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ABSTRACT

The Case Management Modeling and Notation (CMMN)
specification, published by the Object Management Group
(OMG) in 2014, describes a declarative style for modeling
business processes. The declarative nature of CMMN is in-
tended to supplement the procedural style of the Business
Process Modeling and Notation (BPMN). Although multi-
ple metrics have been developed and verified for BPMN, the
authors are not aware of any metrics developed for CMMN.
Being a relative new process specification the understanding
of complexity metrics for CMMN ought to be beneficial for
practitioners and researchers by providing a way to compare
case management models.

This study provides a formal description of CMMN and
three metrics are defined, namely size, length, and complex-
ity. The metrics are theoretically validated using the formal
framework for software measurements defined by Briand et
al. and the complexity metric is further validated using
Weyuker’s properties for software complexity measures.
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1. INTRODUCTION

This research defines three metrics for the Case Manage-
ment Modeling Notation (CMMN) [25]. The proposed met-
rics are the size C'S, the length CL, and complexity CC' of
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a CMMN model.

Most authors are in agreement that software metrics should
be theoretically and empirically validated [22, 23, 30]. The
metrics proposed in this study are theoretically validated
using an axiomatic approach and future work will focus on
the empirical validation. The Briand et al. framework [4]
and Weyuker properties [36] are categorized as axiomatic or
property-based approaches to validation [30], and they are
commonly used for validating software metrics [23].

Business process improvement practitioners are increas-
ingly interested in case management in many industries [14].
However, it is known that users find complex process models
difficult to understand, and complex models are more likely
to contain design errors [18]. Therefore, research on com-
plexity metrics of process models is important, and several
studies on the subject have been conducted [1, 5, 6, 11, 12,
31, 35, 18, 21, 26]. In those studies the researchers have used
UML, BPMN, workflow nets, or proprietary BPM product
models, all of which are based on directed graphs and are
procedural in nature. CMMN defines a declarative style that
is different to the BPM procedural style [19]. Therefore, the
metrics defined for procedural models may not be applica-
ble to CMMN. This study addresses that gap by proposing
three new metrics for CMMN.

Section 2 provides brief background information about
case management and the CMMN notation. Section 3 de-
scribes the methodology used, introduces a formal defini-
tion for CMMN models, and describes the three proposed
metrics. Section 4 presents the theoretical validation for
the proposed metrics using Briand et al. framework [4] and
Weyuker properties [36]. Section 5 presents our findings and
provides suggestions for future research. Finally, section 6
describes our conclusions.

2. BACKGROUND

Case management in the context of process technology
was first introduced by Berkley and Eccles [2] in 1991 and
Davenport and Nohria [8] in 1994. Case handling was intro-
duced by Van Der Aalst and Berens in 2001 [33] and Rei-
jers et al. [27] in 2003 to support the flexibility required by
knowledge workers during a process and to help them better
deal with exceptions that may occur during such process.

In 2009, the Object Management Group (OMG) issued
a request for proposal (RFP) for the creation of a stan-
dard modeling notation for case management [24] to serve
as a complement to its BPMN specification. The result was



CMMN [25], which was first published in 2014. The main
difference between CMMN and BPMN is the shift from pro-
cedural to declarative models [19]. CMMN addresses case
management as described in [33, 34, 27, 32] with a data-
centric approach based on business artifacts [19]. Case man-
agement as defined by CMMN provides flexibility to knowl-
edge workers with regards to what tasks or activities should
be performed and when they should be performed [15].

Researchers are starting to look at CMMN and its ap-
plicability to case management requirements. Schonig et
al. [28] in 2013 considered human centric processes start-
ing with CMMN modeling skeletons that evolve over time.
Marin et al. [20] in 2014 compared the CMMN method
against other modeling notations. That study concluded
that CMMN compares favorable to other process modeling
notations like BPMN. Hauder et al. [13] in 2015 explored
the applicability of CMMN for knowledge intensive processes
exposed via a wiki environment for business users. The con-
clusion was that a wiki environment allows for non-technical
users to structure knowledge intensive processes. Kurz et al.
[17] in 2015 compared CMMN against adaptive case man-
agement and concluded that for the most part CMMN fulfills
the adaptive case management requirements.

3. METHODOLOGY

This section starts by formalizing a CMMN model. We
abstract and formalize the characteristics of a model that
will allow for the definition of concrete metrics. The formal-
ization will allow us to validate the metrics against formal
frameworks like those of Briand et al. [4] and Weyuker [36].

Our focus is on complexity metrics for CMMN, and size
and length are considered complexity metrics by Muketha
et al. [23]. Therefore, we define three metrics, size C'S,
length C'L, and complexity CC of a CMMN model. The
metrics are inspired by Briand et al. [4] definitions of size,
length, and complexity. Briand et al. assume a system with
procedural characteristics, and uses directed acyclic graphs
to describe its framework. That imposed some constraints
while defining the metrics, because CMMN is declarative
[19] instead of procedural.

The metrics are validated using the formal framework for
software measurements defined by Briand et al. [4], and
the complexity metric is further validated using the nine
properties for complexity measures defined by Weyuker [36].

