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ABSTRACT

This work is aimed at the understanding of the dynamical behavior of hydrogen
in diamond. The investigation was carried out using Transverse Field muon Spin
Rotation (TF-uSR) and the Longitudinal Field muon Spin Relaxation (LF-uSR)
techniques. The chemical analogy between hydrogen (p*e™) and muonium (ute™)

enabled the study of the indirect dynamical behavior of hydrogen in diamond.

The TF-uSR and LF-uSR measurements were carried out in an isotopically pure 3C
diamond in the temperature ranges 11 mK - 320 K and 10 K - 400 K, respectively.
In the TF-uSR results, the Prompt Absolute Fraction (PAF) of both diamagnetic
(pfy) and the paramagnetic (Mur) states are temperature independent. The spin
relaxation rate ()‘/%) for the ui state is non-zero and temperature independent,
while that (Ayu,) of the Mur state is non-zero and temperature dependent. The
behavior of A 4 indicates that the pf is immobile, while that of Mur indicates the
mobility in diamond. The LF-uSR results provide hop rate and associated nuclear

hyperfine interaction parameters of the Mur state in diamond.

Keywords: Diamond; Muonium; Hydrogen; Diffusion; uSR; Relaxation rate; Prompt

Fraction; Hop rate; Power law dependence
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Chapter 1

Introduction

This work is aimed at studying the behavior of hydrogen in diamond. The under-
standing of hydrogen behavior in diamond is one of both fundamental and techno-
logical interest. However, it is extremely difficult to obtain direct information on
isolated hydrogen in diamond using conventional methods, mainly due to its high
mobility and reactivity. The chemical analogy between hydrogen (pTe~) and muo-
nium (pe™) enables hydrogen to be studied through muonium. This can be readily
achieved by using the muon Spin Rotation or Relaxation (uSR) method. It is,
however, recognized that muonium and hydrogen are incorporated in two different
ways in samples. Hydrogen is introduced during the time of sample preparation or
post-processing and reaches thermal and chemical equilibrium before measurements
begin, while muonium is observed within 2.2 us after implantation of almost 100%
spin polarized muons. This means the hydrogen and the muonium are observed in

very different time windows after their introduction. The other factor is that in the



case of uSR only one muon at a time (even at the highest intensities of available
muon beams) may be present in the diamond, while concentrations as high as 10000
ppm of hydrogen could be incorporated in diamond prior to the conventional mea-
surements. It therefore turns out that muonium mostly occurs as an isolated centre
in diamond which makes it possible to explore its dynamical behaviour. The latter
provides shorter term dynamics in diamonds, where hydrogen is expected to have
interacted with any defects or impurities by the time conventional measurements

are conducted.

The above discussion shows that the defected nature of even the purest diamonds
available contain hydrogen in a complex form, while the short time window of uSR
provides a unique opportunity of indirectly exploring hydrogen diffusion during its
early presence in the sample. Obvious caveats apply due to the lighter mass of muo-
nium in comparing dynamical information which is inferred from the depolarization
rate of the muon ensemble. Further fundamental information on diamond and its

defects is provided below.

1.1 Diamond

Diamond is the hardest natural substance and the word is derived from Greek
Adamas, meaning ‘hardest steel’. A diamond is an allotrope of carbon and, no
matter what its size, each diamond can be considered to be a single molecule of
carbon. The element, carbon, has four valence electrons that are spread in the s

and p orbitals. In order to create covalent bonds in the diamond, the s orbital



mixes with the three p orbitals to form sp?® hybridization. The four valence elec-
trons are thus equally distributed among the sp? orbitals, while each orbital points
to one of the four corners of a tetrahedron. Strong covalent bonds form maintaining
this geometry. The tetrahedral structure, together with the highly directed charge
density, give strength and stability to the bonds. Consequently, all the bonds in
diamond are of the same length (1.545 A), with the same bond angle (109.47°).
Diamond has an isomeric crystallography. The arrangement is based on the face

centered cubic or FCC lattice with the basis 000, Thus, to each of the four

131
atoms making up the FCC cell an extra atom is added to give eight atoms per cu-
bic cell. Each unit cell of a diamond has a lattice constant of 0.357 nm and hence
the volume of 4.54x10723 ¢cm? /unit cell. Since there are 8 atoms per unit cell, the
atomic density is found to be 1.763 x10* atoms/cm?, and this leads to the density

of about 3.52 g/cm? for diamond. As shown in Figure 1.1, atoms have the tetra-

hedral co-ordination characteristic of the covalent bonding of the sp® hybrid orbitals.

The maximum packing fraction for diamond may be calculated using the ex-

pression:

where V, is the volume of a spherical atom (i.e. V, = %m’?’), V. the volume of a
cube (i.e V. = a3) and n is the number of atom per unit cell. In diamond cube (dc),
substitution of n = 8, the nearest neighbor distance (2r = a+/3/4) and hence the

atomic radius av/3/8, lead to the maximum packing fraction

f = w/3/16
— 0.34 (1.1)



Figure 1.1: Conventional cubic cell of the diamond lattice.



Comparison of this value to BCC (f = 0.680) and FCC (f = 0.740) shows that the

diamond is much more open.

Diamond has received increasing attention recently because of its very attractive
physical and electronic properties, and the real possibility of being able to engineer
new diamond-based materials and devices. Many of the physical, chemical, optical
and electronic properties of diamond represent (near) extremes when compared to
other materials [1]. Diamond has unique properties such as high electrical resistivity
(10'® — 10' Ohm-cm ), high thermal conductivity (20.0 W/cm-K), low thermal
expansion coefficient (1.1 ppm K™!), high thermal diffusivity (10 cm? s7'), wide
forbidden energy band gap (5.45 eV), high density (3.52 g/cm?), etc [2] and hence
is regarded as a good material to study (for technological and academic interests).
Due to these unique properties, diamond is expected to have great potential re-
search and commercial applications that are now becoming a reality, due to recent
developments in the synthesis of diamond. It is now possible to produce synthetic
diamonds using the Chemical Vapor Deposition (CVD) technique. The availability
of large CVD diamond plates, showing similar thermal properties to natural (type
[Ta) single crystal diamond, has opened a host of new possible applications in which
diamond can be used, for example, in the heat management of electronic and opto-
electronic devices. This technique is known as a CVD process, where single-crystal
and polycrystalline films of diamond can be produced by the deposition of carbon
from hydrocarbon gases onto various substrates such as diamond, tungsten and sili-
con. In addition, single-crystal diamonds are now synthesized from graphite or from
small crystals of diamond in the presence of solvent/ catalyst metals such as iron,

cobalt and nickel. High temperature and enormous pressures are needed for this
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process, typical temperatures and pressures are in the ranges 1550-1600°C and 5-6
GPa, respectively, (see Figure 1.2 for catalytic HPHT synthesis). These conditions
are similar to those that exist 100 miles below the earth’s surface, where diamond
crystals are formed. These developments have stimulated academic interest in the
solid state physics community. One of the intriguing topics in solid state physics is
the effect of impurities on the structural and dynamical properties of an ideal crys-
tal. The overwhelming majority of both natural and synthetic diamonds contains
an appreciable amount of nitrogen impurity which is a determining factor of the

quality of diamond.

Scientists in the 1930s devised a simple scheme to categorize diamonds into two
main groups, or types, i.e type I and type II. Historically, these two categories have
been distinguished by differences among diamonds in their ultraviolet transparency,
and in their infrared spectra. Diamonds are classified into different types, depending
on the nature and concentration of defects (mostly nitrogen) present in the bulk.
Physically, there are four well-known types of diamond and these are distinguished

through the relative concentration of nitrogen and boron impurities.

e The type I diamonds are the most abundant category in nature. Features in
the visible and infrared spectra of type I diamonds have been attributed to
the presence of nitrogen atoms in various configurations and contain between
150 and 5000 ppm of nitrogen. These diamonds are sub-divided into types Ia
and Ib, depending on the form that the nitrogen atoms take in a particular

diamond.

— Type la diamonds contain aggregate nitrogen defects known as A-centres



(two nearest neighbor substitutional nitrogen atoms, N-N) and B-centres
(four substitutional nitrogen atoms surrounding a vacancy, Ny — vacancy — Na)

(see Figure 1.3).

{A-centre) (B-centre)

Figure 1.3: Illustration of A- and B-centres in diamond. The heavily shaded atoms

are nitrogen, each with a lone electron pair. The unshaded atoms are Carbon [29].

— Type Ib diamond is characterized by paramagnetic isolated single substi-

tutional nitrogen.

e The type II diamond contains between 14 and 40 ppm [16] of nitrogen, and
are subdivided into ITa and IIb. The former is known to be relatively pure
in nature (with a relatively large mosaic spread, > 0.1°) and the latter is a

semiconductor with an active dopant/boron.

