
MODAL SATISIFIABILITY IN A CONSTRAINT LOGIC

ENVIRONMENT

by

LYNETTE STEVENSON

Submitted in fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in the subject

COMPUTER SCIENCE

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR : PROF K. BRITZ
JOINT SUPERVISOR : Mrs T. HöRNE

November 2007

SUMMARY

The modal satisfiability problem has to date been solved using either a specifically

designed algorithm, or by translating the modal logic formula into a different class

of problem, such as a first-order logic, a propositional satisfiability problem or a con-

straint satisfaction problem. These approaches and the solvers developed to support

them are surveyed and a synthesis thereof is presented.

The translation of a modal K formula into a constraint satisfaction problem,

as developed by Brand et al. [18], is further enhanced. The modal formula, which

must be in conjunctive normal form, is translated into layered propositional formulae.

Each of these layers is translated into a constraint satisfaction problem and solved

using the constraint solver ECLiPSe. I extend this translation to deal with reflexive

and transitive accessibility relations, thereby providing for the modal logics KT and

S4. Two of the difficulties that arise when these accessibility relations are added

are that the resultant formula increases considerably in complexity, and that it is

no longer in conjunctive normal form (CNF). I eliminate the need for the conversion

of the formula to CNF and deal instead with formulae that are in negation normal

form (NNF). I apply a number of enhancements to the formula at each modal layer

before it is translated into a constraint satisfaction problem. These include extensive

simplification, the assignment of a single value to propositional variables that occur

only positively or only negatively, and caching the status of the formula at each node

of the search tree. All of these significantly prune the search space. The final results

I achieve compare favorably with those obtained by other solvers.

Key terms

Modal satisfiability, modal validity, constraint satisfaction problem, constraint solver,

tableau system, first-order translation, ECLiPSe, modal logicsK,KT , S4, constraint

logic programming

Table of Contents

List of Tables . vi

Acknowledgements . vii

Chapter 1 Introduction . 1

Chapter 2 An overview of modal logic 5

2.1 What is modal logic? . 6

2.2 The formal definition of modal logic 7

2.2.1 Normal forms . 10

2.3 Basic normal modal logics . 13

2.4 Modal logic reasoning tasks . 18

2.5 The computational complexity of automated reasoning 19

2.6 The computational complexity of modal satisfiability 21

2.7 Some interesting properties of modal logics 22

2.8 An overview of application areas of modal logic 23

2.8.1 Modal logics of knowledge and belief 23

2.8.2 Description logic . 24

2.8.3 Modal temporal logic . 27

2.9 Final remarks . 33

Chapter 3 Modal satisfiability solvers 34

3.1 Tableau systems . 36

3.1.1 Modal tableau systems with implicit accessibility 37

3.1.2 Modal tableau systems with explicit accessibility 41

3.1.3 An analysis of the tableau approach 46

3.1.4 Tableau-based solvers . 48

3.1.5 Generic tableau solvers . 50

3.2 Gentzen sequent calculus . 50

3.2.1 Sequent solvers . 51

iii

3.3 The translation of modal logic into first-order logic 51

3.3.1 First-order resolution theorem proving 52

3.3.2 Translation of modal logic into first-order logic 55

3.3.3 The relational translation . 56

3.3.4 The functional translation . 60

3.3.5 The semi-functional translation 63

3.3.6 First-order translation solvers 64

3.4 The SAT-based approach . 65

3.4.1 The DPLL SAT algorithm . 65

3.4.2 The KSAT solver . 68

3.4.3 SAT-based modal solvers . 73

3.5 The CSP-based approach . 75

3.5.1 The constraint satisfaction problem 75

3.5.2 Constraint logic programming 77

3.5.3 The ECLiPSe constraint logic programming language 84

3.5.4 The K KCSP solver . 86

3.5.5 Constraint-based modeling . 90

3.5.6 K KCSP optimizations . 92

3.5.7 CSP-based modal solvers . 94

3.6 Alternative approaches to solving modal problems 94

3.7 Final remarks . 95

Chapter 4 KT and S4 modal satisfiability in a constraint logic envi-

ronment . 97

4.1 Current approaches to satisfiability solving of modal logics KT and S4 99

4.2 Benchmark test data sets . 102

4.3 Reflexivity and the KT KCSP solver 105

4.3.1 Basic Issues . 105

4.3.2 Approaches to the KT KCSP algorithm 111

4.3.3 The KT KCSP CNF algorithm 111

4.3.4 The KT KCSP NoCNF algorithm 112

iv

4.3.5 The initial KT KCSP prototypes 116

4.3.6 KT – Enhancement 1 – Propositional and modal simplification 118

4.3.7 KT – Enhancement 2 – Early pruning 122

4.3.8 KT – Enhancement 3 – Grouping of clauses 123

4.3.9 KT – Enhancement 4 – Value assignment in unit clauses . . . 125

4.3.10 KT – Enhancement 5 – Caching 127

4.3.11 Final results of the KT KCSP prototypes 132

4.3.12 The exponential nature of the KT results 133

4.3.13 Comparative benchmark results of the KT data sets 135

4.3.14 An analysis of the kt ph class 137

4.3.15 An analysis of the kt md class 139

4.4 Transitivity and the S4 KCSP solver 139

4.4.1 Basic Issues . 140

4.4.2 The S4 KCSP algorithm . 145

4.4.3 The initial S4 KCSP prototype 146

4.4.4 S4 – Enhancements 6 and 7 – Simplification revisited 146

4.4.5 S4 – Enhancement 8 – Early pruning revisited 150

4.4.6 Final results of the S4 KCSP prototype 151

4.4.7 The exponential nature of the S4 results 151

4.4.8 Comparative benchmark results of the S4 data sets 152

4.5 Final analysis of the constraint logic approach 152

4.6 Final remarks . 155

Chapter 5 Conclusions and further work 157

5.1 Modal temporal logic . 158

5.2 Additional application areas . 159

5.3 Further areas of improvement to the prototypes 160

5.4 Final remarks . 161

Bibliography . 164

v

List of Tables

Table 3.1 Comparative results of the KSATC and K KCSP solvers 93

Table 4.1 Initial results of the KT KCSP prototypes 117

Table 4.2 Final results of the KT KCSP prototypes 133

Table 4.3 Comparative results of the K KCSP solver using the Heuerding
/ Schwendimann K data sets 136

Table 4.4 Results of the FaCT, DLP and KSAT solvers using the Heuerd-
ing / Schwendimann KT data sets 136

Table 4.5 Initial results of the S4 KCSP prototype 146

Table 4.6 Final results of the S4 KCSP prototype 151

Table 4.7 Results of the FaCT and DLP solvers using the Heuerding /
Schwendimann S4 data sets . 152

vi

Acknowledgements

I would like to express my sincere thanks and appreciation to the following people:

- My husband, for all his encouragement and the many sacrifices he has had to

make while I was studying.

- My supervisor, Professor Arina Britz, for her ideas, expertise and guidance.

- My co-supervisor, Tertia Hörne, for her suggestions, recommendations and her

attention to detail.

Thank you both for the hours you spent assisting me and for your encourage-

ment and support.

- Sebastian Brand, for kindly letting me have the code to his KCSP solver.

vii

Chapter 1

Introduction

Modal logic was originally conceived as the logic of necessary and possible truths and

hence can be used to qualify the truth condition of statements [48]. From these philo-

sophical beginnings, modal logic has expanded into many different application areas

which include mathematics, linguistics, computer science and artificial intelligence.

This makes it a very diverse field and it appears as:

- a logic of necessity and possibility,

- a language for studying provability and expressibility in various formal theories,

- a language for talking about relational and topological structures and their uses

in computer science,

- a knowledge representation formalism,

- a language for talking about the behavior of programs,

- a formalism for representing linguistic meaning,

among others [134]. Because of its ability to deal with relational structures, it has

been applied in areas such as program verification, hardware verification, database

theory and distributed computing. It has lately found application on the Semantic

Web.

In this dissertation, I look specifically at the modal satisfiability problem, which

is the problem of determining whether or not a modal formula is satisfiable. This

class of problem is decidable, which means that there exists an algorithm which will

always determine whether or not a formula is satisfiable. However, the algorithm

is PSPACE-complete, and so it can, in the worst case, take exponential time to

produce a solution and can require polynomial space to do so. Hence, this is by no

means a simple problem to solve.

1

2

I begin by looking at the automated approaches that have been developed to date

to solve the modal satisfiability problem. These approaches fall into two distinct cat-

egories. Either a special, purpose-build algorithm has been developed, or the modal

formula has been translated into a different class of problem and the highly optimized

solvers of that class have been applied to solve it. The most widely used purpose-

built algorithms are the tableau approach and the Gentzen sequent calculus. Modal

formulae have been translated into a first-order logic, a propositional satisfiability

problem or a constraint satisfaction problem, among others.

The translation into a constraint satisfaction problem is limited to the modal logic

K and only deals with formulae that are in conjunctive normal form (CNF). Brand

et. al [18] proposed an approach that translates a modal formula into a layered set

of constraint satisfaction problems. Each layer is solved using the state-of-the-art

constraint solver, ECLiPSe [130]. This approach returns good results and hence is a

good candidate for further development.

I extend this solver to deal with reflexive and transitive accessibility relations, on

which the modal logics KT and S4 are based. When these properties are added to an

existing tableau or sequent solver for the first time, the unmodified algorithm loops

within worlds in the case of reflexivity, and produces infinite loops in the case of a

transitive accessibility relation. The various solutions developed to overcome these

problems are identified and discussed.

In order to adequately test the performance of my solver, suitable test data sets

are required. I identify the Heuerding / Schwendimann benchmark data sets as the

most appropriate. They consist of 9 different classes of valid and non-valid problems

of increasing complexity.

The first solver I develop deals with reflexivity. When reflexivity is applied to a

modal formula, the complexity of the clauses increases and conjunctive normal form

is lost. If the resultant formula is converted back into conjunctive normal form, its

complexity increases further, as the number of additional clauses generated is an

exponential factor of the number of original positive modal literals. I propose and

implement two prototypes – one in which the formulae are maintained in conjunctive

normal form and one in which they are not.

3

The initial prototypes are essentially the original solver for the modal logic K,

with the addition of reflexivity. The initial results are not good and so I propose

a series of enhancements. These enhancements focus on the simplification of the

propositional formula at each modal layer before the constraint satisfaction problem

is generated. Brand et al. [18] assign a value from the domain {0, 1, u} to each

propositional literal, where u is taken to mean that an actual value has not been

assigned to the literal. I took this concept further as follows. If a propositional literal

occurs only positively or only negatively in the propositional formula of a particular

modal layer, it can be assigned a value of 1 or 0 respectively. This means that the

clauses in which the literal occurs are True, and so do not need to be included in

the translation into a constraint satisfaction problem. This significantly prunes the

search space. Another major enhancement involves caching the status of the formula

at each node, thereby avoiding unnecessary reprocessing – it was found that in some

cases, the same formula occurs on many nodes of the tree. The application of these

and other enhancements returns favorable results. Of the two prototypes, the one

in which the formula is not maintained in conjunctive normal form returns better

results.

The second solver I develop deals with reflexive and transitive accessibility rela-

tions. The application of the rules of reflexivity and transitivity result in even more

complex formulae, which are once more not in conjunctive normal form. In this case,

the conversion back to CNF is prohibitive, as far too many additional clauses are

generated. The initial prototype does not return good results – in fact, for one of

the classes of data sets, it is able to solve only one non-valid and two valid problems.

Further simplification returns better results. Firstly, simplification is applied before

the application of reflexive and transitive accessibility rules. Secondly, simplification

is applied more extensively. Modal clauses are no longer in conjunctive normal form,

but are in negation normal form. This means that, within a clause, one can have a

disjunction which includes a modal formula. Simplification is now applied to these

modal formulae, which was not the case previously. This prototype returns good

results which compare favorably with those of existing solvers for which benchmark

data is available, although it is not the best of these.

4

The data structures used prohibit the implementation of any further optimiza-

tions. This is however what one would expect from a prototype which has been

extended and extended again, and which was not originally designed for the func-

tionality which has been added. To improve these results, the prototypes need to

be either rewritten or converted into an alternate constraint-based package, with the

focus being on the optimization of the data structures.

I conclude with a discussion of potential application areas to which the prototypes

can be applied.

The remainder of this dissertation is organized as follows. Chapter 2 provides

a formal overview of modal logic and its computational complexity. It provides an

overview of three application areas of modal logics, these being the modal logics of

knowledge and belief, description logic and modal temporal logic. Chapter 3 provides

a detailed overview of automated approaches and solvers developed to solve the modal

satisfiability problem. Chapter 4 discusses the reflexive and transitive prototypes I

have developed and their enhancements and implementation. Chapter 5 concludes

the dissertation with a discussion of future research areas.

Chapter 2

An overview of modal logic

This chapter aims at providing an understanding of what modal logic is. It describes

the type of problems that can be solved using modal logic and discusses the complexity

of providing suitable algorithms to solve them.

After a brief introduction, we formally define modal logic from a syntactic and

semantic point of view. There are many different types of modal logic. We provide

details of the basic normal modal logics and their axioms, as these form the building

blocks from which more complex logics can be built. We look at an example of a

simple modal formula and a syntactic and semantic proof of its validity, to gain an

insight into the difference between these two approaches. We will focus on two of these

normal logics, namely the modal logics KT and S4, in the chapters which follow.

We then look at some of the problems that can be solved using modal logic. Of

these, we select the modal satisfiability problem, which is the problem of determining

whether or not a modal formula is satisfiable, for further study. We need a means of

measuring the complexity of this problem and so look into computational complexity

theory. Computational complexity theory defines how to categorize problems in terms

of the CPU time and memory requirements of an algorithm – it measures whether a

problem can be solved, regardless of the resources it will require to do so.

The modal satisfiability problem is decidable, meaning that an effective algorithm

exists that is able to determine whether any given formula is satisfiable or unsatisfi-

able. However, its complexity class tells us that it will take exponential time in the

worst case to provide a solution. Hence, this is a complex problem to solve and we

cannot in general expect quick answers.

In the chapters which follow, we will refer to certain characteristics of modal

logic, in particular its relation to first-order logic, its decidability and its tree model

property. These are briefly discussed.

We conclude this chapter by looking at three application areas of modal logic. We

5

6

begin with a brief overview of the modal logics of knowledge and belief. We look in

particular at description logics, a family of knowledge representation languages that

are closely allied to modal logic. We make this choice for two reasons. Firstly, the

type of problem that can be expressed in description logic is intuitive and easy to

understand. Secondly, the next chapter looks at solvers that have been developed

to solve the modal satisfiability problem. Much of the development work that has

taken place in the description logic arena is applicable to modal logic because of a

strong correspondence between the two – and visa versa. The final application area

we consider is modal temporal logic. We look at the temporal constraint satisfaction

problem in some depth and its solution using Allen’s interval algebra [3]. A transla-

tion of the interval algebra into a modal temporal logic has been defined [41]. It is

of interest to us as this modal temporal logic requires a transitive accessibility rela-

tion. The prototype we develop in chapter four implements transitivity and so could

potentially be applied to solve this class of problem.

By the end of this chapter, we will have gained a good insight into modal logic, its

complexity and the type of problems it can solve. This leads us to the next chapter,

where we will study the solvers that have been developed to date to solve the modal

satisfiability problem.

The reader is referred to comprehensive texts such as Chellas [21], Goldblatt [47]

and more recently Blackburn et al. [16] for in-depth details of modal logic. A good

overview of the history of modal logic is provided in [48].

2.1 What is modal logic?

Modal logic was originally developed in philosophy to distinguish between two differ-

ent modes of truth – it was conceived as the logic of necessary and possible truths

[48]. Nowadays computer scientists use modal logic to reason about subjects such as

knowledge, belief and time. Modal logic can be viewed as an extension of proposi-

tional logic to which modalities have been added – instead of a proposition being just

true or false, it may in addition be necessarily true or possible true.

Propositional logic allows reasoning about statements. The smallest units of rea-

soning are atomic propositions – denoted p, p1, . . ., q, q1, Atomic propositions

can be combined to form compound propositions using connectives such as not, or

7

and and, which are represented symbolically as ¬, ∨ and ∧ respectively. Examples of

compound propositions are ¬p, (p ∨ q) and (p ∧ q), also referred to as well-formed

formulae (wffs).

To this framework, the two modalities necessarily (2) and possibly (3) are added.

They are interpreted differently in different modal logics. For example, in modal

temporal logic, they are used to express statements such as ’ϕ will always be true in

the future’ or ‘ϕ will be true sometime in the future’. In the logic of knowledge and

belief, they are used to reason about what is known and what is believed.

Let us consider the modality ‘always true’ further. Depending on the context,

‘always true’ could mean ‘true in the future’ or ‘true at all worlds’ or ‘true at all states’.

Similarly, ‘possibly true’ could mean ‘true at some non-specific moment(s) in time’ or

‘true at some world(s)’ or ‘true at some state(s)’. In the case of time, the relationship

between moments in time is the natural chronological order. If we have worlds or

states u, w and v, their relationship is accessibility, stating which world or state can

be accessed from another. We could, for example, have that u can access v and w,

whereas v and w cannot be accessed from each other. Various modal logics have been

developed that allow reasoning about truth from the perspective of different moments

in time, worlds or states, using an appropriately defined accessibility relation.

These concepts were formalized in the 1950s by Kripke [78], although the theory

was developed by several authors including Hintikka [62]. Kripke gave a precise

mathematical meaning to the notion of modalities in terms of possible world models

and provided a precise syntax and semantics for modal logics, as we shall see in the

next section.

2.2 The formal definition of modal logic

We now provide a formal overview of the syntax and semantics of modal logic.

Definition 2.2.1. The basic modal language is defined using a set Φ of atomic propo-

sitions whose elements are denoted p, p1, . . ., q, q1, . . ., the propositional connectives

¬ and ∧, and the unary modality 2. The set of well-formed formulae generated from

Φ, denoted Fma(Φ), is generated by the rule

ϕ ::= p | ⊥ | ¬ϕ | ϕ ∧ ψ | 2ϕ

8

where p ranges over the elements of Φ, ⊥ is the falsum and ϕ, ψ, . . . are modal

formulae.

This definition means that a formula is either a propositional letter, the propo-

sitional constant falsum, a negated formula, a conjunction of formulae, or a formula

prefixed by the box modality.

Additional connectives that are commonly used are ∨ (or),→ (implies) and↔ (if

and only if). These connectives are defined in terms of ¬ and ∧ – that is, ¬(p ∨ q)
≡ ¬p ∧ ¬q; p → q ≡ ¬p ∨ q and p ↔ q ≡ (p → q) ∧ (q → p). An additional unary

modal connective 3 is defined as 3 ≡ ¬2¬. Whenever a collection of formulae has a

common syntactic form, this form can be represented as an axiom schema or axiom.

For example, the axiom schema 2ϕ→ ϕ denotes the collection of formulae {2ψ → ψ

: ψ ∈ Fma(Φ)} and has the meaning that ‘if ϕ is necessarily true, then ϕ is true’.

The next step is to formally define the semantics of modal logic. Kripke semantics

(also known as relational semantics or frame semantics) defines the semantics of

modal logic in terms of relational models and frames or structures and is defined as

follows:

Definition 2.2.2. A Kripke frame is defined as a tuple F = (W,R). A Kripke model

(or a modal model) is defined as a tupleM = (W,R, V), where W is a nonempty set

of worlds or states denoted u, u1, . . ., v, v1, . . ., w, w1 . . .; R is a binary accessibility

relation over W , and V is a function or interpretation that associates with each

propositional letter in Φ a set of worlds in W .

The interpretation V (p) tells us at which worlds a propositional letter p is true,

and the binary accessibility relation uRv tells us that world v is accessible from world

u.

We next define what it means for a formula ϕ to be true at a given world u in a

modelM.

Definition 2.2.3. The statement ‘ϕ is true at world u in modelM’, denotedM |=u

ϕ, is defined inductively as follows:

9

M |=u p iff u ∈ V (p) and p ∈ Φ

M |=u ¬ϕ iff not M |=u ϕ

M |=u (ϕ ∧ ψ) iff M |=u ϕ and M |=u ψ

M |=u 2ϕ iff for all v ∈ W , uRv implies M |=v ϕ – that is, ϕ holds

at all worlds v accessible from u

M |=u 3ϕ iff M |=v ϕ for some v ∈ W such that uRv

This definition gives us the truth of a formula at a particular world. The next

step is to define the satisfiability and validity of a formula in a modelM and a frame

F .

Definition 2.2.4. A formula ϕ is satisfiable in a frame F = (W,R) if there exists

some Kripke model M = (W,R, V) based on F such that for some u ∈ W , M |=u

ϕ.

Definition 2.2.5. A formula ϕ is valid in a modelM = (W,R, V), denotedM |= ϕ,

iffM |=u ϕ for all worlds u in W . A formula is valid in a frame F = (W,R) iff it is

valid in all models M based on F . It can also be valid in a class of frames or in all

frames.

The above concepts are illustrated in the following example.

Example 2.2.6. Consider the set Φ = {p, q, r} of propositions. Let W = {w1, w2,

w3, w4} and R = {w1Rw2, w1Rw3, w3Rw4}. Let V1(p) = {w1, w2, w3}, V1(q) = {w3},
V1(r) = {w2, w4} andM1 = (W,R, V1). Let V2(p) = {w1, w2, w3, w4}, V2(q) = {w3},
V2(r) = {w2, w4} andM2 = (W,R, V2).

M1 andM2 are represented graphically in Figure 2.1.

We can state the following in terms of Definition 2.2.3:

1. For Mi, i = 1, 2, the following hold: Mi |=w1 2p, Mi |=w3 2r and

Mi |=w1 3q. In terms of Definition 2.2.4, the modal formulae 2p, 2r and

3q are thus satisfiable.

2. ForMi, i = 1, 2, the following does not hold : Mi |=w1 2q.

3. ForM2, we haveM2 |=w3 2p which is not the case inM1.

10

"!

w1

p �
�

�
���"!

w2

p, r

@
@

@
@@R"!

w3

p, q -"!

w4

r

Kripke modelM1

"!

w1

p �
�

�
���"!

w2

p, r

@
@

@
@@R"!

w3

p, q -"!

w4

p, r

Kripke modelM2

Figure 2.1: A simple example of Kripke models

4. In terms of Definition 2.2.5, the formula p is valid inM2, asM2 |=u p for

all worlds u in W . This formula is however not valid inM1.

5. In terms of Definition 2.2.5, the formula p is not valid in frame F = (W,R),

as it is not valid in the modelM1. a

2.2.1 Normal forms

To simplify the processing of a modal formula, a standard practice is to first reduce

it to a standard representation, called normal form or canonical form, in which the

number of connectives in the formula is reduced to a minimal subset.

The following definitions are applicable and will be used throughout the work that

follows.

Definition 2.2.7. A propositional atom is any propositional formula that cannot be

decomposed propositionally.

Definition 2.2.8. A modal atom is any modal formula that cannot be decomposed

propositionally – that is, any formula whose main connective is not propositional.

Definition 2.2.9. A propositional literal is either a propositional atom or its nega-

tion. A positive propositional literal is a propositional atom; a negative propositional

literal is a propositional atom with a single negation.

Definition 2.2.10. A modal literal is either a modal atom or its negation. A positive

modal literal is a modal atom; a negative modal literal is a modal atom with a single

negation.

11

Definition 2.2.11. A unit modal literal is either of the form 2l or ¬2l, where l is

a propositional literal.

A unit modal literal is a modal literal; whereas a modal literal is not necessarily

a unit modal literal.

Definition 2.2.12. A propositional clause is composed of the disjunction of proposi-

tional literals (the literals are logically OR-ed).

Definition 2.2.13. A modal clause is composed of the disjunction of propositional

and / or modal literals.

Definition 2.2.14. A propositional unit clause is a clause that is composed of a

propositional literal.

Definition 2.2.15. A modal unit clause is a clause that is composed of a single modal

literal.

Definition 2.2.16. The depth of a modal formula ϕ, written depth(ϕ), is defined as

the maximum number of nested modal operators in ϕ.

Example 2.2.17. The definitions above are clarified in the following:

- p is a propositional atom; whereas ¬p is not.

- p and ¬p are propositional literals; p is a positive propositional literal or propo-

sitional atom; ¬p is a negative propositional literal.

- 22p and 2(p ∨ q) are modal atoms; whereas ¬2p is not.

- 2(p ∨ q) and ¬2(p ∨ q) are modal literals; 2(p ∨ q) is a positive modal literal

or modal atom; ¬2(p ∨ q) is a negative modal literal.

