Infinite fraction 

The flexible use of a symbolism as either process or concept causes conceptual 

difficulties for learners. In the minds of successful mathematicians, a symbol evokes 

either process or concept, whichever is appropriate, and this is done so subconsciously 

that we may be unaware that it is happening. In algebra, learners who view symbols as 

procedures to be carried out are less likely to understand the meaning of mathematical 

concepts (Oksuz, 2007). 
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Figure 2-2: Procept theory (Adapted from Tall, 1994) 

An action-based learning process begins by making some actions on the objects. At first, 

a sequence of actions, a procedure, is performed by using a step-by-step algorithm. After 

several repetitions, the procedure is automatized, and a learner is able to see it as an entity 

so that he/she can consider it without referring to the single steps. Then the process is 

encapsulated as a mental object. This stage is similar to the APOS theory (Dubinsky & 

McDonald, 2001) and Sfardôs (1991) reification theory that describes the cognitive 

development of processes into objects.  

Sfard (1991) pointed out that mathematics concepts could be conceived in two 

fundamental ways: structurally and operationally which respectively results in ñobjectsò 

and ñprocess.ò She distinguished those two conceptions in the following way: There is a 

deep ontological gap between operational and structural conceptions. Seeing a 

mathematical entity as an object means being capable of referring to it as if it was a real 

thing, a static structure, existing somewhere in space and time. It also means being able to 

reorganize the idea ñat a glanceò and to manipulate it as a whole, without going into 

details. In contrast, interpreting a notion as a process implies regarding it as a potential 

rather than actual entity, which comes into existence upon request in a sequence of 

actions. Thus, whereas the structural conception is static, instantaneous, and integrative, 
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the operational is dynamic, sequential, and detailed (p. 4). In another article, Sfard and 

Linchevski (1994) maintained that learners need to switch from process to object in order 

to understand concepts. They specified three stages in the transition: interiorisation, 

condensation, and reification. Therefore, Sfardôs theory about understanding concepts is 

startlingly consistent with Chiôs (2002, 2005). The transition of process to object is also 

consistent with Piagetôs theory of ñreflective abstractionò (Simon, Heinz & Kinzel, 2004) 

which has two phases: ña projection phase in which the actions at one level become the 

objects of reflection at the next and a reflection phase in which a reorganisation takes 

placeò (p. 313). 

 Justification for combining frameworks 2.6

The procept notion has strong links with APOS theory, but there are significant 

differences. Procept and APOS theories that seek to explain how learners learn new 

mathematics content. They are all frameworks of conceptual growth. The implication of 

the two theories is that learners play an active role in their own learning and action is 

required on their part to develop a deep level of mathematical understanding. Learners 

who do not see an object as more than a procedure may well be good at performing 

computations and succeed in the short term but in the long term they may lack the 

flexibility that will give greater success. Precise definitions of mathematical concepts that 

are given in class presentations focus on the object at the expense of the inner process. 

This prevents a larger number of learners, who do not sense the flexible power of 

symbolism from succeeding in mathematics. Despite the fact that Dubinskyôs APOS 

theory refers to learnersô mental views and Tall (2008)ôs worlds are about mathematical 

thinking, the theories seem to blend naturally together. Such a framework allows the 

researcher to evaluate learnersô conceptual understanding of mathematical symbols and 

observe the way learners learn. Furthermore, it was designed to help teachers and 

instructors to cover a spectrum of representations in the classroom in such a way that 

teaching based on it would help learners build symbolic knowledge.  

On the other hand, symbol sense and algebraic insight frameworks also blend well since 

algebraic insight is embedded in symbol sense. Algebraic Insight is the component of 

symbol sense that helps in solving algebraically formulated mathematical problems. The 

first five attributes of symbol sense apply to the ósolveô section of the Algebraic Insight 
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model (Pierce and Stacy, 2001). Algebraic insight is a specific symbol sense needed at 

the solving stage. Algebraic expectation focuses on the application of algebraic insight 

within the symbolic representation of mathematics while ability to link representations 

deals with the learnersô ability to move cognitively between symbolic (algebraic) 

representations and graphical or numeric representations.  

Algebraic insight framework addresses ways to plan, assess, and reflect on learnersô 

understanding when solving mathematical problems (Pierce & Stacey, 2001). 

Incorporating this framework and aspects of symbol sense at all levels of problem solving 

assists in the task of identifying learnersô progress in developing activity-effect 

relationships. In analysing learnersô execution of the activity, the researcher can look for 

signs of recognition of conventions and properties to identify some of the aspects of 

symbol sense, including learnersô understanding of the meaning of symbols and of order 

of operations.  

Procept and APOS frameworks are cognitive oriented frameworks that provide useful 

tools for modelling learnersô conceptual growth and explain the way learners learn new 

concepts. APOS is applicable as a tool to questions such as: ñWhat pedagogical strategies 

can help learners in the mental construction of a particular concept?ò A new 

mathematical concept is best learned if it involves an action conception of the concept, a 

process conception of the concept. A learner with an object conception can think about, 

name and manipulate an object without necessarily focusing on how it is formed. On the 

other hand, a learner with a process conception can think about problem-solving 

procedures and solution processes with little emphasis on what the object is. For this kind 

of learner, the process is more important than the product. 

The four theoretical frameworks have representation as a common feature. Kaput (2000) 

describes a representation as some kind of relationship between a symbol and its referent. 

According to Goldin (1998) representation systems are proposed to develop through three 

stages, so that first, new signs are taken to symbolize aspects of a previously established 

system of representation. Then the structure of the new representation system develops in 

the old system and finally the new system becomes autonomous. Thus, in order to 

interact with concept, solve a problem, to act on an object, or experience a process, it 

must be cognitively represented in some way to facilitate meaning-making. Each of these 
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theoretical positions makes an important contribution to the understanding of 

mathematical symbolisation and its contribution to mathematics teaching and learning. 

The composite conceptual framework is shown in Figure 2-3 below: 

 

   

Figure 2-3: Theoretical Framework: Quadrilateral Frame of Theory  

 Summary 2.7

This chapter has discussed literature on past work that has been conducted to examine the 

nature of challenges that learners experience in trying to understand various mathematical 

concepts through their symbols. The review reveals significant extant literature on the 

specifics of the topic of investigation for this research. Literature on learnersô experiences 

with mathematical symbolism appeared abundant relative to studies on learnersô specific 

learning experiences and difficulties with mathematical symbolism. Some studies focused 

on mathematical symbolism itself to study learnersô difficulties in manipulating symbols 

as mathematical objects and modifying their interpretations of symbols (Stacey & 

Macgregor, 1997). Some investigated how meaning for symbols could be developed 

Symbol Sense 

 

 

 

   
Procept 

Mathematical 

Activities  A (PO) S 

Processes & 

Objects 
Algebraic Insight 

Conceptual Understanding 

Mathematical Representation & Algebraic Reasoning 

(Symbols, graphs, tables, numbers, algebra) 

 

Schema 

(Problem solving) 



131 

 

 

(Kieran, 1981) and some studied how mathematical symbols are used to delegate some 

mathematical operations to the external environment (De Cruz & De Smedt, 2013). Other 

studies investigated how learners draw meaning of symbols from inside of the symbol 

systems (Hiebert & Carpenter, 1992).  

Current researches focus on symbolisation challenges specific to certain topics such as 

translating word problems to algebraic statements (Silver, 2013; Reynders, 2014), 

functions (Chirume, 2012), derivatives (Zweng, 2012). This study contributes to this 

debate by looking at the symbolisation challenges experienced by secondary school 

learners in the South African FET band when interpreting mathematical concepts and 

problem solving. Furthermore, the study investigates into the instructional strategies 

teachers can use to mitigate the effects of symbolic obstacles. Four (4) conceptual 

frameworks were condensed into a quadrilateral frame of theories that serve as lens for 

focusing and guiding this study. The next chapter discusses the methods that were used to 

conduct this study.  
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3. CHAPTER 3: RESEARCH METHODOLOGY 

 

This chapter discusses the research methodology and design, including sampling, 

population, establishing rigour during and after data collection, ethical considerations and 

data analysis. The chapter explains how the research was conducted. A number of 

measures were taken to ensure that quality data is collected. Ethical considerations and 

trustworthiness are also discussed. 

 Research questions 3.1

The selection of the methodology for collecting and analysing data was guided by the 

following research questions: 

  

a) What challenges do secondary school learners encounter when interpreting and 

using mathematical symbols to understand mathematical concepts and problem 

solving procedures? 

b) What instructional strategies can mathematics teachers use to mitigate the effects 

of symbolic obstacles? 