Other defects could include naturally and deliberately introduced impurities such
as phosphorus, iron, arsenic, boron, oxygen and lithium. There are also ion-induced
vacancies such as neutral (V) negatively charged vacancies (V™) and positively
charged vacancies (V1) [3,4,5]. Among all defects present in the diamond, hydrogen

is found to be of significant interest, due to its capability to passivate active dopants,



its role in the synthesis of CVD diamond, its role in determining surface properties,
its (potential) role in the shallowing of deep level electronic states by aggregation
with other defects, its (potential) role in stabilizing extended intrinsic defects and

the fact that it is conceptually simple to treat theoretically.

1.2 Hydrogen in diamond

The interest in the study of hydrogen in diamond has arisen mostly from the quest
to understand its influence on the electrical properties of diamond, in view of the
potential of diamond to play a significant role in semiconductor devices. As in many
other materials, light volatiles such as hydrogen could play a significant role in di-
amond as much as it could also contribute to some setbacks in the advancement of
diamond technology. Hydrogen (H) is known to passivates active dopants [8] and
its hydrogen chemistry dominates CVD growth mechanism [9,10] and subsequent
diamond layer properties [11], making it difficult to eliminate the incorporation of
hydrogen during the growth process. Recent experiments show evidence that H
is a strong candidate to form hydrogenated molecular complexes which lead to a
shallowing of donor levels e.g BHy and NHN. Furthermore, the donor level of the
hydrogenated defect is shallower than the isolated impurity [50].

Already there are negative factors associated with the presence of hydrogen in dia-
mond. One of the negative factors include the influence of hydrogen on the electrical
and optical properties of diamond [12]. In addition, from the effects of, for example,

the formation of an electrically conducting surface by hydrogen, it was reported that
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an increase in hydrogen concentration could result in an increase of the electrical
conductivity in diamond [13]. Since boron, a shallow acceptor, can be passivated by
hydrogen, it is possible that some of the difficulties associated with the production
of electrically active donors could be attributed to the presence of hydrogen mostly
incorporated during the growth of diamond. The above factors indicate that there
are still many unknowns about hydrogen behavior in diamond. As an example,
the shallowing of defect level by hydrogenated molecular complexes e.g BH,, the
positions, the diffusivity and the nature of multi-hydrogen trapping at impurities
are not yet clear. Most of the lack on the understanding of hydrogen behavior in
diamond has been due to the difficulty in conventional studies of hydrogen, due
to hydrogen forming diamagnetic complexes. It is extremely difficult to detect hy-
drogen using conventional spectroscopic methods because of its high diffusivity and
reactivity with other defects coupled to the relatively impure nature of even the
best available diamond. The detailed chemistry of its catalytic role in diamond syn-
thesis is envisaged to proceed via a range of intermediate bonded interactions and
complexes. It is increasingly important to distinguish between the influence of bulk
and grain-boundary phenomena. It has been found that interstitial hydrogen binds
strongly to impurities in diamond [17], therefore it is possible that multiple trapping

of hydrogen at dopants will occur.

From a theoretical perspective, a number of different configurations have been pro-
posed for hydrogen trapping in the bulk of diamond [54]; trapping at vacancies, dis-
locations, or at defects such as A and B centres [18,19] and the auto-trapped systems
like the bond centered (Hpc), the bonding-anti-bonding (Hy*) and the tetrahedral

molecular (Hor) configurations [20-22]. For an example neutral hydrogen was found
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to be more stable (2.4 eV) within an A-centre than in the bond-centered site [23].
From the experimental point of view, the muon spin rotation (uSR) has, to date,

offered invaluable information on the study of hydrogen in diamond.

1.3 Muonium

Due to the chemical analogy between muonium (Mu = pte™) and hydrogen (H
= pte”) (see Table 1.1 and 1.2, respectively), muon Spin Rotation (uSR) experi-
ments are frequently used in the study of hydrogen in solid-state materials, as it is
extremely difficult to study intrinsic hydrogen using conventional methods; mainly
due to the high reactivity of hydrogen with defects. pSR measurements in dia-
mond have been extensively conducted in the past where configurations of different
muonium states such as the tetrahedral interstitial (Mur), the bond-centered para-
magnetic (Mugc), the diamagnetic (up) and muonium at a site of less than axial
symmetry (Muy) were identified [24,52,53]. See Figure 1.4. The Mupc state, with
anisotropic hyperfine parameters, is known to be more stable state while the Mur
state, with an isotropic hyperfine parameter, forms soon after implantation and is
known to diffuse rapidly [25]. In addition, a new muonium state, Muy, represents
a paramagnetic configuration with less than axial symmetry and is also associated
with aggregated nitrogen in the form of A- or B- centres [26]. Relatively little is

known about pup.

From the fact that positively charged muons u behave like light unstable protons in

condensed matter, thus preferentially occupy interstitial regions in semiconductors
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Figure 1.4: The crystal structure of diamond, showing the possible muonium sites

(T=tetrahedral sites, BC=bond-centre site).
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and insulators resulting in the capture of electrons to form paramagnetic muonium
states. Some pSR experiments have contributed in the understanding of the forma-
tion of muonium in solid-state materials. For example, the suppression of anomalous
muonium signal with electric field suggests that muonium formation proceeds via
transport of excess electrons from the ionization track to the muons [28]. Weak
electric fields of about 8 kV/cm are sufficient to suppress the muonium formation,
suggesting electron capture into excited hydrogenic states. Irrespective of the state
of matter, three different regions of energy loss are distinguishable: Firstly, at high
velocity regime, v ~ ¢/3, the muon should behave like any fast charged particle and
undergo energy loss by excitation and Bethe-Bloch ionization of the medium. This
enables the calculation of the slowing down time between the initial and final energy
states, to be about 107!%. In the second region, no significant amount of muonium
should form until the kinetic energy drops to several tens of keV, where the muon
velocity becomes comparable to the orbital velocity of electrons of the medium. The
time required to reach this energy ranges between 0.1 and 10.0 ps. Once the region
is reached, the charge exchange collisions become important. This results in the
capturing of an electron by the muon from the medium to form muonium. Lastly,
at an energy of the order 100 eV, charge exchange is no longer dominant and the
fraction of the muonium at these energies is expected to be influenced by the relative
electron affinities of the muon and atoms of the sample. In materials with ioniza-
tion potentials smaller than that of muonium (13.54 eV) most muons are expected
to emerge from this stage as hot muonium atoms. ‘Hot’ muonium formation is a
‘prompt’ process, occurring during a time when the muon is rapidly losing energy,
within a few tens of ps after entering a condensed sample. Muonium formation

after the muon has come to thermal equilibrium with its surrounding requires time
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for electrons to diffuse to the muon, and is therefore termed ‘delayed’” muonium

formation.

Table 1.1: Comparison of some important properties of the muon (u*) and the

proton (p™).

NUCLEI | muon (u*) | proton (p*)
mass (1m,) 206.768 1836.15

Charge (e) +1 +1
Spin 1/2 1/2
Half-life (us) 2.2 stable

Table 1.2: Comparison of the properties of the muonium (u*e™) and hydrogen

(p*er).

ATOMS Muonium (Mu) | Hydrogen (H)
Reduced mass (m,) 0.995 0.999
Radius (A) 0.531 0.529
Ionization energy (eV) -13.54 -13.59
H.F. frequency (GHz) 4.46 1.42

1.4 Current research aims

The work is aimed at acquiring the general understanding of the dynamical behavior

of hydrogen in diamond materials. This has been made possible by the chemical
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analogue between hydrogen and muonium. The current SR measurements have
offered an opportunity to provide better insights into the behavior of the hydrogen-
like “atom” after the promptly formed muon(ium) states and the spin relaxation
rates were measured in an isotopically pure ¥C diamond. The spin—% 13C nuclei
have non-zero nuclear moments which could cause muons to undergo spin relaxation

as a function of their dynamics within the sample.



Chapter 2

Theoretical Aspects

2.1 Muon Spin Rotation (4SR) Spectroscopy in

Diamond

In this experiment, 100% spin polarized muons were implanted into the bulk of dia-
mond. In a muonium atom, the magnetic moments of the positive muon and electron
interact with one another via the hyperfine interaction, and in turn they both in-
teract with the applied magnetic field via the Zeeman interaction. In addition,
muonium in a solid state material may experience a nuclear hyperfine interaction
with neighboring host nuclei. In an ideal pure crystal, all these interactions can
be non dissipative, hence the resulting muon polarization could consist of a sum

of undamped oscillating components. The oscillation frequencies for a particular

16
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set of interactions can be calculated using elementary quantum mechanics, and the
comparison with experiment yields the hyperfine and nuclear hyperfine interaction
tensors and the electron or muon g-values. The term “muonium spectroscopy” is
used in this review to describe the analysis of these non-dissipative interactions.
However, muonium in a real solid host experiences interactions that lead to a loss of
polarization, i.e a certain fraction of the spin-phase coherence of the muon ensemble
is lost (known as a T, mechanism) or the fraction of the spin is transferred/shared
with the environment (known as a 77 mechanism). These dissipative effects result
in the observation of non-zero relaxation rate of the muon spin ensemble. Various
theoretical models which treat these interactions in terms of perturbations of ei-
ther the Zeeman or the hyperfine interaction, i.e, either as a randomly fluctuating
magnetic field or as a persistent or an irreversible change in the hyperfine interac-
tion, are used. The use of these models is aimed at fitting the experimental data,
from which parameters of interest are extracted. Comparison of the results of these
theories with experiment yields information on the dynamics of muonium and the
perturbing effects of its environment. In this review “muonium dynamics” is used
to describe such dissipative phenomena. Investigations of these perturbation effects
depend on the basic knowledge of the spin Hamiltonians for muonium states, formed

in the presence or absence of the external applied magnetic field.