- 2p is a unit modal literal; whereas 2(p ∨ q) is not – it is a modal unit clause.

- In the modal formula

22p ∧ (p1 ∨ ¬q) ∧ p2 ∧ 2(p3 ∨ p4)

12

(p1 ∨ ¬q) is a propositional or modal clause with no modal literals and hence

depth 0; p2 is a propositional unit clause; 2(p3 ∨ p4) is a modal unit clause;

22p and 2(p3 ∨ p4) have modal depths 2 and 1 respectively. The depth of this

modal formula is thus 2. a

We have stated that, prior to processing a modal formula, it needs to be reduced

to a normal form.

Definition 2.2.18. A modal formula ϕ is in negation normal form (NNF) if negation

occurs only immediately before propositional and modal atoms and the only Boolean

connectives it contains are {¬, ∧, ∨}.

This reduction is achieved by applying the following rule:

Rule 2.2.19. A modal formula is reduced to negation normal form (NNF) as follows:

- Double-negations are eliminated and negations occur only immediately before

atoms by the application of:

(i) ¬¬ϕ1 ≡ ϕ1 (double negation)

(ii) ¬(ϕ1 ∨ ϕ2) ≡ (¬ϕ1 ∧ ¬ϕ2) (De Morgan’s law)

(iii) ¬(ϕ1 ∧ ϕ2) ≡ (¬ϕ1 ∨ ¬ϕ2) (De Morgan’s law)

- The Boolean connectives equivalence (↔) and implication (→) are replaced with

their definitions:

(iv) (ϕ1 ↔ ϕ2) ≡ (¬ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ¬ϕ2)

(v) (ϕ1 → ϕ2) ≡ (¬ϕ1 ∨ ϕ2)

Note that the clauses in an NNF modal formula can consists of the disjunction of

propositional literals, modal literals and / or modal formulae.

Example 2.2.20. An example of a formula in negation normal form (NNF) is

p1 ∧ (p2 ∨ (¬p3 ∧ p4 ∧ (2(p5 ∨ p6))))

13

whereas the formula

p1 ↔ (¬¬p2 → (¬p3 ∧ p4))

is not. Clauses p1 and (p2 ∨ (¬p3 ∧ p4 ∧ (2(p5 ∨ p6)))) of the first formula are NNF

clauses. a

Definition 2.2.21. A modal formula is in conjunctive normal form (CNF) if it

is a conjunction of modal clauses (Definition 2.2.13). Conjunction normal form is

achieved by applying the following law of distribution:

ϕ ∨ (ϕ1 ∧ ... ∧ ϕn) ≡ (ϕ ∨ ϕ1) ∧ ... ∧ (ϕ ∨ ϕn)

Example 2.2.22. An example of a formula in conjunctive normal form (CNF) is

(ϕ1 ∨ ϕ2) ∧ (ϕ3 ∨ ϕ4) ∧ ϕ5

whereas the formula

ϕ1 ∨ (ϕ2 ∧ ϕ3 ∨ ϕ4)

is not.

The formula (ϕ1 ∨ (ϕ2 ∧ ϕ3)), when converted to conjunctive normal form, be-

comes (ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3). a

Note that a modal formula which is in conjunctive normal form is also in negation

normal form. A modal formula which is in negation normal form is not however in

conjunctive normal form.

2.3 Basic normal modal logics

The definition of modal logic can be extended in various ways, such as by adding

further axioms or by placing restrictions on the accessibility relation R. In this way,

deductively stronger modal logics can be defined. For example, we may want R to

represent the flow of time, in which case it needs to be transitive. If we have moments

in time t1, t2 and t3 and we have t1Rt2 (t2 is in the future of t1) and t2Rt3 (t3 is in

the future of t2), then we must be able to deduce t1Rt3 (t3 is in the future of t1). A

14

mechanism is required to formalize such inferences. We next look at how this can be

achieved from an axiomatic and semantic perspective.

We begin by providing an axiomatic definition of a propositional logic L.

Definition 2.3.1. Given a language based on a countable set Φ of atomic formulae,

a logic L is defined as any set Λ ⊆ Fma(Φ) that includes all tautologies and is closed

under the rule of modus ponens:

if ϕ, ϕ → ψ ∈ L, then ψ ∈ L.

This definition can be applied to different logics, including modal logics. We now

look at the definition of a normal modal logic that will by default have the properties

defined above.

Definition 2.3.2. A modal logic is called normal if it includes the axiom

K : 2(ϕ → ψ) → (2ϕ → 2ψ)

and is closed under the rule of necessitation: from ϕ infer 2ϕ.

The smallest normal logic is called K and is defined as K =
⋂
{Λ : Λ is a normal

logic}. K has been named after Kripke. In the next chapter we will see that the

modal logic K plays a prominent role in the solvers we will be discussing and some

solvers provide for only K.

K can be extended to create the basic normal modal logics, which are obtained

from various combinations of the following five basic axioms:

Definition 2.3.3. The axioms of modal logic include:

D : 2ϕ → 3ϕ

T : 2ϕ → ϕ

B : ϕ→ 23ϕ

4 : 2ϕ → 22ϕ

5 : 3ϕ → 23ϕ

From these five axioms, 15 basic normal logics have been derived, some of the

more well-known of which are KT, K4, S4 and S5. They are obtained as follows:

15

- T or KT is obtained by adding the axiom T to the logic K.

- K4 is obtained by adding the axiom 4 to the logic K.

- KT4 is obtained by adding the axioms T and 4 to the logic K. It is also referred

to as the logic S4.

- KTB4 is obtained by adding the axioms T, 4 and B to the logic K. It is also

referred to as logic S5 – the modal logic of knowledge.

These axioms can be used to prove the validity of a formula in a given logic. We

look at the syntactic proof of the following modal formula, using the axioms of the

logic KT.

Example 2.3.4. The proof of ϕ → 3ϕ in modal logic KT is derived as follows:

1. 2¬ϕ → ¬ϕ T

2. ϕ → ¬2¬ϕ 1, propositional logic (PL)

3. 3ϕ ↔ ¬2¬ϕ definition of 3

4. ϕ → 3ϕ 2, 3, PL

a

When we look at this proof, we see that it is not intuitive – if we were assigned

the task of proving the formula from scratch, it would not be obvious where to begin

or which axioms to use. If we could not derive a given formula because it was not

a theorem, there would be no guarantee that we would realize there is no proof.

Axiomatic systems are notoriously bad for proof search – they give no guidance on

either how to look for a proof or how to establish the lack of a proof. Furthermore,

their axioms have little intuitive content.

Frames on the other hand are a more natural way of representing a logic. We now

look at the semantic representation of the above axioms.

Definition 2.3.5. The axioms of Definition 2.3.3 can be represented semantically in

a frame F = (W,R) as follows:

- D is true in F iff R is serial – that is, iff for every u ∈ W there is some v ∈
W such that uRv.

16

- T is true in F iff R is reflexive – that is, iff for every u ∈ W , uRu.

- 4 is true in F iff R is transitive – that is, iff for every u, v, w ∈ W , if uRv

and vRw then uRw.

- 5 is true in F iff R is euclidean – that is, iff for every u, v, w ∈ W , if uRv

and uRw then vRw.

- B is true in F iff R is symmetric – that is, iff for every u, v ∈ W , if uRv then

vRu.

Hence, the Kripke semantics of K is defined with respect to the set of all frames,

KT with respect to the set of all reflexive frames, S4 with respect to the set of

transitive and reflexive frames and S5 with respect to the set of transitive, symmetric

and reflexive frames.

It must be noted that all axioms do not have an equivalent semantic characteriza-

tion in terms of the accessibility relation, and vice versa. For example, consider the

accessibility relation R which satisfies the condition that, for every u, v ∈ W , if uRv,

then it is not the case that vRu. There is no modal axiom which corresponds to this

R. Similarly, the McKinsey schema, 23ϕ→ 32ϕ, cannot be defined in terms of an

accessibility relation [47].

We now look at how to provide a semantic proof for the formula ϕ → 3ϕ of

Example 2.3.4. First, we need to understand some of the background of semantic

proofs. Recall that for a formula to be valid, it must be true in all models (Definition

2.2.5). The approach taken to produce such a proof is to show that the negation of

the formula is false in all models.

Example 2.3.6. We need to prove the validity of ϕ → 3ϕ in the class of reflexive

frames. Suppose we have an arbitrary model M = (W,R, V) based on F = (W,R).

Suppose W contains any number of worlds, including an arbitrary world u, and

suppose R is reflexive.

We consider the truth of the formula ¬(ϕ → 3ϕ) or ϕ ∧ 2¬ϕ at the arbitrary

world u.

Suppose ϕ and 2¬ϕ are True at u. We have by Definition 2.2.3 that

17

M |=u 2ϕ iff for all v ∈ W , uRv impliesM |=v ϕ

Since R is reflexive, uRu, and so ¬ϕ is True at u – a contradiction.

Since u andM were arbitrarily chosen, we have shown that ϕ ∧ 2¬ϕ is False at

all worlds and all models.

Hence, ϕ → 3ϕ is valid. a

This proof is more intuitive than the corresponding syntactic proof. We will see

in the next chapter that a formula such as this is easily proved using proof methods

such as a tableau proof.

The theory presented so far adapts easily to logics with more than one modality,

and we extend Definition 2.2.1 accordingly [47].

Definition 2.3.7. The basic multi-modal language is defined using a set Φ of atomic

propositions whose elements are usually denoted p, p1, . . ., q, q1, . . ., the propositional

connectives ¬ and ∧, and a collection of modalities {2i : i ∈ I}. The set of well-

formed formulae generated from Φ, denoted FmaI(Φ), is generated by the rule

ϕ ::= p | ⊥ | ¬ϕ | ϕ ∧ ψ | 2iϕ

where p ranges over the elements of Φ, ⊥ is the falsum and ϕ, ψ . . . are modal

formulae.

We now have formulae 2iϕ for each ϕ ∈ Fma(Φ) and each i ∈ I. The modalities

2i are treated in the same way we treated 2 previously, with the dual modalities 3i,

defined by 3i ≡ ¬2i¬, corresponding to 3. K(m), also referred to as Km, is now

defined as a multi-modal logic with a set of m modal operators B = {21, 22, ..., 2m}.
The Kripke structure for K(m) is a tuple M = (W , R1, R2, ..., Rm, V) where each

Ri is a binary relation on the worlds of W . Definition 2.2.3 needs to be extended to

include

M |=u 2iϕ iff for all v ∈ W , uRiv implies M |=v ϕ

M |=u 3iϕ iff M |=v ϕ for some v ∈ W such that uRiv

Although we will not focus on multi-modal logics, the above has been provided

for completeness.

18

2.4 Modal logic reasoning tasks

We now look at the sort of reasoning tasks that are typically required in a modal

logic. We begin with the definitions of decidability and the modal satisfiability and

modal validity reasoning tasks, and then provide an overview of the model checking

task.

Definition 2.4.1. A problem is decidable (computable) if and only if there exists an

algorithm that is capable of providing a correct answer of ‘yes’ or ‘no’ for all valid

inputs to the algorithm, in a finite number of algorithmic steps.

Definition 2.4.2. The modal satisfiability problem is the problem of determining

whether or not a modal formula ϕ is satisfiable in some model.

Definition 2.4.3. The modal validity problem is the problem of determining whether

or not a modal formula ϕ is valid in a model, in a frame or in a class of frames (such

as the class of reflexive frames).

It is easy to see that ϕ is valid if and only if ¬ϕ is unsatisfiable – that is, the

modal validity problem is the dual of the modal satisfiability problem. If we have a

method of solving the one, we will be able to solve the other. Both of these problems

are decidable. We will focus on the modal satisfiability problem in the chapters which

follow.

The model checking task is more complex and can be one of three tasks. It can

verify whether a formula ϕ is satisfiable at some world w in a model M or it can

verify whether the formula is satisfiable at all worlds in the model. A more complex

form of model checking involves returning the set of worlds in a finite model M at

which the modal formula ϕ is satisfiable (which is not a decision problem).

Model checking is a very important reasoning task that is used, for example, to

verify formal systems. In the case of a hardware or software design, it verifies whether

or not a formal specification (formula) is satisfiable in a model representing the design.

Such a specification will typically be expressed as a modal temporal logic formula.

It can be used in the design of a concurrent system to verify that deadlock cannot

occur. An example of temporal logic model checking of programs is given in [24], and

an example of the verification of a concurrent system using model checking is to be

found in [23].

19

The satisfiability and validity problems are both decision problems. As a next

step, we need to define a means of measuring their complexity.

2.5 The computational complexity of automated reasoning

For any algorithm, there are two kinds of complexity measures to consider – the time

it takes to find a solution (the number of computational steps required) and the space

requirements of the solution (the amount of memory required). Both the time and

space requirements are typically measured as functions of the size of the input. The

resources an algorithm uses can be measured by looking at its worst-case complexity

– we measure the performance of the most difficult problem instance the algorithm

can be given to solve.

To measure computational complexity, a robust mathematical model of com-

putability is required. One of the most widely used models is the Turing machine,

the details of which are provided in texts such as [35]. Briefly, Turing machines were

developed by Alan Turing [121] and are based on the concept that an algorithm is

computable if one can specify a finite sequence of instructions which, when followed,

results in the completion of the algorithm.

Because of its simplicity, the Turing machine model is widely used in theoretical

computer science, particularly in complexity theory. It is remarkably robust and

general.

The following definitions are standard definitions that form part of any discussion

on complexity theory [9, 16].

Definition 2.5.1. An algorithm is said to be polynomially bounded if its worst-case

complexity is bounded by a polynomial function of the input size – that is, if there is

a polynomial p such that for each input of size n, the algorithm terminates after at

most p(n) steps.

Definition 2.5.2. P is the class of decision problems that are polynomially bounded.

Problems in P can be solved in a deterministic Turing machine in deterministic

polynomial time. This class of problems is referred to as tractable or ‘not-so-hard’.

However, a problem that is not in P is extremely expensive and probably impossible

20

to solve in practice. Such problems are termed intractable and are defined in terms

of the class NP.

Definition 2.5.3. NP is the class of decision problems for which a given proposed

solution for a given input can be checked in polynomial time to see if it is a solution.

NP is the class of problems that are decidable in non-deterministic polynomial

time – a non-deterministic Turing machine may take exponential time to solve a

problem but will take polynomial time to verify a potential solution.

The type of problem that belongs in NP is solved using a non-deterministic

algorithm in which the problem is decomposed into two separate steps – a non-

deterministic search for a solution, followed by the deterministic verification of the

solution. The non-deterministic search is essentially a guided guess of a possible

solution, which is followed by a verification phase which is tractable (solvable in poly-

nomial time). If the guess fails, the search continues and the next possible solution

is verified. This process is repeated until either a solution is found or the problem is

found to be unsolvable.

NP-hard problems are at least as hard as any problem in NP, while NP-complete

problems are in NP and are NP-hard.

Definition 2.5.4. PSPACE is the class of problems solvable by a deterministic

Turing machine using only polynomial space.

A PSPACE algorithm may generate many different possible solutions, each of

which will require polynomial space to solve. Because there could be many such

solutions, it could take exponential time to generate them. Since each solution is

discarded once it has been generated and tested, simplistically such an algorithm

runs in polynomial space.

A decision problem is PSPACE-complete if it is in PSPACE and every problem

in PSPACE can be reduced to it in polynomial time. PSPACE-complete problems

can be thought of as the hardest problems in PSPACE.

Definition 2.5.5. EXPTIME is the class of problems deterministically solvable in

exponential time – a problem is solvable in exponential time if there is an exponentially

time bounded Turing machine that solves it.

21

Many modal logics fall within this important class.

Definition 2.5.6. NEXPTIME is the class of problems solvable using an exponen-

tially bounded non-deterministic Turing machine.

Like NP algorithms, NEXPTIME algorithms have a ‘guess and check’ profile

with the crucial difference being that the guessed solution may be exponentially large

in the size of the input and so the deterministic checking that follows may take

exponentially many steps in the size of the input.

These classes are related as follows:

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME

with NEXPTIME being the most complex class. In an ideal world, we would want

all our algorithms to fall into the P class.

An unanswered question in computational complexity theory is whether or not

P = NP. Recall that a problem in P can be solved in polynomial time, whereas a

problem in NP can only be verified in polynomial time. If P = NP, it would mean

that it is as easy to verify a solution as it is to compute the solution.

The reader is referred to [9] and [16] for further details and examples of these

classifications.

2.6 The computational complexity of modal satisfiability

We will not be looking at the specific details of a modal satisfiability algorithm here

– that is the task of the next chapter.

Cook [26] showed that the problem of deciding whether a formula of propositional

logic is satisfiable is NP-complete. Since propositional logic formulae are a subset

of modal formulae, this means that the modal satisfiability problem is at least NP-

complete.

Ladner [80] further quantified the computational complexity of the modal satisfi-

ability problem for various systems of modal logic. He showed that there are poly-

nomial space bounded algorithms for deciding whether or not a formula is provable

in any one of K, KT and S4. They are in PSPACE and are PSPACE-complete

22

using deterministic space O(n2), O(n3) and O(n4) respectively. He also showed that

S5 -satisfiability is in NP and is therefore NP-complete.

Halpern [54] subsequently showed that the PSPACE-completeness results of Lad-

ner also hold for the modal logics K(m), KT (m) and S4 (m), for m ≥ 1. He also

showed that, if there is a bound on the number of primitive propositions in an S5 -

satisfiability problem, it can be solved in linear time.

Hudelmaier [68] showed that satisfiability in S4 is O(n2 log n)-space computable

and in K and KT it is O(n log n)-space computable. Nguyen [94] reduced the bound

for S4 to O(n log n) and Hemaspaandra [57] reduced the bound for K to O(n).

These results tell us that the modal satisfiability problem for the modal logics

we have discussed could take exponential time to solve, but that it takes polynomial

time to verify a solution and requires polynomial space. Note that some of the more

complex modal logics have complexity results in EXPTIME and NEXPTIME.

We will see in the next chapter that the solvers we look at have been limited to the

simpler modal logics.

2.7 Some interesting properties of modal logics

Before we conclude this section, we need to discuss some properties of modal logics

that we will be referring to in the next chapters. We will also be looking at the trans-

lation of modal logic into first-order logic and since there is an interesting difference

in the decidability of these logics, a brief introduction is appropriate.

There is a standard translation of a modal logic into a first-order logic – both talk

about relational structures, with first-order logic making use of the ‘for all’ (∀) relation

as opposed to the ‘always’ (2) relation of modal logic. Every normal modal formula

can be translated into a first-order formula, as we will see in the next chapter. The

first-order formulae that correspond to the modal logic formulae under this standard

translation form the modal fragment of first-order logic.

Modal logic is decidable as we have seen, whereas first-order logic is not. This

means that we can translate a decidable formula into an undecidable one. The reason

for the decidability property of modal logic has caused much interest – especially when

one considers the apparent similarity between modal logic and first-order logic. Vardi

[127] attributes this to the tree model property of modal logic, which tells us that

23

every satisfiable formula has a model that is a tree, with the formula being satisfiable

at the root of the tree. The tree model property provides a powerful tool for proving

decidability results and for constructing efficient decision procedures.

Some modal logics also have the finite model property which means that, for a set of

formulae ϕ, every satisfiable formula in ϕ is satisfiable in a finite model. Decidability

of certain modal logics can be shown by establishing this property.

Now that we have defined modal logic and have looked at the sort of problems

that need to be solved, we look at some of its application areas. There are many

areas to which modal logic has been applied – we look at a very small subset.

2.8 An overview of application areas of modal logic

We briefly discuss three families of modal logics that are central to computing. These

are the logics of knowledge and belief, description logics and modal temporal logics.

2.8.1 Modal logics of knowledge and belief

We touch briefly on modal logics of knowledge and belief in which the properties of

knowledge need to be defined. The field grew out of the work of Hintikka [62] whose

idea was that, in each state of the world, an agent has other states or worlds he

considers possible. Some of these possible worlds may be indistinguishable from the

true world to an agent. An agent is then said to know a fact ϕ if ϕ is true in all

the worlds he thinks possible. Areas of interest are then to consider what an agent

knows about the world, and also what he knows about what other agents know and

do not know. This kind of reasoning is crucial in bargaining and economic decision

making. It is also of interest to be able to differentiate between common knowledge

and the implicit knowledge of a group of agents [55]. Modal logic lends itself well to

expressing these concepts.

By imposing various conditions on the accessibility relation, we can capture a

number of interesting axioms. For example, if we require that the world that an agent

finds himself in is always one of the worlds he considers possible (which amounts to

saying that the possibility relation is reflexive), then it follows that the agent does

not know false facts. Similarly, we can show that if the relation is transitive, then an

24

agent, who knows a given fact, knows that he knows it. If we impose no restrictions,

then the resulting logic is the modal logic K [56].

These logics also need to be able to deal with multi-agent systems which are

important in many areas in computer science. Multi-agents are applicable in multi-

threading systems and multi-processor computers and can be used to model the be-

havior of robots and to define web-services, which are agent-like. This is another vast

area of research – the reader is referred to [36] and [53] for good overviews of the

logics of knowledge and belief and to [133] for an insight into its application areas.

Details of some of the limitations of agent-based logics are discussed in [112].

2.8.2 Description logic

Description logic is used to represent and reason about knowledge. It is used to

represent the knowledge of an application domain (the world) by defining the concepts

of the domain (sets of objects) and the roles of the domain (binary relationships on

objects). Complex concepts, denoted C, C1, . . ., D, D1, . . ., and rules, denoted R, R1,

. . ., are built from atomic ones using the set of constructors of the description logic,

which are typically conjunction (u), disjunction (t), negation (¬), value restriction

(∀R.C) and exist restriction (∃R.C). For example, ∀R.C restricts the set of objects

to those that are in the relationship R only with objects belonging to C (i.e. they

are not related by R to any objects outside of C).

The concepts and roles defined create the world description of the application

domain. We can infer implicitly represented knowledge from explicitly represented

knowledge using various inference capabilities provided in the logic. For instance,

the subsumption algorithm is used to determine subconcept-superconcept relations.

C is subsumed by D (C v D) if and only if all instances of C are also instances of

D. Determining subsumption is thus the problem of checking whether one concept is

considered more general than another.

From a semantic point of view, concepts are given a set-theoretic interpretation.

A concept is interpreted as a set of individuals. Roles are interpreted as sets of pairs

of individuals. The domain of interpretation is arbitrary and can be infinite.

We look at a simple example which represents knowledge concerning people –

the domain. The relevant concepts we define in this domain are Person, Female,

25

Mother, Woman, Child and Man. Note that these concepts are variable-free – they

apply to all individuals in the domain who belong to the concept. Roles express

additional information about the individual objects. We define the role hasChild and

can associate the concept Mother with it.

We can now express ‘persons that are not female’ and ‘individuals, all of whose

children are female’ as

Person u ¬Female and ∀hasChild.Female

In this simple example, we have defined a knowledge base of concepts, we have

defined a role and we have built the new concept, ‘persons that are not female’, which

we can identify with the concept Man. An inference task in this domain might be to

determine whether Mother is subsumed by Woman.

Another important kind of role restriction is given by number restrictions that

restrict the cardinality of the sets of fillers of roles. For instance, the concept

(≥ 3 hasChild) u (≤ 2 hasFemaleRelative)

represents the concept of ‘individuals having at least three children and at most 2

female relatives’. Number restrictions are a distinguishing feature of description logics

and an equivalent is not found in modal logic.

Description logic initially developed independently of modal logic. Schild [110]

identified the relationship between the two which brought these formerly unrelated

fields together. This allowed some of the theories and implementations already in

place for modal logics to be applied to description logics. Conversely, the highly

optimized implementations developed for description logics can be applied in a modal

context.

The correspondence between the two logics was defined in terms of the description

logic ALC developed by Schmidt-Schauß and Smolka [113].