3.1 Case Management Modeling and Notation
(CMMN)

DEFINITION 1. (Model): A CMMN [25] model C is a col-
lection of model elements £ with annotators A and related
by scope U and event V relationships. A model is defined as
a tuple

C=(&Uv, A (3.1)
Where

£ is a set of modeling elements. & is strongly typed and
each element on &£ belongs to one of the following
types: scope, data, plan, or optional. Table 1 shows
the CMMN elements.

U is a binary relationship in which two elements z and y in
& are related if and only if they are contained in the
same scope. Note that [z,y] € U is an unordered pair.

type Element (£) | Name
case
4 N
Scope
~~—0 /| stage
” <
f 1
1 1
1 1
! |
N -_-a-_-_’ | discretionary stage
i i
! 1
I 1
| 1
i i
RO s P I | plan fragment
Data j case file item
u task
’ Y
Plan i i
i i
S ! | discretionary task
@ event listener
C_: milestone
Optional | =+ euvunn connector (sentry)

Table 1: CMMN elements

V is a binary relationship in which two elements z and y in £
are related if and only if an event from one (z) triggers
the other (y). Note that (z,y) € V is an ordered pair.

A is a set of annotators used to indicate characteristics of
elements in £. Each annotator ‘a’ in A is related to one
and only one element z in £. There are three types of
annotators, namely decorators, sentries, and markers.
Most elements x in £ can be associated with a single
marker, one of each decorator (collapsed or expanded),
and multiple sentries. Table 2 shows the annotators.

DEFINITION 2. (Scope element set): A scope element is
an element that can contain other elements. The set of scope
elements M is a subset of £ (M C &).

M = {z | type-of(z) € Scope} (3.2)

Where, type-of(z) is described by type in Table 1.
As shown in Table 1, the scope elements are the case,
stage, discretionary stage, and plan fragment.

DEFINITION 3. (Case element set): A case element is a
special scope element z € M that starts a case definition. A
model C can contain multiple case definitions, each one with
its corresponding case element. The set of case elements £
is a subset of scope elements (£L C M).

L ={z]| isa(z) = case} (3.3)



Where, isa(z) is described by name in Table 1.

Any nonempty model C must contain at least one case
element. A case element can contain other elements, but it
cannot be contained by any element.

Therefore, C # @ <— L # @.

DEFINITION 4. (Module): A module of a model C is de-
fined by a scope element z € M, as a tuple

Tz = <€z,z/{z,szAz> (34)
Where

&, is a subset of £ defined as
E. ={z} U{z | z is reachable from z}.

U. is a subset of U defined as

V. is a subset of V defined as
Vo ={(z,y) | (z,y) eV ANz el Nyek}

A, is a subset of A defined as

A, ={a|aec AN (3y)(y € E. Ay = annotated-by(a))}

Where, annotated-by(a) describes the element in &
that ‘e’ annotates.

Note that z may contain other scope elements, in which
case all the elements contained in these scope elements are
alsoin "z In other words, z € &, Nz e M = &, CE,.
In addition, note that £ is partitioned by &, and &,

E=EUE NENE =0 <<= L={z,y} (3.5)

By slight abuse of notation, we use £p with upper case P
to indicate the set £ of model P, and £, with lower case z
to indicate the set £ of module "z

DEFINITION 5. (Scope relationship): A scope relationship
relates two elements if and only if they are in the same scope
z € M. The scope is a binary relationship & on €& (U C
& x &), defined as follows

U={[z,yl|z#y N Fz)zeEeM ANzl Nyet,
ANx#z NyH#z)
AN =(Bu)(weM, AN (z€&yw Vyetn)}t (3.6)

Due to the declarative nature of CMMN, there is no strong
sequence or control flow relationship between its elements,
but scope plays an important role in a CMMN model.

DEFINITION 6. (Event relationship): An event relation-
ship relates two elements if and only if an event from one of
them trigger an entry or exit criteria in the other element.
The event is a binary relationship V on € (V C &€ x &),
defined as follows

V={(y) | [yl €U N & =5 y) (3.7)

Events play an important role in CMMN, because entry
and exit criteria for CMMN elements can be triggered by
events. Events cannot cross scope, therefore the two model-
ing elements must already be related by scope.

Type Annotator (A) | Name

collapsed planing table

expanded planing table
auto complete
collapsed

expanded

manual activation
repetition

required

Decorator

entry criterion

Sentry
exit criterion

non-blocking human

process
case

Marker

participant
timer

@ b0 O U@ 0<>-—#vmm.@%

Table 2: CMMN Annotators

z

Figure 1: Model with one element (a case)

3.2 Examples

Three examples of models are presented. The example
models will be used to illustrate CMMN concepts and gram-
mar. The models are grammatically and semantically cor-
rect, but they are not intended to represent any real world
process. Annotators are not labeled in CMMN, but for il-
lustration purposes, dotted lines were used to associate an-
notator labels to the annotator icons in the model.