 

 Research Methodology 3.2

Methodology encompasses concepts such as research paradigms, theoretical models and 

quantitative or qualitative techniques. Burns and Grove (2003) describe methodology as 

the means or methods of conducting research, which includes the design, setting, sample, 

methodological imitations, and the data collection and analysis techniques in a study. 

According to Holloway (2005), methodology means a framework of theories and 

principles on which methods and procedures are based. In this study, methodology 

describes how the research was conducted, what data was collected and how it was 

analysed.  

A mixed methods approach was utilised in this study. Mixed methods research refers to 

quantitative and qualitative procedures of collecting and analysing data in the study 

(Creswell, 2013). Creswell and Plano-Clark (2007) define mixed methods as a 

methodology that involves the collection and analysis of qualitative and quantitative data 
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in a single study or series of studies. The main reason for mixing the two research 

approaches is to obtain better understanding of research problems that either approach 

cannot achieve alone. The study focused on exploring and describing the experiences of 

learners as they struggle with the symbolic barrier to understanding mathematical 

concepts therefore the research approach was dominantly qualitative. 

3.2.1 Research paradigm 

This study is guided by a constructivist paradigm. Creswell and Plano-Clark (2007) 

defined a paradigm as a worldview. A paradigm is an interpretative framework, which is 

guided by a set of beliefs and feelings about the world and how it should be understood 

and studied (Lincoln & Guba, 2000). Constructivism as a paradigm posits that learning is 

an active, constructive process. The learner is an information constructor. The goals of 

constructivist research are understanding and structuring, as opposed to prediction. This 

study explored and described the experiences of FET band learners as they integrate the 

symbolism in mathematical concepts. The conception of mathematical symbols is 

constructed through the APOS, Symbol sense, and Procept and Algebraic Insight 

theories. Different types of data have to be used to construct a complete picture of 

mathematical symbols. 

3.2.2 Qualitative Approach  

The dominant research approach for this study is qualitative, since the natural setting is 

the direct source of the data (Fraenkel & Wallen, 2003). For this study, data was collected 

from the participants in their natural setting without controlling any aspect of the research 

situation. Qualitative methodology is interactive and interpretive. In the interaction 

between the researcher and participants, the researcher discovers the participantôs world 

and interprets it (De Vos, 2002). This study intended to find out challenges and 

difficulties learners encounter when dealing with mathematical symbols to develop 

concepts in the teaching and learning process. The first research question for this study 

was best answered through a qualitative paradigm. This design allows an in-depth 

understanding of learnersô challenges about the use of symbols in algebra and in 

exploring the factors that affect them in learning algebra. In this study, a qualitative 

method explored and described the challenges teachers and learners encounter when 
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dealing with mathematical symbols, learnersô interpretation of mathematical symbols and 

instructional strategies to reduce symbolic obstacles. 

3.2.3 Quantitative Approach 

Quantitative approach measures and analyses the causal relationships between variables. 

In order to eliminate the weaknesses and limitations of qualitative and quantitative 

approaches, Laxman (2015) suggests combining them in a mixed methods design. The 

main weakness of the quantitative paradigm is that the researcher is inseparable from the 

object of observation (Kura & Sulaiman, 2012). On the other hand, the qualitative 

research does not generate predictive models that generalise to larger populations. The 

quantitative paradigm tests and validates existing theories generalising research findings 

(Johnson & Onwuegbuzie, 2004). Thus, the strengths of both paradigms were combined 

to offset their mutual limitations. 

 Research Design 3.3

Research design is the overall plan for obtaining answers to the research questions (Polit 

& Beck, 2004). It is a plan of action that links the philosophical assumptions to specific 

methods (Creswell, 2013). The research design for this study is in two levels: the logic of 

the research and at another level, the research design reflects on the purpose of the 

inquiry, which in this case, is both exploratory and descriptive.  

Exploratory research examines a theoretical idea. The researcher has an idea and seeks to 

understand more about it. This study was informed by the researcherôs observation of 

learnersô use and manipulation of mathematical symbols without understanding their 

meanings or concepts they represent. The exploratory research lays the groundwork for 

future studies on the idea. What is being observed might also be explained by a currently 

existing theory. Exploratory research identifies the boundaries of the environment in 

which the problems, opportunities or situations of interest are likely to reside and to elicit 

the salient factors or variables that might be found there and be of relevance to the 

research.  

 

On one hand, a descriptive research design provides an accurate and valid representation 

of the variables that are pertinent and relevant to the research question (van Wyk, 2012). 
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Methods, on the other hand, refer to specific techniques that are used for data collection 

and analysis (Creswell, 2003). Kumar (2010) viewed it as a blueprint of how a research 

study is conducted. It operationalises variables so that they can be measured from a 

sample and analysis of the data therefrom. This procedure must be carefully adapted by 

the researcher to answer questions validly, objectively, accurately and economically. 

Thus, the research design minimizes the chances of drawing incorrect causal inferences 

from data.  

3.3.1 Descriptive Research Design 

 

A descriptive research design was used for the quantitative data collected using the 

questionnaire survey. Quantitative research designs emphasise objective measurements of 

data (Babbie, 2010). The study described the status of learnersô understanding of 

mathematical symbols and their use in conceptual understanding. The dependent or 

criterion variable is a phenomenon that one is attempting to explain or predict. In this 

study, the phenomena of interest cover the difficulties that learners and teachers 

experience due to mathematical symbolisation. Since this study is non-experimental, 

there are no independent variables that can be manipulated to explain or predict the 

dependent variable. However, extraneous variables such as demographics of participants 

need to be controlled in order to obtain meaningful results. Hence, variables such as 

grade, gender, social economic status, age, home language, geographical location of 

participants and ethnicity were considered to see the extent to which they influence 

learnersô understanding of mathematical symbols. 

 

3.3.2 Phenomenological research Design 

A phenomenological research study attempts to understand people's perceptions, 

perspectives and understandings of a phenomenon (McConnell, Chapman & Francis, 

2009). The aim of phenomenological study is to obtain descriptions of experiences from 

learners who experience problems with mathematical symbols. The aim of the research is 

to describe the phenomenon of learnersô symbol sense as accurately as possible. 

Similarly, Sterley (2014) believes that phenomenologists seek to understanding 

phenomena from the perspectives of the participants. From these descriptions, themes, 
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typologies emerge. It involves interpreting the original descriptions of symbols using 

reflective analysis and interpretation of the participantsô accounts. Primary methods of 

data collection are audio-recorded conversations.  

A phenomenological methodology was also utilised in this study. Interviews were 

designed to build a description of the participantôs experiences with symbols. The 

fundamental assumption made is that the important reality is what people perceive it to be 

(Alibakhshi, 2015). This perception builds a description of a learnerôs conception of 

mathematical symbols that build mathematical concepts. Thus, the phenomenological 

interview is a technique ideally suited for data collection in this study. 

Intuiting   

This process involves thinking through the data in order to obtain a comprehensive and 

accurate interpretation of what participants mean in a particular description (Leech & 

Onwuegbuzie, 2007). In order to achieve this, the researcher remains open to the 

meanings and issues raised by participants in terms of the difficulties they experience 

with mathematical symbolisation. Intuition leads to a common understanding about the 

phenomenon that is being studied. It also requires that the researcher creatively analyses 

the data until such a common understanding emerges. The researcher must be totally 

immersed in the study of the phenomenon. 

Analysing 

 Analysing involves listening to, comparing and contrasting descriptions of learnersô 

conceptions of mathematical symbols in to identify the essence of the phenomenon under 

investigation. Analysis seeks to make sense of the essential meanings of the phenomenon. 

Common themes emerge as the researcher works with the descriptive data.  

Bracketing 

Bracketing is a qualitative research technique that suspends assumptions and 

presuppositions about any knowledge of learnersô difficulties with symbolisation and 

teachersô approaches to symbolisation to limit interference with the information given by 

the participants (Tufford & Newton, 2010). Bracketing improves rigour and reduces bias 

in research. In this exploration, the researcher suspends his assumptions and 

preconceptions especially during data analysis. As recommended by Castellan (2010), the 

researcher remained neutral with respect to belief or disbelief in the existence of the 
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phenomenon. The researcher first identified learnersô preconceptions about mathematical 

symbolisation. Researcher also had to suspend all prior knowledge about learnersô 

challenges, to allow the trustworthy ñtruthò to emerge. 

 Describing  

This is the final step in which the researcher describes distinct, critical elements of the 

phenomenon. The researcher avoided premature to description of the phenomenon, a 

common methodological error in this type of research (Vilakati,  2009). In this study, 

phenomenological describing involved classifying all critical elements common to 

learnersô challenges in understanding mathematical symbols. 