Definition 2.8.1. The description logic ALC is defined in terms of the following

formation rules, where c denotes a concept symbol and r a role symbol:

C, D → c | > | C u D | ¬C | ∀R.C
R → r

The formal semantics of ALC is defined as follows:

26

Definition 2.8.2. Let D be a set called the domain. An extension function ε over D
is a function mapping concepts C to subsets of D and roles R to subsets of D × D
such that

ε[>] = D
ε[C uD] = ε[C] ∩ ε[D]

ε[¬C] = D \ ε[C]

ε[∀R.C] = {d ∈ D : ∀ <d, e> ∈ ε[R].e ∈ ε[C]}

Viewing ALC from the modal logic perspective, concepts can be viewed as modal

formulae in a multi-modal language K(m) and can be interpreted as the set of worlds

in which the modal formula holds. In this case, ∀ becomes a modal operator since it is

applied to formulae. Thus, ¬C1 u ∀R.(C2 u C3) can be expressed by the propositional

modal formula ¬C1 ∧ 2R(C2 ∧ C3). 2R(C2 ∧ C3) can be read as ‘agent R knows

proposition C2 ∧ C3’, meaning that, in every world accessible from R, both C2 and

C3 hold. Thus, the domain of the extension function can be read as the set of worlds,

concepts can be interpreted as the set of worlds in which they hold and roles can be

interpreted as accessibility relations.

Further, ∀R.C can be expounded as ‘all worlds in which agent R knows proposition

C’ instead of ‘all objects for which all Rs are in C’.

The correspondence is established formally by defining a function f that maps

ALC-concepts to K(m) formulae as follows:

f(C) = pC

f(>) = True

f(C uD) = f(C) ∧ f(D)

f(¬C) = ¬f(C)

f(∀R.C) = 2Rf(C)

This correspondence led to the proof that ALC

is a notational variant of the propositional modal logic K(m) and that satisfiability

of K(m) has the same computational complexity as ALC.
We will see in the next chapter that some of the solvers have been developed

specifically to address description logics but can be applied to modal logic problems

as well.

Description logic has been used in different application domains such as natural

27

language processing, configuration of technical systems and database schemata and

queries. It has been used of late to develop applications for the Semantic Web, which

is an active research area. Good references on current developments are to be found

in the papers of annual conferences such as ‘International Workshop on Description

Logics’ and ‘Principles and Practice of Semantic Web Reasoning’.

A detailed overview of description logic can be found in the Description Logic

Handbook by Baader et al. [7].

2.8.3 Modal temporal logic

Modal temporal logic provides a formal system for qualitatively describing and rea-

soning about how the truth values of assertions change over time. It is a vast and

varied research area and many different approaches have been taken to solve it. It

emerged as an area of research in the 1950s, due largely to Arthur Prior [105, 106, 107].

Born some decades later than modal logic, it turned out technically much like it. It

was based on philosophical arguments concerning the structure of time, on linguistics

where tenses and other temporal expressions are expressed in natural languages, and

to some extent on mathematics.

In a modal temporal logic, various temporal operators or modalities are introduced

to describe and reason about how the truth values of assertions vary with time, in

accordance with how time has been defined. Time can be viewed as discrete as repre-

sented using natural numbers, continuous as represented by reals or rationals, linear

or branching where branching usually occurs in the future, complete or incomplete.

Temporal entities can then be defined as points, intervals or durations.

Prior’s temporal logic, called tense logic, is a two-directional modal logic with

modalities F – at least once in the future and P – at least once in the past. Subse-

quently, stronger languages were defined that contained additional modalities – Kamp,

for example, added the modalities Since and Until [77]. Temporal logic evolved in

complexity, resulting in different temporal logics. Linear temporal logic has time

represented as discrete points, ordered like natural numbers with only one possible

future for each time entity. Branching temporal logic is based on a branching notion

of time where a time entity may have several possible successor time entities. There

are furthermore various branching temporal logics such as computation tree logic that

28

defines a time tree.

An early application of temporal logic was identified by Pnueli [104]. He was one of

the first to recognize that it could be used to specify and verify the correctness of com-

puter programs, especially those that are non-terminating or that are continuously

operating concurrent programs such as operating systems. In an ordinary sequential

program, formal verification of program correctness is reasonably straightforward, as

programs move from an initial state through to a final state. However, in the case of

an operating system that is non-terminating and that interacts with its environment,

these methods are not applicable. In this environment, the operators of temporal

logic can be utilized to deal with their time-varying behavior. These ideas were sub-

sequently explored and extended by a number of researchers. Temporal logic has now

been used or proposed for use in virtually all aspects of concurrent program design,

including specification, verification, development and mechanical program synthesis.

Good overviews of temporal logics are available in papers such as [22, 34, 118, 124].

We now look specifically at the temporal constraint satisfaction problem and its

relation to modal temporal logic, as this is an application area which relates well to

the work which follows.

Temporal Constraint Satisfaction

Temporal constraint satisfaction is a search technique used to represent and answer

queries about the timing of events and the temporal relations that hold between

them and is particularly useful in, for example, scheduling problems. In temporal

constraint satisfaction problems (TCSPs), variables can be time points, time intervals

or durations, and constraints represent sets of allowed temporal relations between

them. The domain of time point and duration variables can be either the set of

integers or rational numbers, whereas the domain of time interval variables is the set

of ordered pairs of either set. There are several classes of temporal constraints, these

being qualitative, quantitative (metric) or a combination of the two. The reader is

referred to [88] and [115] for further details of these classes.

An approach that has been successfully deployed to solve temporal constraint

satisfaction problems is Allen’s interval algebra.

29

Allen’s interval algebra

Allen [3] defined a temporal representation based on time intervals and the binary

relations between them. It is used to express qualitative relations between intervals

and enables temporal knowledge that is possibly indefinite and incomplete to be

represented. His interval algebra consists of the thirteen atomic interval relations

shown in Figure 2.2. These relations consist of 6 basic relations and their inverses, as

well as the equality relation.

Relation Abbreviation Representation

I1 before I2 b I1 I2

I1 after I2 bi I2 I1

I1 meets I2 m I1 I2

I1 met by I2 mi I2 I1

I1 overlaps I2 o I1 I2

I1 overlapped by I2 oi I2
I1

I1 starts I2 s I1 I2

I1 started by I2 si I1 I2

I1 during I2 d I1 I2

I1 contains I2 di I1 I2

I1 finishes I2 f I1 I2

I1 finished by I2 fi I1 I2

I1 equals I2 eq I1 I2

Figure 2.2: Allen’s 13 basic relations between intervals

Given two time intervals I1 and I2, their relative position can be described in

terms of these thirteen relations. An unknown relation can be represented as the

disjunction of any of the 13 interval relations in the set I = {b, bi, m, mi, o, oi, s, si,

d, di, f , fi, eq}. For example, I1 {m, b, o} I2 is interpreted as either ‘I1 meets I2’, or

‘I1 before I2’, or ‘I1 overlaps I2’. There are 213 possible sets of such relations (8192).

Three standard operations are applied to these sets of relations, these being con-

verse, intersection and composition. As an example, the converse of the relation before

is after, while the intersection of the relations {b, m, o} and {m, eq} is {m}. Allen

30

[3] defined a lookup table which is used to determine the composition of two sets of

relations. In terms of this table, the composition of the relations before and finishes

is {before, during, overlaps, meets, starts}.
Temporal information defined in terms of the interval algebra can be represented

using temporal constraint graphs or interval algebra networks. Nodes are used to

represent intervals and arcs or edges are labeled with the set of possible relations

between the two intervals. Such a network is thus a network of binary constraints.

Using the interval algebra representation, the fundamental reasoning task is to

instantiate the variables with values from their domains in such a way that all con-

straints are satisfied.

We illustrate these concepts with the following example.

Example 2.8.3. Consider the following temporal constraint graph in which I1, I2

and I3 are intervals:

��
��{o, s}
I1 ���������1

PPPPPPPPPq

��
��
I2

{m}

?

��
��
I3

I

I1 overlaps I2; I2 meets I3
I1
I2

I3

I1 starts I2; I2 meets I3
I1
I2

I3

The label I between nodes I1 and I3 denotes that this relation is unknown.

In the two diagrams beneath the temporal constraint graph, the two scenarios

that arise from the relations overlaps and starts that are possible between intervals

I1 and I2 are presented. It is clear that the relation between I1 and I3 must be {b}
or before. a

According to van Beek [122], finding a consistent scenario and finding the feasible

relations between nodes in an interval algebra network are both NP-complete and

31

are thus intractable in the worst case.

Allen [3] defined the path consistency algorithm to compute the strongest implied

relation between pairs of intervals. This algorithm has been used extensively and,

according to [115], it is still used as the major constraint propagation algorithm for

interval TCSPs. A significant body of research exists which looks at ways in which

temporal constraint satisfaction algorithms for the interval algebra can be improved.

The reader is referred to papers such as [79, 92, 123, 91, 114, 120] for further details.

The translation of the interval algebra into a modal temporal logic

We now look at how a temporal constraint satisfaction problem which is expressed

using Allen’s interval algebra can be translated into a modal temporal logic. We begin

by defining a modal temporal logicML2, with two modalities [47].

Definition 2.8.4. Consider a propositional language with two modalities, 2F and

2P , meaning respectively henceforth (at all future times) and hitherto (at all past

times). In a Kripke frame, F = (W,RF , RP),

M |=s 2Fϕ iff sRF t implies M |=t ϕ

M |=s 2Pϕ iff sRP t implies M |=t ϕ

where the connective sRF t is read as ‘t is in the future of s’ and sRP t as ‘t is in the

past of s’.

Because a temporal ordering is by its nature transitive, we can define a time frame

to be any structure F = (W,R) in which R is a transitive relation on W , with the

modeling above.

We need to define the concept of ‘always’ in this structure and so the following

definition is appropriate.

Definition 2.8.5. In a temporal logic, 2ϕ meaning ‘always ϕ’ and 3ϕ meaning ‘at

some time ϕ’ are defined as follows:

2ϕ = 2Pϕ ∧ ϕ ∧ 2Fϕ

3ϕ = 3Pϕ ∨ ϕ ∨ 3Fϕ

32

We can now express Allen’s interval algebra in this basic temporal logic ML2.

This translation is taken from [41].

Algorithm 1. Intervals Ii and Ij in the interval algebra are expressed as propositional

atoms pi and pj, each of which denotes an interval. Therefore we use these terms

interchangeably and can refer to pi as either a propositional atom or an interval. For

atomic formulae we apply the translation:

equals(pi, pj) 2(pi ↔ pj)

before(pi, pj) 2(pi → ¬pj ∧3Fpj) ∧3(¬pi ∧ ¬pj ∧3Ppi ∧3Fpj)

meets(pi, pj) 2(pi → ¬pj ∧3Fpj) ∧ ¬3(¬pi ∧ ¬pj ∧3Ppi ∧3Fpj)

overlaps(pi, pj) 3(pi ∧ pj) ∧3(pi ∧ ¬pj ∧3Fpj) ∧3(pj ∧ ¬pi ∧3Ppi)

starts(pi, pj) 2(pi → pj) ∧3(pj ∧ ¬pi) ∧2(pi ∧ pj → 2P (pj → pi))

during(pi, pj) 2(pi → pj) ∧3(pj ∧ ¬pi ∧3Ppi) ∧3(pj ∧ ¬pi ∧3Fpi)

finishes(pi, pj) 2(pi → pj) ∧3(pj ∧ ¬pi) ∧2(pi ∧ pj → 2F (pj → pi))

with the added constraint that for each propositional atom pi,

3pi ∧2(3Ppi ∧3Fpi → pi) (2.1)

Equation (2.1) ensures that the propositional atom pi associated with the interval

variable i is interpreted by a non-empty convex set.

The interval algebra problem of Example 2.8.3 is translated into this modal tem-

poral logic as follows:

((3(p1 ∧ p2) ∧3(p1 ∧ ¬p2 ∧3Fp2) ∧3(p2 ∧ ¬p1 ∧3Pp1)) ∨
(2(¬p1 ∨ p2) ∧3(p2 ∧ ¬p1) ∧2(¬p1 ∨ ¬p2 ∨2P (¬p2 ∨ p1)))) ∧
2((¬p2 ∨ ¬p3) ∧ (¬p2 ∨3Fp3)) ∧ ¬3(¬p2 ∧ ¬p3 ∧3Pp2 ∧3Fp3)

We can see that the above formula does not have the intuitive content of the

interval algebra representation. However, the benefit of this translation lies in the

fact that a modal temporal logic is able to deal with more powerful temporal problems

than the interval algebra.

33

2.9 Final remarks

In this chapter, we have provided a high level overview of modal logic. In [16], the

authors tell us that there are many different definitions and views of modal logic – a

thorough understanding of it therefore requires intensive study.

We have identified one of the reasoning tasks in modal logic – modal satisfiability

– to investigate further and in the next chapter will be looking at various solvers

that have been developed to solve it. We have seen that, although a well-designed

algorithm will be able to solve any problem in this class, the time taken to do so will

be exponential in the worst case. This leads us to expect that these algorithms need

to focus on reducing or pruning the search space and traversing it as efficiently as

possible. They need to be highly optimized if they are going to be able to produce

realistic results – results that run in an acceptable time. We will also notice that the

solvers we look at have been developed for a limited subset of normal modal logics,

another indication of the complexity of this class of problem.

We have looked at various application areas of modal logic and have looked in

some detail at description logic, on which many of the solvers we will be looking at

have been based. We have looked in detail at the temporal constraint satisfaction

problem. It can be represented in a temporal modal logic that requires a transitive

accessibility relation. This is of particular interest to us in the work which follows.

In the next chapter, we look at solvers which have been developed to solve the

modal satisfiability problem and focus on the optimizations which have been applied.

Chapter 3

Modal satisfiability solvers

In the previous chapter, we identified the modal satisfiability problem as an area to in-

vestigate further. Many different approaches have been followed to develop algorithms

that can adequately address the complexity of modal satisfiability. Some of these re-

sulted in the development of highly optimized solvers, while others are of academic

interest. These solvers fall into two major categories – either special purpose-built al-

gorithms have been developed, or the modal logic has been translated into a different

class of problem. We look in detail at the tableau approach (a special purpose-built

algorithm), and the translation of modal logic into first-order logic, a propositional

satisfiability problem (SAT) and a constraint satisfaction problem (CSP). The trans-

lation approach has the distinct advantage that, once the formula has been translated

into the new class, it can be further processed by the sophisticated existing tools and

provers of that class. First-order theorem proving is one of the most mature sub-

fields in automated theorem proving, while the SAT-based theorem prover developed

by Davis, Putnam, Logemann and Loveland in 1962 [27, 28] still forms the basis of

many efficient complete SAT solvers. The constraint logic programming language

ECLiPSe [2] is a sophisticated tool which has been developed to deal with constraint

satisfaction problems.

The first approach we consider is the tableau system, which is widely used. It

has been applied in description logics where a lot of research effort has gone into its

enhancement. We look at two implementations of tableau systems – one with an

implicit accessibility relation in which worlds are not specified, and the other with an

explicit accessibility relation in which the tableau rules include named worlds. Some of

the more mature solvers are based on the second approach. We look at the complexity

of solving problems in tableau systems by considering a specific example and find that

the order in which clauses and variables are processed greatly affects the time taken

to solve a problem. There is also non-determinism in the order of execution of tableau

34

35

rules. The most efficient solvers developed to date have addressed these problems by

implementing techniques that include good search heuristics, the optimization of data

structures and the simplification of formulae.

The second approach is the translation of modal formulae into first-order logic.

The translation can be relational, functional or semi-functional, which is a combi-

nation of the two. In the case of the relational translation, formulae are directly

translated into first-order logic with the possible world structure of the modal logic

being explicitly represented using a predicate symbol. In the case of the functional

translation, the accessibility relation is decomposed into a set of accessibility functions

that map worlds to accessible worlds. The relational translation has the problem of

non-termination when resolution is applied to formulae, while the functional trans-

lation results in long and complex formulae. Ohlbach et al. [97] concluded that this

approach is not entirely satisfactory – it has primarily been of interest in understand-

ing why modal logic is decidable, whereas first-order logic is not.

The third approach is the translation of modal formulae into propositional logic

formulae. The satisfiability (SAT) problem of propositional formulae is a widely

researched field. A modal formula can be viewed as a layered set of propositional

formulae, with each layer being solved by a SAT solver. The most commonly used

SAT algorithm is the DPLL algorithm that forms the basis of the KSAT solver [46]

we will be looking at. This solver produces good results for the modal logics K and

KT .

Finally, we look at the translation into constraint satisfaction problems. When

a modal formula is translated into layered propositional formulae, each layer can

in turn be translated into a constraint satisfaction problem. We look in depth at

this approach and its solution in a constraint logic programming environment. The

K KCSP solver [18] produces good results for the modal logic K, which motivates

investigating it further in the next chapter.

Most of these solvers have been benchmarked using commonly available data sets

and so we are able to compare their performance. We have limited our investigation

to those solvers that have demonstrated the best results to date. We base this choice

on the results obtained at the TANCS conferences that are a major forum for the

presentation of new research on all aspects of automated reasoning. In particular, the

36

TANCS ‘Non Classical Systems Comparison’ of 1998, 1999 and 2000 [10, 85, 87] were

conferences that were held to conduct an experimental analysis of theorem provers

and satisfiability testers for expressive modal and description logics. Their aim was

to compare the performance of such solvers in an experimental setting by providing

meaningful test data sets. The K KCSP solver was however not benchmarked at

these conferences as it was only developed in 2004.

The Gentzen sequent calculus, which is a special purpose-build algorithm, is very

similar to the tableau approach and so, even though an impressive solver has been

developed using this approach, we only look briefly at their commonality. We out-

line some other approaches that are also translations but leave it to the reader to

investigate them further.

3.1 Tableau systems

We begin this section by looking at the theory of tableau systems. Tableau systems

have some distinct advantages over other approaches – in particular, they are easy to

understand and implement. They are also easy to extend. For example, the tableau

system for propositional logic has been extended to the basic modal logic K by simply

adding an additional rule, as we will see further on.

We begin with the following notational conventions:

- ϕ, ψ, ϕi and ψi denote well-formed formulae.

- X, Y , Z denote finite (possibly empty) sets of well-formed formulae.

- (X; Y) denotes X ∪ Y and (X; ϕ) denotes X ∪ {ϕ}.

- ¬X denotes {¬ϕ | ϕ ∈ X}, 2X denotes {2ϕ | ϕ ∈ X} and ¬2X denotes {¬2ϕ

| ϕ ∈ X}.

Tableau systems for modal logics consist of a set of tableau rules that can be

applied to modal formulae to produce refutation proofs – that is, the validity of a

set of formulae X is proved by showing that its negation is unsatisfiable. A tableau

proof is a binary tree of nodes where the root node contains the set of formulae ¬X
and the child nodes are obtained by the application of the tableau rules to the parent

37

node. The set of formulae X is decomposed by eliminating one connective at each

new node. The rules are applied systematically, subject to a partially defined order

on their application. If no more tableau rules can be applied to a node, it is termed

an end node or a leaf node.

In the case of modal logics, two approaches can be followed when dealing with the

accessibility relation – it can be dealt with either implicitly or explicitly. In implicit

systems, the accessibility relation is built into the rules that are directly applied to

the formulae. In explicit systems, the accessibility relation is incorporated into labels

attached to each node.

An excellent account of proof methods for modal logics is provided in the book

by Fitting [37]. The paper by Góre [49] is also a good reference as it provides a

comprehensive overview of tableau methods for many different modal logics.

3.1.1 Modal tableau systems with implicit accessibility

We now look at how a tableau system CL with implicit accessibility for a modal logic

L (Definition 2.3.1) is defined.

Definition 3.1.1. A tableau system CL for a modal logic L is a finite collection of

tableau rules ρ1, ρ2, . . . , ρn, each of which is identified by its rule name. A tableau

rule ρ consists of a numerator N above the line and a finite list of denominators

D1,D2, . . . ,Dk below the line, separated by either vertical bars or by semicolons:

(ρ1)
N

D1|...|Dk
or (ρ2)

N
D1; ...;Dk

where N , D1, . . . are finite sets of formulae.

Denominators separated by vertical bars are placed on different branches of the

parent node; denominators separated by semicolons are placed together on a single

branch of the parent node.

A tableau rule with vertical bars, (ρ1), is read in a downward direction as follows:

‘if the numerator is L-satisfiable, then so is at least one of the denominators’. These

are branching rules. A tableau rule with semicolons, (ρ2), is read in a downward

38

direction as follows: ‘if the numerator is L-satisfiable, then so are all of its denomina-

tors’. The numerator of each tableau rule contains one or more distinguished formulae

called principal formulae.

We present the tableau algorithm, as per [49]:

Algorithm 2. A CL-tableau for a set of formulae X is a finite tree with root ¬X
whose nodes carry finite formula sets. A tableau rule with numerator N is applicable

to a node carrying set Y if Y is an instance of N . Steps for extending the tableau

are:

- choose a leaf node n carrying Y , where n is not an end node and choose a rule

ρ that is applicable to Y ;

- if ρ has k denominators and there are k successor nodes to n, each node i will

be labeled with an appropriate instantiation of denominator Di; in the case of a

single successor node, it will be labeled with an appropriate instantiation of the

denominators D1; ...;Dk

all with the proviso that, if a successor node s carries a set Z and Z has already

appeared on the branch from the root to s, then s is an end node.

A branch in the tableau is closed if its end node contains ⊥; otherwise it is open.

The tableau is closed if all its branches are closed. If the tableau is closed, X is valid.

We now define soundness and completeness of a tableau system CL for a modal

logic L with respect to L-frames of the logic.

Theorem 3.1.2. (Soundness)

If there is a closed CL-tableau for Y ∪ {¬ϕ}, then any L-model that makes Y true

at world w must make ϕ true at world w.

Theorem 3.1.3. (Completeness)

If every L-model that makes Y true at world w also makes ϕ true at world w, then

some CL-tableau for Y ∪ {¬ϕ} must close.

These soundness and completeness results are proved in [49].

Having defined the tableau algorithm, the next step is to define the tableau rules

for the basic modal logic K [49]:

39

Definition 3.1.4. The tableau rules CK = {(⊥), (∧), (∨), (¬), (K)} for the basic

modal logic K are defined as follows.

(⊥)
X;ϕ;¬ϕ
⊥

(∧)
X;ϕ ∧ ψ
X;ϕ;ψ

(∨)
X;ϕ ∨ ψ

X;ϕ | X;ψ

(¬)
X;¬¬ϕ
X;ϕ

(K)
Z; 2X; 3ϕ

X;ϕ

In the case of a set of modal formulae X; ¬(ϕ ∧ ψ), the formula ¬(ϕ ∧ ψ) is

replaced with ¬ϕ ∨ ¬ψ using standard propositional rules before the tableau rules

are applied. In the case of a set of modal formulae 2X; ¬2Y , we need to first convert

¬2Y to 3¬Y before the (K) rule can be applied.

These tableau rules can be categorized as static and transitional rules. The intu-

ition behind this distinction is that in the static rules, the numerator and denominator

represent the same world, whereas in the transitional rules, the numerator and de-

nominator represent different worlds. In the above, the static rules are (⊥), (∧), (∨)

and (¬), while the transitional rule is (K).

The order of application of these rules is non-deterministic and the order of for-

mulae in a set is immaterial, that is, {X;ϕ;ψ} ≡ {X;ψ;ϕ}. Since the (∨) rule is

the only rule for which more than one branch is generated, this rule is generally only

applied if no other rule can be applied. These branching points give rise to the search

component in tableau proofs and the failure of a branch causes backtracking to a

previous branch point, whereupon the remaining branches are searched.

A very important rule is the cut rule that encodes the ‘law of the excluded middle’

and is non-deterministic [49].

Definition 3.1.5. The cut rule is defined as follows:

(cut)
X

X;ϕ | X;¬ϕ

where the formula ϕ is arbitrary.

40

If ϕ is a subformula of X, the above rule is known as the analytical cut. The

application of this rule leads to disjoint branches, which results in shorter proofs [49].

Example 3.1.6. We now demonstrate these concepts using the formula

2(p→ q)→ (2p→ 2q)

Its negation and simplification give 2(¬p∨ q)∧ (2p∧¬2q). We write the formula

with the rule applied to it on the branch below, and proceed to apply the tableau

rules until either the tableau is closed or no more rules can be applied. The tableau

for this formula is presented in Figure 3.1.