The muonium’s electron may show a significant spin probability density at the site of
the neighboring host nuclei. If these nuclei have spin, a so-called “Nuclear Hyperfine
Interaction” (NHFT), also called super hyperfine interaction, arises. This interac-
tion and the nuclear Zeeman interaction add at least two terms to the unperturbed

muonium spin Hamiltonian with a static magnetic field along the z-direction and
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this results in the perturbed spin Hamiltonian,

H(NHFI) = hS, - Ayuy - Se — gupuS*B, — geupSEB,

N N
+h Y S An- 8= gnnSTB. (2.1)
n=1 n=1

In the unperturbed terms of Equation 2.1 , the first term is the hyperfine coupling
between the muon and electron spins with Ay, being the muonium hyperfine (HF)
frequency (about 2x101° s7! rad for the ground state in vacuum). The second and
third terms are Zeeman interactions for the muon and electron spins with the applied
magnetic field (B), respectively. The S, g, and u terms are the spins, g-factors and
magnetic moments of the various particles. In the terms regarded as perturbations,
the summation are over all nearby nuclei. The nuclear quadrupole interactions are
known to be negligibly small [49]. The nuclear hyperfine interaction (NHFI) between
the muonium and neighboring nuclear dipoles is characterized by the frequency A,.
The NHFT term in Equation 2.1 and so may represent either an average magnetic
dipole interaction, in the local field approximation, or a contact interaction, in the
event that the muonium electron’s wave function overlaps with the surrounding nu-
clei. If muonium and hydrogen occupy equivalent lattice sites, the NHFIT frequency
for nuclei adjacent to muonium is expected to differ (due to zero point motion) from
the value of those adjacent to interstitial hydrogen (protium) itself, which has been
measured by ESR to be 15 MHz [54]. It is the details of this interaction that sets
the time scale of the spin relaxation rate. Qualitatively, the nuclear hyperfine inter-
action leads ultimately to relaxation of the muon polarization through mechanisms

dependent of the details of the experimental situation.

In the transverse magnetic field scenario, the relaxation rate T, ' of the muonium
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precession signal has a simple form in two limits; namely if muonium “hops” from site
to site at a rate 7, ' which is much larger than the NHFI frequency § (fast hopping
limits), then the transverse relaxation rate is given by T, ' ~ §27., which is propor-
tional to the effective width of the local-field distribution due to nuclear hyperfine
interaction, motionally averaged (hence “narrowed”) by fast muonium diffusion with
7.1 > §. For very slow diffusion (7,! < §), muon spin relaxation takes place on a
time scale shorter than the muon average lifetime, 7, and T, ' ~ 6. For this reason,
the parameter § is sometimes referred to as the “static width” due to NHFI. From
above, it transpires that in this regime, 7. > 7 or the muon stays at the site long
compared to its life time. This means that each muon in the ensemble is at a site

which has a different net field as the local field due to the '3C nuclei is random. The

theory that explain interaction between muonium and ¥C nuclei is explained below.

The eigenvalues for Equation 2.1 are obtained by solving the spin Hamiltonian (see

Equation 2.1) that can be written as,

hwo - h h A hwy,
H(NHFI) = 705 8= Jwuos + WS + -8 7 -t (2.2)

where,

Wy = 27TAMuT, We = geNBB/hv

w; = gip;B/h, where i = pu,n

o= 25’#7 S =2S,, Q=2rA,, and 7 = 25, where 7 is the Pauli spin operator for
the nucleus. This Hamiltonian is based on the assumption that the NHFI term is

isotropic because only the Mur state is observed in the sample.

In the current work, twenty spin states written as | m#m®m™) can be chosen from
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the interaction of Mu via isotropic NHFI. Taking into account that each Mur is
surrounded by four ¥C atoms, the spin basis have the following spin permutation:
4 > [ 42 > 0 > [ 2 > [ 4 >y [ >
4+, —,4+2 > |+, —,0 >; |+,—, =2 >; |[+,—,—4 >; |-, +,+4 >; |-, +,+2 >;
= +,0 > |—, +, =2 > |—,+, =4 > |-, —, +4 > |-, —, 2 > |-, —, 0 >; |-, —, —2 >;

and |—, —, —4 >.

Now from Equation 2.3, the spin Hamiltonian can be rewritten in terms of operators

for electron, muon and nuclear spins as follows;

hw, h h h
H = 706‘“56— 5&)#0'5—’-5&)20'2—'—19”56'5'”—Eu)nag
hw h
= T"(a;;a; +olloy + olol) + ZQ(OZU; + o0, + orol)
h h
—|—§w60§ - Ewuag - ianag. (2.3)

Now letting

a = hwy/4,

B =hQ/4, and

V¢ = hwe/2, 4" = hwy /2 and " = hw, /2,

results in the spin Hamiltonian of the form,
H = alojo; +oyoy, +olo?) + B(oo, + ooy, + 0l07)
+1¢0 — Aol — 4 0,07, (2.4)

where o€, o and o™ are operators for electron, muon and nuclear spins respectively.

Evaluation of Equation 2.4 results in



n 12 13 14 . 19 [20)

Hin Hip Hiz Hig . . . Hiw Hig
Hyy  Hyp Hys Hay

Hooqn Hogo Haps Haoa . . . Hagig Hapoo

with diagonal elements given by

Hiq = h/4(wo +4Q) + h/2(we — w,, — dwy,)
Hoo = h/4(wo +2Q) + h/2(we — wy, — 2wy,)
H s = hwo/4 + h/2(we — wy)
Hys = h/4(wo —2Q) + h/2(we — wy, + 2wy,)
Hs5 = h/4(wo — 4Q) + h/2(we — wy, + dwy,)
Hop = —h/Awo — 49) + /2w, +w, — d,)
H77 = —h/4(wo — 2Q) + h/2(we + w,, — 2wy,)
Hgs = —hwo/4 + h/2(we + wy)
Hog = —h/4(wo + 2Q) + h/2(we + w, + 2wy,)
Hio 10 = —1/4(wo +4Q) + h/2(we + wy, + 4wy)
Hii 11 = —h/4(wo +4Q) — h/2(we + w,, + 4dwy,)
Hig 10 = —h/4(wo + 29Q) — h/2(we + w,, + 2wy,
Hisis = —hwo/4 — h/2(we +w,)

) —

H14714 = —h/4(w0 —2Q h/ (we + Wy — an)

21
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Hisus = —h/4(wo — 49) — h/2(w, + w, — diy)
Hig 16 = h/4(wo — 4Q2) — h/2(we — w), + 4wy,)
Hypyr = h/A(wo — 29) — h/2(w, — wp + 2n)
Higas = hwo/4 — h/2(we — wy)

Hig10 = h/4(wp + 29) — h/2(w, — wy — 2n)
Haozo = li/A(wo + 4Q) — h/2(we — w,, — 4wy,)

The non-zero off diagonal elements are as follows

Hynn = Hua= Hs12= Higs = Hoi16 = Hisog = Higir = Hiri0 = /29
He11 = Hiio= Hrio =Hiar = Hgi3 =Higs = Ho1y = Higg = Higis = Hisi0 = hwo/2
The rest of the elements are zero.