EXAMPLE 1. Minimum case model. Every model must
contain at least one case element (see definition 3). Figure 1
shows the minimum valid CMMN model, with a single case
element. The model has one model element £ = {z}, one
scope element M = {z}, and one case element £ = {z}. The
scope relationship is empty U = @. The event relationship
is empty V = &. The annotator set is empty A = &. This
example contains a single module "z7 with £, = {z}. Note
that £ = &..

EXAMPLE 2. Simple case model. Figure 2 shows a model
with a single case element w containing one case file item o,
a connector p, and a task q. An event from case file item o
triggers the entry criteria ‘k’ that will allow task g to execute.
The optional connector p visualizes the event propagation
between case file item o and the entry criteria ‘k’ of task
g. The model has four model elements & = {w, 0, p, ¢}, one
scope element M = {w}, and one case element £ = {w}.
The scope relationship is U = {[o,p], [0, 4], [p,ql}. The
event relationship is V = {(0,q)}. The annotator set is
A = {k,j,1}. This example contains one module "w™ with
Ew = {w,0,p,q}. Note that & =&,

EXAMPLE 3. Model with two cases. Figure 3 shows a
model with two case elements x and z. This model con-



Figure 2: Model with four elements

z

Figure 3: Model with eight elements

tains three scope elements M = {x,y, z}, and two case ele-
ments £ = {z,z}. The model has eight modeling elements
& = {a,b,c,d,e,x,y,z}. There are three scopes, x with
{a,b,c,y}, y with {d, e}, and one empty scope z. The scope
relationship U = {[a, ], [a,b], [a, o1, [b, ], [b, ], [e, ], [d; e[}
Note that {a,b,c} and {d,e} are in different scope, and so,
[a,d] ¢ U. The same is true for [a, e], [b, d], [b, €], [, d], and
[c, €] that are not in U. The event relationship V = {(a, ¢)}.
The annotator set A = {h,1,j,k,I,m}. This example con-
tains three modules, "z with & = {z,q,b,¢,y,d, e}, "y~
with & = {y,d,e}, and "z7 with £&; = {z}. Note that
by (3.5) L = {z,2} = & = &, UE,. Figure 4 shows a
tree view of the modeling elements £ in this example. The
tree view is for illustration purposes and it is not a CMMN
diagram.

3.3 Metrics

We define three metrics that are consistent with the formal
framework for software measurements defined by Briand et
al. [4]. Although we are interested in complexity metrics,
we also define size and length, because Muketha et al. [23]
concluded that size and length are similar to the complexity
activity metrics proposed by Cardoso [6].

DEFINITION 7. (Size metric): The size of a model C de-
noted by C'S(C) is defined as the cardinality of &,

CS(C) = €] (3.8)
The size of a module "2 is defined as the cardinality of £,

C5("27) = [&]
By (3.5) it follows that,

csE) =gl = Y [&] = > CS(T=7)

zeL zeL

Note that,
Size for Figure 1 is CS(examplel) = |€] = 1.
Size for Figure 2 is C'S(example2) = |€| = 4.
Size for Figure 3 is C'S(exzample3) = |€| = 8.
Size for "z in Figure 3 is CS("z7) = |&| = T.
Size for "y in Figure 3 is CS("y") = |&y| = 3.
Size for "z in Figure 3 is CS("z7) = |&.| = 1.

DEFINITION 8. (Length metric): The length of a model C
denoted by CL(C) is defined as the maximum nesting depth
of a model. The length CL(C) can be calculated by the
following algorithm,

int funct CL(C) =
begin
intm:=0
for each case-plan ¢ € £ do
m := max(m, depth(m, c)) od
return m
end.
int funct depth(s) =
begin
intd:=0
if (s ¢ M) then return 0 fi
for all e in scope s do
d := mazx(d,depth(e)) od
return d + 1
end.

The length of a module "z is defined as the maximum
nesting depth of the module, and can be calculated using
the following algorithm,

int funct CL("27) =
begin
assert(z € M)
return depth(z)
end.

As shown in Figure 4, the elements £ of a model C can be
organized as a forest graph, where each tree is a case element
module. We used the CMMN element icons to represent the
nodes of the tree. Figure 4 shows a forest with two trees "z,
Tz, and a subtree "y. It also shows six leaves, namely d,
e, a, b, c,and z.

Note that,
Length for Figure 1 is CL(ezamplel) = 1.
Length for Figure 2 is CL(example2) = 2.
Length for Figure 3 is CL(example3) = 3.
Length for "z in Figure 3 is CL("z™) = 3.
Length for "y in Figure 3 is CL("y™) = 2.
Length for "z7 in Figure 3 is CL("z7) =1

DEFINITION 9. (Complezxity metric): The complexity of
a model C denoted by CC(C) is defined as,

CC(2) = 0, otherwise CC(C) = Y _ W,
i€EUA
Where, the weight, W; is given in Table 3.