2(¬p ∨ q) ∧2p ∧ ¬2q
(∧)

2(¬p ∨ q) ∧2p;¬2q
(∧)

2(¬p ∨ q); 2p;¬2q
(duality)

2(¬p ∨ q); 2p; 3¬q
(K)

¬p ∨ q; p; ¬q
(∨)

qqqqqqq (∨)

MMMMMMM

¬p; p;¬q q; p;¬q

⊥ ⊥

Figure 3.1: Implicit tableau proof for 2(p→ q)→ (2p→ 2q)

Since both branches are closed, the tableau is closed, which means that 2(p →
q)→ (2p→ 2q) is a theorem in the modal logic K. a

The soundness and completeness of the CK tableau system are proved by Góre

[49]. The tableau system CK is easy to extend to include additional properties of

accessibility relations. The tableau systems for the logics KT and S4, already defined

in Section 2.3, are as follows:

41

Definition 3.1.7. The tableau rules CT for the modal logic KT consist of the rules

of CK (Definition 3.1.4) and the static tableau rule (T):

(T)
X; 2ϕ

X; 2ϕ;ϕ

Definition 3.1.8. The tableau rules CS4 for the modal logic S4 consist of the rules

of CK (Definition 3.1.4), the static tableau rule (T) (Definition 3.1.7) and the tran-

sitional rule (S4):

(S4)
2X; 3¬ϕ
2X;¬ϕ

The additional rules required for the various modal logics are defined in the paper

by Góre [49], together with the soundness and completeness proofs of each.

3.1.2 Modal tableau systems with explicit accessibility

Various modal tableau systems with explicit representation of accessibility relations

have been developed, examples of which are the single step tableau (SST) [84] and the

explicit single step tableau [49], which was later extended to become the free-variable

tableau [12]. Note that we only give an outline of these proof systems. For more

details, the reader is referred to the papers already mentioned.

Single step tableau

In tableau systems where the accessibility relation is represented explicitly, each node

of the tableau contains a structured label, together with the formulae applicable at

the node. We now define how these labels are structured.

Definition 3.1.9. Let Γ denote a set of labels. A label σ is defined as a nonempty

sequence of positive integers separated by dots. A label τ is said to be an extension of

a label σ if τ = σ.n1.n2 . . . nk for some k ≥ 1 with each ni ≥ 1.

Definition 3.1.10. A set of labels Γ is strongly generated if:

- there is some root labeled ρ ∈ Γ such that every other label in Γ is an extension

of ρ; and

42

- σ.n ∈ Γ implies σ ∈ Γ.

A labeled formula is a structure of the form σ :: ϕ where σ is a label and ϕ is

a formula. A labeled tableau for a finite set of formulae X = {ϕ1, ϕ2, . . . , ϕn} is a

tree where each node contains a single labeled formula, constructed in a systematic

fashion, meaning that the rules are applied according to a specified ordering. A

tableau branch is any path from the root downwards in such a tree. A branch is

closed if it contains the labeled formulae σ :: ϕ and σ :: ¬ϕ. A tableau is closed if

every branch is closed.

Definition 3.1.11. The rules that contain 3 are referred to as π-rules, while the

rules that contain 2 are referred to as v-rules.

There are three types of tableau rules for the single step tableau – the rules which

apply to classical propositional logic, the v -rules applicable to formulae of the form

σ :: 2ϕ, and the π-rule applicable to formulae of the form σ :: 3ϕ.

Definition 3.1.12. The single step tableau rules for the modal logic K are:

(l⊥)
σ :: ϕ ∧ ¬ϕ
σ :: ⊥

(l¬)
σ :: ¬¬ϕ
σ :: ϕ

(l∧)
σ :: ϕ ∧ ψ
σ :: ϕ;σ :: ψ

(l∨)
σ :: ϕ ∨ ψ

σ :: ϕ | σ :: ψ
(lK)

σ :: 2ϕ

σ.n :: ϕ
(lπ)

σ :: 3ϕ

σ.n :: ϕ

Note that in the case of the (lK) rule, n denotes an existing world (one already

named); in the case of the (lπ) rule, n denotes a new world which is directly accessible

from the world already named. As before, the (l∨) rule is the only rule that causes

the tree to branch.

Further v -rules are added for the modal logics KT , S4 and so on.

When generating a tableau proof, a tableau rule is applied to a formula and the

next node, which is either in the current or the next world, is generated. No further

action is required unless the rule is a v -rule: a formula of the form σ :: 2ϕ requires ϕ

to be added to each world σ.n that is generated, as ϕ is true at each of these. Recall

43

that in the case of implicit tableau systems, only a single node was generated by the

(K) rule, and so this was not an issue.

These concepts are demonstrated in the example below, which is a closed tableau.

Example 3.1.13. The single-step tableau proof for the modal K formula

2(p→ q)→ (2p→ 2q)

is given in Figure 3.2. It is first negated to give 2(¬p∨ q)∧2p∧¬2q. Note that this

is the formula that was used in Example 3.1.6.

1 :: 2(¬p ∨ q) ∧ 2p ∧ ¬2q
(l∧)

1 :: 2(¬p ∨ q)
(l∧)

1 :: 2p ∧ ¬2q
(l∧)

1 :: 2p
(l∧)

1 :: ¬2q
duality,(lπ)

1.1:: ¬q
(lK)

1.1 :: p
(lK)

1.1 :: ¬p ∨ q
(l∨)

qqqqqqq (l∨)

MMMMMMM

1.1 :: ¬p 1.1 :: q

⊥ ⊥

Figure 3.2: Single step tableau proof for 2(p→ q)→ (2p→ 2q)

Note that, to improve clarity, we have placed worlds which are on the same branch

below each other. a

Góre [49] and Massacci [86] proved that the single step tableau (SST) rules are

sound and complete. The single step tableau rules for the modal logic K (Definition

44

3.1.12) are easily extended to other modal logics by adding additional rules, as was

the case with the modal tableau systems with implicit accessibility (Definitions 3.1.7

and 3.1.8).

Free-variable tableau

Beckert and Góre [12] extended the single step tableau system to the free-variable

tableau system. This system makes use of free-variable semantic tableau – labels now

become σ.x : X where the variable x can be either a free variable or a universal

variable.

As we have seen, the interpretation of σ : 2ϕ is that the possible world σ satisfies

the formula 2ϕ. In the free-variable tableau approach, the box rule (lK) reduces the

formula σ : 2ϕ to the labeled formula σ.x : ϕ that contains the free variable x in its

label and has the intuitive reading, ‘the possible world σ.x satisfies the formula ϕ’.

This means that the actual value of x does not have to be guessed at the point where

2ϕ is reduced. Instead, we defer the choice of x until enough information is available

to make a choice that immediately closes a branch of the tableau.

Since x represents the next accessible world, in theory it must be instantiated

to the same value on all branches. However, instantiating a free variable to close

one branch may make it impossible to close other branches. Beckert and Hähnle

[13] showed that under certain conditions, σ : 2ϕ has a universal nature and the free

variable x can be instantiated in one way to close one branch and in a different way to

close another branch – the original binding can be undone without losing soundness.

In this case, x is said to be universal and σ.x : ϕ effectively says that ‘all successors

of the possible world σ satisfy ϕ’, thereby capturing the Kripke semantics for 2ϕ.

By allowing the choice of variables to be deferred until more information becomes

available, the search space is reduced and the non-determinism inherent in automated

proof search is also reduced.

Example 3.1.14. The difference between using free variables and universal variables

is illustrated in Figure 3.3 in which the negated labeled tableau formulae considered

are 1 : 3¬p ∨ 3¬q and 1 : 2(p ∧ q). The tree on the left-hand side uses free

variables; the tree on the right-hand side uses universal variables.

In the proof on the left-hand side, we obtain 1.x1 : p ∧ q, creating the free variable

45

1 : 3¬p ∨3¬q

1 : 2(p ∧ q)
(lK)

1.x1 : p ∧ q
(l∧)

1.x1 : p
(l∧)

1.x1 : q
(l∨)

qqqqqqq (l∨)

MMMMMMM

1: 3¬p
(lπ)

1: 3¬q
(lπ)

1.1: ¬p 1.2 : ¬q
(lK)

{x1/1} 1.x2 : p ∧ q
(l∧)

⊥ 1.x2 : p
(l∧)

1.x2 : q

{x2/2}

⊥

1 : 3¬p ∨3¬q

1 : 2(p ∧ q)
(lK)

1.x : p ∧ q
(l∧)

1.x : p
(l∧)

1.x : q
(l∨)

qqqqqqq (l∨)

MMMMMMM

1 : 3¬p
(lπ)

1 : 3¬q
(lπ)

1.1 : ¬p 1.2 : ¬q

{x/1} {x/2}

⊥ ⊥

Figure 3.3: Comparison of free variable and universal variable tableau proofs for

(3¬p ∨3¬q) ∧2(p ∧ q)

x1. Applying the conjunctive rule (l∧) to this formula gives 1.x1 : p and 1.x1 : q.

Next we apply the disjunctive rule (l∨) to the root and split the tableau into two

branches containing 1 : 3¬p and 1 : 3¬q. Applying the diamond rule (lπ) gives 1.1

: ¬p on the first branch where 1.1 is a label new to the tableau. We can now close

the left branch by setting x1 := 1. All occurrences of x1 are now bound to 1. To close

the right branch, we now need to apply the box-rule again to 1: 2(p ∧ q) to obtain

1.x2 : p ∧ q, thereby creating a new free variable x2. Applying the conjunctive rule

again, we close the second branch by setting x2 := 2.

In the proof on the right-hand side, we create a universal variable x instead of

the free variables x1 and x2. In this case, before proceeding to the second branch, we

46

undo the binding of x and so can close the second branch by setting x := 2. Thus

the variable x is instantiated in multiple ways. a

The reader is referred to the paper by Beckert and Góre [12] for further details of

this approach.

3.1.3 An analysis of the tableau approach

We now examine the efficiency of tableau systems. We have seen that the tableau

system CK has well-defined rules that are applied one at a time until the set of

formulae has been proved satisfiable or unsatisfiable. Each time a rule is applied, the

set of formulae is simplified and so we have a decision procedure.

However, when we look further, we find there is non-determinism in the choice

of formulae, nodes and rules – we need to decide which formula to process next, on

which node and which rule to apply. Tableau systems generate a search space and

so the overall efficiency of a proof procedure depends on how this search space is

explored. Search strategies need to prune the search space as much as possible and

need to be able to recognize and eliminate redundancies in the formulae. Inference

steps that cannot contribute to the final solution should be avoided as far as possible.

In order to understand the nature of this problem, let us consider the following

formula to which the implicit CK tableau rules are applied. We will not negate the

formula to generate a refutation proof – we will only look at its satisfiability.

ϕ = (ϕ1 ∨ ψ1) ∧ (ϕ2 ∨ ψ2) ∧ . . . ∧ (ϕn ∨ ψn) ∧ ψ (3.1)

ϕi, ψi and ψ are used to denote formulae of any complexity. The more complex

these formulae are, the more complex the tableau expansion would be. We present a

simple scenario below.

Suppose that ψ is unsatisfiable. When the implicit CK tableau rules are applied

with n = 2 in the formula ϕ, the tableau in Figure 3.4 is generated.

We have applied the analytical tableau rules from left to right and note the fol-

lowing:

- We process each of ϕ1, ϕ2, ψ1 and ψ2 twice and ψ four times. This problem arises

because the alternative branches of the search tree are not disjoint, which causes

47

(ϕ1 ∨ ψ1) ∧ (ϕ2 ∨ ψ2) ∧ ψ
(∧)

(ϕ1 ∨ ψ1); (ϕ2 ∨ ψ2);ψ
(∨)

ffffffffffffffffffffffffffff
(∨)

XXXXXXXXXXXXXXXXXXXXXXXXXXXX

ϕ1; (ϕ2 ∨ ψ2);ψ
(∨)

mmmmmmmmmmmmmmm
(∨)

QQQQQQQQQQQQQQQ ψ1; (ϕ2 ∨ ψ2);ψ
(∨)

mmmmmmmmmmmmmmm
(∨)

QQQQQQQQQQQQQQQ

ϕ1;ϕ2;ψ

(process ϕ1)

ϕ1;ψ2;ψ

(process ϕ1)

ψ1;ϕ2;ψ

(process ψ1)

ψ1;ψ2;ψ

(process ψ1)

ϕ2;ψ

(process ϕ2)

ψ2;ψ

(process ψ2)

ϕ2;ψ

(process ϕ2)

ψ2;ψ

(process ψ2)

ψ

(process ψ)

ψ

(process ψ)

ψ

(process ψ)

ψ

(process ψ)

⊥ ⊥ ⊥ ⊥

Figure 3.4: Tableau proof for (ϕ1 ∨ ψ1) ∧ (ϕ2 ∨ ψ2) ∧ ψ

unnecessary and costly expansion of formulae. This is a major inefficiency of

the syntactic tableau algorithm and is known as thrashing.

- If the order of the formulae had been ψ ∧ (ϕ1 ∨ ψ1) ∧ (ϕ2 ∨ ψ2), ψ would have

been processed once and found to be unsatisfiable. Hence, a good heuristic is

required to determine the order of processing, particularly in the case where ϕ

is complex.

- Suppose (ϕ2∨ψ2) in Equation (3.1) was in fact (ϕ2 ∨ True) = True. Equation

(3.1) could then have been simplified prior to the generation of the tableau proof,

which would have resulted in a reduced search tree. This process is known as

simplification.

- Suppose that ϕ1 and ϕ2 represent a formula ψ′ that is unsatisfiable. We would

process the clause (ψ′ ∨ ψ1), find that ψ′ is unsatisfiable, and then process ψ1. If,

when we came to process (ψ′ ∨ ψ2), we had recorded that ψ′ was unsatisfiable,

48

we would simply select ψ2 in this branch, thereby traversing the search space

more efficiently. This process is known as caching.

This example does not serve to present the full complexity of tableau systems –

it does however give some idea of the magnitude of the problem.

Most successful implementations of proof procedures do not rely only on the

strength of the calculus. They apply various strategies, heuristics, and redundancy

elimination to the system as well as sophisticated optimizations that include good

data structures and strong indexing techniques.

3.1.4 Tableau-based solvers

A number of tableau-based solvers have been developed to date. For example, Beckert

and Góre [12] developed a tableau-based solver that applies the free-variable tableau

rules discussed above. This solver was initially called ModLeanTAP, and was later

revised to become leanK 2.0.

As far as tableau provers are concerned, at the TANCS-2000 conference we have

already mentioned, the tableau solvers FaCT [64], DLP [103] and RACE [51] were

submitted and each returned good results. It must be noted that the primary focus

of each of these solvers was description logics, although they are also able to deal with

the modal logics K(m) and K4 (m). The optimizations applied in FaCT and DLP

are particularly well described in [65].

FaCT and DLP are heavily optimized decision procedures for description and

modal logics. They use a method that is now standard for subsumption testing,

namely translating subsumption tests into satisfiability tests and checking for satisfi-

ability using an optimized tableau method. Many of the DLP optimizations originated

from the work done by Horrocks using FaCT [63].

The key optimizations are as follows:

- Lexical Normalization: Incoming formulae are converted into normal form and

common sub-formulae are uniquely stored. This allows the early detection of

clashes – formulae ¬ϕ and ϕ will be easily identified. Lexical simplification also

takes place – formulae such as 2True and ϕ ∨ ¬ϕ are eliminated. The detec-

tion and handling of contradictory conjuncts can make a dramatic difference in

solution time.

49

- Semantic branching : When DLP and FaCT decide to branch on a formula,

they pick an element in the formula and assign True and False in turn to

that element. Semantic branching on a formula ϕ1 ∨ ϕ2 becomes ϕ1; ϕ1 ∨ ϕ2

and ¬ϕ1; ϕ1 ∨ ϕ2 – this explores each section of the search space only once.

However, if ϕ1 is a large formula, it can result in a significantly larger search

space. This does not however seem to be a major concern.

- Simplification: Simplification is used to reduce the amount of non-determinism

in the expansion of node labels. It is also called boolean constraint propagation

– it looks for disjuncts in unexpanded disjunctions whose value is constrained

due to values in the other disjuncts. For example, (ϕ1 ∨ ϕ2) ∧ ¬ϕ1 will become

ϕ2 ∧ ¬ϕ1, thereby removing a choice point; if we have ϕ1 ∧ (ϕ1 ∨ ϕ2), the

formula (ϕ1 ∨ ϕ2) will be discarded.

- Heuristic guided search: A heuristic needs to be established to determine which

sub-formula to branch on first. DLP uses simple heuristics to guide search.

- Caching : During satisfiability checking, the status of each node is cached. This

reduces search time when a similar node is encountered and its satisfiability

status is already known. Although it increases the space requirement, caching

has produced dramatic gains in speed.

- Dependency directed backtracking (backjumping): For each subformula, informa-

tion on the choice points that led to its deduction are kept. When backtracking

to a previous choice point, the algorithm checks to see if the clash depends on

the choices made at the current node. If not, the branch at this node need not be

considered and the previous node is then explored. Backjumping significantly

reduces the search space.

RACE [50] and its successor, RACER [52], are based on the tableau calculus. They

use optimized search techniques to guarantee good average-case performance. The

techniques used are the standard optimization techniques; these being dependency

directed backtracking, caching and semantic branching.

A comparison of RACE, DLP and FaCT is to be found in the paper detailing the

results of the TANCS-2000 conference [87] Of these, DLP was the fastest.

50

We can see from the above discussion that good performance of tableau algorithms

requires heavy optimization. This result is not surprising, considering the PSPACE-

complete nature of the modal satisfiability problem.

3.1.5 Generic tableau solvers

For completeness, we note that generic tableau solvers have been developed to enable

experimentation with many different modal and description logics. A disadvantage

of strongly optimized solvers is that they are limited to a few logics.

TABLEAUX [87] is an example of a theorem proving system that is based on

an adapted version of the traditional semantic tableau method. It explicitly builds a

model but, as we would expect, faces problems with complexity. It has however proved

to be a valuable tool for studying multimodal logics. Lotrec [31] is another automated

theorem prover that was developed to evaluate different modal and description logics.

It is also based on tableau methods.

3.2 Gentzen sequent calculus

We include a brief overview of the Gentzen sequent calculus, as it is also a special

purpose-built algorithm. A good reference hereof is to be found in the paper [89].

The Gentzen sequent calculus uses a backward proof search approach that takes a

modal formula and reduces it to the axioms of the system. A formula ϕ is unsatisfiable

if and only if ¬ϕ is provable.

Definition 3.2.1. The sequent calculus rules for the modal logic K are:

(∧)
ϕ,X ψ,X

ϕ ∧ ψ,X
(∨)

ϕ, ψ,X

ϕ ∨ ψ,X
(2)

ϕ,X

2ϕ; 3X

where ϕ and ψ are formulae and X represents sets of formulae.

Note that these rules are applied using a bottom-up approach. One begins with

the modal formula in the denominator and it is then reduced using the rules. One

can see the similarity between these rules and those of the tableau approach, which

51

decomposes the formula into a tree using a top-down approach. However, in the

sequent calculus, the (∧) rule generates branches, whereas in the tableau approach,

the (∨) rule generates branches. If one of the branches fails, the whole proof attempt

fails, whereas with the tableau approach, backtracking will occur.

Góre [49] discusses the connection between modal tableau systems and modal

sequent systems and shows that a sequent is provable if and only if there is a closed

tableau for the formula. We do not provide further details.

3.2.1 Sequent solvers

A sequent solver of note is the Logics Workbench LWB [59, 58], an interactive system

for the modal logics K, KT, S4 and S5, the multimodal logics K (m), KT (m) and

S4 (m) and various other logics. All decision procedures are based on sequent calculi

and a separate specifically optimized procedure has been developed for each logic.

Simplification of formulae is used, as was the case with tableau solvers, although this

was not the case in its earlier versions. Structure sharing has also been implemented

to increase efficiency.

Use-checking is applied to the backward application of the (∧) rule to prune

branches. Recall that this rule takes A∧B,Γ and creates two branches A,Γ and B,Γ

respectively. If Γ holds on the first branch, irrespective of A, it is not necessary to

process the second branch.

The LWB software is accessible on the World Wide Web [75] and can be used to

check the satisfiability or validity of a formula in any of the above-mentioned modal

logics. The speed of processing complex formulae is impressive. This solver continues

to be enhanced and improved.

3.3 The translation of modal logic into first-order logic

Theorem provers for first-order logics have well developed and mature proof proce-

dures. First-order logic is semi-decidable and so various strategies have been put in

place to prune the search space and recognize and eliminate redundancies. Because

the development of proof procedures is complex, there are considerable benefits in

translating modal logic into first-order logic – we need to define appropriate transla-

tion rules and test them to establish how well a particular proof procedure works. It

52

is important to remember that we may be translating a decidable modal logic into a

semi-decidable first-order representation.

Before we look at various translations and their effectiveness, we first need to

understand the rules of first-order theorem proving which we will look at only briefly.

For a more comprehensive overview, the reader is referred to textbooks such as [93].

3.3.1 First-order resolution theorem proving

We first define the language of first-order logic. We then define prenex normal form

and Skolem normal form, which render first-order formulae into a form that can be

used in resolution theorem proving.

Definition 3.3.1. The language L of first-order logic consists of the following sets of

primitive symbols:

– Variables: x, y, z, v, x0, x1, ...

– Constants: c, d, c0, d0, ...

– Connectives: ∨,¬,∧
– Quantifiers: ∀,∃
– Predicate symbols: P,Q,R, P1, P2, ..., which can have arity n = 1, 2, ...

– Function symbols: f, g, h, f0, f1, ..., which can have arity n = 1, 2, ...

– Punctuation: the comma and left and right parenthesis.

Every variable, constant symbol and n-ary function symbol is called a term, and

terms with no variables are called variable-free terms or ground terms. An atomic

formula is an expression of the form R(t1, ..., tn) where R is an n-ary predicate symbol

and t1, ..., tn are terms. Every atomic formula is a formula. If ϕ and ψ are formulae,

so are (ϕ ∨ ψ), (ϕ ∧ ψ) and (¬ϕ). If v is a variable, then ((∃v)ϕ) and ((∀v)ϕ) are

also formulae. An occurrence of a variable v in a formula ϕ is bound if there is a

subformula ψ of ϕ containing the occurrence of v such that ψ begins with ((∀v) or

((∃v). An occurrence of v in ϕ is free if it is not bound.

First-order theorem provers use refutation proofs with the goal of obtaining a con-

tradiction and their most widely used inference rule is resolution. Before attempting

a resolution proof of a first-order formula, it is necessary to transform the formula,

53

which must be in conjunctive normal form (Definition 2.2.21). The first transforma-

tion is into prenex normal form in which all quantifiers are moved to the beginning

of the formula. This is then followed by Skolemization, which returns a universal

formula ϕ which has only universal quantifiers (∀).

Definition 3.3.2. A first-order formula ϕ is in prenex normal form (PNF) if it is of

the form

Q1x1 . . . Qnxnψ

where each Qi ∈ {∃, ∀} and ψ is quantifier-free.

Transformation of a first-order formula into prenex normal form is achieved by

applying the following transformations, the correctness of which is proved in texts

such as [93].

Lemma 3.3.3. For any string of quantifiers Qx = Q1x1 . . . Qnxn where each Q is

∀ or ∃, and any formulae ϕ and ψ, we have the following provable equivalences:

1. Qx¬(∀y)ϕ ≡ Qx(∃y)¬ϕ

2. Qx¬(∃y)ϕ ≡ Qx(∀y)¬ϕ

3. Qx((∀y)ϕ ∨ ψ) ≡ Qx(∀z)(ϕ(y/z) ∨ ψ)

4. Qx((∃y)ϕ ∨ ψ) ≡ Qx(∃z)(ϕ(y/z) ∨ ψ)

where z is a variable not occurring in ϕ or ψ or among the xi and where (y/z) means

that variable y is replaced with variable z.

Note that all connectives need to be transformed into ¬ and ∨ before the above

Lemma can be applied.

Example 3.3.4. Let ϕ = ∀x(¬∀y R(x, y) ∧ ∀zP (z)). The following sequence trans-

forms this formula into PNF by applying the above rules:

ϕ = ∀x(¬∀y R(x, y) ∧ ∀zP (z))

≡ ∀x(∃y¬R(x, y) ∧ ∀zP (z))

≡ ∀x∃z1(¬R(x, z1) ∧ ∀zP (z))

≡ ∀x∃z1∀z2(¬R(x, z1) ∧ P (z2))

a

54

Definition 3.3.5. A formula ϕ is in Skolem normal form iff it is of the form

ϕ = (∀x1)(∀x2) . . . (∀xn)ϕ′

where ϕ′ is a quantifier-free formula, which is in conjunctive normal form (Definition

2.2.21).

Theorem 3.3.6. For every first-order formula ϕ, there is a formula ϕ′ in Skolem

normal form such that ϕ is satisfiable iff ϕ′ is satisfiable. ϕ′ can be obtained from ϕ

through the process of Skolemization.