Now diagonalize and the corresponding unperturbed or 0*"-order energies for A,, = 0
are

Ei =H;3/h =wo/4+1/2(we —wy,) = wo/4 4+ w_

Ey =Hgg/h = —wo/4 4+ 1/2(we + w,) = —wo/4 + wy

Es = Hisis/h = wo/4 — 1/2(we —w,,) = —wo /4 — w_

Ey =Hiz13/h = —wo/4 — 1/2(we + wy,) = —wo/4 —wy

and for A, # 0, the energies are as follows
Ey =Hs3/h =wy/4+w_

Ei+ =Hi1/h=wo/4+w_+1/4(2 — 2w,)
El. =Hoo/h=wo/4+w_+1/2(Q/2 — wy)



Elf = H474/h: w0/4+w_ - 1/2(9/2 —wn)
Ell, = H575/h: LUO/4+C(), - 1/4(9-2&}”)

Ey =Hgg/h = —wo/4+ w4

Ey+ =Hgp/h = —wo/4 +wi +1/4(Q — 2w,)
E,, =Hr7/h=—wo/4+wi +1/2(2/2 —wy)
Ey- =Hop/h = —wo/4 +wy —1/2(Q/2 — wy)
E) =Hioi0/h = —wo/4+ws —1/4(Q = 2wy,)

E3:H18718/h: —w0/4—w,

ng = H16716/h = —w0/4 — W_ — 1/4(Q — 2wn)

Eg, == H17717/h = —Ldo/4 —W_ — 1/2(9 - an)

E3+ = ng’lg/h = _W0/4 —w_ + 1/2(9/2 —wn)
Eng = HQO’QO/FL = _W0/4 —w_ + 1/4<Q - 2u)n)

E4:H13,13/h: —w0/4—w+

E4— = Hll,ll/h: —w0/4—w+ — 1/4 Q— an)
Eil, = ngylg/h: —WO/4—W+ — ]_/2
E4+ :H14714/FL: —w0/4—w++1/2
Eiﬁ- = H15715/h = —WO/4 — Wy -+ 1/4 Q —wn)

where wy = (wetw),)/2.

23



24

In general, the corresponding first-order energies are given by equations

) Ne 1 Ne
Ell/h == Z0+w—_zwkMk+§ZQkM’f’
k=1 k=1
wo i c0S2¢
E,/h = —— — M Qi M,
5/ 1 + cos2c Zwk kT 5 Z ke M,
W 1
wo i 0825
E,/h = —— — — My, — Q. M. 2.
o/ 4 cos2g Zwk g 2 Z Rk (2:5)

The field dependence of these precession frequencies is shown in the Breit-Rabi-
diagram of Figure 2.1, Figure 2.2 and Figure 2.3 for A,, = 0, A,, = 500 MHz and
A,, = 1000MHz, respectively, where the ratio E;/A is plotted as a function of the

applied magnetic field B.

In Figure 2.1 (for A,, = 0 MHz) the muonium state is free from interaction with
nuclear spins, hence no line splitting is expected. In Figure 2.2 and 2.3, for A,,=500
MHz and A,,=1000 MHz, respectively, a muonium state interacts with four neigh-
boring nuclei of spin-1/2; hence the splitting and the multiple avoided level cross-
ings resonances occur. Evident in Figure 2.2 and 2.3 is that increasing the nuclear
hyperfine parameter results in enhanced splitting of lines. The above eigenvalues
enable the determination of the muon spin precession frequencies from making use

of wi; =2mny;; = (E; — E;)/h for i # j and i,j = 1,2, 3, 4, respectively.

Having determined spin precession frequencies (from the energy eigenvalues) and
eigenvectors for the muonium state, then the time-dependent spin polarization P(t)

of muonium may be obtained as follows. The density matrix formalism is of the
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Figure 2.1: The hyperfine energy-level (Breit-Rabi) diagram for isotropic 1s-Mu as

a function of magnetic field, where A,, = 0.
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Figure 2.2: The hyperfine energy-level (Breit-Rabi) diagram for isotropic Mu inter-

acting with four neighboring spin 1/2 nuclei of 3C atoms as a function of magnetic

field, where A,, = 500 MHz.
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Figure 2.3: The hyperfine energy-level (Breit-Rabi) diagram for isotropic Mu inter-
acting with four neighboring spin 1/2 nuclei of 3C atoms as a function of magnetic

field, where A,, = 1000 MHz.
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form,
1
p(t) = 1 [1+ Pu(t) 6, + Po(t) - 5.+ E:PﬂC 07 " (2.6)
where
Tr(p(t)ou)
Tr(p(t)oe)
P]'“ ( ) = Tr(p(t)ojok),

is used for the spin system consisting of the time-dependent muon, electron, and
mixed polarizations, respectively [34]. Assuming (for the density matrix at time 0)
that in forming muonium the muon binds electrons of each spin direction with equal
probability and that the initial electron and mixed polarizations are zero, it then

follows that expression
p(0) = ~[1+ P(0)-5,] (2.7)

is obtained from Equation 2.6. The time evolution of the density matrix is governed

by the equation of motion

zh% = [H, p(t)], (2.8)

which may formally be integrated to yield p(t). Upon substituting the results in the
time dependent muon polarization vector, discussed in the second term of Equation

2.7, this yields the muon polarization [34],
P.(t) = —Z n|P,(0)5,|m)(m|5,|n)exp(iwt) (2.9)

= Z Apm€XP(—Anmt)cos(Wnmt + ©nm ),
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where |n) and |m), in Equation 2.9, are eigenfunctions given by |[n) = >, anilx:),
with x; being the basis spin states and a,,; the precession amplitudes. The expansion
coefficients a,,,,, = (n|m) (the precession amplitude for the muons), A, is the depo-
larization rate of the muon spin, and ,,, is the phase of the muon (with respect to
the detector that detects a corresponding decay positron). Equation 2.9 holds both

in the presence and the absence of dissipative dynamics.

On the other hand the interpretation of the longitudinal field (LF) measurements
of the muonium spin relaxation rate (7} ') is based on the notion that the nuclear
hyperfine interactions may be treated as an effective magnetic field acting on the
muonium’s electron. Muonium diffusion causes fluctuation of this effective field
which induce transition between the coupled spin states of the electron and muon.
The muonium motion against a background of local spins is therefore equivalent to
illumination of the Mu with a RF irradiation with a “noise”-like frequency spectrum.
The resultant muon depolarization is revealed in the forward-backward asymmetry
of the muon decay. Such measurements allow values of 7, and d., to be deter-
mined independently. A general expression involves various transitions between the
coupled spin states but a reasonable approximation can obtained by assuming dom-
inance of the lowest frequency transition (within the muonium triplet spin states),

leading to the expression,

262 7, 262 7,
T = <1—x/\/1+x2> exle e (2.10)

14+ w272 14 wr?’
where, x = 2I'y B/wy, 'y = %(ge,uB + gu,u#/h), wo = 271 AMuy and wis = N

is the muonium intra triplet transition frequency in the magnetic field (yy, /27 =

1.4012 MHz/G) [35,54]. This approach is restricted to the limit of relatively high



30

longitudinal fields. However, the effective magnetic field approximation is valid
only if v.H > 6. where 7, is the electron gyro-magnetic ratio. Moreover, in the
limit of slow muonium hopping and high magnetic field, T, ' is generally too slow
(see Equation 2.10) to be measured by the standard puSR technique. These LF
measurements, which are very sensitive to muonium dynamics in the fast fluctuation
regime, are rather ineffective for the study of very slow dynamics. This theory was
used in the extraction of the spin relaxation rates, prompt fractions and nuclear

hyperfine interactions from the experimental data.



Chapter 3

Experimental Considerations :
Muon Spin Rotation/Relaxation

(1SR)

The measurements consist of Transverse Field muon Spin Rotation (TF-uSR) and
Longitudinal Field muon Spin Relaxation (LF-uSR). In these techniques, specially
constructed equipment, accelerated beams, sophisticated instrumentation, and highly
automated computer-controlled data acquisition systems are used. Finally, data
analysis and interpretation via simulation of the experiment observables (based on

both classical and quantum diffusion models) are carried out.

31
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3.1 Fundamentals of the TF-ySR technique and

data analysis

This technique involves a highly polarized beam of muons (implanted into the sam-
ple) which enables the determination of the configurations and interaction of muo-
nium in diamond. In this technique the sample was located in an external magnetic
field that was perpendicular to the muon spin polarization. The TF-uSR measure-
ments were obtained using the equipment located at the Paul Scherrer Institute
(PSI) in Villigen, Switzerland. The equipment included the General Purpose Spec-
trometer (GPS) and the Low Temperature Facility (LTF) as well as other sections

of the beam line as shown in Figure 3.1 The fundamental principle regarding the

| SHARED-BEAM SURFACE MUON FACILITIES AT PSI I

SPIN
ROTATOR

TRIGGERED
DEFLECTOR STEERING SEPTUM M3 BEAM LINE
("KICKER") MAGNET  MAGNET

\ /
[ e R SRR
L%

K 31 z -

LTF

— GPS _l-—[

Figure 3.1: Layout of the surface Muon Facility at Paul Scherrer Institute (PSI).
Shown in the layout is the Spin Rotator, Triggered deflector “Kicker”, Steering
magnet, Septum-Magnet, GPS, and LTF.

production of the muon beam at Paul Scherrer Institute (Switzerland) is briefly
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outlined below. pSR requires low energy muons that will stop in the sample to be
studied. Low energies are available in the required intensities from ordinary two-
body pion decay. Thus one must produce sufficient numbers of pions from collisions
of high-energy protons (>500 MeV) with the nuclei of the primary target M* such
as carbon or beryllium, p +p — 7 + p + n. The charged pions that are produced,
inside the primary target experience energy loss by a thermalization process. The
life-time of the free charged pions is 26 billionths of a second and some pions decay
at rest near the surface of the primary target. They decay into a muon and muon
neutrino, 7t — p* 4 v,. The muons have an initial momentum up to 29.8 MeV/c
and a kinetic energy up to 4.20 MeV, in the rest frame of the 7. These muons
are collected by a magnetic field and transported in a beam line before entering the
samples that were mounted in the GPS and LTF instruments. The pions decayed
via the weak interaction, and the conservation of helicity in the process leads to the
production of highly spin polarized muons (see Figure 3.2). Pion decay is a two
body decay, which implies that the muon and neutrino (v,) are co-linearly emitted.
Because the neutrino is only produced with negative helicity (spin anti-parallel to
momentum) and anti-neutrino only with positive helicity, the simultaneous conser-
vation of linear and angular momentum forces u* also to have negative helicity in
the rest frame of pion. Thus muons, produced from pions decaying at rest, are also

100% polarized, an advantage of the uSR technique.