The complexity of a model resembles a cognitive com-
plexity metric with cognitive weights. There are several
cognitive complexity metrics defined for BPM [29, 10, 11,
7]. However, those cognitive complexity metrics are not ap-
plicable to CMMN;, because they are based on control struc-
tures [9] like sequence, branching, iterations, etc., which are

(3.9)



Figure 4: Tree view of elements in Example 3

not present in CMMN. For the CMMN complexity metric
CC(C), instead we assign weights to elements in £ and an-
notators in A. The weights were assigned based on the au-
thors’ intuition. Higher weight were given to less frequently
used elements and to annotators that increase the number
of elements in the visual canvas, because less frequently used
elements require better recall capabilities by users and clut-
ter by annotators makes the model harder to read.
The complexity of a module "z is defined as,

cc(zn= > W
i€ELUA,
Note that,

Complexity for Figure 1 is CC(examplel) = 1.

Complexity for Figure 2 is CC(example2) =7
(weights w=1, o=1, p=0, q=1, k=1, 1=0, j=3).

Complexity for Figure 3 is CC(example3) = 11
(weights z=1, x=1, a=2, b=0, c=1, y=1, d=1, e=1, h=1,
i=0, j=0, k=1, 1=0, m=1).

Complexity for "z in Figure 3 is CC("z7) = 10
(weights x=1, a=2, b=0, c=1, y=1, d=1, e=1, h=1, i=0,
=0, k=1, 1=0, m=1).

Complexity for "y in Figure 3is CC("y") =3
(weights y=1, d=1, e=1).

Complexity for "z in Figure 3 is CC("z7) = 1.

4. THEORETICAL VALIDATION

In this section a theoretical validation of each metric is
conducted using the Briand et al. framework [3]. The com-
plexity metric is further validated against the nine properties
for software complexity measures defined by Weyuker [36].

4.1 Briand’s framework

The Briand et al. framework [4] categorizes software met-
rics into size, length, complexity, cohesion, and coupling.
The framework is based on systems and modules. Briand
et al. defines a system S as a pair S = (E, R), where F
represents a set of elements of S, and R is a binary rela-
tionship on E (R C E x E). A module of S is defined as
m = (Em, Rw) for B, CE, Ry, C By, X Ep, and Ry, C R.

For our purposes a system corresponds to a model C and
a module corresponds to a module ("m™, m € M). E cor-
responds to modeling elements £ (E = &) as described in
Table 1. R corresponds to the two binary relationships in C
(U and V). We define R as follows,

R ={[a,b] | [a,b] € U} U {{a,b) | (a,b) € V}

Note that [a,b] # (a,b), [a,b] is an unordered pair, while
(a,b) is an ordered pair.

EUA Description ‘Weight
case element 1
o/ | stage element 1
\.--.a....’ | discretionary stage element 2
{____d.___3 | plan fragment element 3
D case file item element 1
u task element 1
R ! | discretionary task element 2
@ event listener element 2
Q milestone element 1
-------- connector (sentry) element 0
HH collapsed planing table 1
HH expanded planing table 2
] auto complete 2
collapsed 0
= expanded 1
> manual activation 1
# repetition 1
! required 1
O entry criterion with associ- 1
ated connector
entry criterion without a con- 2
nector
¢ exit criterion with associated 1
connector
exit criterion without a con- 3
nector
> non-blocking human
D process 0
- case referring to a case ele- 0
ment not in this model
case referring to a case ele- 1
ment in this model
& participant 0
@ timer 0

Table 3: CMMN weights




We will use the terminology used in the Briand et al.
framework [4] to introduce each property followed by a short
proof against our metrics.

4.1.1 Size

Briand et al. define a function Size(S) characterized by
three properties.

S1ZE 1. Non-negativity. The size of a model S = (E, R)
is non-negative.
(S=(E,R)) = Size(S)>0
Proof: By definition 7, Size is the cardinality of £ and the
cardinality of a set cannot be negative.

. CS(C) =& >0 O

SIZE 2. Null value. The size of a model S = (E,R) is
zero if E is empty.

(S=(E,R) N E=9) = Size(S)=0
Proof: By definition, the cardinality of an empty set is zero.
L (E=9) = CS(C)=l=19|=0 O

S1ze 3. Module additivity. The size of a module S =
(E, R) is equal to the sum of the sizes of two of its mod-
ules m1 = (Em1, Rm1) and ma = (Em2, Rm2) such that any
element of S is in either m; or in m;.

(m1 CS AmeCSANE=FE,UEww AN Epi N Epe =
@) = Size(S) = Size(m1) + Size(m2)

Proof: Consider a model C with two disjoint modules "z
and "y such that each element in C is either in "z or in
Ty7, but not both (&, N&Ey = @) A (€ =& UE)). It
follows, based on (3.5), that = and y are the only two case
elements in £ (£ = {z,y}), thus £ is partitioned by "z and

[P

y.
L OS(C) = €] =& + 18] = CS(Te) +CS(TyY) O

4.1.2 Length

Briand et al. define a function Length(S) characterized
by five properties.