The proof of the Skolemization theorem is omitted – the reader is referred to texts

such as [93] and [14]. Skolemization is achieved by applying the following Lemma:

Lemma 3.3.7. For any sentence

ϕ = ∀x1 . . . ∀xn∃yψ

of a language L, ϕ and

ϕ′ = ∀x1 . . . ∀xnψ(y/f(x1, . . ., xn))

are equisatisfiable when f is a function symbol not in L.

The intuition is that one can choose a function f such that, for any given x1, ..., xn,

there is some y that makes the formula true if and only if f(x1, . . ., xn) makes the

formula true.

Example 3.3.8. Applying Skolemization, a formula such as

ϕ = ∀x1...∀xn∃y1...∃ymR(x1, ..., xn, y1, ...ym)

will be replaced by

ϕ = ∀x1...∀xnR(x1, ..., xn, f1(x1, ..., xn), . . . , fm(x1, ..., xn))

where each fi is a new function symbol. a

55

The above is a universal formula that can be used to test satisfiability – we would

test the satisfiability of R(x1, . . ., xn, f1(x1, . . ., xn), . . ., fm(x1, . . ., xn)).

We now look at unification and resolution. Resolution has only one rule, the aim

of which is to reduce the non-determinism in a proof by eliminating clauses. This

elimination process is facilitated by first applying unification to the clauses. We do

not however give a comprehensive theoretic exposition hereof and attempt to explain

both concepts via an example. See [93] and [14] for further details.

Example 3.3.9. Suppose we have a formula which consists of the conjunction of the

two clauses

C1 = P (f(x), y) ∨ ¬Q(a, b, x)

and

C2 = ¬P (f(g(c)), g(d)) ∨ R(y)

We first apply unification in which we substitute literal g(c) for x and g(d) for y

in C1 to get

C ′
1 = P (f(g(c)), g(d)) ∨ ¬Q(a, b, g(c))

We next apply resolution in which, if we have clause C1 = l ∨ C ′
1 and C2 = ¬l ∨

C ′
2 where l is any literal, we return C = C ′

1 ∨ C ′
2. C is referred to as the resolvent.

In the above, l = P (f(g(c)), g(d)), giving resolvent C = ¬Q(a, b, g(c)) ∨ R(y). a

Resolution is combined with unification to give a proof procedure for the full

predicate logic.

3.3.2 Translation of modal logic into first-order logic

Translation methods can be based on either the syntax or the semantics of a modal

logic. The direct syntactic encoding of a Hilbert-style axiomatization of the modal

logic into a first-order logic is not the optimal way of proving theorems in these logics

[97]. We therefore do not consider syntactic translations further.

We look at translation methods based on the possible worlds semantics of modal

logic. In cases where the accessibility relations are specified only implicitly as Hilbert

56

axioms, a translation method is required to provide an explicit axiomatization of the

properties of the accessibility relation. The paper by Ohlbach [96] provides the details

of such translation methods.

There are two commonly followed approaches to this translation. The first involves

a relational translation in which the possible world structure of the modal logic is

explicitly represented using a predicate symbol. The second approach is a functional

translation method that decomposes the accessibility relation into a set of accessibility

functions that map worlds to accessible worlds. However, each of these approaches

has certain drawbacks, as a result of which a semi-functional translation has been

considered that combines the strengths of both.

3.3.3 The relational translation

This approach encodes the semantics of the source logic by simply transcribing it

into the target logic. We look at the modal logic K and its translation ST (w, ϕ)

in which w is a world and ϕ is a modal formula. The translation consists of a

binary predicate symbol R representing the accessibility relation and unary predicate

symbols representing propositional letters. Modal formulae are represented as ϕ, ψ,

. . . ; predicate symbols as P , Q,. . . and worlds as u, v, w, . . . with c representing a

constant world.

Definition 3.3.10. The recursive definition for the standard relational translation

is:

ST (w, p) = P (w)

ST (w,¬ϕ) = ¬ST (w,ϕ)

ST (w,ϕ ∧ ψ) = ST (w,ϕ) ∧ ST (w,ψ)

ST (w,ϕ ∨ ψ) = ST (w,ϕ) ∨ ST (w,ψ)

ST (w,2ϕ) = ∀v(wRv → ST (v, ϕ))

ST (w,3ϕ) = ∃v(wRv ∧ ST (v, ϕ))

Note that the propositional connectives → and ↔ need to be eliminated before

the relational translation is applied.

57

Example 3.3.11. Using the relational translation, the modal K formula

23p→ 32p

is translated as follows:

ST (w, ¬23p ∨ 32p)

= ST (w, ¬23p) ∨ ST (w,32p)

= ¬ST (w, 23p) ∨ ∃v(wRv ∧ ST (v, 2p))

= ¬∀v(wRv → ST (v, 3p)) ∨ ∃v(wRv ∧ ∀u(vRu → ST (u, p)))

= ¬∀v(wRv → ∃u(uRv ∧ ST (u, p))) ∨ ∃v(wRv ∧ ∀u(vRu → P (u)))

= ¬∀v(wRv → ∃u(uRv ∧ P (u))) ∨ ∃v(wRv ∧ ∀u(vRu → P (u)))

= ∀v(wRv → ∃u(uRv ∧ P (u))) → ∃v(wRv ∧ ∀u(vRu → P (u)))

Since this holds for all worlds w, it can be written as

∀w(∀v(wRv → ∃u((vRu ∧ P (u)))→ ∃v(wRv ∧ ∀u((vRu→ P (u)))))) (3.2)

a

The standard relational translation considers modal languages as fragments of

first-order or other predicate logics. In Ohlbach [97], this first-order fragment is

analyzed and proved to have the finite model property as well as the tree model

property (Section 2.7) – hence it is robustly decidable and has good logical and

computational behavior, as was shown by Vardi [127].

We can easily extend the standard relational translation described above to cater

for a different logic. For example, the multi-modal logic K(m) can be obtained by

replacing the translation for ST (w, 2ϕ) with

ST (w, [a]A) = ∀v(wRav → ST (v, A))

in Definition 3.3.10.

Similar extensions can be applied to define the translation for many other modal

logics.

We demonstrate this approach in the following example where we apply the stan-

dard relational translation to a modal formula and then Skolemize it to generate a

universal formula. We then apply unification and resolution.

58

Example 3.3.12. Consider the modal formula 2(p→ 3p), which is satisfiable. We

apply the relational translation, omitting the details of some of the steps relating to

propositional logic.

ST (w,2(p→ 3p)) = ∀v(wRv → ST (v, (p→ 3p)))

= ∀v(wRv → (ST (v,¬p) ∨ ST (v,3p))

= ∀v(wRv → (¬P (v) ∨ ∃u(vRu ∧ ST (u, p))))

= ∀v(¬wRv ∨ ¬P (v) ∨ ∃u(vRu ∧ P (u)))

' ∀v(¬wRv ∨ ¬P (v) ∨ (vRf(v) ∧ P (f(v))))

(Skolemization on ∃)
' ∀v((¬wRv ∨ ¬P (v) ∨ vRf(v)) ∧ (¬wRv

∨ ¬P (v) ∨ P (f(v))))

(application of CNF (Definition 2.2.21))

' (¬wRv ∨ ¬P (v) ∨ vRf(v)) ∧ (¬wRv
∨ ¬P (v) ∨ P (f(v))) (universal formula)

Resolution is now applied to the two disjunctive clauses:

1. ¬wRv ∨ ¬P (v) ∨ vRf(v)

2. ¬wRv ∨ ¬P (v) ∨ P (f(v))

These clauses have two resolvents giving:

3. ¬wRv ∨ ¬P (v) ∨ ¬P (f(v)) ∨ P (f 2(v))

(resolve on vRf(v) in 1. and ¬wRv in 2.)

4. ¬wRf(v) ∨ f(v)Rf2(v) ∨ ¬wRv ∨ ¬P (v)

(resolve on ¬P (v) in 1. and P (f(v)) in 2.)

Clauses 2 and 4 resolve to produce

5. ¬wRv ∨ ¬P (v) ∨ ¬wRf 2(v) ∨ f 2(v)Rf3(v)) ∨ ¬wRf(v)

(resolve on P (f(v)) in 2. and ¬P (v) in 4.)

Clauses 2 and 5 resolve again and produce a clause with even higher term com-

plexity. a

In the example above, the size of the clauses becomes more and more complex.

This set has infinitely many resolvents, which shows that a standard resolution pro-

cedure does not terminate for the relational translation of satisfiable modal formulae.

59

This translation into first-order logic unfortunately has an inherent non-determinism

when standard resolution techniques are applied to it. For unsatisfiable formulae,

any complete resolution procedure generates a contradiction, whereas for satisfiable

formulae, resolution may not terminate. Plain resolution unfortunately does not take

into consideration the characteristics of the original modal logic, which is decidable.

Various approaches have been developed to address these shortcomings. One ap-

proach is to develop special resolution refinements that can then to be applied to

the translated formulae – ordering and selection-based refinements are presented in a

paper by de Nivelle et al. [30]. Another approach makes use of the observation that

quantifiers in the relational translation are guarded by the accessibility relation – this

fragment of first-order logic is called the guarded fragment. A resolution decision pro-

cedure has been developed for this guarded fragment [29]. None of these approaches

however generates particularly good results.

An alternative approach was developed by Areces et al. [6] that exploits the

tree model property of modal logic by encoding layering present in tree models into

the syntax of modal formulae. Formulae are first translated into an extended multi-

modal language where each modal depth has its own modal operators and its own

propositional letters. This avoids the situation where clauses in different levels in the

tree are resolved.

Example 3.3.13. If one applies this approach to the formula 2(p → 3p) used in

Example 3.3.12, the translated formula is reduced instead to the clauses:

1. ¬wR1y ∨ ¬P1(v) ∨ vR2f(v)

2. ¬wR1y ∨ ¬P1(v) ∨ P2(f(v))

Note that the details of this derivation are available in [6]. The literals with

subscript i correspond to a modal operator or propositional letter occurring at modal

depth i. We can no longer resolve these two clauses, which gives a better result. a

The above approach was benchmarked against other provers and returned some

good results.

In general, the relational translation without extra strategies does not return good

results, particularly as resolution is possible between two literals that do not occur at

60

the same world. This is clearly seen in the difference between the resolution proofs of

Examples 3.3.12 and 3.3.13. A further observation is that it is very difficult to read

resolution proofs, as can be seen in Example 3.3.12.

3.3.4 The functional translation

Because of the limitations discussed above, the functional translation was developed,

where the standard Kripke semantics are reformulated by decomposing the accessi-

bility relation into a set AF of accessibility functions which map worlds to accessible

worlds.

Definition 3.3.14. For any binary relation R on a non-empty set W of worlds, we

can define a set AFR of accessibility functions – that is, a set of partial functions

γ : W → W , such that

∀u, v(uRv ↔ (∃γ(γ ∈ AFR ∧ γ(u) = v)))

Thus, for any worlds u and v, uRv if and only if there is some partial function γ

mapping u to v.

For simplicity, γ(u) is represented as [uγ], δ(γ(u)) as [uγδ] and so on. Note that

this notation reflects paths in the underlying frame. For example, [uγδ] denotes the

world reached from the world u via the functions γ and δ – it reflects a single path.

It is important to note that there are many ways in which a relation R can be

decomposed. Consider the relation R1 = {w1Rw2, w1Rw3, w2Rw4, w2Rw5}. It can be

decomposed into two functions {γ1, γ2} either as

γ1(w1) = w2; γ1(w2) = w4

γ2(w1) = w3; γ2(w2) = w5

or

γ1(w1) = w2; γ1(w2) = w5

γ2(w1) = w3; γ2(w2) = w4

Hence, there are many possible sets of accessibility functions that can represent

the same binary relations. An accessibility function γ is termed maximally defined

whenever, for each u and v with uRv, γ(u) is defined.

61

When the accessibility relation R is serial (Definition 2.3.5), it can be decomposed

into a set of total functions – recall that, for a serial accessibility relation, it holds

that for every u ∈ W , there is some v ∈ W such that uRv. However, when R is

not serial, we need to define a special predicate deR called the dead-end predicate, to

ensure a set of total functions [97]. This is necessary as, for every u ∈ W , there is

not necessarily some v ∈ W such that uRv. Hence, we do not always have a set of

total functions.

Definition 3.3.15. The dead-end predicate deR is defined as follows:

∀u(deR(u)↔ ∀γ(γ ∈ AFR → [uγ] =⊥))

Definition 3.3.16. A non-serial relation R can now be defined in terms of a set AFR

of total functions γ : W → W as follows:

∀u, v(uRv ↔ (¬deR(u) ∧ ∃γ(γ ∈ AFR ∧[uγ] = v)))

We have expressed the accessibility relation as a set of accessibility functions and

can now define the functional translation. The target logic will be a multi-sorted logic

with sorts W and AF – that is, it has two distinct sets of variables W and AF . The

variables u, v, w, ... are of sort W ; the functional variables are denoted by γ, γ1, γ2, ...

and are of sort AF .

Definition 3.3.17. The functional translation FT (w,A) is defined as follows:

FT (w, p) = P (w)

FT (w,¬ϕ) = ¬FT (w,ϕ)

FT (w,ϕ ∧ ψ) = FT (w,ϕ) ∧ FT (w,ψ)

FT (w,ϕ ∨ ψ) = FT (w,ϕ) ∨ FT (w,ψ)

with the translation of the modal atoms being defined according to the accessibility

relation:

FT (w,2ϕ) =

{
∀γ : AF FT ([wγ], ϕ), serial accessibility relation

¬de(w)→ ∀γ : AF FT ([wγ], ϕ) otherwise

62

FT (w,3ϕ) =

{
∃γ : AF FT ([wγ], ϕ), serial accessibility relation

¬de(w) ∧ ∃γ : AF FT ([wγ], ϕ) otherwise

In order to add additional properties of accessibility relations, the associated ax-

ioms must be translated into the functional language. This is usually straightforward,

but the translated axioms are in general equations. For example, the functional coun-

terpart of reflexivity is

∀w∃γ : AF [wγ] = w

and of transitivity is

∀w∀γ1, γ2∃γ((¬de(w) ∧ ¬de([wγ1])) → [wγ1γ2] = [wγ]).

This adds a complexity to the translation that we did not have with the relational

translation. The reader is referred to the paper [97] for further details.

We provide the functional translation of the modal K formula 23p→ 32p, but

without the details of the derivation. Its translation is

∀w(¬de(w)→ ∀γ(¬de([wγ])∧∃δP ([wγδ]))→ (¬de(w)∧∃γ(¬de[wγ]→ ∀δP ([wγδ]))))

(3.3)

Note the difference between Equation (3.3) and the standard relational translation

of this formula, given in Equation (3.2) (Example 3.3.11). In Equation (3.2), the

accessibility relations between the worlds w, u and v are specified, while Equation

(3.3) refers only to the world w and specifies the paths from w.

Further simplification of Equation (3.3) is required before being able to apply res-

olution, as it contains existential quantifiers. Recall that existential quantifiers need

to be eliminated in order to obtain a universal formula. However, whenever we re-

place existentially quantified variables with Skolem functions, it can result in complex

terms being built up during resolution – as was the case with the relational transla-

tion. Skolem functions could be avoided if it was possible to pull existential quantifiers

originating from 3-operators over universal quantifiers origination from 2-operators.

That is, if we could change an expression such as ∀x∃yP [xy] into ∃y∀xP [xy], we could

replace the existential quantifier y with a constant to give ∀xP [xc].

63

Ohlbach and Schmidt [98] show that this is possible for functional frames that are

maximal, these being those frames in which the set of accessibility functions contains

all possible accessibility functions. They call this the quantifier exchange rule – the

quantifier exchange operator Υ swops quantifiers according to the principle:

∃γ∀δA↔ ∀δ∃γA

This rule was incorporated in the optimized functional translation that was de-

fined by Schmidt [111] and that consists of a sequence of transformations. The first

transformation, which is the functional translation, gives the basic path logic in which

the AF -terms are called basic paths. The next transformation applies the operator

Υ to yield the optimized functional translation. The final step is the formulation of

a clausal form that contains only Skolem constants. Ordinary resolution can now be

applied to the resultant formula.

The optimized functional translation returns good results.

3.3.5 The semi-functional translation

The semi-functional approach was first proposed by Nonnengart [95]. It combines

the advantages of the relational and functional translation while trying to avoid their

respective disadvantages. One of the advantages of the relational translation is that

the translation result mirrors the Kripke semantics of the modal logic, while its major

disadvantage is its exponential growth. The functional translation provides a very

compact translation result in the case of serial modal logics but has the disadvantage

that other properties of accessibility relations such as reflexivity, transitivity, sym-

metry and so on have to be encoded specifically and thus require a strong equality

handling mechanism.

In the semi-functional translation, the 3-operator is translated functionally and

the 2-operator is translated relationally. Since a different translation method is ap-

plied to the 3 and 2 operators, we must ensure that 2A↔ ¬3¬A. Nonnengart [95]

proved this result for serial modal logics by showing that every world that is accessi-

ble via the accessibility functions is also accessible via the accessibility relation. The

disadvantage of this translation is that it has been applied primarily to serial modal

logics.

For more details of this approach, refer to Ohlbach et al. [97].

64

3.3.6 First-order translation solvers

We have outlined the relational and functional translations, as well as the semi-

functional adaptation proposed to ensure adequate decision procedures. We now

look at various translation-based solvers.

Weidenbach et al. [132] developed a translation-based solver that makes use of

the optimized functional translation. It uses a module FLOTTER as a translator

of modal logic into first-order logic which is in clausal normal form. It then uses

SPASS, an existing fast and sophisticated state-of-the-art theorem prover, as the

theorem prover for the resulting first-order logic. We have seen that the optimized

functional translation results in a translation to which ordinary resolution without

refinement strategies can be applied. Hence such translated formulae can be fed into

any state-of-the-art theorem prover.

Another optimized functional translation called TA was developed that also uses

SPASS as the first-order theorem prover [69, 72]. However, TA was found to perform

poorly against various other solvers [97].

MSPASS [71] was then developed as an enhancement of SPASS. It supports all the

translations we have discussed and includes optimizations that are specific to first-

order logic. It was benchmarked at the TANCS-2000 conference and its performance

was very good for some of the test sets, but poor on others [71].

We have already discussed the approach taken by Areces et al. [6] on page 59.

When this approach was tested using an existing first-order solver, Bliksem, it pro-

duced reasonable results for some problem sets but was unable to solve others. The

authors conclude that the problem of finding efficient proof procedures for the trans-

lated formulae has not yet been satisfactorily solved.

Ohlbach et al. [97] concluded that the problem of finding efficient proof pro-

cedures for translated modal logic formulae has not yet been satisfactorily solved.

Special purpose-built refinements to complement the translations are required if an

acceptable performance is to be achieved. Hence, the translation approach has cer-

tain limitations. A major benefit has been to provide an understanding of how the

good computational and logical behavior of propositional modal logics is related to

first-order logics, which are undecidable.

65

3.4 The SAT-based approach

Giunchiglia and Sebastiani [46, 45] developed a modal logic solver called KSAT that

makes use of a propositional decision procedure (or SAT solver) to handle the proposi-

tional logic that is embedded in each modal layer of a set of modal formulae. As with

the first-order translation, the benefit of this approach is that SAT solvers are ma-

ture, efficient and highly optimized. KSAT indirectly benefits from any improvements

made to its SAT solver component. Of the available SAT solvers, the most efficient

are based on the Davis-Putnam-Longemann-Loveland (DPLL) procedure [28, 27] that

we now discuss.

3.4.1 The DPLL SAT algorithm

The propositional satisfiability problem (SAT) is applicable to classical propositional

logic formulae. It is a decision procedure that determines if there is some assignment

of true and false values to the variables in the Boolean formula such that the formula

evaluates to true. A formula of propositional logic is said to be satisfiable if truth

values can be assigned to its variables in such a way that the formula is true. In

other words, it is a sub-problem of the modal satisfiability problem, but without any

modalities.

The SAT problem has typically been solved using the DPLL SAT procedure which

was developed by Davis, Putnam, Longemann and Loveland in the early 1960s. It

is applicable only to formulae in conjunctive normal form (CNF) (Definition 2.2.21)

and makes use of a two-phase approach – the first phase simplifies the set of formulae

as much as possible, while the second phase applies a heuristic search.

The first phase of this procedure makes use of unit subsumption and unit resolution

to eliminate clauses and simplify the set of formulae. This combination is referred to

as unit propagation.

Rule 3.4.1. A formula ϕ = l ∧ (ϕ1 ∨ l) ∧ ϕ2 in CNF is logically equivalent to the

formula ϕ′ = l ∧ ϕ2. Removing the clause (ϕ1 ∨ l) from ϕ to produce ϕ′ is called

unit subsumption.

The unit clause l is subsumed by the clause (ϕ1 ∨ l), which may therefore be

removed from ϕ without affecting the satisfiability of the resulting formula.

66

Rule 3.4.2. A formula ϕ = l ∧ (ϕ1 ∨ ¬l) ∧ ϕ2 in CNF is logically equivalent to the

formula ϕ′ = l ∧ ϕ1 ∧ ϕ2. Replacing the clause (ϕ1 ∨ ¬l) with ϕ1 to produce ϕ′ is

called unit resolution.

Unit resolution is applied to ϕ and ¬l can be removed from each clause in which

it occurs without affecting the satisfiability of the resulting formula.

Unit subsumption and unit resolution are applied to all propositional unit clauses

in the formula until either a contradiction is achieved or there are no more proposi-

tional unit clauses in the formula to which it can be applied.

Example 3.4.3. Suppose we have the propositional formula

ϕ = l ∧ (ψ1 ∨ l) ∧ (ψ2 ∨ ¬l) ∧ ϕ1

where ψ1 and ψ2 are disjunctions of any number of literals and ϕ1 is a conjunction

of any number of clauses. For ϕ to be satisfiable, l must be assigned the value True.

Then (ψ1 ∨ l) is True and it can be removed by unit subsumption. In the clause (ψ2

∨ ¬l), ¬l must be false. Hence, it is removed by unit resolution and the clause is

replaced with ψ2. This formula is simplified to become ϕ′ = l ∧ ψ2 ∧ ϕ1. a

The second phase of the DPLL SAT procedure applies a heuristic to select a

suitable literal l to process – this is termed splitting. The procedure then evaluates

the satisfiability of ϕ ∪ {l}. If it is not satisfiable, it verifies the satisfiability of

ϕ ∪ {¬l}. Since only one of these two formulae can be satisfiable, this is a proof

procedure. It continues in this manner until the satisfiability or otherwise of the

formula has been determined. Note that in some cases, a partial assignment may

suffice (when we remove a clause such as (ψ ∨ l), we have not assigned values to the

variables in ψ).

Algorithm 3. The DPLL algorithm can be summarized in the following pseudo-code

in which ϕ is a propositional formula:

67

function DPLL(ϕ)

ϕ1 := unit propagation(ϕ);

if ϕ1 = False

then return False;

if ϕ1 = ∅
then return True;

l := choose literal(ϕ1); // apply some heuristic to select l

return DPLL(ϕ1 ∪ l) or

DPLL(ϕ1 ∪ ¬l);
end;

function unit propagation(ϕ)

while ϕ contains a propositional unit clause l do

if ϕ contains a propositional unit clause ¬l,
return False;

remove all clauses containing l from ϕ;

remove ¬l from all clauses in ϕ that contain it;

return ϕ;

end;

The first part of the procedure is deterministic, the second is non-deterministic.

The search is greatly affected by two factors – firstly by the ordering of variables

and secondly by the choice of literals in the branching step. Extensive research has

been done on the definition of branching rules to optimally pick these literals. The

paper [81] provides an excellent overview of the heuristic methods that have been

developed. For example, a heuristic called MOMS counts only occurrences of literals

in minimum size clauses and selects one of these literals for the split. The MAXO

heuristic selects the literal with the maximum number of occurrences in a formula.

The paper notes that none of these heuristics is the best in all cases. To overcome

this limitation, they propose a reinforcement-learning approach.

68

3.4.2 The KSAT solver

We now look at the design of the KSAT solver as applied to the modal logic K. Note

that in the papers referred to, some of the results have been proved for the modal logic

K(m), but for simplicity, we restrict this discussion to K. Recall that propositional

atoms are denoted as p, p1, . . . , q, q1, . . . and formulae as ϕ, ϕ1, . . ., ψ, ψ1. We use

α, α1, . . . and β, β1, . . . to construct modal atoms 2α,2α1, . . . and 2β,2β1,

We require the following preliminary definitions.