óMemoingô was also used in this study. This is recording what the visual, auditory 

impressions and thoughts of the researcher in the course of collecting and reflecting on 

the process Groenewald (2004). The researcher complied field notes of what participants 

were raising during the data-collection process and reflected on the data analysis. As 

recommended by Ejimabo (2015) the researcher kept updated memos and later correlates 

them with the data. 

In view of the issues discussed above, phenomenology was considered the best method 

and approach to address the qualitative part of the   study. 

3.3.3 Reflective analysis 

Reflexivity is an aspect of a phenomenological research in which researcher assumes the 

roles of a researcher and the participant at the same time (Finlay, 2012). Researchers 

continuously reflect on their own preconceived values, participantsô perception of the 

researcher and reflecting on how it will influence the data collected. In this study, the 

researcher maintained as self-monitoring stance in order to prevent bias and increase 

objectivity of the study. As recommended by Holloway and Wheeler (2002) the 

researcher continuously reflected on his own feelings, actions and conflicts during the 

research so that they do not affect the credibility of the study.  

3.3.4 Mixed Method Approach 

 Rich and Brown (2014) defined mixed methods as óresearch in which the researcher 

collects, analyses, mixes, and draws inferences from both quantitative and qualitative 
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data in a single study. Creswell et al (2006:5) define it as ñé. a methodology, it involves 

philosophical assumptions that guide the direction of the collection and analysis of data 

and the mixture of qualitative and quantitative approaches in the research processò. The 

researcher selected this approach on the basis that the combined use of quantitative and 

qualitative approaches provides a better understanding of research problems than either 

approach alone. Integrating methodological approaches strengthens the research design, 

as the strength of one approach offsets the weakness of the other (Creswell & Plano-

Clark, 2011). The other practical benefit of using a mixed method research is derived 

from Baran and Jones (2016) who reveal that it encourages interdisciplinary collaboration 

and use of multiple paradigms in a research.  

Although there are on-going debates about whether MMR is a research design or 

methodology, this study takes a middle ground. MMR is a research design with 

philosophical assumptions as well as quantitative and qualitative methods. Wilson (2016) 

describes mixed methods as a research methodology in which data is collected, analysed, 

and inferences drawn from both quantitative and qualitative data in a study.  Qualitative 

and quantitative designs, methods, data collection and analysis techniques were utilised to 

provide data that was later mixed to provide a big picture of the findings of this study. 

The choice of a mixed method approach was derived from the nature of research 

questions and the kind of instruments used to solicit the data.  

The first research question for this study seeks to explore the challenges that learners 

encounter when interpreting and using mathematical symbols to understand mathematical 

concepts and problem solving procedures. The second research question is based on 

instructional strategies that mathematics teachers can use to reduce the effects of 

mathematical symbolisation obstacles. To address these research questions a survey 

questionnaire consisting of closed and open-ended questions was used. Quantitative data 

analysis methods were used to summarise data in the form of descriptive statistics. Open-

ended questions were analysed by drawing a list of broad categories that were later 

qualitatively researched using focus group interviews. Thus, the study utilised qualitative 

research to gain access to participantsô views about symbolisation while quantitative 

research allow researcher to make statistical inferences about the phenomenon. 
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3.3.5 Mixed method designs 

There are many mixed methods designs in literature, each emphasising different 

dimensions. However, all of them share two common basic dimensions: timing of the 

integration and purpose of integration (Guest, Namey & Mitchell, 2013). Timing of 

integration refers to the stage at which qualitative and quantitative data sets are used. The 

purpose of integrating both methods is to overcome weaknesses in using one method with 

the strengths of another. 

 

 Morse (1991) describes simultaneous and sequential mixed designs: In simultaneous 

triangulation, qualitative and quantitative methods are used simultaneously but there is 

limited interaction between the two sources of data during the data collection stage, and 

the findings (at the data interpretation stage) complement one another. Triangulation 

combines methodologies in the study of the same phenomenon to decrease the bias 

inherent in using a particular method (Morse, 1991). In the sequential design, one form of 

data, either the qualitative or quantitative, is collected before the other. When the results 

of one approach are necessary for planning the next method, sequential triangulation is 

utilized. Quantitative data can support qualitative research components by explaining the 

emerging phenomenon and the reverse is true for qualitative data illuminating 

quantitative components by development of the conceptual model. 

 

The design for this study is a sequential mixed design. Data were collected in two phases. 

First, data were collected using a questionnaire consisting of closed and open-ended 

questions. Quantitative statistical methods were used to analyse the closed questions to 

determine which findings to explore further and augment in the next phase. The 

researcher reviewed and analysed the survey results and tailored the subsequent in-depth 

interview instrument to follow-up on significant responses. Participants were purposively 

selected based on the issues they raised in the open-ended questions. Predictor 

importance values were utilised to inform and select questionnaire items that needed 

further investigation using focus group interviews. Secondly, questionnaire number codes 

were used to select in-depth interview participants. The subsequent in-depth, semi-

structured interview schedule consisted of questions intended to explore particularly 
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interesting survey responses. Figure 3-1 below shows the detailed summary of the 

sequential exploratory design used in this study. 

 

 

 

Figure 3-1: Sequential explanatory design (Adapted from Creswell & Garrett, 2008) 

 POPULATION AND  SAMPLING  3.4

Polit and Beck (2014) define a population as the entire aggregation of units that meet a 

designated set of criteria. A population is also defined as all the individuals who have 

certain characteristics and are of interest to a researcher (Teddlie & Yu, 2007). Two types 

of population in research are: target population and accessible population. The target 

population is the total of cases that the researcher would like to make generalisations 

about (Polit & Beck, 2004). In this study, the target population consists of learners 
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enrolled in Grades 10 to 12 in Greater Sekhukhune and Capricorn Districts in Limpopo 

Province. The reason for involving learners in theses grade levels was that they had 

adequate exposure to a variety of mathematical symbols inscribed in their textbooks. The 

research also targeted 18 mathematics teachers as valuable sources of data regarding the 

challenges of mathematical symbols since they are likely to observe these as they engage 

learners during the teaching and learning process. The population from which the 

researcher draws their conclusions is the accessible population. This population is a 

subset of the target population and is also known as the study population. In this study, 

the accessible population consists of 800 Grade 10-12 learners and 15 mathematics 

teachers who participated in the study. 

3.4.1 Eligibility criteria  

 

Eligibility criteria specify the characteristics of prospective participants that make them to 

be considered for inclusion in the study (Shamseer, Galipeau, Turner & Moher, 2013). 

These characteristics must be shared by all participants. The researcher enrolled 

participants with similar characteristics to ensure that the results will be due to what is 

under study and not extraneous factors. In this way, the eligibility criteria helped the 

researcher to achieve accurate and meaningful results. A well-defined eligibility criterion 

makes research protocol safe, ethical and scientifically valid (Humphreys, Harris & 

Weingardt, 2008). For eligibility to this study, participants had to: 

 

Å be Grade 10-12 learners enrolled in public secondary and high schools in Limpopo 

Province, South Africa 

Å have enough exposure to a variety of mathematics textbooks and are able to read, 

write and verbalise mathematical symbols. 

Å Secondary school mathematics teachers. 

 

3.4.2 Sampling method 

This study adopted Kemper, Stringfield and Teddiesô (2003) guidelines for choosing a 

sample. The sample was selected such that it could furnish sufficient data on the 

phenomena being studied. Conducting a mixed method research requires the researcher to 
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satisfy the requirements of the qualitative and quantitative samples. Teddlie and Yu 

(2007) referred to these requirements as representativeness and saturation. Sampling in 

quantitative research aims to achieve representativeness, that is, a sample has to be so 

large enough so that it reflects the true characteristics of the population. In this study, a 

sample of ὔ υφυ learners selected from the FET phase was deemed large enough to 

represent the population.   

3.4.3 Multistage random sample 

A multistage random sampling design was used for this study. Multistage sampling refers 

to survey designs in which the population units are hierarchically arranged and the 

sample is selected in stages corresponding to the levels of the hierarchy (Uthayakumaran 

& Venkatasubramanian, 2015). A multistage random sample is obtained by taking a 

series of simple random samples in stages. Multi-stage sampling represents is a form of 

cluster sampling in which large clusters are subdivided into small, more targeted 

groupings for the purposes of surveying (Rao, 2011). 