LENGTH 1. Non-negativity. The length of a model S =
(E, R) is non-negative.
(S=(E,R)) = Length(S) >0
Proof: CL is defined as the maximum nesting depth of
a model, and calculated with algorithm C'L(C). Analyzing
algorithm C'L(C), the variables (m and d) are initialized to

zero, and only increased by one or assigned the maximum
of itself and depth which always returns d + 1.

.. CL(IC) >0 O
LENGTH 2. Null value. The length of a model S = (E, R)

is zero if F is empty.

(S=(E,R) N E=0) = Length(S) =0

Proof: Consider an empty model C, then £ = @ =

L = & (because L C &). Analyzing algorithm CL(C), it

initializes m to zero, and if £L = & then ‘depth(m,c)’ is
never invoked, forcing the return of m which is zero.

L (E=0) = CL(C)=0 O

LENGTH 3. Non-increasing monotonicity for connected com-

ponents. Adding relationships between elements of a module
m does not increases the length of the model S = (E, R).

(S=(E,R) A\m = (E,/,Rm) Am C S A mis a connected
component of S A §" = (E,R') A R = RU{{e1,e2)} A
(e1,e2) ¢ R N e1 € Epyy N e2 € Epyr)

= Length(S) > Length(S")

Proof: Consider a model C with two modeling elements in
a module (a,b € "z7). There are two cases,

case 1 a and b are in different scope. They cannot be re-

lated by scope, as that will require moving them within
submodules of module "z adding (a, b) to R which will
change the structure of modules violating (e1, e2) ¢ R.
They cannot be related by an event, because by defi-
nition 6 to be related by an event they are necessarily
in the same scope.

case 2 a and b are in the same scope. They are already

related by scope [a,b] € U. Assuming (a,b) ¢ V, we
can relate them by an event and add them to Vi,
which corresponds to adding (a,b) to R’ and leaving
R invariant.

Therefore, a and b can be related only by an event, and the
scope relationship U is not affected. Then, neither the length
of "z (CL("z™)), nor the length of the model C (C'L(C)) has
changed.

The maximum nesting depth of a forest is greater than or

equal to the maximum nesting depth of any of the trees or
subtrees, and "z is either a tree or a subtree on model C.

. CL(C) > CL("z") O

LENGTH 4. Non-decreasing monotonicity for non-connected

components. Adding relationships between the elements of
two modules m1 and mz does not decrease the length of the
model S = (E, R).

(S = <E,R> AN mp = <Em1,Rm1> AN mz = <Em27Rm2> A
m1 CS A ma CS A mi,me are separate connected
components of S A S =(E,R') A R' = RU{(e1,e2)} A
<e1,62> ¢ R AN e €FEn N es€ Emg)

= Length(S) > Length(S’)

Proof: Adding relationships between elements of two mod-
ules is not allowed in CMMN models. O

LENGTH 5. Disjoint modules. The length of a model S =

(E, R) made up of two disjoint modules m1 and mz is equal
to the maximum of the lengths of the modules m; and mao.

(S=miUma A miNme =0 A E=FEpi UFEnR2)
= Length(S) = maxz(Length(m1), Length(mz))

Proof: Consider a model C with two disjoint modules "z
and "y, such that £ =&, U &, N &, NEy = . Therefore,
by (3.5) z and y are the only two case elements in £ (£ =
{z,y}) and they create the only two trees ("z7,"y™) in the
forest. The maximum nesting depth of a forest is equal to
the maximum nesting depth of its trees.

. CL(C) = maz(CL("z"),CL("y")) O



4.1.3 Complexity

Briand et al. define a function Complezity(S) character-
ized by five properties. Complexity for Briand et al. is
distinct from cognitive complexity, as they state that com-
plexity in the framework is an intrinsic attribute of an object
and not a perceived psychological complexity.

COMPLEXITY 1. Non-negativity. The complexity of a model

S = (E, R) must be non-negative.
(S =(E,R)) = Complexity(S) >0

Proof: By definition 9, CC(C) = >, .o, 4 Wi, where weight
W; is a positive integer from 0 to 3 given by Table 3. Sup-
pose we replace each element in £ for its weight and call the
resulting set £, and each annotator in A for its weight
and call that set A". Then, CC(C) = Y ,ccoaWi =
ZpesquW p N p € Ny, therefore (ZpegquW p) € No.

.. cc(e) > o. O

COMPLEXITY 2. Null value. The complexity of a model
S = (E, R) is zero if R is empty.

(S=(E,R) N R=@) = Complezity(S) =0

Proof: By definition 9, the complexity of an empty model
is zero.

" (C=9) = R=U=V=2 ANCCC)=0 O

COMPLEXITY 3. Symmetry. The complexity of a model
S = (E,R) does not depend on the convention chosen to
represent the relationships between its elements.

(S=(E,R) A ST'=(E,R™"Y))
= Complezity(S) = Complexity(S™*)

Proof: For a model C, R is given by the two relationships
U and V. By definition 9, CC(C) = >, ., 4 Wi, which does
not depend on U or V, or the convention used to represent
U and V.

.. cc(e) =co() 0

COMPLEXITY 4. Module monotonicity. The complexity
of a model S = (F, R) is no less than the sum of the com-
plexities of any two of its modules with no relationships in
common.