Definition 3.4.4. Given a modal formula ϕ in conjunctive normal form, a top-

level atom in ϕ is either a propositional atom (Definition 2.2.7) or a modal atom

(Definition 2.2.8) which occurs in ϕ under the scope of no boxes.

Example 3.4.5. Consider the modal formula

ϕ = ¬2(p1 ∨ p2) ∧ (p1 ∨ 2p3 ∨ 222(p2 ∨ 2(p3 ∨ 2p4))).

Its top-level atoms are {2(p1 ∨ p2), p1, 2p3, 222(p2 ∨ 2(p3 ∨ 2p4))} whereas,

for example, p3 and 2p4 are not top-level atoms as they occur under the scope of a

box. a

Definition 3.4.6. A total truth assignment µ for a modal K formula ϕ is the set of

literals

µ ={2α1, . . . ,2αn,¬2β1, . . . ,¬2βm,

p1, . . . , pr,¬qr+1, . . . ,¬qs} (3.4)

such that every top-level atom of ϕ occurs either positively or negatively in µ.

This truth assignment can also be represented as

µ =
∧
i 2αi ∧

∧
j ¬2βj ∧ γ

where

γ =
∧

1≤k≤r pk ∧
∧
r+1≤k≤s ¬qk

69

In the above, 2αi ∈ µ means that 2αi is assigned the value True and ¬2βi ∈ µ
means that 2βi is assigned the value False. Similarly, the pi are assigned the value

True and the qi are assigned the value False.

Definition 3.4.7. A total truth assignment µ for ϕ propositionally satisfies ϕ, written

µ |=p ϕ, if and only if ϕ evaluates to True under the assignment µ.

Definition 3.4.8. A partial truth assignment µ for ϕ is a truth assignment to a

proper subset of the top-level atoms of ϕ. A partial truth assignment propositionally

satisfies ϕ if and only if all the total assignments for ϕ that extend µ propositionally

satisfy ϕ.

Definition 3.4.9. The restricted truth assignment µr for a modal K formula ϕ is

defined as

µr = {2α1, . . ., 2αn, ¬2β1, . . ., ¬2βm}

and can also be represented as

µr =
∧
i 2αi ∧

∧
j ¬2βj

Having provided these definitions, we now illustrate their application in the fol-

lowing example.

Example 3.4.10. Consider the modal formula ϕ, where

ϕ = (p1 ∨2(p2 ∧ p3)) ∧
(p4 ∨ ¬p1) ∧
(2(p4 ∨ p5 ∨ p6) ∨ ¬2(p4 ∨ p5 ∨ p6) ∨ p3) ∧
(p2 ∨ ¬p4)

In terms of Definition 3.4.4, the top-level atoms in ϕ are {p1, p2, p3, p4, 2(p2∧p3),

2(p4 ∨ p5 ∨ p6)}. A total truth assignment will assign a truth value to each top-level

atom – for example

µ = {p1, p2, ¬p3, p4, ¬2(p2 ∧ p3), 2(p4 ∨ p5 ∨ p6)}

70

This truth assignment propositionally satisfies ϕ. This formula is also proposi-

tionally satisfied using the partial truth assignments

µ = {2(p4 ∨ p5 ∨ p6), p1, p2, p4}
and

µ = {2(p2 ∧ p3), 2(p4 ∨ p5 ∨ p6), p2, p4} a

The next question that needs to be answered is how to relate modal satisfiability

to propositional satisfiability. The first step in establishing this relationship is to

approximate a modal formula ϕ as a propositional formula in its top-level atoms,

which can then be solved by any state-of-the-art SAT solver. This approximation is

achieved as follows.

Definition 3.4.11. The propositional approximation of a modal formula ϕ, denoted

Prop(ϕ), is defined recursively as follows:

Prop(p) := p

Prop(¬ϕ) := ¬Prop(ϕ)

Prop(ϕ1 ∧ ϕ2) = Prop(ϕ1) ∧ Prop(ϕ2)

Prop(2ϕ) = xi[2ϕ] where xi[2ϕ] denotes a fresh propositional literal.

Example 3.4.12. Consider the modal formula of Example 3.4.10. It can be approx-

imated as the following propositional formula, in which each modal atom has been

replaced with a new propositional atom pi.

Prop(ϕ) = (p1 ∨ p5) ∧
(p4 ∨ ¬p1) ∧
(p6 ∨ ¬p6 ∨ p3) ∧
(p2 ∨ ¬p4)

The propositional formula Prop(ϕ) is then fed into a SAT solver and a truth

assignment is returned for each of its variables. a

Before we look at the KSAT algorithm, we look at two theorems developed and

proved by Giunchiglia and Sebastiani [46].

71

Theorem 3.4.13. A modal formula ϕ is K-satisfiable if and only if there exists a

K-satisfiable truth assignment µ such that µ |=p ϕ.

This means that the K-satisfiability of a formula ϕ can be reduced to determining

the K-satisfiability of its truth assignments.

We now look at how to determine the satisfiability of the modal portion of ϕ

(Definition 3.4.9) – that is, how do we determine the truth assignment of µr?

Theorem 3.4.14. The restricted assignment µr is satisfiable if and only if the formula

ϕj =
∧
i αi ∧ ¬βj

is K-satisfiable for every ¬2βj occurring in µr.

Informally, we need to show that
∧
i αi is true at all worlds accessible from the

current world. Now suppose we have ¬2β1 and ¬2β2 in the assignment µr. We need

to show that there is some world accessible from the current world at which ¬β1

is true and some world at which ¬β2 is true – and these worlds do not need to be

the same. Hence we need to test the satisfiability of
∧
i αi ∧ ¬β1 and

∧
i αi ∧ ¬β2 –

effectively, we are generating two branches on the modal tree that has ϕ as its root.

Note that the modal depth of every formula ϕj is strictly smaller than the depth

of the original formula ϕ.

We now proceed to look at the KSAT algorithm in detail. It consists of two basic

steps:

Step 1: Propositional reasoning – finding a truth assignment µ for ϕ such that µ |=p ϕ.

Step 2: Checking the K-satisfiability of µ by generating the corresponding restricted

assignment µr and determining the satisfiability of the ϕj formulae.

Algorithm 4. The KSAT algorithm can be summarized in the following pseudo-code

in which ϕ is a modal formula:

function KSAT(ϕ)

return KSATW (ϕ, ∅);
end;

72

function KSATW (ϕ, µ)

if ϕ = True

then return KSATA(µ);

if ϕ = False

then return False;

if {a propositional unit clause (l) occurs in ϕ}
then return KSATW (assign(l, ϕ), µ ∪ {l});

l := choose literal(ϕ);

return KSATW (assign(l, ϕ), µ ∪ {l}) or

KSATW (assign(¬l, ϕ), µ ∪ {¬l});
end;

function KSATA({2α1, . . . ,2αN ,¬2β1, . . . ,¬2βM ,

p1, . . . , pr,¬qr+1, . . . ,¬qs})
for each conjunct ¬2βj do

ϕj :=
∧
i αi ∧ ¬βj;

if not KSAT(ϕj)

then return False;

return True;

end;

KSAT takes as input a modal propositional formula ϕ and returns a truth value

asserting whether it is K-satisfiable or not. KSAT invokes KSATW which is a variant

of DPLL – in particular, the functions assign and choose literal relate to the two

phases of the DPLL procedure. However, assign now adds the truth value of the

propositional unit clause l to the truth assignment µ. Truth assignments µr are then

generated, whose K-satisfiability is recursively checked in the procedure KSATA.

KSATW assigns values to both propositional literals and modal literals. For the

negative modal literals in µr, KSATA generates a formula ϕj =
∧
i αi ∧ ¬βj for each

¬2βj occurring in µr and then invokes KSAT with ϕj. This is repeated until either

KSAT returns False or no more ¬2βj’s are available, in which case KSATA returns

True. Each such iteration decreases the modal depth of the formula. Essentially, this

amounts to recursively generating an assignment µ that propositionally satisfies ϕ

73

and then testing whether µ is satisfiable. It can be seen that the depth of recursion

is limited by the modal depth of the set of formulae.

KSAT is the result of the DPLL-application and ¬2/2-elimination by the ap-

plication of the (K) tableau rule of Definition 3.1.4. For each ¬2βj in µr, KSATA

applies ¬2-elimination (that is, 3-elimination), generating ¬βj in an implicit new

world w′ accessible from the current world w. Then, for every 2αi in µr, it applies

2-elimination, adding αi to w′. As a result, ϕj = α1 ∧ . . . ∧ αn ∧ ¬βj must be

tested for satisfiability at world w′. KSAT is then invoked with ϕj to evaluate its

satisfiability at the world w′. If KSAT returns True for each of these ϕjs, then ϕ is

satisfiable. If it returns False, ϕ is not satisfiable.

KSAT therefore proceeds in a depth-first manner, each time working on a single

world. As no confusion can arise between worlds, there is no need to keep labels

explicitly. This approach can easily be extended to deal with K(m), as discussed by

Giuchiglia and Sebastiani [46].

3.4.3 SAT-based modal solvers

Various versions of KSAT have been produced, each of which has different optimiza-

tions.

The basic algorithm discussed above was optimized in several ways. In the paper

by Giunchiglia and Sebastiani [46], the following improvements are made:

- The modal atoms are sorted according to some order on the set of subformulae.

After sorting, one can trivially eliminate clauses such as 2(p1∨p2) ∨ ¬2(p1∨p2),

which are tautologies.

- For each of the ¬βjs, the common component
∧
i αi is re-evaluated. An alterna-

tive approach that enables
∧
i αi to be evaluated only once is as follows: All of

the ¬βjs are placed in a set B. A set of truth assignments that satisfy
∧
i αi is

found. Each truth assignment is checked against each ¬βj and those ¬βj that

are satisfiable are removed from the set B. If B is empty, µr is satisfiable.

- The satisfiability of an incomplete assignment is checked before the split intro-

duced in choose-literal. This is called early pruning. For example, in the case

of the partial assignment

74

µ1 = 2(¬p1 ∨ p2 ∨ p3) ∧ ¬2(¬p1 ∨ p2 ∨ p3)

KSATA will check the K-satisfiability of the formula

(¬p1 ∨ p2 ∨ p3) ∧ p1 ∧ ¬p2 ∧ ¬p3

and find it unsatisfiable. Without this step, splitting using p1, p2 and p3 respec-

tively would have taken place. This saves a considerable amount of processing.

Giunchiglia et al. [42] later developed KSATC and KSATLISP (C and LISP

versions respectively) that differ primarily on their splitting strategy. KSATC is

built on a highly optimized DPLL algorithm that provides efficient data structures

for literal assignment and the partial evaluation of formulae. Literals are assigned

and unassigned dynamically inside a set of formulae simply by moving pointers, and

this takes place in time proportional to the number of their occurrences. The DPLL

algorithm also includes smart splitting heuristics – it splits on the literal that occurs

most often in the shortest clauses. KSATLISP on the other hand splits on the atom

occurring most often in the input formula. Of these, KSATLISP ends up spanning a

bigger search space than KSATC.

Giunchiglia and Tacchella [43] subsequently developed a new SAT solver called

*SAT, which is based on an existing SAT solver, namely SATO 3.2, one of the most

efficient SAT checkers then available [135]. *SAT allowed for easy integration of

SATO and makes use of a commercially available library of data types that provides

highly optimized data structures. By following this approach, they were able to

capitalize on several years of experience in building highly optimized data structures

and algorithms for propositional satisfiability. While other modal logic solvers need to

include optimization techniques, in this case, these techniques were already included

in SATO. They did however apply early pruning and modal backjumping at the modal

layer.

The KSAT solver was later enhanced to deal with the modal logic KT . However,

it is unable to deal with any other modal logics.

Various benchmarks have been run comparing KSAT to other solvers. In Section

4.3.13 of the next chapter we look at its performance at the TANCS-2000 conference,

the details of which are provided in [119] and [87]. With some of the data sets, its

performance was however poor.

75

3.5 The CSP-based approach

Modal solvers for each of the approaches discussed so far were submitted and bench-

marked at the TANCS-2000 conference. Subsequently, Brand et al. [18] developed a

modal logic solver called KCSP that is applicable to the normal modal logic K. It

translates a modal satisfiability problem into a layered set of constraint satisfaction

problems and then solves them using the state-of-the-art constraint solver, ECLiPSe

[130]. Hence, as is the case with KSAT, KCSP benefits indirectly from improvements

made to the underlying solver, which in this case is a constraint solver.

KCSP follows a similar approach to that used by the KSAT algorithm but uses a

constraint solver instead of a SAT solver. It encodes the modal formula into layers

of subformulae of decreasing modal depth, each of which is processed as a finite

constraint satisfaction problem. This is possible because of the tree model property

of modal logics that has already been discussed in Section 2.7 – a similar approach

was followed in the translation to first-order logic by Areces et al. [6] (Section 3.3.3).

Before we examine this approach, we need to look at constraint satisfaction prob-

lems (CSPs) in general, and how they are solved using constraint logic programming

(CLP) languages. We provide a general overview of CLP languages that discusses

their close ties with logic programming languages such as Prolog. Two important

components of a CLP language are its constraint solver, which makes use of con-

straint propagation to prune the search space wherever possible, and its constraint

store, which is used to store partial information about the constraints on variables.

CLP languages include specialized algorithms and libraries that we briefly discuss.

An overview of the ECLiPSe constraint logic programming language that is used by

the KCSP solver is provided.

3.5.1 The constraint satisfaction problem

We begin by defining a constraint satisfaction problem – the class of problem into

which a modal formula is to be converted.

A constraint satisfaction problem consists of a set of variables, a domain for each

variable and a set of constraints. The variables can be assigned any value in the

corresponding domain, with the limitation that the constraints on the variables need

76

to be satisfied. The constraints therefore limit the scope of the variables.

Definition 3.5.1. Suppose we have a set of variables X = {x1, x2, . . . , xn}, with each

variable xi having a domain Di. Let D be the set of domains D1, . . . Dn and C a

set of constraints on X. Each constraint c ∈ C is a pair c = 〈σ, ρ〉 where σ, the

constraint scope, is a list of variables in X and ρ, the constraint relation, is a subset

of the Cartesian product of their domains. Such a problem is a constraint satisfaction

problem (CSP).

A solution to the CSP instance 〈X,D,C〉 is a complete assignment such that every

constraint c ∈ C, the restriction of the assignment to the scope σc, is satisfied.

Example 3.5.2. Consider the following example. We have a set of variables X =

{x1, x2, x3}, each of which has domain {1, ..., 5}. The constraints on these variables

are x1 < x2 and x2 < x3. It is easy to see that by applying these constraints to the

domains of the variables, we can restrict their domains to {1, 2, 3}, {2, 3, 4} and {3,

4, 5} respectively.

Consider the variable x3. The values 1 and 2 are inconsistent with the constraints

that x1 < x2 and x2 < x3 and hence are pruned from its domain. The values 3, 4 and

5 are however consistent with the constraints of the problem. a

Many different approaches have been followed to solve problems of this nature,

among which are theorem proving, integer programming, equation solving using

Boolean algebra and constraint logic programming. A detailed overview of constraint

programming is to be found in [5] and [109], with details of various application areas

being provided in [117].

Search problems of this nature can be combinatorially complex and often cannot

be solved. Combinatorial problems are those where a solution results from making

a whole series of interdependent choices – the correctness or optimality of a given

choice is not usually apparent until a number of other choices have been made, which

may in turn depend on further choices. The result is that the correctness of the very

first choice is usually not confirmed until the last choice has been made [128]. Such

problems are known to be NP-complete [83].

We now look in particular at the approach taken to solve these problems that uses

constraint logic programming.

77

3.5.2 Constraint logic programming

Overview

Constraint logic programming (CLP) combines the advantages of logic programming

and constraint handling.

Logic programming languages are based on Horn-clause logic. They are declarative

or rule-based languages. A program consists of clauses that are facts and rules.

We provide the following relevant definitions, following the logic programming

convention to read implication from the right to the left.

Definition 3.5.3. A clause p1 ∨ . . . ∨ pr ← q1 ∧ . . . ∧ qs is called a rule if r ≥ 1

and s ≥ 1; it is called a fact if r ≥ 1 and s = 0; and a goal if r = 0 and s ≥ 1. p1

∨ . . . ∨ pr is called the rule head and q1 ∧ . . . ∧ qs is called the rule body. Every qi

is called a subgoal.

Every clause is a closed formula with universal quantification on variables in the

formula – for example p(x) ← q(x) means that ∀x(p(x)← q(x)).

Definition 3.5.4. A clause π : p1 ∨ . . . ∨ pr ← q1 ∧ . . . ∧ qs is called a Horn clause

if r ≤ 1 and every subgoal is an atom. A logic program is a set of Horn clauses defined

over some set of terms L.

Horn-clause logic makes use of resolution. The resolvent of two Horn clauses is a

Horn clause and the resolvent of a goal clause and a fact or rule is again a goal clause.

This is the basis of logic programming. Prolog is an example of such a language. The

reader is referred to texts such as [19] for full details of Prolog.

Example 3.5.5. The following is a simple Prolog program, which consists of one rule

and two facts.

mother(X) :- // rule

hasChild(X, Y).

hasChild(Bronwyn, Fred). // fact

hasChild(Pam, Nicky). // fact

78

The rule states ‘If X is a mother, then X has a child Y’. Note that in Prolog,

implication is denoted by ‘:-’.

A problem that can be posed to such a program is ‘Is Bronwyn a mother?’ and

this will be stated as the goal statement

mother(Bronwyn).

The program will match hasChild(X, Y) with hasChild(Bronwyn, Fred) and will

return the answer ‘Yes’. a

Logic programming applies unification of terms – unification is the reduction of an

equation to an equivalent set of variable assignments, as can be seen in the example

above. Unification of terms takes place over the Herbrand universe, which is the set

of ground terms (terms without variables) of the language. In the example above, the

ground terms are Bronwyn, Fred, Pam and Nicky.

Constraint logic programming preserves the basic syntax and computational prop-

erties of logic programming, in that facts and rules are defined in the same way. It

then adds additional functionality which incorporates constraints and allows the eval-

uation of terms. In a logic programming language, because unification of terms takes

place over the Herbrand universe, a statement such as ‘3 = 2 + 1’ is evaluated as

False. The CLP language on the other hand allows the evaluation of terms. In the

integer domain, it will return True for the above statement. CLP languages operate

over a number of domains. For example, in the domain of integers, it will allow con-

straints such as 3 + X + Y and A ≤ B to be evaluated, where X, Y , A and B each

have an integer domain.

To process constraints, the CLP language makes use of a constraint solver, which

allows propagation of constraints, the effect of which is to prune the search space

(these concepts will shortly be expanded). Unification on the other hand, as used

by logic programming, does not prune the search space – it makes use of a standard

backtracking approach.

Examples of early CLP languages are CHIP [33] and CLP(R) [76]. They are

constraint logic programming systems in which constraints are defined and solved

using a constraint solver. CHIP allows constraints over finite domains, Booleans

and rational numbers while CLP(R) allows constraints over real numbers. A general

framework for CLP languages was formalized by Lassez et. al. and is referred to as

79

the CLP scheme [82] and most CLP languages use this framework as a basis.

CLP languages have proved themselves in their ability to model and solve com-

binatorial problems. An important factor in this success is their ability to prune the

search space during computation, thereby speeding up the execution of the program

considerably.

The constraint solver

We now look at some of the aspects of how constraints are dealt with by the constraint

solver.

A key innovation behind constraint programming is constraint propagation. In the

case of the constraint x = y + 1, if a value is assigned to x, a value is automatically

assigned to y. The constraint between any two objects or variables can be represented

as an edge in a graph and as long as the graph is free of cycles, the propagation

behavior is guaranteed to terminate [129].

CLP languages execute in two closely linked phases – the inference phase during

which constraints are propagated, and the search phase which heuristically assigns

values to variables. These two phases interact closely.

During the inference phase, consistency techniques such as arc consistency and

path consistency are used to propagate constraints. Arc consistency ensures that any

legal value in the domain of a single variable has a legal match in the domain of any

other single variable. Path consistency ensures that any consistent solution to a two-

variable subgraph can be extended to any third variable. These techniques enforce

various forms of local consistency and add inferred problem constraints that are used

to prune away inconsistent values and build up partial solutions.

This phase is followed by the application of a search method that traverses the

space of partial solutions by assigning values to variables. The most common algo-

rithm for performing systematic search is backtracking. Backtracking incrementally

attempts to extend a partial solution that specifies consistent values for some of the

variables towards a complete solution. This is done by repeatedly choosing a value

for an unassigned variable which is consistent with the values in the current partial

solution. When extension is impossible, the algorithm backtracks to make alternative

choices. It typically backtracks to the last choice point. As an alternative, a lookback

80

scheme can be deployed which decides how far to backtrack by analyzing the reasons

for the dead end. This process is also referred to as backjumping. It records the

reasons for the dead-end in the form of new constraints so that the same conflicts will

not arise again. This is also referred to as no-good learning.

There are several approaches that can be followed to assign a value to a variable.

A general technique is called first-fail, which chooses as the next variable to label

the one with the smallest domain. Alternatively, the variable that occurs in most

constraints can be chosen. Another approach is to make a binary chop of the domain,

which means that the domain of a particular variable is cut into two halves and the

value is assumed to be in one of them. The technique selected should be tailored to

the data being dealt with.

As soon as a suitable value has been assigned by the search method, the inference

method is reapplied to ensure consistency. These phases are repeated until either a

consistent solution is found or it is established that there is no satisfactory solution.

In each iteration, the domains of the remaining values are reduced further and further

until one becomes empty or the remaining domains contain only one value or in some

cases a range of values, in which case the problem is solved.

The inference phase is deterministic while the search phase is non-deterministic

(based on heuristics) – the key aspect in the constraint logic approach is the tight

integration between the deterministic constraint evaluation and the non-deterministic

search process. Deterministic computations are performed as soon as possible during

propagation and non-deterministic computations are used in the search phase only

when there is no more propagation to be done. This approach exhibits a data-driven

computation and can be characterized as ‘constrain and generate’.

In Example 3.5.2, the domains of the variables were pruned (the inference phase).

In order to progress in the search for a solution, the search phase needs to assign a

value to one of the variables. Suppose we set x2 = 3. The inference phase is then

re-entered and the domains of the variables can be further pruned to {1, 2}, {3} and

{4, 5} respectively. This process is repeated until a solution is found.

These techniques are described in further detail in [40, 25, 129]. Constraint logic

programming has been successfully applied in many application areas, which include

scheduling, circuit verification, real-time control systems and production sequences.

81

Further details of these and other application areas are provided in the papers [125,

128].

The constraint store

Another important aspect of a CLP language is the constraint store that is used to

hold partial information about the constraints on variables. Variables can be stored

as a range of values or as a linear equation or inequation. Constraint stores have been

built to deal with different classes of constraints and with mathematical functions that

are processed and checked for consistency using standard mathematical techniques.

For example, the CLP(R) language deals with constraints over real numbers.

As already stated, the CLP program is syntactically a collection of clauses that

are either rules or facts. The CLP program starts execution with the goal statements

and an empty constraint store. The results of each step of its execution are stored as

computation states that are represented as Store @ Goals – at each step, the current

content of the constraint store and the remaining goals to be solved are stored. The

aim of the program is to reduce the goals – a goal is reduced using a clause whose head

matches the goal. Such a sequence of reduction steps is referred to as a derivation.

A derivation terminates when there are no more goals to be reduced and the final

constraint store is consistent. If the constraint store is inconsistent, the derivation

fails. In the case of a failed derivation, the CLP program will abandon the current

branch of the search tree and will backtrack until either a successful derivation is

found or no more choices are possible, in which case the derivation fails.

Example 3.5.6. Consider a CLP program with the following sets of clauses:

findvalues(X, Y, Z) :-

X < 5,

Y < 5,

Z < 5,

calcY(X, Y),

calcZ(Y, Z).

calcY(X, Y) :-

Y is X + 1.

82

calcZ(Y, Z) :-

Z is Y + 1.

The goal statement

findvalues(1, A, B).

will produce the following successful sequence of computational states in the con-

straint store:

(1) ∅ @ findvalues(1, A, B)

The goal is reduced by matching the goal clause findvalues(1, A, B)

with findvalues(X, Y, Z). The goal is replaced by the body

of the clause and the constraints in the body are added to

the constraint store.

(2) X=1, A=Y, B=Z, Y < 5, Z < 5 @ calcY(1, Y), calcZ(Y, Z)

The goal is further reduced by matching the goal clause calcY(1, Y)

with the clause calcY(X, Y) and setting A = Y = 2.