 At each stage, only units selected at the previous stage are considered. In this study, the 

first-stage units were districts, the second-stage units were circuits while the third stage 

units were the schools, and the fourth stage involves selecting learners and teachers who 

participate in the study. Multi -stage sampling does not require a complete list of members 

in the target population, which greatly reduces sample preparation cost. The list of 

members is required only for those clusters used in the final stage. The main disadvantage 

of multi-stage sampling is the same as for cluster sampling: lower accuracy due to higher 

sampling error. A large sample size (565 learners) was therefore selected from the 

population in order to reduce sampling error. A large sample size decreases the potential 

for deviations from the actual population (Lenth, 2001). A stratification protocol was 

implemented by selecting 32 learners from three grade levels per school and selecting 

three schools from each of the geographical locations of the participants: rural, semi-

urban and urban schools. 
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Figure 3-2: The sampling process 

3.4.4 The Study Sample 

The sample is a subset of a population selected to participate in a research study (Dul & 

Hak, 2008). For the sample, three schools from three circuits were randomly selected 

from the chosen districts to participate in the study (Banerjee & Chaudhury, 2010). A 

random sample of 96 learners consisting of 32 learners per grade level per school was 

selected from a population of FET band learners at the selected schools. At the end of 

data collection, 565 out of 800 questionnaires were successfully completed. This gives a 

response rate of 70.63%. Teacher participants were purposefully selected; they were all 

teaching Grades 10-12. These mathematics teachers were assumed to have adequate 

knowledge of the difficulties learners experience with mathematical symbolism. In a 

phenomenological study, ñthe phenomenon dictates the method, not vice-versa, including 

even, the type of participantsò (Hycner, 1999:156). Purposive sampling is virtually 

synonymous with qualitative research. It is sometimes referred to as expert sampling 

since the researcher is looking for individuals who have particular expertise. Maxwell 
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(2008) also defines purposive sampling as one in which particular settings, persons or 

events are deliberately selected for the important information they can provide that 

cannot be obtained from other choices. In this study teachers who were teaching learners 

in the FET band were purposively selected as the researcher assume that they have 

experienced or observed learners struggling to understand mathematical concepts due to 

lack of symbol sense.     

 Data Collection 3.5

3.5.1 Research Instruments  

 In this study, questionnaires and focus group interviews were utilised because they 

supplement each other and their combination boosts the validity and dependability of the 

data. In the main study, quantitative data were obtained through closed-ended 

questionnaires and the qualitative data through open-ended questionnaires and focus 

interviews. Creswell (2011) hinted that a survey design provides a quantitative 

description of a sample that can be in turn generalised to the population from which it 

was drawn. The researcher found it useful to use a questionnaire since it was not possible 

to observe the phenomenon directly. The researcher is not a high school teacher and this 

requires a longitudinal study that can produce results after a long period of engaging 

learners. Thus, the data gathered through questionnaires allow the researcher to 

reconstruct learnersô experience and perceptions of the phenomena (Alshenqeeti, 2014). 

 

The items of the questionnaires were derived from research objectives and research 

questions. The questionnaire for this study consists of a mixture of closed-ended and 

open-ended. Closed-ended questionnaires are more convenient because of their ease of 

analysis (Seliger & Shohamy, 1989) while open questions can lead to a greater level of 

discovery (Gillham, 2000), because participants can express what they want to say 

(Zohrabi, 2013). Therefore, it is better that a questionnaire includes both closed-ended 

and open-ended questions to complement each other. 

 

 A group-administered questionnaire was issued to participants all at one time and place. 

Bee and Murdoch-Eaton (2016) recommended group-administered questionnaire because 

the return rate is high, the researcher is present to explain any unclear questions and 
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knows the conditions under which the questionnaires were filled. The cover letter is an 

integral part of the questionnaire (De Vos, 1998), it informs the participants about the 

nature of the study and the value of their participation. 

3.5.2 Questionnaire for Learners 

The questionnaire for learners consisted of closed and open- ended questions. It 

addressed issues related to the research objectives. It consists of a covering letter and 

three sub-sections. Section A focused on participantsô demographic data. Section B 

consisted of closed questions that explored learnersô experiences, challenges and 

obstacles, encountered when using mathematical symbols.  A 5-point Likert scale (1 = 

strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = strongly agree) was used. The 

scale enabled respondents to report their experiences (Subedi, 2016). The last section 

consists of open-ended questions that solicited information relating to the teaching and 

learning approaches that are utilised in classrooms. Reja, Manfreda, Hlebec and Vehovar 

(2003) reasoned that open-ended questionnaire items work to elicit responses that 

individuals give spontaneously, avoiding the bias that may result from suggesting 

responses to individuals.  

As highlighted by Stacey (2013) open-ended questions are used where the issue is 

complex, relevant dimensions are not known, or where a process is being explored. 

Harvey (2011) also recommended the use of a ómixedô questionnaire is a best approach, 

arguing that researchers should avoid a restrictive questionnaire or even one that is too 

open and difficult to analyse. Bird (2009) also noted that open-ended items are used by 

participants to elaborate on the reasons underlying their answers to the closed-form items. 

Open-ended items in this questionnaire required learners to write their responses that 

were used to compile a list of questions for focus group interviews. 

3.5.3 Administrat ion of Questionnaires 

The researcher personally administered the questionnaire to the participants at their 

schools. This has a fast response, as the researcher can get the questionnaires completed 

and collected quickly as compared to the postal method, where participants might 

postpone responding or questionnaire are delayed in transit (Sekaran & Bougie, 2013). 

The meanings of the questions were clarified to ensure that the participants were 
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answering the questions in the sense that the researcher intended. The researcher also had 

the opportunity to introduce the research topic and motivate participants to offer frank 

responses. The researcher also explained the importance of the research and its 

significance to them. Self-administering the questionnaire also ensured better response 

rates because of the personal persuasion when researcher is present (Beukenhorst & 

Kerssemakers, 2012). However, the researcher was very careful to avoid introducing bias 

when explaining some of the questions to participants, especially in rural and semi-urban 

schools where learners had language problems.  

3.5.4 Questionnaire for Mathematics teachers 

The researcher prepared a perception questionnaire for teachers. Perception questionnaire 

asked questions concerning the feelings, thoughts, knowledge and opinions of 

participants (Mackay, 2004). The questionnaire for teachers was designed to obtain 

information about teachersô strategies for teaching mathematical concepts through 

symbolisation. The questionnaire for teachers focused on thoughts and perceptions 

related to mathematics education, classroom practical experiences with mathematical 

symbolisation. It also attached a covering letter on the nature and value of the research. 

Section A focused on participantsô demographic data. Section B was made up of open- 

ended questions that explore teachersô experiences, challenges and obstacles, encountered 

with regard to the use of mathematical symbols when teaching mathematical concepts. 

The last section solicited information about the teaching and learning approaches that are 

utilised in classrooms. Only open-ended questions were used in this section. 

3.5.5 Focus Group Interviews  

In order to seek clarification to learnersô responses to open-ended questions and to 

overcome difficulties in interpreting learnersô mental processes, the researcher conducted 

focus group interviews that contained carefully constructed items and questions to 

identify learnersô experiences, views, reflections, and symbol sense. Participants for focus 

group interviews were purposefully selected based on their responses to open-ended 

questions. Focus group interview is a type of in-depth discussion accomplished in a 

group, whose meetings present characteristics defined with respect to the proposal, size, 

composition, and interview procedures. The focus group research method generates ideas 

for investigation for generating additional or information for a study (Gill, Stewart, 
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Treasure & Chadwick, 2008). Focus group interviews were most suited for this study 

since the objective was to further explore and understand learnersô experiences of 

mathematical symbolisation based on their responses to closed ended questions.  

The researcher allowed respondents the time and scope to express their opinions about 

mathematical symbolisation. The interviewer could explain questions that the respondent 

did not understand. Interviews also allowed the researcher to probe deeply into the 

problem to uncover new clues, to open up new dimensions of a problem, or to secure 

vivid, accurate and detailed accounts that are based on the personal experience of the 

participant (Zhou, Perera, Udeaja & Paul, 2012). 

 

An interview guide was prepared ahead of time with questions and tasks to present to the 

participants (see Appendix B). At times, the interviewer allowed participants to guide the 

interview to a certain extent, as long as conversation remained within the realms of the 

study (Kenney, 2008). Different questions were used with different participants, 

depending on the details of responses and on the types of follow-up questions needed for 

a particular response. However, care was made to ensure that the discussions resonate 

around the targeted areas of study. 

  

The researcher first established rapport with the respondents. Dundon and Ryan (2008) 

reported that if the participants do not trust the researcher, they will not describe their true 

feelings, thoughts, and intentions. Complete rapport is built over time as people get to 

know and trust one another. The researcher used a digital recorder to capture data because 

it has the advantage of preserving the entire verbal part of the interview for later analysis.  