(S =(E,R) A m1 = (Em1,Rm1) A m2 = (Ema, Rm2) A
miUma CS A Rpni N Rme =9)
= Complexity(S) > Complexity(mi) + Complexity(mz)

Proof: Consider a model C with two modules "m1" and
"m27 such that Em1 UEm2 € E A Upni NUmz2 = F A Vi N
Vm2 = &. We can ignore relationship R = U UV, because
by definition 9, CC(C) does not depend on U or V.
Because 1 U Ema2 C €, we can define T such that & =
TUEmUEm2 N TNEmM =T NE2=TNERLNEm2 = .
Annotators in A are associated with elements in £, there-
fore we can define a function f such that f: A — £. We
can separate the elements of A such that A,,1 = {z | f(z) €
Emit, Ame ={z | f(x) € Em2}, and Ar ={z | f(z) € T}.
By way of contradiction, assume A1 N Am2 N Ar = {a}.
That means there is an annotator ‘a’ in A for which f(a) ¢
TUEm1UEm2, but &€ = TUE1 UE 2. We have an annotator
‘a’ without an image in £ which contradicts our definition of
f. Therefore, ‘a’ cannot exist, and A = A1 UAm2 UAT A
AmiNAme = A1t NAT = AmeNAr = AmiNAmeNAr = @.

We have two cases for T,

case 1 T = &, in which case &€ = En1 U Em2 A Emi N
Em2 = . By (3.5) and complexity 5, we have that
CC(C)=CC("ml1™) + CC("m2")

case 2 T # @, in which case T C E N Eni NEm2 =T N
Em1 =T NEm2 =TNER NER2 = . Thus, CC(C) =
ZiesuA Wi = ZiesmlusmguTuAmluAmzuAT Wi =
ZiesmluAml Wi+ i€EmaUAma Wi+ Wi =
CC("ml1M) +CC("m™) + CC(T)

ZiETUAT

. CC(C) > CC(Tm17) + CC(Tm2") O

COMPLEXITY 5. Disjoint module additivity. The com-
plexity of a model S = (E,R) composed of two disjoint
modules my and ms is equal to the sum of the complexities
of the two modules.

(S=(E,R) AN S=mi1Uma A miNmz = 2)
= Complexity(S) = Complexity(mi) + Complezxity(mz)

Proof: Consider a model C with two modules "m1" and
"m27 such that £ = En1 UEma2 A Emi NEm2 = &. By (3.5),
ml and m2 are case elements and £ = {m1, m2}.

Annotators in A are associated with elements in £. There-
fore, we can define a function f such that f: A — £. We
can separate the elements of A such that A,,, = {z | f(z) €
Emi}t and Apo = {z | f(x) € Em2}.

By way of contradiction, assume A1 N Am2 = {a}. That
means there is an annotator ‘a’ in A for which f(a) ¢ Em1 U
Ema, but € = En1 U Em2. We have an annotator ‘a’ without
an image in £ which contradicts our definition of f. There-
fore, ‘a’ cannot exist, and A = A;1UAm2 A AmiNAme = @.

Now, we have that CC(C) = >;ccua Wi =

Ziegm,lungUAnlluAmQ Wi = 1€EM1IUAmM1L Wi+
Wi = CC(Tm17) + CC(Tm2").

1€EEmaUAm2

. CC(C) = CC(Tm17) + CC(Tm2") O

4.2 Weyuker’s properties

Weyuker [36] proposed a set of nine properties of complex-
ity software metrics that have been widely used to validate
business process metrics [23]. Briand et al. [4] found that
the Weyuker [36] properties are consistent with complexity
in his framework.

The Weyuker [36] notation uses P, @, and R to denote
programs, which for our purposes corresponds to CMMN
models. To avoid confusion with the Briand et al. [4] frame-
work, we will use T" instead of R. Weyuker uses the set car-
dinality operator |P| to denote complexity, which we already
used to denote cardinality. Therefore, we will use || P|| as the
complexity of model P. Weyuker expects that for any P, its
complexity || P|| is a nonnegative number, hence complexity
can be compared and ordered.

1Pl <(Qll v el <P

We will use the terminology used by Weyuker [36] and the
classification by Srinivasan and Devi [30] to introduce each
property, followed by a short proof against our complexity
metric CC.

PROPERTY 1. Non-coarseness. A metric should not rank
all models as equally complex.

EP)EQ)IPI # el



Proof: Let P be example 2 (see Figure 2) with CC(P) =7,
and @ be example 3 (see Figure 3) with CC(Q) = 11.

. (AP)EQ)(CC(P) # CC(Q)) U

PROPERTY 2. Granularity. A metric should rank only a
finite number of models with the same complexity.

Let ¢ be a non-negative number, then there are only finitely
many models of complexity c.

Proof: Assuming a model can only be renamed (see prop-
erty 8) in a finite number of ways, then consider a number
¢ € No, and a model P such that CC(P) = c. By defi-
nition 9, CC(P) is calculated using Ep and Ap. We need
to show there is a finite number of £p U Ap sets such that
CC(P) = c. Note that if ¢ = 0 then EpUAp = & A CC(9),
thus there is only one Ep U Ap that gives c =0 [O.