(3) X=1, A=2, B=Z, Y=2, Z < 5 @ calcZ(2, Z)

The final goal clause calcZ(2, Z) is matched with calcZ(Y, Z)

setting B = Z = 3.

(4) X=1, A=2, B=3, Y=2, Z=3 @ ∅
No goal clauses remain and values have been assigned to each

variable.

a

Specialized algorithms

Because of the complexities associated with constraint handling, various specialized

algorithms have been developed in various CLP languages. We provide a few examples

of such algorithms.

Propagation constraints – more commonly referred to as constraint agents – ac-

tively propagate new information to a constraint store and typically operate indepen-

dently of each other. A special means of dealing with them is sometimes required.

Because constraints alternate between suspended and waking states, in some cases,

83

they need to be reactivated only when a special constraint is met. To control their be-

havior, the notion of a guard has been introduced. The guard, which is an additional

primitive constraint, is put in place to ensure that the constraint agent is suspended

until a necessary condition has been satisfied, after which the agent wakes up.

An example of a clause that has a guard and a constraint is the following:

calcY(X, Y) <==>

var(Y) // the guard ensures that Y has not been assigned

// a value

|
Y is X + 1 // the constraint

Another example of a specialized algorithm is constraint entailment, which is used

to establish whether a single constraint is implied by a conjunction of constraints.

The implication combinator is used to achieve local propagation of constraints by

suspending goals when not enough information is available and then reactivating them

when new information allows them to be reconsidered. The cardinality combinator is

a declarative and relational operator that handles general forms of disjunctions and

that can be used to enforce arc-consistency on any arbitrary finite domain constraints.

It implements a principle known as the inference principle – ‘infer simple constraints

from difficult ones’.

These and other algorithms are described in more detail in [126].

Specialized libraries

Constraint programming languages generally include specialized libraries. These li-

braries provide more efficient constraint propagation algorithms than the standard

techniques, when applied to the specific classes the language deals with. They are

designed to solve and find solutions in polynomial time. We look briefly at one such

library – the CHR library – as it plays an important role in the K KCSP solver.

Traditionally, the constraint solver has been a ‘black box’ that is hard to modify.

To deal with this problem, additional constructs in the form of constraint handling

84

rules (CHRs) have been added to constraint solvers. CHRs allow user-defined con-

straints and enable simplification and propagation over them. Simplification rules

replace constraints with simpler constraints, while propagation rules add new con-

straints that may cause further simplification. These constraints are incrementally

solved by the constraint solver.

CHIP was the first CLP language to introduce constructs for user-defined con-

straint handling. These were subsequently refined to give CHRs that are based on

guarded rules. Further details of constraint handling rules are presented in [38] and

[39].

3.5.3 The ECLiPSe constraint logic programming language

ECLiPSe incorporates all of the functionality already discussed, with the additional

strength that it allows the programmer to use a combination of algorithms appropriate

to the application at hand. In the work which follows, we will see some of this

flexibility.

The platform offers a conceptual modeling language for specifying the problem

clearly and simply, after which an appropriate algorithm can be selected to solve it.

ECLiPSe offers many different constraint handling capabilities in different libraries.

These libraries include the ic (interval constraint) library which is a hybrid integer /

real interval arithmetic constraint solver, an ic symbolic library which has a separate

symbolic solver library, the eplex (mixed integer programming) library, the propria

(generalized propagation) library that allows complex constraints and handles dis-

junction, and the ech library – which is its implementation of constraint handling

rules (CHRs).

In ECLiPSe, constraint handling rules are multi-headed guarded clauses that

consist of one or more heads, an optional guard, a body and an optional name. A

rule relates heads and body, provided the guard is true. A rule can fire only if its

guard succeeds, in which case the appropriate actions are applied to the head and

body constraints.

The simplification rule has the form

SimplificationRule ::= [RuleName @] Head [, Head] <=> [Guard |] Body

85

while the propagation rule has the form

PropogationRule ::= [RuleName @] Head [, Head] ==> [Guard |] Body

Note that the difference in the rules is represented by the syntax. To illustrate

the use of the simplification rule, we include a simple example which explains the

concept.

Example 3.5.7.

minimize xy @ values(X1, Y1), values(X2, Y2) <=>

verify values(X1, X2)

verify values(Y1, Y2)

|
X is min(X1, X2)

Y is min(Y1, Y2)

values(X, Y).

We have a rule named minimize xy, two heads values that are constraints and the

function verify values that forms the guard. Only if this function executes correctly

is the body executed. In the body, the minimum X and Y values are calculated

and the constraint values(X, Y) is then generated. In this case, the two constraints

values(X1, Y1) and values(X2, Y2) are removed from the constraint store and the

constraint values(X, Y) is added. a

If the above example was modified to represent the propagation rule, the con-

straints values(X1, Y1) and values(X2, Y2) would have remained in the store, and

the new constraint values(X, Y) would be added.

The minimize xy rule is executed whenever a change occurs in any values con-

straint. The constraint store is searched for another values constraint and if one is

found, the guard is executed and will either succeed or fail. If the guard succeeds,

the body is executed; if it fails, the rule is delayed until a variable occurring in the

head is touched, whereupon it is reactivated and the guard is re-evaluated.

In addition to user-defined constraint rules, it is possible to add conditional state-

ments that can also delay the execution of goals. For example, we could have

86

delay verify values(X, Y) if var(X).

delay verify values(X, Y) if var(Y).

In this case, the guard function verify values is delayed by a suspend solver pro-

vided in ECLiPSe if either X or Y have not been assigned a value.

ECLiPSe also provides many different search algorithms from which the user is

able to select. These include branch-and-bound, depth-first search with backtracking

and various heuristics searches.

It also contains specialized functions. For example, the ic symbolic library has a

function atmost(N , L, V) which selects at most N elements with value V from a list

L. Another useful function is alldifferent(L) which fails if two elements in a list L

are equal. Because such functions are preprogrammed, the user’s task is considerably

simplified.

ECLiPSe is a complex language with a vast amount of functionality from which

the appropriate application can be built. It has recently been open-sourced and can

be downloaded off the Internet [2].

3.5.4 The K KCSP solver

We now look at the design of K KCSP as applied to the modal logic K. Note that

the modal satisfiability problem is PSPACE-complete, whereas, when the problem

is stratified into layers and each layer is solved as a constraint satisfaction problem,

the layers are NP-complete [18].

In this approach, the modal formula is encoded into layers where each layer occurs

at a different world. The same approach is followed as was used with the SAT trans-

lation – modal atoms are treated as propositional atoms on the layer in which they

occur. The modal formula of a particular layer is translated into a constraint satis-

faction problem. Its top-level literals are identified (Definition 3.4.4) and a domain of

{0, 1} is assigned to each, as a variable must have a value of either True (1) or False

(0). The constraints associated with the modal formula are then generated. Such

constraints are easy to generate when the modal formula is in conjunctive normal

form (Definition 2.2.21), as each disjunctive clause contributes a constraint to the

87

CSP.

Note that we will sometimes loosely refer to modal atoms as literals, as they are

treated as propositional literals at each modal layer.

Example 3.5.8. Consider the CNF formula

(¬p1 ∨ p2 ∨ p3) ∧ (p1 ∨ ¬p2) ∧2p4

which has top-level atoms {p1, p2, p3, 2p4}, each of which has domain {0, 1}.
The constraints on this formula are as follows:

- The disjunction (¬p1 ∨ p2 ∨ p3) has the constraint that p1 must be False or

at least one of p2 and p3 must be True – hence, at least one of the following

assignments is required: p1 = 0, p2 = 1, p3 = 1.

- The disjunction (p1 ∨ ¬p2) has the constraint that we must have at least p1

True or p2 False – hence, at least one of the following assignments is required:

p1 = 1, p2 = 0.

- The clause 2p4 has the constraint that it must be True and so 2p4 = 1.

a

A constraint solver will always return a total assignment to a constraint satisfac-

tion problem. In the above example, the problem is solved with a total assignment

of µ = {p1, ¬p2, p3, 2p4}. However, it can also be solved with a partial Boolean

assignment of µ = {p1, p3, 2p4}.
Because less computational effort is required to return a partial assignment, this is

a preferred approach. Brand et al. [18] followed an approach in which the domain of

each literal is set to {0, 1, u} instead, with u being used to denote ‘unknown’, meaning

that a value is not assigned to the associated literal. In the above example, when we

return the assignment µ = {p1, p3, 2p4}, a value has not been assigned to top-level

atom p2. In the implementation, u is assigned a value of 2. We will however continue

to refer to u for clarity.

Recall that a modal formula ϕ must be approximated as a propositional formula

in its top-level atoms before being processed by a SAT solver, and the same approxi-

mation must be applied in the case of the constraint solver. Definition 3.4.11 defines

88

this approximation. Each modal atom 2ψ is replaced with xi[2ψ], where xi denotes

a unique propositional atom. A modal formula such as ϕ = p ∧ 2p ∧ ¬2p is approx-

imated as Prop(ϕ) = p ∧ x1[2p] ∧ ¬x2[2p], and effectively contains three different

propositional atoms. The constraint solver will assign a value of 1 to x1[2p] and 0 to

x2[2p]. The next modal layer then contains p and ¬p. Note that this is the internal

representation of the modal atom – in our discussions, we will continue to refer to 2p

and so on, instead of x1[2p], which ensures clarity.

We now look at how a modal formula is encoded into different modal layers.

We proceed as with the SAT-based solver, where a truth assignment µ is generated

for the top-level literals of the relevant modal formula ϕ (Definition 3.4.6). If this

assignment propositionally satisfies ϕ, that is, µ |=p ϕ, then in terms of Theorem

3.4.13, the modal formula will be satisfiable. The next modal layer will be satisfiable

if the restricted truth assignment µr (Definition 3.4.9) is satisfiable, as per Theorem

3.4.14.

Brand et al. [18] based the K KCSP algorithm on KSAT which we have already

presented – we represent a condensed version of their K KCSP algorithm and will use

this representation for subsequent versions thereof.

Algorithm 5. The K KCSP algorithm schema can be represented as follows:

function K KCSP(ϕ)

ϕneg = ¬ϕ;

ϕinit = to cnf(ϕneg);

K CSP(ϕinit);

end;

function K CSP(ϕ) // succeeds if ϕ is satisfiable

ϕcsp = to csp(ϕ);

µ := csp(ϕcsp);

Θ =
∧
{α : 2α = 1 is in µ};

for each 2β = 0 in µ do

K CSP(Θ ∧ ¬β); // backtrack if this fails

end;

89

The K KCSP algorithm firstly negates the input formula and then converts it into

CNF. The sat procedure of KSAT is replaced with two procedures – to csp and csp.

to csp identifies the top level literals of ϕ, sets their domains to {0, 1, u} and defines

the constraints on each clause, thereby defining the constraint satisfaction problem.

The resulting formula is then passed to the ECLiPSe constraint solver with the call

to csp. It either returns a solution or determines that the formula is unsatisfiable. If

it cannot immediately return a solution, csp will backtrack through previous choice

points to try to find a suitable solution. In the case where no solution is returned, it

will have backtracked across all possible choice points.

Once a solution has been returned for the current modal layer, if it contains

negative modal literals to which a value of 0 has been assigned, further processing

is required. Each of these modal literals ¬2βj effectively generates a new branch of

the modal tree. The conjunction of each βj and the αi literals having 2αi = 1 form

the modal formula that will be processed at the next modal layer. If there are no

negative modal literals, the formula is satisfiable and no further processing is required.

In effect, we are generating a modal tree with the modal formula at the root and the

branches being created by the negative modal literals.

The effect of using a domain of {0, 1, u} is that we effectively have a partial

assignment of truth values, which reduces the processing requirement – if all the

¬2βj literals at a modal layer can be assigned a value of u, no further processing will

be required.

Example 3.5.9. Consider the following example to which the K CSP function is

applied.

ϕ = ¬2(p1 ∨ p2) ∧ (2p1 ∨ 2p3 ∨ ¬222(p2 ∨ 2(p3 ∨ 2p4)))

1. At the first modal layer, this formula has top-level atoms {222(p2 ∨ 2(p3

∨ 2p4)), 2(p1 ∨ p2), 2p1, 2p3}, each of which has domain {0, 1, u}. The

constraints are that 2(p1 ∨ p2) must be 0 and that we need at least one of 2p1

= 1, 2p3 = 1 or 222(p2 ∨ 2(p3 ∨ 2p4)) = 0.

The constraint solver could return the partial assignment

µ = {¬2(p1 ∨ p2), 2p1 = 1}

90

2. Because we have ¬2(p1 ∨ p2), we move to the next modal layer with the formula

¬(p1 ∨ p2) ∧ p1 = ¬p1 ∧ ¬p2 ∧ p1 which is unsatisfiable.

3. The constraint solver backtracks to the first modal layer and returns with the

partial assignment

µ′ = {¬2(p1 ∨ p2), 2p3}

4. We once more have ¬2(p1 ∨ p2), so we move to the next modal layer with the

formula ¬(p1 ∨ p2) ∧ p3 = ¬p1 ∧ ¬p2 ∧ p3, which is now satisfiable. a

We note the following about the algorithm. The constraint solver backtracks as

soon as an unsatisfiable result is obtained and will progress through the entire tree

until a satisfiable result is obtained – in which case the modal formula is not valid. If a

satisfiable result is not obtained, the negation of the original formula is unsatisfiable,

and hence the original modal formula is valid.

3.5.5 Constraint-based modeling

We have provided the details of the K KCSP algorithm but have not yet discussed

the details of how the constraints are defined and processed by the constraint solver.

Definition 3.5.10. A modal formula ϕ can be represented in conjunctive normal

form (Definition 2.2.21) as ψ1 ∧ ψ2 ∧ ... ∧ ψn where each ψi is of the form∨
{p : p ∈ P+} ∨

∨
{¬q : q ∈ P−} ∨

∨
{2α : 2α ∈ B+} ∨

∨
{¬2β : 2β ∈ B−}

and P+ and P− contain propositional atoms, and B+ and B− contain modal atoms

respectively.

A clause ψi is true if at least one literal in the sets P+ and B+ is true, or at least

one literal in the sets P− and B− is false. This can be written as,

at least one(P+ ∪B+, 1) ∨ at least one(P− ∪B−, 0) (3.5)

However, constraint solvers find disjunctions difficult to deal with. This disjunc-

tion can be transformed into a conjunction by adding a link variable l to it. Equation

(3.5) then becomes

91

at least one(P+ ∪B+ ∪ {l}, 1) ∧ at least one(P− ∪B− ∪ {l}, 0) (3.6)

with the link variable l selecting implicitly which of the two constraints must hold.

If l = 0, the constraint on the left becomes at least one(P+ ∪ B+ ∪ {0}, 1), or

at least one(P+ ∪ B+, 1). The constraint on the right becomes at least one(P− ∪
B− ∪ {0}, 0), which is satisfiable. If l = 1, the constraint on the left becomes

at least one(P+ ∪ B+ ∪ {1}, 1), which is satisfiable, while the constraint on the right

becomes at least one(P− ∪ B− ∪ {1}, 0), or at least one(P− ∪ B−, 0).

The ECLiPSe ic symbolic library contains a predefined constraint atmost in

which the number of literals in the list can be set to be at most 1, as was dis-

cussed in Section 3.5.3. It can easily be adapted to deal with the requirement for an

at least one constraint. As we stated in Section 3.5.3, one of the benefits of ECLiPSe

is its many predefined algorithms and libraries.

Once the constraint satisfaction problem has been defined and fed to the ECLiPSe

constraint solver, it deals with the constraints by suspending constraints which have

variables to which a value has not been assigned. As soon as a variable is assigned a

value, the constraint is activated and it is processed further.

Example 3.5.11. Suppose we have the constraints

at least one({p1, p2, 2p3, l1}, 1) ∧ at least one({p4, l1}, 0)

Suppose p1 is assigned a value of 1. In this case, the first constraint is activated

and l1 is set to 0 so that the second constraint is satisfied. All other constraints

containing p1 are also activated. At the same time, the domain of the literals p2, 2p3

and p4 can be set to u – having satisfied one of the literals, the remaining literals do

not need to be assigned a definite value of 0 or 1.

Alternatively, if p1 was assigned a value of 0, no further processing would take

place and the constraints would once more be suspended.

a

By setting as many literals to u as possible, a partial assignment is extended to

become a total assignment. Because of the inherent backtracking power of a constraint

solver, assignments of this nature can be reversed on backtracking and an alternate

92

value assigned to the literals. In the example above, if the assignment p1 = 1 is no

longer feasible, the constraint solver will backtrack and the values assigned to the

literals l1, p2, 2p3 and p4 will be reversed.

Brand et al. took this concept further. They showed that, in order to reduce the

processing requirement, it is preferable to assign the value u to as many modal literals

as possible – if any positive or negative propositional literals in a clause is assigned a

value of 1 or 0 respectively, all modal literals in the clause can be assigned values of

u. If there are no possible assignments to propositional literals, it is then necessary

for only one modal literal to be assigned a value of either 0 or 1. Furthermore, it is

better to assign a value to a positive modal literal, as we only move to the next modal

layer if we have a negative modal literal with values of 0.

Equation (3.6) can now be rewritten as:

at least one(P+ ∪ {l+P }, 1) ∧ exactly one(B+ ∪ {l+B}, 1) ∧

at least one(P− ∪ {l−P }, 0) ∧ exactly one(B− ∪ {l−B}, 0)
(3.7)

Note that the link variables l+P , l+B, l−P and l−B are distinct. If any one of these

link variables is assigned a value of 1, the rest are set to 0. Hence, if a positive

propositional literal in P+ is assigned a value of 1, the constraint solver will set l+B

= 1, l−P = 0 and l−B = 0 so that Equation (3.7) is satisfied. At the same time, the

remaining unassigned literals in this set of clauses are assigned a value of u.

The implementation details of these linking constraints is explained in [4]. The ech

library, which implements constraint handling rules, was used to define and manage

these user-defined constraints (see Section 3.5.3). Good results were returned with

this implementation when compared with the KSATC solver, as listed in Table 3.1

[18]. Note that the details of the data sets used are provided in Section 4.2 and so

are omitted here.

3.5.6 K KCSP optimizations

We summarize some of the optimizations Brand et al. applied to the K KCSP algo-

rithm.

93

KSATC K KCSP KSATC K KCSP

n n p p
branch 8 11 8 21
d4 5 6 8 8
dum 21 17 11 11
grz 21 21 17 10
lin 3 21 21 21
path 8 9 4 4
ph 5 4 5 4
poly 12 16 13 9
t4p 18 6 10 8

Table 3.1: Comparative results of the KSATC and K KCSP solvers

Optimization 1:

The first key optimization was to mark as many box formulae as possible as

irrelevant which causes fewer subformulae to enter the subsequent layer. This was

achieved with the change of domain of the literals to {0, 1, u}, which we have already

covered above in detail.

Optimization 2:

In the basic algorithm, every time 1 is assigned to a formula ¬2ϕ, the subformula

¬ϕ is first transformed into CNF before turning it into CSP form. Such a CNF

conversion can lead to an explosion in the size of the formula. To remove this problem,

¬ϕ is treated as follows: The constraint ¬ϕ is satisfiable iff ϕ (which is a conjunction

of clauses) has at least one unsatisfiable clause. Hence, the constraint corresponding

to ¬ϕ is treated as a disjunction of constraints, each standing for a negated clause.

The disjunction is then converted into a conjunction with a set L of linking variables,

one for each disjunct. By taking this approach, the constraint solver is able to provide

a more efficient solution.

Optimization 3:

A subformula 2ψ of ϕ can occur several times in the modal formula at a particular

modal layer and can occur both positively and negatively. Each occurrence is treated

as a distinct propositional literal. To ensure consistency in the solution, an additional

constraint is added which states that this subformula must have only one value.

94

Optimization 4:

Top-level input formulae are simplified using the simplification rules for proposi-

tional formulae, as defined in Rules 3.4.1 and 3.4.2.

3.5.7 CSP-based modal solvers

To the best of our knowledge, K KCSP is the only CSP-based modal solver on which

a paper has been published. The papers by Brand et al. [18, 17] provide details of the

benchmark between K KCSP and KSATC in which the Heuerding and Schwendimann

test data sets were used. Because we will be discussing these data sets in detail in

Section 4.2 of the next chapter, we omit further details. As can be seen in Table 3.1,

K KCSP returns very good results for some of the data sets; for others KSATC is

better. Brand et al. concluded that the results K KCSP returns are good, warranting

a further study of this approach.

3.6 Alternative approaches to solving modal problems

We briefly outline some of the alternative approaches followed to solve the modal

satisfiability problem. The reader is referred to the relevant papers for further details.

One approach has been to translate modal problems into automata-theoretic prob-

lems and automata-theoretic methods have then been used to obtain answers. An

example of automata-theoretic techniques that were used to develop a decision pro-

cedure for the modal logic K was that developed by Pan, Sattler and Vardi [102].

Non-deterministic automata have size exponential in the size of the input formula.

However, by making use of Binary Decision Diagrams (BDDs) a good solution can

be obtained. An input formula is translated into a tree automaton that accepts all

tree models and the automaton is then tested for non-emptiness. This approach re-

turned good results. In [8], it was shown that an automata-based approach can be

transformed into a tableau-based decision procedure.

Modal formulae have been translated into quantified Boolean formulae (QBFs).

This was motivated by the recent development of QBF solvers (the SAT-2006 Ninth

International Conference on Theory and Applications of Satisfiability Testing included

a QBF Solver Evaluation) [15]. We provide a formal definition of QBFs.

95

Definition 3.6.1. A quantified Boolean formula (QBF) is a propositional formula

with a quantifier prefix whose variables are quantified existentially or universally. A

quantified Boolean formula QBF formula has the form

F = Q1X1 . . . QnXnP (X1, . . ., Xn)

where X1, . . ., Xn denote n mutually disjoint sets of variables that are quantified by

Q1, . . ., Qn respectively. Q1, . . ., Qn alternate between universal (∀) and existential

(∃) quantifiers while P (X1, . . ., Xn) is the propositional part of the formula.

An example of a QBF is ∀xy∃abc(x+y′+a)(x+y+b+c) where (x+y′+a)(x+y+b+c)

is the propositional part, variables x and y are universally quantified and variables a,

b and c are existentially quantified.

At the TANCS-2000 conference, some of the benchmark formulae were solved

by a QBF-solver that solved all the problems within a second – far exceeding the

performance of the modal systems [87]. A translation of modal formulae into QBF

was attempted in [101], but it was found that the reduction is not polynomial.

Modal proof systems have been based on the connection method of Wallen [131].

It uses matrix proof systems for modal logics that reduce the task of checking a modal

formula for validity to one of path checking. Complementary tests are performed by a

specialized unification algorithm. The connection method was applied by Otten and

Kreitz [100] to intuitionistic logic to develop a proof method that was subsequently

implemented as the theorem prover ileanTAP [99].

3.7 Final remarks

In this chapter we have looked at the most popular approaches taken to solve the

modal satisfiability problem and have found that a significant number of solvers have

implemented the tableau approach. These solvers are highly optimized, part of the

motivation of which comes from the need to find adequate solutions to the problems

arising as a result of the information explosion on the Internet.

The majority of other solvers translate the modal logic into various other classes

of problem, which has the benefit of being able to make use of the existing, well-

developed solvers of the alternate class.

96

The translation into first-order logic has been motivated partly by the desire to

understand why modal logics are decidable and first-order logics are not, particularly

in view of the seeming similarity in their semantics. However, the solver MSPASS

that implements the optimized functional translation gives good results.

The translations of modal formulae into layered propositional formulae that are

solved using a SAT solver or a constraint solver were looked at. Both of these solvers

– KSAT and K KCSP – returned good results for the modal logic K. This can partly

be attributed to the fact that SAT and CSP are both NP-complete, whereas the

modal satisfiability problem is at best PSPACE-complete – a PSPACE-complete

problem requires polynomial space to solve which can cause problems such as stack

overflows on implementation. These solvers have however been limited to the modal

logic K, with KSAT also being implemented for the modal logic KT.

A formal comparison of the performance of many of these solvers is to be found

in [87], which lists the results obtained at the TANCS-2000 conference. The solvers

submitted include MSPASS, *SAT, RACE, FaCT and DLP. The benchmark data

used at this conference were unbounded modal QBF formulae. A complicating factor

was that each solver was run on different hardware, using different compilers and

software, which made comparison difficult. To address this problem, the results ob-

tained for each solver were normalised and it was found that MSPASS performed the

best, followed by DLP, FaCT and lastly RACE. The reader is referred to the papers

[71, 51, 64, 103, 119] for further details.