 

According to Harris and Brown (2010) structured questionnaires and structured 

interviews are often used in mixed method studies to generate confirmatory results 

despite differences in methods of data collection, analysis and interpretation. 

Questionnaires and interviews have different and complementary strengths and 

weaknesses (Lai & Waltman, 2008). Kendall (2008) asserts that while questionnaires can 

provide evidence of patterns amongst large populations, qualitative interview data 

provide more in-depth insights on participant attitudes, thoughts, and actions. Robinson 
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(2011) suggested that participants actually respond differently to questionnaire and 

interview prompts. Face-to-face interviews tend to trigger strong affective responses 

while questionnaires permit a wide range of cognitively dispassionate responses. Thus 

this research utilised the two approaches so that the weaknesses of one method are offset 

by the other method. 

Qualitative research addresses the sample size issue by saturating the information. 

O'Reilly and Parker (2012) described saturation as point at which all the range of ideas 

and opinions about a phenomenon have been exhausted. Data collection went on until no 

more new information was generated. Focus group interviews went on until no new 

information or themes emerged from learnersô narrations of their experiences or 

difficulties with mathematical symbolisation were generated. 

 Data Analysis  3.6

The data collected in this study was analysed using Statistical Package for Social 

Sciences (SPSS) version 23. A mixed analysis strategy was used to analyse the data. The 

rationale for conducting the mixed analysis was to ensure that results from one analysis 

type (qualitative) are interpreted to enhance or expand, findings derived from the other 

strand (quantitative). Analysing data in a mixed research study requires the researcher to 

integrate quantitative and qualitative results in a coherent and meaningful manner to 

produce reliable inferences (Powell et al, 2008). 

The researcher adopted Creswell and Plano-Clark (2007)ôs procedure which involves 

analysing the quantitative data using descriptive statistics and the qualitative data using 

thematic analysis. In this study a sequential explanatory analysis of quantitative and 

qualitative analyses was conducted with the aid of cluster analysis using Statistical 

Package for Social Sciences (SPSS Version 23). Quantitative data analysis involved 

descriptive statistics (frequency tables, clusters, Silhouette measures) and inferential 

statistics (T- and ANOVA tests, correlations and tests of hypothesis). Qualitative data 

analysis utilised cluster nodes generated from cluster analysis as well as interview data 

from both teachers and learners to create typologies or categories of mathematical 

symbolisation challenges and pedagogical strategies. Interview transcripts of participants 

ówords were content-analysed and themes emerge. Thematic analysis was conducted to 
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identify themes and patterns of meaning across the dataset in relation to research 

questions. The process involves searching for themes among categories, reviewing 

themes, defining and naming themes, and validating the themes. 

 Pilot study 3.7

The researcher conducted a pilot study survey to ensure that quality is maintained 

throughout the study. A pilot study examining tools and processes in a research, drawing 

attention to problems before the main study begins (Secomb, 2011). Pilot studies examine 

study methods and data collection processes prior to a study (Leon, Davis & Kraemer, 

2011). The researcher consulted peers and experts in Mathematics education to provide 

information on the appropriateness of intended instruments in order to validate the 

research processes before a major study begins.  

It is important to clarify the pilot as it is used in this study. The term pilot study has two 

different meanings. On one hand it refers to the feasibility studies that are "small scale 

versions, or trial runs, done in preparation for the major study" (Polit & Bungler, 2004: 

46). On the other hand, a pilot study also pre-tests research instrument (Sarandakos, 

2012). Bless and Higson-Smith (2000) defined pilot study as a  

ñé small study conducted prior to a larger piece of research to determine whether the 

methodology, sampling, the instruments and analysis are adequate and appropriateò 

(p.155).  

This mini-research exposes deficiencies of the measuring instruments or the procedure to 

be followed in the actual project. Pilot surveys are more common in quantitative studies, 

since adjustment after the beginning of fieldwork is less possible than in qualitative work 

(Shanyinde, Pickering & Weatherall, 2011). 

 The pilot survey was conducted at three selected secondary schools (urban, semi-urban 

and rural) which were omitted in the main survey. This was done to guard against 

contamination. Contamination arises when data from the pilot study are included in the 

main study (Collins, 2010).  
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The value of first piloting in this study was essentially to prevent waste of time, energy 

and money. In this study the pilot study was conducted based on Welman and Kruger 

(1999) recommendations that specifically aim to:  

a) Detect possible flaws in measurement procedures such as clarifying instructions, 

time limits, and wording. The feedback from learners and teachers was helpful in 

restructuring some of the questions. This study utilised self-designed 

questionnaires, therefore piloting was necessary to adjust unclear and ambiguous 

questions. 

b) Identify the non-verbal behaviour of participants in the study. This may give 

important information about any embarrassment or discomfort that can be 

experienced by participants due to the content or wording of items in the 

questionnaire. 

c)  Identify any sensitive issues that might reduce the response rate, obtain advance 

warning about potential weaknesses of the project, indicating where research 

protocols might be violated compromising the quality of the findings.   

d) Identify and rectify practical problems of the research procedure, indicate 

whether proposed methods or instruments are inappropriate or too complicated. 

3.7.1 Research Context and Setting 

 

The study context is significant in qualitative research. The social context of the study is 

viewed as a crucial and integral element of analysis.  According to Savikko, Routasalo, 

Tilvis and Pitkälä (2010) research context refers to the environment and conditions in 

which the study was conducted as well as the culture of the participants and location. The 

participants in this study were Grade 10-12 learners and mathematics teachers teaching 

Grade 10-12. The research was conducted in two districts in Limpopo province: Greater 

Sekhukhune and Capricorn. Greater Sekhukhune is a rural district, where most of the 

learners come from low social economic and poor backgrounds. A study conducted by 

Fabi (2013) revealed that the state of mathematics teaching and learning in Greater 

Sekhukhune District is below national standard. Some of the challenges highlighted 

include teachers lack the capacity to perform their mandate as instructed by the 

department. District and circuits offices are dysfunctional due to lack of subject advisors, 
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planning monitoring. Greater Sekhukhune has σσ circuits and ςυ ψσȢσϷ are 

underperforming (Hindle, 2010).  

Capricorn is rural, semi-urban and urban. The dominant language is Sepedi. Schools in 

this district are not well resourced. Most Limpopo schools are rural and these are 

characterised by high levels of poverty and unemployment. On average learners in 

Limpopo province, perform significantly below the national average in national 

matriculation examinations (Howie, 2006). This is because of poor teacher competence in 

content subjects and English language. Many teachers fail to provide appropriate 

mediation for learners to develop adequate cognitive functions in their subjects 

(Department of Education, 2014). Ramokgopaôs (2013) findings show that current 

teachers in these schools do not perform at the grade level they are teaching. Teachers do 

not have the necessary subject content knowledge to enable them to teach the subjects in 

the grades they have been assigned to teach. Learnersô performance has been a cause for 

concern. The performance of the province in international studies (TIMMS, 2012) has 

shown that learners generally perform below the expected grade levels in Literacy and 

Numeracy in Grade 3 and Languages in Grade 6 (Spaull, 2013). 

3.7.2 Validity  

Validity refers to the meaningfulness of research components (Drost, 2011). It is the 

amount of systematic or built-in error in measurement (Rao, 2007) and is established by a 

panel of experts and a field test. In this study, the questionnaire was pre-tested to enhance 

its face and content validity. According to Polit and Beck (2008), face validity is how far 

the instrument appears measures the appropriate construct. Face validity is a subjective 

and weak judgment on the operationalisation of a construct (Drost, 2011). In Content 

validity the analyst judges whether the measures fully represent the domain (Bollen, 

2015). Content validity is a qualitative means of ensuring that the questionnaire has the 

meaning of a concept as defined by the experts in the same field. 

 

To ensure validity in this study, the questionnaire was assessed by four mathematics 

education experts. The criteria for questionnaire evaluation were provided. The criteria 

consist of technical soundness, item clarity and relevance of the items. The researcher 
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incorporated suggestions from the experts. A statistician did not make any amendments, 

suggesting that the descriptive analyses were mainly correct. Respondents were asked if 

they experienced difficulties in respect of being able to or willing to respond to the 

questionnaire. A checklist adopted from McMurray, Pace and Scott (2004) was used to 

monitor potential difficulties that can arise from the wording of the questions. 

 

3.7.3 Trustworthiness  

Trustworthiness is an aspect of the validity of the study (Loh, 2013). According to Anney 

( 2014) trustworthiness refers the degree to which data is believable. It also refers to a set 

of criteria that can be used to judge the quality of qualitative inquiries. Schwandt (2001) 

also viewed trustworthiness as ñthat quality of an investigation and its findings that 

makes it noteworthy to audiencesò (p.258). In order to improve the trustworthiness of the 

data collected the following criteria were used: credibility, transferability, dependability 

and conformability, and are constructed parallel to the analogous quantitative criteria of 

internal and external validity, reliability and neutrality (Denzin & Lincoln, 2000). 