The Spin Rotator, Electromagnetic Separator (Septum-Magnet) and instruments
(GPS and LTF), are permanently installed in the 7M3 area where the 7M3 beam
line transports muons to the sample under investigation (see Figure 3.1). The spin

rotator allows the muon spin direction to be rotated into the direction of the muon’s
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Figure 3.2: Schematic representation of co-linear decay of pions (71) into muons

(p*) and neutrino (v,) in the rest frame of the pion.
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momentum. The septum magnet separates the muons in each instrument, i.e GPS
or LTF, by only allowing one muon at a time to enter the instrument. The System

is known as Muons on request (MORE).

The GPS and LTF instruments were used in acquiring data for high purity sin-
gle crystal diamond samples. The samples were synthesized in a high temperature
high pressure (HTHP) environment from enriched (> 90%) 3C source material.
The samples had dimensions of 5.0 x 5.0 x 3.5 mm?® and 3.5 x 3.5 x 3.0mm?, re-
spectively. The measurements were conducted at temperatures ranging from 11
mK to 1.1 K in the LTF and the ranging from 1.8 K to 320 K in the GPS, at a

field of 5 mT. Information about the '2C diamond sample is available in reference [8].

Extracted muons, with an initial kinetic energy of 4.119 MeV before entering the
sample, revealed themselves by providing a signal to the START detector M (see
Figure 3.3).

The GPS instrument, firstly consisted of a cryostat with a sample holder made of
copper (Cu) metal. The copper metal base stand was attached to a cold finger that
was in turn attached to the cryostat insert. This sample holder system incorporated
a Helium (He) flow tube for sample cooling. A heater was mounted behind the
sample, enabling achievement of temperatures above room temperature as well as
the temperatures below room temperature to be stabilized when used with the He
flow.

Secondly, it consisted of positron detectors. The arrangement of the detectors was

Forward, Backward, Up, Down and Right (with respect to the sample looking up-
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Up and Down detectors not visible.

W\/\? mld
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’”’/ /
ight guide /| V (light guide) 2,/
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| \
M 7 7 —— — — " ﬂ
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M U/U, D/D, F/F, B/B, VETO(V)
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STOP U : U,.U, M.V
STOP D : D,.D,M.V
STOP F : F.F,.M.V
STOP B : B, B MV

-

START | TDC | sTop

|

Histograms (see Figure 3.6)

Figure 3.3: Schematic diagram that illustrates the horizontal cross section of the
GPS at PSI. A beam of highly polarized muons (u) passed through the collimator
and reached the target where p™ decay to positron (e*). Emitted positrons were
detected by one of the three detectors. The coincident logic circuit to produce the
three time histograms is shown schematically in the lower part of the diagram. TDC

is the Time to Digital converter.



37

stream along the beam). Not all detectors were used, due to the desired experimental
setup. Only the Up, Down, Forward and Backward detectors were used as shown

in Figure 3.4 . Positron detectors were arranged in an approximately square-shaped

Polarization

L

Polarization

\.

w

-

VERTICAL VIEW
(Spin Rotator OFF)

Figure 3.4: Schematic diagram showing the horizontal and vertical view of the
General Purpose Spectrometer at Paul Scherrer Institute, without using the spin

rotator [30].

arrangement covering three sides of the square. Each of the positron detectors had
a pair of scintillator sheets that were coupled to photomultiplier tubes via relatively
long light guides. The Veto Cup is found on the axial part of the Forward detector.
It (Veto Cup) was designed for samples smaller than the cross section of the muon
beam. The logic representation associated with the Veto Cup is represented by M-V,
where the bar line on V shows that no decay positron events should be recorded by
the Veto Cup. M denotes the START detector. The signals detected by the Veto
Cup are rejected as they correspond to muons that trigger the START detector M,
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but later miss the sample. The shape of the Veto Cup is such that it reduces the
probability of the positrons exiting the mouth of the cup, after a flypast muon has
decayed inside the cup.

In the sample the muons thermalize within a few picoseconds. After thermaliza-
tion the muon forms well-defined states and becomes associated with an electron
as in Equation 2.1 The coupling of the muon to the electron is stronger than the
muon to the field. In the presence of an external field, the magnetic moment of an
electron (e~) coupled to the muon precesses in the magnetic field. In turn the muon
dances to the tune of the electron. This is due to the fact that the muon has much
less magnetic moment compared to that of an electron. During the precession in
the sample, the muon decays according to the relation y* — e* + v, + 17,. The
emitted positron (e™) has an anisotropic distribution (see Figure 3.4.), i.e. most
positrons (e™) preferred to be emitted along the direction of the spin of the muon
at the instant of decay. The logic representation, showing that the incident muon
which had triggered the START detector and later (i.e after a certain time delay)
triggered one of the four STOP detectors, is expressed in the form: U; - U, - M-V,
D,-D,-M-V,F;,-F,-M-V, and B; - B, - M - V for Up, Down, Forward and Back-
ward respectively, where 7 = in and o = out (see Figure 3.3).

The positron incident on the scintillator resulted in the production of a light pulse
that was conducted along the light guides, towards the photomultiplier where it was
converted to an electric pulse which was transported to the electronics room for
further processing. The electronic pulse was proportional to the energy loss of the

positron as it passed through the scintillator. Each detected positron contributed
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Figure 3.5: Schematic diagram that illustrates the angular distribution of the
positrons (e™) emitted by a decaying muon (7). (a) with maximum energy m,c?/2,

and (b) integrated over all energies [25].
to the histogram defined by

N(t) = By + Noe "/ [1 +  vur Z az, e Mt cos(winnt + )

m,n

+  Muge Z ai,ne*AMuBthos(wmnt + )
A 4t
+ f/% Z afmne b cos(wWmnt + @) (3.1)

where w;; and a;; are the precession frequencies and the corresponding amplitudes
respectively, calculated from the energy eigenvalues and eigenvectors of the solved
spin Hamiltonian of muonium in the presence of spin-1/2 of *C neighboring nuclei.
By is the time-independent background, Ny is the normalization constant, 7,(=2.2

s) is the muon life-time, ¢,,, is the phase and Ay, is the spin relaxation rate. The



spin Hamiltonian in the presence of spin-1/2 nuclei is given by

PPositron Decay events per channel

1600

1400

1200

1000

800

600

400

200

H(Mu+nuclear)

= hASe : Sp - ge:uBSe B — gulu“,usu B

4 4
+ hénzsesn_zgnﬂnSnBv
n=1 n=1
| ' T , L
".. Up detector (0% _-
E Down detector (180°)
_:ﬁé Right detector (270%)_
s 2
. Sample: Cu -
[ ] e el .
4&:: 3{.‘ remp. : 300K -
Y Field :7.5mT i
RSP -
L : % lb% =
R % L |
Time (:s)

40

(3.2)

Figure 3.6: Plots of the time histograms (in the three detectors) obtained by mea-

suring the time (in ps units) delay between the muon arrival and decay positron

[25].
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The asymmetry is obtained from the raw data (see Figure 3.6) by making use of the

expression

Ny — alN,

= 3.3
Nf/u—l—osz/d. ( )

The subscripts f/u refer to ‘forward’ or ‘up’ detectors and similarly b/d refer to ‘back-
ward’ or ‘downward’ detectors, i.e reduced asymmetry was constructed from opposite
detectors. The coefficient o = Y N,/ > Nyja is close to one if the detectors have
similar efficiencies. Theoretical simulations of Equation 3.4 were constructed from

Equation 3.1 and fitted to the asymmetry of Figure 3.7.

010 T T i T * T T T T T T I
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Figure 3.7: The reduced time-dependent asymmetry of the uSR spectra for a 13C

diamond.