We start by proving that £p U Ap is finite for ¢ > 0.
The only element in Ep (see Table 1) that has a weight of
0 is the connector (see Table 3), but a connector must be
associated with a sentry in Ap with weight of 1 (entry or exit
criteria). We cannot add an infinite number of connectors
to Ep without adding sentries and changing the value of
CC(P). Thus, CC(P) =c¢ = |Ep| # oo, and model P has
a size CS(P) = |Ep| = n. Set Ep is finite (In)(|Ep| < n).
By definition 1, each element in Ap is associated with a
single element in £p. In Ap (see Table 2) markers and
decorators are bound to [Ep|, but sentries are not. However,
sentries (entry and exit criterion) weights range from 1 to
3. We cannot have an infinite numbers of sentries, because
the number is bound by ¢ (i.e. 30;c (. 1meq1,2.3yx)ap ¢ < O
Therefore, Ap is also finite and (3m)(]Ap| < m). Moreover
EpNAp = O — ‘5P|+ ‘.AP‘ = |SPU.AP‘ < n+m.
Therefore, Ep U Ap is a finite set.

Without loss of generality, we can summarize Table 3 into
four weight categories (0,1,2,3), and we know |Ep U Ap| <
n + m. Using brute force, we can count all combinations
with repetition of four categories (0, 1,2,3) into 1 to n +m
slots, using C'(n + r — 1,7). That will give us all possible
sets Ep U Ap that can produce, among other complexities,
CC(P) = c. We calculate """ C(4+r—1,r) = 24+ Fm=1,

Therefore, there is a finite number of sets £p U Ap such that
cop) = Zz‘espuAp Wi=c U

PROPERTY 3. Non-uniqueness (Notion of equivalence). A
metric should allow some models to have the same complex-

1ty.
@EP)EQ)(P #Q A P =1Ql)

Proof: Let P be example 2 (see Figure 2) with CC(P) =7,
and @ a similar model, but changing modeling element o
(case file item) to a task ¢. Thus, @ is different from P
by one modeling element. The complexity of @, namely,
CC(Q) = 7, because the weight for a task is the same as the
weight for a case file item (see Table 3).

L (AP)EQ)(P #Q A CCO(P) =CC(Q)) U

PROPERTY 4. Design details are important. Two distinct
but equivalent models that compute the same function need
not have the same complexity.

@EP)EQ(P=Q A [P #11QID-

Proof: Let P be example 3 (see Figure 3) with CC(P) =
11, and @ a similar model, but includes an extra task ¢

inside case x. Task ¢ is a dummy task that does nothing
when it executes (a ‘skip’ statement). Operationally, @ is
equivalent to P (Q = P), because they compute the same
function. However, the complexity of Q is CC(Q) = 12,
because task ¢ adds a weight of 1 (see Table 3).

L (EP)ERQ)R =P A CCOP) #CC(Q)) U

PROPERTY 5. Monotonicity. The complexity of two mod-
els joined together is greater than or equal to the complexity
of either model considered separate.

(VPYVQ)(I1PII < 1Q: Pl A 11QI < (1P QD).

Proof: Let CC(P) =3 ,cc, 4, Wi, and CC(Q) =
ZiesQuAQ Wi. Then, CC(P;Q) = ZiegpusQuApuAQ Wi =
i€EQUEPUAQUAp W; = CC(Q; P). We have two cases,
case 1 P=92 V @ = @. Assume P is an empty model,

then &p = Ap = &@. Therefore, CC(P;Q) =
ZiEQIUSQUQIU.AQ Wi = ZiE£QUAQ Wi = CC(Q). As-
suming @ is an empty model gives the same result
CC(P; Q) = CC(P). Assuming both P and Q are
empty leads to the same result CC(P;Q) = CC(P) =
cc(Q) =0.

case 2 P# I N Q# @. Then, CC(P;Q) =
ZiespusQuApuAQ Wi = Zieng.Ap Wi+

icequag Wi = CC(P) + CC(Q).

- (YP)(VQ)(CC(P) < CC(P) + CC(Q) N CC(Q) <
CC(P) +CC(Q)) O

PROPERTY 6. Nonequivalence of interaction. Two mod-
els with the same complexity when each is joined to a third
model the resulting complexity may be different between the
two.

a:(3P)3Q)ET)([P[ = QI A IIPsT| # |1Q;T1])
b:(3P)(3Q)ET)(IPIl = IRl A NITs5 Pl # 1T5Q1I)

Proof: For complexity CC the order of concatenation of
models is not important. Let CC(P) = }_,c¢, 4, Wi, and
CO(T) = X icepun, Wi- Then, CC(P;T) =
Zieé‘pU&“TUAPUAT Wi = ZiEETUEPUATUAP Wi = CC(T; P)
Therefore, CC(P; T) = CC(T; P) which is the same as
|P;T|| = ||T; P||, and we have only one case.