3.7.4 Credibility  

Credibility measures how well the data and data analysis are believable and trustworthy 

(Davis & Buskist, 2008). Credibility is the careful attention by the researcher to establish 

trustworthiness. It measures the extent to which research findings reflect reality 

(Krippendorff, 2004). Credibility pays attention to assurances that respondentsô views fit 

the inquirerôs reconstruction, representation and interpretation (Schwandt, 2001). The 

validity of qualitative research is relative to the researcher and not necessarily to others 

due to the multiple realities. The reader must judge the extent of its credibility based on 

how they understand the study. From a rationalistôs perspective there is no universal 

reality, instead, each individual constructs a personal reality (Smith & Ragan, 2005). 

Therefore, understanding is co-created and objective truth does not exist. In this study, 

the researcher included member checks into the findings to validate data, interpretations 

and conclusions using feedback from the participants. Furthermore, the researcher used 

persistent observation and triangulation to provide the assurance that what the researcher 

reports is a true reflection of the collected data and is consistent with the participantsô 

views. 
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3.7.5  Triangulation  

Triangulation validates data by cross referencing with two or more sources (Johnson, 

Onwuegbuzie & Turner, 2007). It refers to the application of several research 

methodologies such as multiple cases, multiple investigators, and multiple theoretical 

perspectives to verify that the validity criteria are met (Schwandt, 2001). The main 

objective of triangulation is to examine a conclusion from more than one vantage point. 

In this study, the researcher collected data and utilised multiple methods to analyse the 

evidence collected. The evidence for triangulation in this study collected includes 

observation notes, interviews, and questionnaire responses. However, it is debatable 

whether triangulation adequately verifies findings. Many viewpoints result in the 

argument that the worth of triangulation is the provision of broader insights. Thus 

triangulation is used to evaluate the findings of this study. Data obtained from qualitative 

explorative analysis and quantitative descriptive analyses were combined together and 

give meaning to the overall outcomes of the study.   

3.7.6 Member Checks 

The process of member checking obtains feedback from the participants about findings. It 

asks whether the researcher accurately described and interpreted the participantsô 

experiences according to them by sharing the interview transcripts, analytical thoughts, 

and drafts of the final report. This ensures that the researcher has represented the ideas of 

the participants accurately (Lietz & Zayas, 2010). The researcher also allowed 

participants to see what was written about them.  

3.7.7 Transferability  

 

In qualitative research, transferability refers to the degree to which the findings can be 

applied and transferred to another group or to other context with similar conditions 

(Green & Thorogood, 2013). The reader is provided with rich, detailed information 

(ñthick descriptionò) about the context that has been investigated. Transferability enables 

extrapolation of the findings across individual cases (Ary, Jacobs, Sorensen & Walker, 

2013). The findings of this study can be used to understand learners from other schools, 

districts or provinces that have the same background as those participated in this study.  
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3.7.8 Dependability 

According to Marshall and Rossman (2014) dependability refers to the degree to which 

research findings can be replicated in a similar context. Dependability emphasises the 

need for the researcher to account for the ever-changing context within which research 

occurs. Dependability ensures that the study process was logical, traceable, and well- 

documented (Shenton, 2004). It emphasises the importance of the researcher accounting 

for or describing the changing contexts and circumstances that are fundamental to 

guarantee consistency of the research outcome. Due to the evolving nature of the study, 

consistency is viewed as the extent to which variation can be explained or tracked (Ary, 

Jacobs, Sorensen & Walker, 2013). Triangulation was the strategy utilised to investigate 

dependability in this study.  

3.7.9 Confirmability  

Confirmability refers to the extent to which experts and researchers can corroborate 

findings (Ary, Jacobs, Sorensen & Walker, 2013; Lipscomb, 2012). Confirmability 

establishes that the evidence and interpretations of the study are not fabricated by the 

researcher. Strategies of confirmability included triangulation, audit trail, and member 

checks. Bitzer and Botha (2011) also recommended that auditing should be done to 

establish conformability. Here the researcher makes the provision of a methodological 

self-critical account of how the research was conducted. In order to make auditing 

possible by other researchers, all collected data was archived in a retrievable form, in 

case the findings are challenged and it becomes necessary to check the original data. 

3.7.10 Audit Trail  

An audit trail describes the research steps taken through the study to the development and 

reporting of findings (Bolar, 2015). The records of what was done in study are safely 

kept. Koch (2006) suggests that a studyôs trustworthiness may be established if a reader is 

able to audit the events, influences and actions of the researcher.  

An audit trail ensures dependability and confirmability. In this study, the researcher 

maintained a journal of field observations and field notes. Documents such as write ups, 

observations note, and transcribed interviews are organised and filed as the audit trail. 
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The audit trail enables an independent auditor to examine the researcherôs findings in 

order to attest to the dependability of the employed procedures (Ary, Jacobs, Sorensen & 

Walker, 2013).  

3.7.11  Reliability  

Phelan and Wren (2006) defined reliability as the degree to which a research instrument 

produces stable and consistent results. However, according to Streiner and Norman 

(2007) reliability refers to two things. On one hand, the researcher should get similar 

results if they repeated their questionnaires soon afterwards with the same participants. 

The ñrepeatabilityò of the questionnaire would be high. This is called test-retest 

reliability. It refers to questionnaire item consistency. If all the questions relate to the 

same phenomena, all the responses are expected to be fairly consistent.  

Reliability was established using a pilot test. Data collected from pilot test was analysed 

using SPSS for correlation matrix and Cronbachôs alpha coefficients (Ŭ). The Cronbachôs 

alpha coefficient measures the internal consistency of a scale. It is the extent to which all 

the items in a questionnaire measure the same construct. Reliability coefficient (alpha) 

ranges from 0 to 1, with 0 representing an instrument with many errors and 1 representing 

total absence of errors. A reliability coefficient (alpha) of 0.70 or higher is considered 

acceptable reliability (Tavakol & Dennick, 2011). The Cronbachôs alpha coefficient for 

this study (closed questions) of learnersô questionnaire is shown in table 3-1 below. 

Table 3-1: Cronbachôs alpha coefficient 

SECTION Number of Items Cronbachôs Alpha Coefficient 

B 26 0.716 

The alpha coefficient of 0.716, suggests that the items have a high internal consistency. 

 Ethical Considerations 3.8

Liamputtong (2006) defined research ethics as a system of moral values that ensure that 

research procedures obey professional, legal and sociological obligations to participants. 

The researcher sought consent from participants before engaging them. Participants were 

informed about what participation in the research would involve, and what the possible 

risks were before they agree to take part. The researcher was guided by and complied 

with the Constitution of the Republic of South Africa, 1996 (Act No 108 of 1996) and 
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potential participants were provided with information about the study. It was written at 

the appropriate reading age of potential participants. Finally, the researcher requested all 

the participants to sign consent forms before completing the questionnaire. Participants 

were assured that they could withdraw their consent and discontinue their participation at 

any time without penalty. 

3.8.1 Rights of the institutions involved 

Research Ethics Committee of the Institute of Science and Technology Education (ISTE-

UNISA) reviewed the research proposal. The committee approved the proposal and 

granted permission to proceed with the study.  

3.8.2 Respect for the rights of participants 

The participants consented to participate in the study. Participants acknowledged that 

they had adequate information about the research, could comprehend the information and 

could discontinue from the research at any point. The nature of the study and its purpose 

were clearly explained. The researcher assured participants that their involvement in the 

study was voluntary. Failure of participants to comply with the research process or 

withdrawal from the study would not result in any consequences. The researcherôs 

contact details were made available to respondents in case they needed to contact him 

regarding the study and their participation.  

The researcher also committed to maintaining anonymity and confidentiality. The 

respondents were assured that anonymity and confidentiality would be maintained 

throughout the study. Participants were asked not write their names or any other personal 

details on the questionnaire to ensure anonymity (Cottrell & McKenzie, 2011). 

Confidentiality was maintained throughout the study since participantsô identities were 

not linked to the information they provided. Number codes (for example, 023, for 

participant number 23) were used during data capture and data management. The 

responses were not discussed outside the research process.  

PILOT SURVEY RESULTS 

 The purpose of a pilot study was to assess the feasibility of the research instruments. 