In time space fits, a Fortran code was used in analyzing the TF-uSR data. The
time resolution for the GPS facility was obtained by fitting a Gaussian distribution

function
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(4ln2)t2}

572 (3.4)

agps(t) = a exp[ —

to the the prompt peak of the data obtained from the silver sample. In Equation
3.4, a is the (i.e an assumed amplitude if full fraction of the corresponding muon
was observed) amplitude of the signal, aqs(t) is the observed amplitude, and 0t is
the time resolution of the GPS.

The initial formation probabilities (or PAF) were obtained by calibrating the muo-
nium asymmetries with respect to the silver standard. The sum of all initial for-
mation probabilities of the states in diamond, corresponding to a single set of mea-
surements were not equal to unity. This was due to the presence of the so called

“Missing Fraction” (MF)

1
AAg(O)

A, (3.5)

=1

fmissing =1

where 4; = Aufg and Ay = Ay

3.2 Fundamentals of the LF-uSR technique and

data analysis

The time-differential longitudinal field muon spin relaxation (LF-uSR) experiment
was conducted at the ISIS Facility located at Rutherford Appleton Laboratory (ISIS-
RAL), in the United Kingdom, using the Implanted Muon Spectrometer known as

EMU. The same samples (as used in the TF-uSR measurements) was measured.
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Conventional LF-uSR time spectra were recorded at various temperatures, ranging
from 10 K to 400 K and at the magnetic fields of 20 mT and 200 mT. The fun-
damental principle regarding the production of the muon beam is briefly outlined

below.

The muon beam was obtained from the 800 MeV proton synchrotron accelerator.
Initially, protons are obtained from the source of H™ ions which are produced at an
energy of 665 keV and accelerated to 70 MeV before being stripped of their electrons
to leave a beam of protons. The protons enter a 52 m diameter synchrotron and are
further accelerated up to 800 MeV. These energetic protons bombard a carbon tar-
get from which pions are produced (see Section 3.1). Some pions stop in the target
near the surface, where they decay “at rest” to form muons that are transported
along the beam line. The extracted muon beam, of 4.1 MeV energy, is pulsed with

a width of about 28 ns at the position of the EMU spectrometer.

The EMU spectrometer is composed of a set of 16 “forward” and 16 “backward”
detectors (see Figure 3.8), where the shown light guides are attached to the detec-
tors. Time-dependent forward-backward asymmetry spectra were constructed from
the primary spectra according to the expression (see, for example, [34]),

NF(t) — CYNB(t)
Np(t) + aNp(t)

a(t) = apP, (3.6)

where Ng(t) and Np(t) refer to the time-differential muon decay events. ag(~ 0.24)
is the maximum experimental asymmetry of the muon decay, and « corrects for
different detector efficiencies. Figure 3.9 displays asymmetry decay spectra obtained

for muonium in the ¥*C diamond at a temperature of 220 K and applied longitudinal
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Figure 3.8:

Schematic diagram of the EMU spectrometer at ISIS.
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fields of 20 and 200 mT. Equation 3.6 was fitted to the similarly manipulated reduced

data shown in Figure 3.9 From previous TF-uSR data on the same samples it was

20

| 220K, 20 mT
\ - - -~ 220K, 200 mT

1
§

kfiyp

' f"|"

Life-times {pus)

Figure 3.9: Longitudinal field muon decay spectra obtained at the temperature of

220 K and the applied magnetic fields of 20 and 200 mT.

established that the diamagnetic species, uf), and the mobile paramagnetic state,
Mur, would be formed and that the only relaxing species is Mur. Therefore the
spin relaxation rate, T, !, was associated with the mobile Mur state and could be

obtained from the time-dependent asymmetry spectra.



Chapter 4

Results and Discussions

The primary objective of this work was to explore the dynamical behavior of the
isotropic muonium (Mur) in isotopically pure synthetic *C diamond, using two
configurations of the magnetic fields in the muon spin rotation or relaxation experi-
ments. These are Transverse Field muon Spin Rotation (TF-uSR) and Longitudinal
Field muon Spin Relaxation (LF-uSR) methods.

In TF-uSR results, two observables, namely the Prompt Absolute Fraction (PAF)
and the spin relaxation rate (), for both pfi and the Mur states, were obtained.
The first observable, namely the PAF, is limited to identification and characteri-
zation of pf) and Mur states in the sample, while the A provides information on
the dynamical behavior of the two species in diamond. Subsequent to the TF-uSR
experiment, the LF-uSR measurements were conducted on the same 3C diamond

sample. The latter focused on further exploration of the dynamical behavior of the
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Mur state, which was identified as the only relaxing species in TF-uSR method.
The main purpose of conducting LF-uSR study was to obtain reliable dynamical

information of the Mur state in diamond.

4.1 The Muon (y;)) and isotropic muonium (Mur)
in a *C diamond, studied using TF-uSR ex-

periment

4.1.1 Prompt formation probabilities of 7, and Mur states

The results of the prompt fractions or formation probabilities (PAF) obtained in the
current 3C diamond and those previously obtained in other diamond samples are
shown in Table 4.1. In addition to the results of Table 4.1, the PAF for the Mur
and y;) states, as function of temperature, are shown in Figure 4.1 where the PAF
for the Mur and the pf states are fairly constant at 734+5% and 4.340.5%, respec-
tively, in the temperature range measured. It is noted that, the uf) state has the
lowest PAF compared to the Mur state, an indication that an enhanced formation
of Mur is favored in diamond with a low concentration of nitrogen. This is evident
in the results shown in Table 4.1, where the formation of Mur in the 3C diamond
is consistent with the results obtained in natural type Ila diamond, known to have
low concentrations of nitrogen and boron. On the other hand, the Mur obtained in

the 1¥C diamond has a larger fraction than those obtained in nitrogen- and boron-
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rich diamond samples. In fact the Mur state obtained in the nitrogen-rich type Ia

diamond (with aggregated nitrogen centres) is reduced by about a factor 2. This is

attributed to the presence of nitrogen in the diamond.

The prompt fractions of the uf) state, obtained in all samples are comparable, indi-

cating that their formation is not significantly influenced by the presence of defects

or impurities. In each of the six samples, the prompt fractions do not add up to

100%, probably due to the formation of other states that could not be resolved by

the uSR spectrometer.

Table 4.1: Comparison of the Prompt Absolute Fractions of the uf) and the Mur

states in *C diamond with those obtained in the previous TF-uSR. studies.

Sample Temp.(K) Fur () | frrur (%) Reference

13C diamond [0.011, 320] 4.3+0.5 73+£5 This work
12C diamond (ITa) [5, 300] 6+1 614+4 | [Smallman 1996]

CVD 10,100,300 ot1l 37+4 [Machi 1996]

Nitrogen-rich diamond (Ia) [5, 270] 4+1 0 [Smallman 1996]
Nitrogen-rich diamond (Ia) 4.2 <10 20+4 [Holzchuh 1982]
Boron-rich diamond (IIb) [5, 300] [10, 28] <55 [Smallman 1996]
Undoped diamond(IIa) Low temperatures | 8.1+3.0 | 68.9£1.0 | [Patterson 1988]
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4.1.2 Dynamical behavior of xf; and Mur

The experimental values of Ay, in the synthetic *C diamond sample are presented
in Figure 4.2. Also, shown in the figure is the data of the Mur in a 2C diamond
[31], deliberately spiked with about 1 ppm of mono-vacancies. In general the inter-
pretation of the dynamical behavior of the Mur in TF-uSR configuration depends
on the nature of the dephasing mechanism. In the current *C diamond two modes
are considered; namely “relaxation by deep trapping after fast diffusion” and “mo-
tional narrowing”. The former mode is appropriate for a sample with deep traps,
such as in the pure 2C diamond with mono-vacancies [31] where the Mur traps
deeply at vacancies after rapid diffusion. Each member of the Mut ensemble has
different arrival time at the trap and once trapped each Mur state precesses at a dif-
ferent frequency and the ensemble eventually dephases. In this mode faster diffusion
leads to larger relaxation of the spin polarization. The latter mode is appropriate
for shallow traps, such as in the current *C diamond sample where the motion of
the Mur is against a background of randomly oriented nuclear spins. A static or
trapped Mur ensemble experiences different local fields and each member of the
ensemble precesses at a slightly different rate, leading to the relaxation of the spin
polarization of the Mur ensemble. If the Mur state is sufficiently mobile, such that
it averages the local field to a single well-defined value on a time scale, which is short
compared to the period of its precession, then the ensemble does not dephase. In
this mode, faster diffusion leads to smaller relaxation rate of the spin polarization.
This indicates that in an isotopically pure ¥C diamond, the spin relaxation rate of
the Mur signals would be small in the motionally averaged interaction between the

Mut and the nearest nuclear moments. Both mechanisms discussed above could
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be present simultaneously if there were some deep traps (mono vacancies) present
in the ¥C sample. In this work dynamical information was obtained through the
dominant Ty relaxation mechanism (also known as spin-lattice interaction) where
both 2C and '¥C data exhibit temperature independent Ay, below 200 K. Above
200 K, Ay, decreases (or increases) as temperature increases in a '2C (or 13C)
sample (see Figure 4.2). Of most significance in both data sets is that an increase
or a decrease of Ay, follows a single power law which is consistent with theoretical
predictions for quantum diffusion of light interstitials in condensed matter [31, 36].
The diffusion modes, applicable to the data of Figure 4.2, are briefly outlined in dif-
ferent temperature regimes by Storchack and Prokof’ev 1998 [33] and are discussed
in accordance with Figure 4.3. At low temperatures, below about a tenth of the
Debye temperature (Op), the interstitials could be in the band-like (Bloch) state,
i.e undergoing coherent tunneling. As the temperature increases, but still below a
tenth of ©p, phonon destruction of the band occurs, which lowers the diffusion con-
stant. Initially, the phonon scattering is dominated by two-phonon process where

phonon scattering has a net elastic nature.