Let P be example 2 (see Figure 2) with CC(P) = 7, and
Q similar to P but changing modeling element o to a task .
Thus, @ is different from P by one modeling element, still
CC(P) = CC(Q) =7 (same as in property 3). Now let the
case annotator ‘I’ in P invoke case z, and case annotator ‘I’
in @ invoke case x. That does not change CC(P) or CC(Q),
because neither case z or case x are in the models, therefore
the weight of ‘1’ remains 0 (see Table 3).

Let T be example 1 (see Figure 1) with CC(T') = 1. Con-
catenating P with T produces CC(P;T) =9 (weights z=1,
w=1, o=1, p=0, q=1, k=1, 1=1, j=3), where ‘I'=1, because
case z is in P; T. However, concatenating () with 7T is
CC(Q; T) = 8 (weights z=1, w=1, o=1, p=0, q=1,k=1,
1=0, j=3), where ‘'=0, because case z is not in Q;T.

- (FP)EQ)ET)(CC(P) = CC(Q) A CC(PT) # CC(Q;é’))



PROPERTY 7. Permutation. Complexity should be re-
sponsive to the order of statements.

(3P)(3Q) (Permutation(Q, P) A |[P| # Q)

Proof: Let P be example 2 (see Figure 2) with CC(P) =7,
and @ be similar to P but with connector p attached to
exit criteria ‘j’ instead of entry criteria ‘k’. Thus, @ is a
permutation of P with CC(Q) = 6, because in CC(Q) the
weight of ‘k’ increased from 1 to 2, and the weight of ‘j’
decreased from 3 to 1 (see Table 3).

. (3P)(3Q)(Permutation(Q, P) ANCC(P) # CC(Q) O

PROPERTY 8. Renaming. Complexity should not be af-
fected by renaming.

(VP)(VQ)(Rename(Q, P) A ||P|| = [IQI)

Proof: The names of elements and annotators do not affect
CC. Let P be example 2 (see Figure 2) with CC(P) = 7,
and @ be similar to P but with different names. Suppose we
rename w,o0,p, q,k,l,j in Ep to a,b,c,d, e, f,q in Eg. Thus,
Q is a renaming of P. Note that @ has the same number and
type of modeling elements and annotators as P, and they
are organized in exactly the same way. Thus, the complexity
of Q remains CC(Q) = 7. This can be done with any model.

. (VP)(VQ)(Rename(Q,P) A CC(P)=CC(Q)) O
PROPERTY 9. Interaction may increase complexity.

EP)EQ)IPI +11QIl < [17;Q1)-

Proof: Let P be example 1 (see Figure 1) with CC(P) =1,
and @ be example 2 (see Figure 2) with CC(Q) = 7. Assume
that case annotator ‘I’ in ) invokes case z, then in @ the
weight of case annotator ‘1’ is 0, but when joined with P

that has case z, the weight of annotator ‘I’ becomes 1, and
CC(P;Q) =9 (see Table 3).

. (AP)(EQ)CC(P) + CC(Q) < CC(P;Q)) U

S. FINDINGS AND FUTURE RESEARCH

The three proposed metrics comply with the formal frame-
work for software measurements defined by Briand et al. [4],
and the proposed complexity metric also complies with the
properties described by Weyuker [36]. However, both Briand
et al., and Weyuker assume that software systems are build
using a procedural style, based on directed acyclic graphs.
Briand et al. use directed acyclic graphs to describe their
framework and to provide examples. Weyuker uses a proce-
dural language to illustrate her properties. Therefore, work
is required to understand the applicability of Briand et al.,
and Weyuker to declarative systems.

The validation of complexity metrics for business pro-
cesses requires both theoretical and empirical validation [23,
22, 30]. Work is required to conduct the empirical validation
for the proposed metrics. Further work on empirical valida-
tion using suggestions from Misra et al. [22] and Kitchenham
et al. [16] should be conducted.

The formalization of the CMMN model was sufficient to
define and validate the metrics. But, CMMN claims an
approach based on business artifacts [19], therefore further
work is required to compare the formal CMMN model de-
scribed here with a formalization of business artifacts.

Further research is required on the complexity metric.
The weights given for the complexity metric CC(C) were

assigned based on the intuition of the authors, and further
empirical work is needed to fine tune the weights.

The CMMN specification defines non-visual entities that
are not represented in the CMMN models (they are not de-
scribed in Tables 1 or 2). Some of those entities are roles
and non-visualized system events. Empirical work is needed
to understand the influence of CMMN non-visual entities on
the complexity metric.

6. CONCLUSIONS

This study provides a formal description of CMMN [25]
and three metrics have been defined. The metrics were suc-
cessfully validated using the formal framework for software
measurements defined by Briand et al. [4], and the proper-
ties for software complexity measures defined by Weyuker
[36]. However, it is clear that both Briand et al. and
Weyuker’s properties are designed for procedural models
and not for declarative models. Therefore, further theo-
retical validation is required. In addition, further research
is required to empirically validate the metrics and the com-
plexity weights.
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