Theban et al. (2010) indicated that the goal of a pilot study is to assess the feasibility of 
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the proposed study ñso as to avoid potentially disastrous consequences of embarking on a 

large study, which could potentially ódrownô the whole research effortò (p. 1). The pilot 

study was mainly for testing the feasibility of the study, recruitment of participants, 

research tools and data analysis. The pilot study was necessary and useful in providing 

the groundwork for the study. However, this data might be irrelevant if there are 

problems with the methods. On the other hand, if a pilot study does not lead to 

modification of materials or procedures then the data might be suitable for incorporation 

into the main study (Kannan & Gowri, 2015). The presentation of the pilot study results 

was restricted to summary and descriptive statistics of the data as recommended by 

Arain, Campbell, Cooper and Lancaster (2010). Data presentation was mainly summary 

and descriptive statistics because the sample size was too small to detect differences and 

to make inferences. In addition, estimates of sample size, which are determined based on 

pilot data, may lead to insignificant statistical inferences. Thus, caution was undertaken 

when determining sample size for the main study. 

Table 3-2: Demographic variables 

Variable Category Frequency 

(f) 

Percentage 

(%)  

 

Gender 

Female 73 66.4 

Male 37 33.6 

 

Age (years) 

11-15  13 11.8 

16-20  96 87.3 

21 Years and above 1 0.9 

Home Language 

Sepedi 108 98.2 

Sesotho 1 0.9 

Other languages 1 0.9 

Grade 

Grade 10 36 32.7 

Grade 11 36 32.7 

Grade 12 38 34.6 

 

Residential Area 

Urban 34 30.9 

Semi-Urban 36 32.7 

Rural 16 14.5 

Deep Rural 21 19.1 

Other 2 2.8 

Household Size 

Alone 1 0.9 

Family of two 6 5.5 

Family of three 12 10.9 

Family of four 35 31.8 

Above five 56 50.9 
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Participants 

The sample for the pilot survey consists of 73(66.4%) females and 37(33.6% males. The 

sample was made up of 36(32.7%) Grade 10 learners, 36(32.7%) Grade 11 learners and 

38(34.6%) Grade 12 learners. Ninety-six (87.3%) of the participants were in the 16-20-

year-old category. The majority of participants were and Sepedi speakers (98. 2%).The 

researcher drew an equal number of learners from Grade 10 and 11 cohorts and 2 extra 

learners from Grade 12. The majority 37(33.6%) of the participants were drawn mainly 

from rural schools. There was one extreme age group (21 years and above) with one 

learner who had dropped out of school and decided to continue.   
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Table 3-3 : Frequencies of Responses 
Key:   

 Strongly Disagree       =   Disagree  

   Neutral                        =   Agree   

   Strongly Agree  
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Frequencies 

Questionnaire Item      

C1 Mathematical symbols affect my understanding of mathematics 

concepts. 
στ τφ υ ρσ ρς 

C2 I  understand the symbols and formulae in the current textbooks υ φφ ςπ ρτ υ 

C3 I am able to express word problems compactly using appropriate 

symbols. 
ςω σσ ψ σρ ω 

C4 When I fail to cope with some symbol, I seek help instead of taking 

them as they are. 
τ ςρ ρπ υυ ςπ 

C5 I am able to handle expressions and equations using appropriate 

symbols.  
φ υς ςς ρω ρρ 

C6 I struggle to assign meanings to the symbols and this negatively affects 

my conceptualisation. 
φ ςχ ρυ τψ ρτ 

C7 Unfamiliar mathematical symbols in a concept/topic often mark the 

point where I fail to understand the topic. 
ω ω ρω τω ςτ 

C8 I am able to learn how to use all symbols and language used in the 

textbooks. 
ρρ σρ ρσ τς ρσ 

C9 Navigating through the symbols and their meanings is easy to do. ρω τχ ρς ςπ ρς 

C10 Mathematical symbols strongly affect my understanding of Algebra 

and related topics. 
ω ρς ςς υσ ρτ 

C11 Sometimes my own meanings of mathematical symbols often 

contradicts with the actual meaning and this often hampers my progress 

in problem solving 

ω ρφ ςς τς ςρ 

C12 My interpretation and use of mathematical symbols affect my 

competence in mathematics.  
φ σσ ψ τς ςρ 

C13 The symbols in a formula sometimes contradict with my thinking. ρρ ρσ ρυ υτ ρχ 

C14 Linking concepts and appropriate symbols is easy. ρρ υσ ρυ ρτ ρχ 

C15 I am flexible to move from one formula to another in relation to the 

demands of task using appropriate symbols. 
ρρ σπ ρφ σψ ρυ 

C16 The teaching and learning methods used by my current teacher enhance 

my understanding of the use of the various mathematical symbols   
ρυ σς ρυ σς ρφ 

C17 Mathematics teachers who taught me in lower grades attempted to 

foster the connection between symbols and their meanings.  
τπ ςτ ςρ χ ρψ 

C18 I get my mathematics tasks done quickly with clear understanding of 

the symbols and features used in the task. 
τπ σς ψ ςπ ρπ 

C19 Discovering new symbols and features with their meanings is easy. ρτ τυ ρχ ςρ ρσ 

C20 Mathematical symbols and formula strings are satisfying to use ρσ τφ ςς ρς ρχ 

C21 The symbols in a mathematical problem have a significant influence on 

my attempt to solve a problem 
χ ρω ςτ 

τφ
 z

ρτ 

C22 The symbols in a mathematical problem influence my goals, activities 

and organisation of results when solving a mathematical problem. 
χ ςρ ρψ τπ ςτ 

C23 I am able to switch representations from geometric situations to 

algebraic and algebraic situations to geometric. 
χ υπ ρτ ςυ ρτ 

C24 I am able to define the meaning of symbols introduced to solve 

problems, including specifying units and distinguishing among the 
ςς σρ ρπ σσ ρτ 
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three main uses of variables(unknowns, placeholders, parameters) 

C25 I am able to read expressions, formulae in different ways. χ ρψ ρχ ττ ςτ 

C26 I read the question several times to gain the meaning of the problem 

together with the symbols before solving it. 
φ ρψ ρτ συ σχz 

3.8.3 Discussion of results 

C1: Mathematical symbols affect learnersô understanding of mathematical concepts 

Eighty (72%) of the participants indicated that mathematical symbols present obstacles 

that prevent them from understanding mathematical concepts. Only 25(23%) learners 

indicated that they understood the symbols used in mathematics textbooks. Five (4.5%) 

learners indicated that they could cope with mathematics symbols depending on the topic 

under discussion. Further probing into the issue indicated that most learners familiarise 

themselves with symbols used in a particular topic and associate the symbols with the 

concept. These findings are consistent with Worthington and Carruthers (2003) who 

observed that learners find it difficult to understand symbol systems and this obscure 

them understanding mathematical concepts. Yetkin (2003) also noted that learners had 

trouble in constructing mathematical meanings of standard written symbols. Learners 

struggle to understand written symbols by making connections within the symbol system.  

C2: Symbols and formulae in the current textbooks 

Participants indicted that they do not understand the symbols and formulae in their 

current mathematics textbooks. Seventy-one (64.5%) of the participants confirmed that 

they have trouble in understanding the symbols and formulae when reading mathematics 

textbooks. Learners confirmed that they encounter difficulties in transferring and 

connecting knowledge from the abstract aspects of mathematics with reality. 

Understanding what symbols represent in the physical world is important to how well and 

how easily a learner will remember a concept. Holding and inspecting a rectangle, is 

much more meaningful to a learner than simply being told what that the rectangle is. A 

similar study conducted by Murray (2009) revealed that many learners find mathematics 

difficult because they have trouble learning mathematics formulas and understanding 

symbols in mathematics formulas. So before learners can understand a new mathematics 

topic or concept and its formulas they need to learn meanings of the symbols and 

concepts they represent. Only 20 (18.2%) indicated that they understand the symbols and 

formulae in the current textbooks and can use the textbook as a learning resource.   
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C4: Learners use symbols even without understanding their meanings 

The majority 75(68.2%)) of respondents indicated that they seek help from teachers when 

they fail to cope with unfamiliar mathematical symbols. Twenty-five (22.7%) were 

opposed to the idea of consulting teachers but memorising the procedures together with 

their symbol strings. Ten (9%) learners indicated that they resort to meaningless 

ñsymbols pushingò, which is, using the symbols without understanding their meanings. 

Findings from this study are consistent with the findings of Chan and Yeung (2000) who 

indicated that math symbols have very specific meanings. She recommended that if one is 

not certain about the meaning of a math symbol s/he look it up, or ask someone to explain 

it instead of just taking as it is. Thompson, Cheepurupalli, Hardin, Lienert and Selden 

(2010) further revealed that symbol pushing is counterproductive in the end. 