The two-phonon assisted tunneling could be understood by imagining that the Mur
is localized in the tetrahedral site (T-site) which acts as a shallow trap locally dis-
torting its environment, forming a slightly deeper trap. This situation is known
as the self-trapped polaron which would not tunnel coherently to the neighboring
T-site before the appropriate distortion of that site. Therefore the energy levels for
the Mur in the distorted and undistorted potential wells are not in resonance. In
order to achieve resonance, the first phonon distorts the neighboring T-site so that

it comes into resonance with the occupied T-site (see Figure 4.4). Then, the Mur



52

"°C diamond (with traps and nuclear moments)

'C diamond (with 1 ppm mono-vacancies)

-
9

a
J—.—f—llllllllllllllllllllllll

Spin relaxation rate, A, (us')
o

Temperature (K)

Figure 4.2: Spin relaxation rate of the Mur state in temperatures ranging from 11
mK to 320 K. The applied magnetic fields of 5 mT and 7.5 mT were used for the

13C and C diamond samples, respectively.
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could tunnel across coherently. The second phonon represents the collapse of the

originally occupied T-site to its undistorted state. In Figure 4.3, coherent motion

Figure 4.4: Schematic diagram that illustrates diffusion by phonon-assisted tunnel-

ing [36].

is suppressed with increasing temperature as phonons become more prolific. The
dependence on the temperature of the diffusion constant in this region is of the form
D o< T~ for 2 < a < 9, where the exponent « is determined by details of the unit
cell and the phonon spectrum. The diffusion constant diminishes with increasing
temperature in the phonon suppressed regime, until it reaches a minimum. At tem-
peratures in the vicinity of a tenth of ©p, lattice thermal excitations are expected to
result in the incoherent one-phonon mechanism. At the temperature above a tenth
of ©p the one-phonon mechanism is described by the polaron effect (PE) and the
fluctuational preparation of the barrier (FPB) effect.

This could be understood by considering a charge carrier that is fixed at a given

position in a solid. The presence of the additional (stationary) charge would gen-
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erally act as a substantial perturbation on its immediate environment, producing
a displacement of atoms in its immediate vicinity and causing a reduction in the
total energy of the system. The equilibrium positions which these atoms would as-
sume in response to the added charge will be such as to produce a potential well
for the carrier. In fact if the potential well associated with the local lattice dis-
tortion is sufficiently deep, the carrier will occupy a bound state, being unable to
move without an alteration of the positions of the neighboring atoms. The unit
comprised of the localized charge carrier and its concomitant atomic deformation is
termed a small polaron when the carrier is essentially confined to a single atomic
site. Clearly a small polaron can only be expected to form if an excess charge
carrier will move sufficiently slowly so as to linger at a particular atomic for time
ample to permit the surrounding atoms to adjust to its presence. These two effects
interfere with each other. However, the FPB dominates leading to an increase of
the diffusion constant with increasing temperature. Finally, when the temperature
reaches the zero-point energy of the Mur state in the trap, the motion evolves to
classical Arrhenius over-barrier hopping. From the discussion regarding the mech-
anism of observing quantum diffusion, it becomes evident that the spin relaxation
rate, A, in the *C and 2C diamonds (see Figure 4.2) would be the inverse of
the diffusion constant for the “motional narrowing” mechanism in *C diamond,
and proportional to the “relaxation by deep trapping after diffusion” mechanism in

diamond with mono-vacancies, respectively.

In the ?C diamond, the large Ay, below 200 K is associated with fast quan-
tum diffusion of the Mur state, that enables the Mur state to reach vacancies

over relatively short times compared to higher temperatures (above 200 K) where



56

multi-phonon scattering hinders diffusion. The decrease of Ay, with an increase
in temperature follows a weak power law ~ T~2 which is attributed to unaccounted
temperature dependence of the trapping radius of mono-vacancies. It follows that
there is a clear indication that the Ay, is a mixture of two depolarization mecha-
nisms in the ¥C diamond; namely the obvious less dominant trapping of Mur state
at some intrinsic vacancies as well as the dominant interaction with nuclear mag-
netic moments of 3C atoms. In the presence of only the nuclear magnetic moments,
as the dephasing mechanism, the Ay, would have been much less than the current
value of about 4 us™' (obtained below 200 K), and this would have been mainly
attributed to the motionally averaged interaction between the Mur and the nearest
nuclear magnetic moments of *C atoms. There would have been a strong positive
power law ~ T7 above 200 K, as predicted by the theory of quantum diffusion of

light interstitials in condensed matter.

The weak power law in the data of 3C diamond could be explained by considering
the schematic curves of Figure 4.5, where curves 1 and 3 resemble Ay, that would
have been obtained if only one of the earlier mentioned dephasing mechanisms was
present at a time. In the presence of both mechanisms, curve 2 (a combination of
curves 1 and 3) would be obtained if curve 3 is stronger than curve 1, as is suspected
to be the case in the current ¥C data, a relatively large temperature independent
Miup (= 4ps™!) below 200 K and the weak positive power law (~ T3) above 200
K would be obtained. The decrease of Ay, with a decrease in temperature above
200 K, in the ¥C diamond demonstrates the motional narrowing of the Mur state,
i.e the Mur diffuses faster as the temperature decreases. This fast diffusion is pro-

moted quantum diffusion mechanism in the lower temperature regime. In addition,
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the onset of the two-phonon to one- and multi-phonon transitions begins just below
200 K, consistent with the previously discussed theoretical prediction of a tenth of
Op [37], where ©p ~ 2200 K for diamond. The mixture of the two dephasing mech-
anisms in a *C sample complicates the conversion of the Ay, to the hop rate. No
evidence of the diffusion of the diamagnetic state, presumed to be the positive ion
immobilized at the bond-centre, could be inferred from its temperature-independent

spin relaxation rate A+ (= 0.10 & 0.02 ps™") in the *C diamond sample.

In the quest to further understand the dynamical behavior of the Mur in a 3C
diamond, further investigations were conducted on the same sample using the LF-
1SR method where the spin loss is mostly due to interaction with magnetic moments

of 13C atoms.

4.2 Dynamical behavior of isotropic muonium (Mur)
in ¥C diamond, studied using LF-uSR exper-

iments

Based on the TF-uSR results of Section 4.1, the LF-uSR measurements were con-
ducted in the same *C diamond sample, with the aim of a less model dependent
analysis of the dynamics experienced in the TF-uSR measurements. In the LF-uSR
experiment, the measurements were extended to 400 K in order to explore dynami-
cal behavior of Mur to relatively higher temperatures, so as to map out the region

of one and multi-phonon mechanisms more clearly.
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In the LF-uSR experiment where the 77 relaxation mechanism (also known as
spin-spin interaction) dominates, the mobile muonium state (Mur) experiences a
fluctuating field due to the local moments of '3C atoms. From the previous TF-uSR
data on the same sample it was established that only the diamagnetic state, p
(fuz = 4.3+0.5%) and the paramagnetic state, Mur (fyu, = 734 5%) are formed.
The only relaxing species was found to be the Mur [38] and therefore the spin relax-
ation rate in the LF-uSR, 77!, was attributed to the Mur and was extracted from
the time-dependent asymmetry spectra shown in Figure 4.6. These asymmetry de-
cay spectra were obtained for muon/muonium in the 3C diamond as a function of
temperature and the applied longitudinal magnetic fields of 20 mT and 200 mT. It
is noted in Figure 4.6. that the spin relaxation rate increases with an increase in
temperature. The difference in the two spectra of each figure is due to quenching
of the nuclear hyperfine interaction. The solid lines in each spectra were obtained
by simultaneous multi-dimensional fitting of the time-dependent muon asymmetry,
for different temperatures and magnetic fields, using the Redfield theory described
in Kadono (1990) [42]. The following equations were used in the extraction of the

relaxation rate and the hop rate.
P.(t) = exp(—t/T1(B,T)) + C (4.1)
with 77 defined as
T = (1 - w@) 2o (4.2)

1+ wipr2
The field dependence enters into the expression for the dominant precession fre-

quency,

wig = % [1 (T Tz — m} (4.3)
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The other parameters are 'y = %(geugigu,uu/h), wo = 21 Ay and =20, B/wy
where Ay, and B are the hyperfine constant and the applied field, respectively.
The nuclear hyperfine parameter d, sets the time scale of T, . It is a measure of the
combined effect of all the nuclear spins, in the vicinity of the Mur, interacting with
the muon via the correlated electron. The temperature dependence of the hop rate,
7.1, and d., were therefore extracted in this way. There is not a unique correspon-
dence between T, ! and 77! unless the fitting is done simultaneously for different
magnetic fields. Moreover, the choice of the magnetic fields must be carefully made.
To illuminate the choice of the magnetic fields, the dependence of T; ' on magnetic

field for different temperatures was measured and is displayed in Figure 4.7. The

. . -1
Spin relaxation rate, T, (us™)

TE ® 10K (- fit) E
O 100K (—— fity
* 250K (-----fit)
m 300K (--—-- fit)
v 340K (- fit) -
¥ 370 K (—fit) i
0.1 rm —————
10 100

Magnetic field (mT)

Figure 4.7: Field scans at different sample temperatures of the spin relaxation, 7, ",
of Mur in a ¥C diamond. The solid and dashed lines represent fits obtained using

Equation 4.2.
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fields of 20 and 200 mT were selected as these gave substantially different 7, values

over the temperature range investigated.

Theoretically calculated curves of the same type are shown in Figure 4.8. In contrast
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Figure 4.8: Theoretically simulated curves of arbitrary spin relaxation rate, T} ', of

Mur in diamond as a function of temperature.

to Equation 4.2, where a single transition frequency taken is assumed, these include
the contribution of possible transitions between the hyperfine-coupled electron-muon
spin states [39]. One notes the existence of the rollover point separating a region of
constant values of 7} ' from a region of decreasing 7, ' with increasing temperature.
For very large 7, !, this rollover point is at the hyperfine field (~ 133 mT) for Mur in
diamond. For lower 7, !, the rollover point moves to even lower fields. Comparison

of our data with these theoretical curves indicates that 7! must be at least larger
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than 7.1 ~ 10'% s7! for all temperatures studied. The extraction of 7. via the
Redfield theory (presented below) confirmed this analysis. Note that the magnetic

fields chosen were also on both sides of the rollover position.

The spin relaxation rate, T, ', of Mur at magnetic fields of 20 and 200 mT (as
function of temperature) is shown in Figure 4.9. It is noted that T, " for both fields
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Figure 4.9: Spin relaxation rates, 7, ', of Muy in the *C diamond as a function of

the magnetic fields (20 and 200 mT). Solid line guides the eye.

increases as temperature increases. The curve with the larger field has a lower T} '
due to the partially decoupled or quenched nuclear hyperfine interaction ... The
curve for the larger magnetic field exhibits the power law dependence in 7, " as is also

the case for the Mur diffusion studies, performed using TF-uSR [31,38]. However,
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one of the important reasons for repeating these studies in the LF-uSR configura-
tion is that the model for the extraction of the hop rate, 7.1, is more reliable. The
hope rate is the more important quantity for the discussion of quantum diffusion.
Redfield analysis of the 7, ! and d,, are presented in Figure 4.10 as a function of

temperature. The hop rate is essentially constant with a value of approximately
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Figure 4.10: Hop rates, 7. !, and nuclear hyperfine interaction, de of Mur in 3C

diamond as a function of temperature. Dotted and solid lines to guide the eye.

6 x 10'° s7!; however, it may have a decreasing trend with increase in temperature.
This value is larger than 10*° s~1 in the range of 10-400 K; a conformation of our pre-
liminary conclusion based on Figures 4.7 and 4.8. Assuming that the Mur diffuses
via the neighboring tetrahedral interstitial sites, the diffusion constant is deduced

by D = a?7,'/32 where a=3.57A for diamond is the lattice constant [41]. It then
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follows that the diffusion constant is estimated to be Dyp,y = 2.4 x 107° ¢cm?/s. On
the other hand, theoretical calculations show that the tunneling diffusion constant
of hydrogen is estimated to be Dy ~ 1072 ecm?/s [55]. The difference between Dy,
and Dy could be attributed to the difference in mass of the two species. This causes
the zero point energy of Mur to be higher, and therefore, the barrier height will be
lower (for further quantitative demonstration see, for example, [58]). The tunneling
coefficient depends both on the barrier parameters and the mass of the particle.
Hence, tunneling amplitude for Mur is larger and will be significant at much higher
temperatures. Another aspect is the different time windows. Mur is observed after
a few microseconds, while H has usually been measured after longer residence times,
giving more opportunity for competing process to occur. At present, diamond is not
sufficiently pure, and the many traps represented by defects disturb the diffusion

measurements.

We note that the essentially constant 7, ' is inconsistent with classical diffusion.
We further note that the temperature dependence of 7, ' is due mostly to the tem-
perature dependence of the nuclear hyperfine parameter: ., varies slowly at round
90 MHz at lower temperatures, consistent with a previously measured value using
TF-uSR measurements [56] but begins to increase rapidly between room tempera-
ture and 400 K. If muonium is indeed moving in a wavelike state below about 300
K, this parameter will be reduced according to the spread of the wave-packet: §qy
is essentially the amount by which the local field varies as the muonium encounters
spin-up and spin-down nuclei and so is reduced by an approximate factor /n for
delocalization over n sites. This argument was invoked to explain a similar variation

of this parameter for muonium diffusion in NaCl [42] and appears equally appropri-
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ate here. The increase in de, above 300 K would in this model represent localization
of the muonium wave-packet onto fewer sites as the tunneling changes character
from coherent to incoherent: one can say that the scattering length is becoming
comparable with the distance between adjacent sites or, in other words, that it is

appropriate to change from a wavelike to a particle-like description.

Also, the temperature region for the increase in d., corresponds to the onset of
the thermally activated transitions of Mur to Mugc, i.e., from cage-centre to bond-
centre [57]. This is entirely consistent with the requirement that the muonium wave
function first becomes localized before the transition can occur. Reffering to Fig-
ure 4.3, however, it does appear that this conversion precludes observation of the
anticipated mobility minimum for diffusion via neighboring T-sites as well as the
eventual switch from phonon assisted tunneling to classical over-the-barrier diffu-
sion [33,38,40,41]. We had expected to observe the power law dependence of the
two-phonon quantum diffusion regime from about 150 to 400 K, based on the in-
terpretations of previous TF-uSR measurements [31,38], so there is some ambiguity
here that requires resolution in further experiments. The present work suggests that
the power law dependence observed in T} ' reflects a variation of e and not 7.1
Consequently, it appears that 7! is more consistent with Bloch state regime of the

diffusion constant.
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Conclusion

Both TF- and LF-uSR results complement each other, namely indicating that the
Mur state diffuses very fast at lower temperatures (below 200 K) in diamond. This
fast diffusion appears to be in the band-like (Bloch) state, i.e undergoing coherent
tunneling. In this case such diffusion is reflected through the interaction of the Mur
state with the 3C atoms. Not surprisingly, we seem to be observing fast quantum
motion of Mur to relatively high temperatures in diamond, when considering the
large Debye temperature (Op =~ 2200 K) of diamond and its rigid lattice that is
known to have relatively shallower tetrahedral interstitial sites (~ 0.5 V) [48]. The
latter could enable the persistence of fast diffusion to relatively high temperatures
[43], as evident in our results. The spin relaxation rate in the LF-uSR, T, ', was
attributed to the mobile Mur state found to be the only relaxing species in TF-uSR

experiment.
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In the LF-uSR experiment, the results show a very fast diffusion for interstitial
muonium, Mur, diamond, consistent with a wavelike or Bloch-state regime. The
power law behavior in the longitudinal spin relaxation observed here appears to be
due to a temperature-dependent averaging of the nuclear hyperfine interaction. It
remains to be shown that this is fully consistent with interpretation of the transverse
spin relaxation, but the present results show the hop rate to be essentially constant
in this temperature range, corresponding to diffusion constant that is several orders
of magnitude larger than that of hydrogen. This difference could be attributed to
different tunneling behaviors (due to different masses) of Mur and H as well as dif-
fering time windows within which Mur and H are studied in diamond. The thermal
conversion of the mobile cage-centred species, Mur, to the immobile and more sta-
ble bond-centred state, Mugg, precludes exploration of the quantum diffusion above

about 400 K.
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