 

C10: Manipulating expressions and equations using appropriate symbols 

 

The results, as seen in Table 3-3 indicate that 58(52.7%) participants struggle to 

manipulate expressions and equations using appropriate symbols. Only 30(27.3%) 

confirmed that they can use symbols to represent information compactly. Twenty-two 

(20%) participants were undecided. There are several possible explanations for this result. 

For example, participants may fail to understand the question and settle for ñNeutralò. 

This was further investigated in the interviews. 

C12: Mathematical symbols affect conceptualisation of concepts 

Sixty-two (56.4%) participants indicate that their major challenge is to assign meanings 

to math symbols and this negatively affects their conceptualisation while 33 (30%) 

strongly opposed the claim. Fifteen (13.6%) participants indicated they are neither 

challenged by mathematics symbols nor their conceptualisation affected by symbols. 

Mathematical process (such as counting) can be symbolised, then the symbol is treated as 

a mathematical concept and itself manipulated as a mental object (Tall, 1994). Thus for 

some learners the symbol can be thought of either as a process, or as a concept. This dual 

nature of a symbol is a cause of confusion for some learners. 

C16: Teaching methods to enhance understanding of mathematical concepts 
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There were mixed reactions to this item. Forty-seven (42.7%) participants acknowledged 

that the teaching and learning methods used by their teachers do not enhance their 

understanding of various mathematical symbols. Forty-eight (43.6%) confirmed that the 

teaching and learning methods used by teachers enhance their understanding of various 

mathematical symbols. Fifteen (13.6%) participants were not sure whether the teaching 

methods enhance their understanding of mathematical symbols. Yetkin (2003) observed 

that learnersô challenges with written symbols, concepts and procedures can be reduced 

by creating learning environments that help learners to connect their formal and informal 

mathematical knowledge; using appropriate representations depending on the given 

problem context; and helping them connect procedural and conceptual knowledge.  

C17: Prior knowledge and conceptions of concepts, symbols and meanings 

Sixty-four (58.2%) participants acknowledged that mathematics teachers who have taught 

them in the lower grades made little attempts to foster the connection between symbols 

and their meanings. However, this is not the case with 25(22.7%) who confirmed that 

their teachers attempted to foster connections between symbols and referents. These 

findings are consistent with those of Yetkin (2003) who found that learners experience 

difficulties in connecting symbols and their references. Teachers need to design 

instruction that helps learners construct overarching ideas. The symbolic representation of 

mathematics concepts is abstract and more difficult to learn than concrete representations 

or drawings. The same observation was also made by Garrison and Mora (1999) who 

revealed that the ability to manipulate symbols without the proper conceptual foundation 

limits progress into higher mathematics, since conceptual understanding is the basis for 

advanced mathematics. The same observations were also made by Gurganus (2010) who 

noted that preceding experiences from lower grades affects learnersô proficiency with 

mathematical symbols. If concepts and their symbols were not well explained in the early 

years, mathematics learning in later years is affected. 

C18: Mathematical Symbols are a threat to problemïsolving progress   

Seventy-two (65.5%) participants disagreed with the statement and acknowledged that 

they take too long to go through their tasks due limited understanding of the symbols and 

features used in the task. Thirty (27.2%) participants conformed that they are able to do 

mathematics tasks quickly with clear understanding of the symbols and features used in 
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the tasks. These findings are consistent with the findings of Reynders (2014) who 

observed that the written expression of symbols such as numbers, letters and unfamiliar 

notations are a threat to learnersô progress. Gurganus (2010) also observed that these 

problems are evident in learners who experience difficulties in differentiating numbers or 

symbols that are close in form, copying shapes or symbols, following directions with 

algorithms or graphs, recognizing patterns or sequences, and understanding oral 

directions or drills.  

C19: Discovering new and their meanings is a challenge 

Fifty-eight (53.6%) of participants indicated that discovering new symbols and their 

meanings is one of the huddles when attempting a new topic. However, 30(26.4%) of the 

participants claimed that they do not encounter difficulties in learning new symbols 

together with their meanings. Ali (2011) found similar observations and relates this to 

language problems. These problems emerge when learners cannot use mathematical 

symbols to express mathematical concepts. Rubenstein and Thompson (2001) made 

similar observations and concluded that the symbolic language of mathematics is a cause 

of great confusion for learners. A similar study conducted by Bakker, Doorman and 

Drijvers (2003) revealed that mathematics teachers are able to work with and to ñseeò the 

mathematics through its symbolic representations, whereas learners often struggle in this 

endeavour; they may need to be told what to see and how to reason with mathematical 

symbols. Thus, learners cannot discover new mathematical symbols and their meanings 

without the teacherôs help. 

C23:  Switching representations is a challenge 

 The results, as indicated in Table 3-3 above show that 57 (51.8%) of the participants 

struggle to switch representations while 39 (35.5%) acknowledged that they can switch 

representations from geometric situations to algebraic and algebraic situations to 

geometric. One result is that learners cannot realise that a mathematical concept may be 

represented in a number of different ways. These include verbal, symbolic (numerical or 

algebraic), pictorial/ diagrammatical (geometrical), as a table of values (spreadsheet), 

graphical or as a physical model. The ability to switch representations is a measure of a 

learnerôs symbol sense. This is achieved if learners are able to identify the mathematical 
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aspects of a problem, choose between representations, simplify the problem and represent 

it mathematically, using appropriate variables, symbols, diagrams and models, then select 

appropriate mathematical information, methods and tools to use.  

3.8.4  Inferential Statistics 

Table 3-4: Grade and Difficulties cross tabulations 

Grade Level of Difficulty  Total 

 Mild difficulty  

Moderate 

Difficulty  Severe Difficulty  

Grade 10 Gender Male 4(36%) 6(55%) 1(9%) 11 

Female 6(24%) 18(72%) 1(4%) 25 

Total 10(27.8%) 24(66.7%) 2(4.5%) 36 

Grade 11 Gender Male 2(20%) 8(80%) 0 10 

Female 6(21.4%) 20(71.4%) 2(7.2%) 28 

Total 8(21.1%) 28(73.4%) 2(5.5%) 38 

Grade 12 Gender Male 3(18.7%) 13(81.3%) 0 16 

Female 5(25%) 15(75%) 0 20 

Total 8(22.2%) 28(77.8%) 0 36 

Total Gender Male 9(24.3%) 27(72.9%) 1(2.7%) 37 

Female 17(23.3%) 53(72.6%) 3(4.1%) 73 

Total 26(23.6%) 80(72.7%) 4(3.7%) 110 

 

Learnersô difficulties with mathematics symbols were coded according to the mean 

responses per questionnaire item for each participant. Classification codes were used to 

classify learnersô level difficulties: 1= no difficulties; 2 = mild difficulties 3 = moderate 

difficulties and 4 = severe difficulties. This analysis was carried out for each grade as 

well as according to gender. The summary of these results is shown in Table 3.4 above. 

The results show that participants experience mild to severe difficulties with mathematics 

symbols.  

Moderate difficulties were experienced across all the grade levels. Female learners 

experience more difficulties than their male counterparts do. Severe difficulties were 

experienced in Grade 10 and 11 while no learner in Grade 12 reported challenges with 

mathematical symbols. In summary, of all the participants, 26(23.6%) learners indicated 

that they experience mild difficulties, 80(72.7%) experience moderate difficulties and 
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4(3.7%) experience severe difficulties. However, these findings are preliminary; some 

tests of hypotheses may shed more light on the differences on difficulties noted so far. 

 Descriptive Statistics  3.9

Table 3-5: Summary measures 

Gender Mean N Std. Deviation 

Male 2. 4603 37 .55073 

Female 2.5205 73 .50303 

Total 2.5455 110 .51822 

 

The means for males and females are almost the same suggesting that that learners 

experience the same difficulties when dealing with mathematics symbols. The standard 

deviations for the different gender groups were almost the same as the standard deviation 

for the whole group suggesting that there is little variability in terms of challenges 

experienced by learners when working with mathematical symbols. However, this is a 

preliminary finding; a hypothesis test for the difference of two gender means will be 

conducted to ascertain this claim. 

 Table 3-6: T-test 

 

Test Value = 0 

t do Sig. (2-tailed) 

Mean 

Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

 

Gender 

 

36.762 109 .000 1.6636 1.574 

 

1.753 

 

 

The following postulated hypotheses were designed to test if gender has a significant 

effect on learnersô challenges with mathematical symbols: 

H0: There are no gender differences in terms of learnersô experiences/ difficulties 

with mathematical symbolisation. 

H1: There are gender differences in terms of learnersô experiences/ difficulties with 

mathematical symbolisation. 




























































































































































































































































































































































