Various other solvers have been developed to solve the modal satisfiability prob-

lem. We looked at some of these, most of which have been once-off attempts which

have not been taken further.

In the next chapter, we translate modal KT and S4 formulae into constraint

satisfaction problems and solve them by implementing a number of extensions and

enhancements to the existing K KCSP solver.

Chapter 4

KT and S4 modal satisfiability in a constraint logic

environment

We now focus on the translation of KT and S4 modal formulae into constraint logic

problems and the enhancement of the K KCSP solver developed by Brand et al.

[18] to achieve this objective. This solver returned some good results when tested

with the Heuerding / Schwendimann data sets for the modal logic K [11]. The

question now arises as to whether it can produce equally good results for KT and

S4 modal formulae. These logics have been selected primarily because they are the

logics implemented as a next step by other solvers – for example, the KSAT solver

was enhanced to deal with KT modal formulae.

Furthermore, it would be of interest to investigate whether this enhanced solver

can be adapted to deal with temporal logic problems, in which transitivity of the

accessibility relation is a key requirement – time is by its very nature transitive.

Transitive and reflexive accessibility relations have also proved to be important in

application areas of knowledge and belief where the modal logic KT45, which is also

referred to as S5, is commonly used to reason about agents. In this logic, a reflexive

accessibility relation is used to represent truth – ‘an agent knows only true things’,

a transitive accessibility relation is used for positive introspection – ‘an agent knows

what it knows’, and a euclidean accessibility relation is used for negative introspection

– ‘an agent knows what it does not knows’. The logic S5 is commonly chosen as the

logic of knowledge while the logic KD45, in which D is a serial accessibility relation,

is chosen as the logic of belief [73].

This chapter begins with a discussion of how tableau and sequent solvers deal with

the KT and S4 modal logics (due to the dissimilarity of the first-order translation

approach, it is not considered). For all these solvers, the application of reflexive

and transitive rules to a modal formula is problematic – the algorithm for KT loops

within worlds, while the algorithm for S4 produces infinite loops. Over and above

97

98

these problems, as soon as the algorithms to implement reflexivity and transitivity

are applied to a modal formula, its complexity increases considerably. Hence we first

look at how other solvers have dealt with these issues.

The next step is to identify suitable benchmark data sets that will be used to

test the efficiency of the prototypes we develop. We begin by looking at the back-

ground of data sets that have been developed for modal logics. There are currently

two groups of data sets that we could make use of. Of these, we select the Heuerding

/ Schwendimann data sets [11] which consist of nine classes of satisfiable and unsat-

isfiable formulae. They are well structured with problems of increasing complexity.

The modal logic KT in which the accessibility relation is reflexive, is then ana-

lyzed. We find that once the reflexivity algorithm is applied to a modal formula, it is

no longer in conjunctive normal form (Definition 2.2.21). The algorithm of Brand et

al. requires formulae to be in CNF. However, the conversion back to CNF results in

a marked increase in the number and size of the modal clauses. We therefore propose

two prototypes – one in which the final formula is in conjunctive normal form and

one in which it is not – and compare their respective performances.

The initial two prototypes implemented were not optimized or enhanced in any

way, other than with the optimizations already implemented by Brand et al. The

Heuerding / Schwendimann data sets for KT were used to benchmark them but it

was found that the results obtained were not particularly good. I then motivate and

apply a progression of enhancements and the improvements in the results are noted.

The enhancements consist of improving the simplification process, early pruning,

grouping clauses with the same literals, value assignments and caching. The final

prototype generates results that compare favorably with those of the TANCS-1998

benchmarks – I motivate the validity of the comparison. Of the two prototypes tested,

the one that does not maintain the modal formula in conjunctive normal form returns

better results. Finally, two of the data set classes that do not return good results are

analyzed – it does not seem that there is an enhancement that can be applied that

would improve their performance.

We then look at the modal logic S4, which requires the implementation of reflexive

and transitive accessibility relations. An analysis shows that we have the same looping

behavior experienced by the tableau and sequent approaches and that, after the

99

rules to implement reflexivity and transitivity have been applied, the original modal

formula increases substantially in complexity and size. The detection of loops is

simple because of the caching enhancement applied to the KT KCSP prototype. The

initial S4 KCSP prototype is based on the prototype in which the formulae are not

maintained in CNF, as this conversion is even more problematic in this case. It does

not return good results, particularly for one class of data sets. Simplification was

revisited and applied to modal formulae within an NNF clause. Early pruning was

reapplied after the simplification step. These were the only enhancements that made

a notable difference. The results are analyzed and suggestions made on possible future

improvements to this prototype.

4.1 Current approaches to satisfiability solving of modal logics KT and

S4

We begin by looking at how KT and S4 have been dealt with in tableau and Gentzen

sequent systems, as discussed in Sections 3.1 and 3.2. The commonality between

these approaches is the fact that they build a modal tree with the modal formula at

the root of the tree, whereas the translation to first-order formulae applies resolution

to the translated formula (Section 3.3.2).

When solving modal satisfiability problems for KT and S4 in tableau and sequent

systems, the proofs in general do not terminate. A proof is an attempt to build a

Kripke counter-model – recall from Definition 2.2.4 that for a formula to be satisfiable,

it must be true at some world in some model. Hence, in the counter-model, if all

possibilities have been tried and a counter-model cannot be constructed, the formula

is valid.

The tableau rules for the modal logics KT and S4 were provided in Definitions

3.1.7 and 3.1.8 of the previous chapter and their application results in non-termination

as demonstrated below:

- Looping inside a world occurs with the application of the tableau rule (T) in the

modal logic KT. Consider the formula 22(ϕ1 ∨ 2ϕ2) and its tableau proof in

Figure 4.1. The continued application of the (T) rule results in the tableau not

terminating. Because we have to try all possibilities, the reapplication of this

100

rule is theoretically necessary. Note that to simplify the tableau, we represent

(ϕ1 ∨ 2ϕ2) as ϕ3 in the Figure in most cases.

22(ϕ3)
(T)

22(ϕ3); 2(ϕ3)
(T)

22(ϕ3); 2(ϕ3); ϕ1 ∨ 2ϕ2
(∨)

qqqqqqq (∨)

MMMMMMM

22(ϕ3); 2(ϕ3); ϕ1

(T)

22(ϕ3); 2(ϕ3); 2ϕ2

(T)

22(ϕ3); 2(ϕ3); ϕ1 ∨ 2ϕ2; ϕ1
(∨)

qqqqqqq (∨)

MMMMMMM 22(ϕ3); 2(ϕ3); 2ϕ2; ϕ2

(T)

....

Figure 4.1: Looping in the tableau for the formula 22(ϕ1 ∨ 2ϕ2) in the modal logic

KT

- Infinite looping occurs in a branch with the application of the tableau rules (T)

and (S4) in the modal logic S4. Consider the formula 23ϕ and its tableau

proof in Figure 4.2. The continued application of the tableau rules (T) and

(S4) results in a proof that does not terminate.

23ϕ
(T)

23ϕ; 3ϕ
(S4)

23ϕ;ϕ
(T)

23ϕ; 3ϕ;ϕ
(S4)

23ϕ;ϕ
(T)

....

Figure 4.2: Looping in the proof of the formula 23ϕ in the modal logic S4

101

Various strategies have been identified in tableau systems and in the sequent calcu-

lus to deal with non-termination. In the case of KT, one can control the reapplication

of the same rule within a particular world. In the case of S4, the application of the

(S4) tableau rule systematically produces a copy of the principal modal formula, and

the formula does not disappear as it does in the case of the KT tableau. To solve the

resulting nontermination issue of S4, a backtracking mechanism and a loop checking

test are required. Before applying any rule to a formula, it is necessary to check that

the rule has not already been applied. If a loop is detected, backtracking is necessary

to ensure completeness of the proof search. Backtracking and loop checking can be

expensive and so need to be reduced wherever possible – loop checking requires that

the history of formulae already processed is stored.

The general approaches applied to create decision procedures for these logics in-

clude the following:

- An early approach was to keep the original tableau calculus and constrain the

applicability of the rules in the case of S4 [32]. A non-uniform ordering of

tableau rules was imposed with a non-exhaustive backtracking mechanism. The

periodicity test which checks for loops was performed only if a π-rule was applied

to the current branch, which limited the application of the test (recall from

Definition 3.1.11 that a rule applied to a 3-formula is referred to as a π-rule).

- The rules of the Gentzen sequent calculus were revised and constraints were

directly incorporated [61]. In the case of KT, the sequent rules were modified

to split formulae into those not yet handled in this world and those already

handled, which resulted in proofs that did not loop. In the case of S4, loop-

checking was applied. Loop-checking however requires that history is stored,

which can be expensive. The sequent rules were modified to include a limited

history of all sequents on the branch in the past. This solution is efficient and

easy to implement and also minimizes the stored history.

- The logic S4 can be translated into a logic which has less complex proof pro-

cedures, as was proposed in [20]. A proof procedure for S4 requires periodicity

tests that a logic such as KT does not and since the translation of S4 into KT

can be done in deterministic polynomial time, this is a feasible option. In the

102

case of KT, at any step in the expansion of a tableau, there are only a finite

number of choices and the construction of any tableau terminates if one avoids

the reapplication of the (T) rule.

- The accessibility relation can be represented explicitly, as was done in the single

step tableau of [84] which was discussed in Section 3.1.2. To obtain decision

procedures, the applicability of tableau rules is restricted – a rule is applied to

a prefixed formula only if the formula has not already been reduced, which is a

form of loop checking. Loop checking for transitive logics is thus replaced with

a simple and effective termination check – a set of formulae already reduced is

not reduced again.

These techniques were further developed in solvers such as DLP and FaCT, dis-

cussed in Section 3.1.4 of the previous chapter. In particular, the status of each

node is cached which reduces search time when a similar node is encountered and

its satisfiability status is already known. This increases the space requirement but

results in significant gains in speed. When an unsatisfiable node is encountered and

backtracking is required, backjumping over the nodes that did not contribute to the

current clash is applied, thereby reducing the search space. The data structures used

are also highly optimized.

4.2 Benchmark test data sets

Now that we have outlined how existing solvers deal with these logics, we look at the

history of test data sets for modal logics and select those that will be extensively used

in our benchmarks.

In 1996, Giunchiglia and Sebastiani [44] identified the need for formal test data

sets for modal logics. At that time, there was a wide bibliography on problem sets

and test-generating methods for propositional and first-order theorem proving, but

nothing much for modal logic problems. They took the fixed clause-length SAT test

model (as described in, for example, [90]) and modified it to provide for the modal

logic K(m). The fixed clause-length test generates random clauses of length 3, while

varying the number of clauses L and the number of propositional literals N . The

formulae generated are referred to as 3CNF well-formed formulae (wffs).

103

Giunchiglia and Sebastiani [44] adapted this approach to generate CNFK(m) wffs.

They used clauses in which the number of literals per clause was fixed to 3 – thereby

generating 3CNFK(m) formulae. These were generated using 5 parameters – the modal

depth d, the number of distinct boxes m, the number of top-level clauses L, the

number of propositional literals N and the probability p with which any random

3CNFK(m) atom is propositional.

These data sets were used in the initial comparisons between their KSAT solver

and various other solvers [46] and were the first formal modal logic data sets.

Hustadt and Schmidt [70] subsequently showed that these data sets had some

shortcomings in that they produced a substantial amount of tautologous and contra-

dictory subformulae and did not produce challenging unsatisfiable modal formulae.

They analyzed the data sets produced and developed guidelines for the random gener-

ation of modal formulae. In particular, they recommended that the random generator

should be modified to prevent repeated propositional literals inside the same clause.

They also recommended that the probability variable p be removed. Giunchiglia et

al. [42] then tested these assertions and made further recommendations to improve

the quality of test data sets.

Heuerding and Schwendimann took a different approach to designing data sets

[11, 60]. They defined the criteria such formulae must adhere to, namely that they

must be sufficiently hard for forth-coming provers, the result of each formula must

already be known (an excellent benefit for new provers), and the formulae must not

take too long to prove. They defined nine classes of 21 provable and 21 not provable

formulae for each of the logics K, KT and S4 and placed these formulae on the

Internet for easy access [74]. The formulae in each class become progressively more

complex, enabling one to clearly determine the limits of one’s solver.

Heuerding and Schwendimann [11] provide full details of how the formulae in each

class are generated – we will describe only the generation of the k poly p formulae

(this naming convention denotes provable formulae for modal K for the poly-class).

They use as a baseline the formula

(p1 ↔ p2) ∨ ... ∨ (pn−1 ↔ pn) ∨ (pn ↔ p1)

which says that if we have a polygon with n vertices and all the vertices are either

104

black or white, then two adjacent vertices have the same color. If n is odd, this

formula is provable. The data sets are generated as follows:

k poly p(n) =

{
poly(3n+ 1) if n mod 2 = 0

poly(3n) if n mod 2 = 1

where

poly(n) = 2n+1
∧
i=1,...,n+1(pi) ∨ f(n, n) ∨ 2n+1

∧
i=1,...,n+1(¬p2i)

and

f(i, n) = 3(f(i− 1, n) ∨ 3i(pn ↔ p1)) ∨ 2 pi+2

The formulae for k poly n (n denotes non-provable) are generated with an even

number of vertices, that is,

k poly n(n) =

{
poly(3n) if n mod 2 = 0

poly(3n+ 1) if n mod 2 = 1

and poly and f are defined as in k poly p.

These data sets were used as benchmarks in the TANCS-1998 competition [10].

An alternate series of benchmark data was used for the TANCS-2000 competition [87],

these being modal quantified Boolean formulae (QBF formulae have been defined in

Definition 3.6.1). Some of these TANCS-2000 test data sets however ran for over 3

hours before being timed out [6]. An analysis of empirical test methodologies and a

comparison of the Heuerding / Schwendimann, 3CNF and QBF data sets and their

results is provided in the paper [66].

Having considered the available benchmark data sets, the Heuerding / Schwendi-

mann data sets were selected, as these formulae are not randomly generated and have

known results. This is an important feature when developing a prototype for formulae

as complex as modal formulae. These data sets are of increasing complexity, which

gives a good understanding of the limitations of the prototype. For example, if the

prototype cannot solve the fifth dataset, it will definitely not be able to solve any of

the remaining data sets. A standard is set on the timing so that, if a prototype does

not return a result within 100 CPU seconds, the formula is counted as unsolvable.

This means that results are quickly verified. These data sets are therefore considered

ideal for the work that follows.

105

4.3 Reflexivity and the KT KCSP solver

Before adding reflexivity to the K KCSP algorithm, we need to understand the

specifics of the problem and describe how it will be implemented.

4.3.1 Basic Issues

Consider the following modal formula to which the reflexivity axiom or rule T (Defi-

nition 2.3.3) is applied at the current modal layer.

Example 4.3.1. Suppose we have

ϕ = p1 ∨ p2 ∨ 222(p3 ∨ 2p4)

If we apply the reflexivity or (T) rule, which replaces 2ϕ with 2ϕ ∧ ϕ, we get

p1 ∨ p2 ∨ (222(p3 ∨ 2p4) ∧ 22(p3 ∨ 2p4) ∧ 2(p3 ∨ 2p4) ∧ (p3 ∨ (2p4 ∧ p4)))

a

We can immediately see that there are two challenges when reflexivity is applied

– firstly the number of clauses in the formula is significantly increased and secondly,

the formula is no longer in CNF (Definition 2.2.21).

We address these issues separately:

1. Problem: The increase in the number of clauses

Example 4.3.2. We take as an example the formula ϕ = 222(p3 ∨ 2p4) and

stratify it into modal layers. We apply the reflexivity rule to get:

Layer 1 : 222(p3 ∨ 2p4) ∧ 22(p3 ∨ 2p4) ∧ 2(p3 ∨ 2p4) ∧
(p3 ∨ (2p4 ∧ p4))

For this formula to be true at this world, we can set p3 and the 2-formulae to

True. This formula is thus satisfiable at this modal layer and strictly speaking

no further processing is required. However, the purpose of this example is to

clarify the expansion of such a formula and so we proceed. We now move to the

106

next modal layer where the formula becomes 22(p3 ∨ 2p4) ∧ 2(p3 ∨ 2p4) ∧
(p3 ∨ 2p4). We apply the reflexivity rule once more to get:

Layer 2 : (22(p3 ∨ 2p4) ∧ 2(p3 ∨ 2p4) ∧ (p3 ∨ (2p4 ∧ p4))) ∧
(2(p3 ∨ 2p4) ∧ (p3 ∨ (2p4 ∧ p4))) ∧
(p3 ∨ (2p4 ∧ p4))

which can be simplified to (22(p3 ∨ 2p4) ∧ 2(p3 ∨ 2p4) ∧ (p3 ∨ (2p4 ∧ p4))).

Once more, setting p3 and the 2-formulae to True ensures the satisfiability of

the formula at this modal layer.

We move to the next modal layer where the formula becomes 2(p3 ∨ 2p4) ∧
(p3 ∨ 2p4). We apply the reflexivity rule to get:

Layer 3 : (2(p3 ∨ 2p4) ∧ (p3 ∨ (2p4 ∧ p4))) ∧ (p3 ∨ (2p4 ∧ p4))

This formula can be simplified to 2(p3 ∨ 2p4) ∧ (p3 ∨ (2p4 ∧ p4))). We

follow the same process of setting p3 and the 2-formulae to True to achieve

satisfiability at this world. At the next modal layer, the formula becomes (p3 ∨
2p4). We apply the reflexivity rule to get:

Layer 4 : (p3 ∨ (2p4 ∧ p4))

Once more, p3 is set to True to achieve satisfiability at this world.

In effect, we have satisfied this formula by creating a model in which p3 is True

at each of the four worlds in the model. We can see from the above that the

strict application of the reflexivity axiom results in the repetition of clauses.

We also see that the modal depth of the formula decreases at each modal layer.

a

An alternate approach is required to reduce the number of clauses generated –

we propose the following Lemma.

107

Lemma 4.3.3. For any frame F = (W,R), R is reflexive if and only if, for n

> 0,

2nϕ → ϕ

is valid in the frame, where 2n represents n occurrences of 2.

Proof. Suppose we have an arbitrary frame F in which R is reflexive. By ap-

plying the T axiom (Definition 2.3.3) to 2nϕ, we get 2nϕ → 2n−1ϕ. Similarly,

2n−1ϕ → 2n−2ϕ and finally, 2ϕ → ϕ. Thus, 2nϕ → ϕ is valid in F . Since F
and n were arbitrarily chosen, 2nϕ → ϕ is valid in any reflexive frame.

Conversely, suppose 2nϕ → ϕ is valid in an arbitrary frame F = (W,R). By

setting n = 1, we have that 2ϕ → ϕ is valid, which is the T axiom. Therefore,

R is reflexive (Definition 2.3.5). a

To simplify the Lemma which follow, we will refer to 2nϕ → ϕ as the KT ′

axiom.

We next need to prove soundness and completeness. However, before proceed-

ing, we revisit the internal representation of a modal formula and look at how

the modal literals are actually dealt with.

Recall that the K KCSP algorithm assigns a unique propositional literal to each

modal literal (Definition 3.4.11), which effectively means that modal literals are

not processed at the current modal layer – all that happens is that they are

assigned a value from the domain {0, 1, u}. To be more specific, a positive

modal literal will be assigned a value of either 1 or u and only if it is assigned

a value of 1 does it move to the next modal layer. For example, if we have a

clause that contains p ∨ 2p1, the propositional approximation of which is p ∨
x1[2p1], x1[2p1] will typically be assigned the value u and will only be given

the value 1 if p is False. If we have a modal unit clause 2p2, which has the

propositional approximation x2[2p2], it will be assigned a value of 1 and the

next modal layer will have p2 as a propositional literal (recall Definition 3.4.6

and Theorem 3.4.14).

108

When the T axiom is applied to 2nϕ, the expansion is 2nϕ ∧ 2n−1ϕ ∧ . . . ∧ ϕ.

This formula is represented internally as x1[2
nϕ] ∧ x2[2

n−1ϕ] ∧ . . . ∧ ϕ where

each xi is a unique propositional literal. The constraint solver assigns the value

of 1 or u to each xi. Therefore, the only literal in this expansion which could

be assigned the value False is ϕ.

Lemma 4.3.4. Applying the KT ′ axiom at each modal layer, to each occurrence

of 2nϕ, is a sound and complete strategy to ensure the reflexivity of R in the

KT KCSP algorithm.

Proof. We need to show that the application of the KT ′ axiom at the each

modal layer returns the same result as the application of the T axiom.

We begin by considering the current modal layer. The application of the KT ′

axiom to the clause 2nϕ results in it being replaced with ϕ1 = 2nϕ ∧ ϕ. The

application of the T axiom results in it being replaced with ϕ2 = 2nϕ ∧ 2n−1ϕ

∧ . . . ∧ ϕ.

When the constraint solver evaluates a modal formula, it assigns a value of 1 or

u to each positive modal literal, as already discussed. This means that, when

ϕ1 and ϕ2 are processed, they are both effectively reduced to ϕ. Hence, the

constraint solver will return the same result at this modal layer.

At the next modal layer, if n = 1, we have ϕ from both ϕ1 and ϕ2. For n >

1, we have 2n−1ϕ from ϕ1 and the application of the KT ′ axiom gives ϕ′1 =

2n−1ϕ ∧ ϕ. We have 2n−1ϕ ∧ . . . ∧ ϕ from ϕ2 and the application of the T

axiom gives ϕ′2 = 2n−1ϕ ∧ . . . ∧ ϕ. Again, since the constraint solver assigns

a value of 1 or u to each positive modal literal, ϕ′1 and ϕ′2 are both effectively

reduced to ϕ and so both scenarios return the same result.

The application of both axioms therefore returns the same result.

a

Example 4.3.5. We apply Lemma 4.3.4 to Example 4.3.2 above to get:

Layer 1 : 222(p3 ∨ 2p4) ∧ (p3 ∨ (2p4 ∧ p4))

109

Layer 2 : 22(p3 ∨ 2p4) ∧ (p3 ∨ (2p4 ∧ p4))

Layer 3 : 2(p3 ∨ 2p4) ∧ (p3 ∨ (2p4 ∧ p4))

Layer 4 : (p3 ∨ (2p4 ∧ p4))

These formulae are satisfiable at each modal layer by setting p3 to True –

we have created the same model as in the previous example. a

2. Problem: The loss of CNF

We need to address the problem of dealing with the loss of conjunctive normal

form in the formula after Lemma 4.3.4 has been applied (recall that the K KCSP

algorithm (Section 3.5.4) is based on formulae that are in CNF, as is the DPLL

SAT algorithm (Section 3.4.1)).

Example 4.3.6. After Lemma 4.3.4 has been applied to the formula ϕ = p1 ∨
2p2 ∨ 2p3 ∨ 2p4, it becomes

(p1 ∨ (2p2 ∧ p2) ∨ (2p3 ∧ p3) ∨ (2p4 ∧ p4))

in which we have three clauses that are not in conjunctive normal form. When

converted to CNF (Definition 2.2.21), it becomes

(p1 ∨ 2p2 ∨ 2p3 ∨ 2p4) ∧
(p1 ∨ p2 ∨ 2p3 ∨ 2p4) ∧
(p1 ∨ 2p2 ∨ p3 ∨ 2p4) ∧
(p1 ∨ p2 ∨ p3 ∨ 2p4) ∧
(p1 ∨ 2p2 ∨ 2p3 ∨ p4) ∧
(p1 ∨ p2 ∨ 2p3 ∨ p4) ∧
(p1 ∨ 2p2 ∨ p3 ∨ p4) ∧
(p1 ∨ p2 ∨ p3 ∨ p4)

Hence, three clauses not in CNF have been converted into 8 = 23 clauses. The

growth in the number of clauses has occurred due to the conversion of the

formula into CNF. a

110

Theorem 4.3.7. Suppose we have a modal formula ϕ in conjunctive normal

form, which contains a modal clause which has n positive modal literals. Suppose

we apply Lemma 4.3.4 to this modal clause and then convert it back to CNF.

The original modal clause will be replaced by 2n modal clauses.

Proof. The proof is by induction and is applied only to the modal clause. Let

ϕ′ be the modal clause with ϕ′ = ψ1 ∨ 2ϕ1 ∨ . . . ∨ 2ϕn where ψ1 contains no

positive modal literals.

In the base case, if n = 0, the clause will stay the same after Lemma 4.3.4 has

been applied, generating 20 = 1 clause.

Suppose that the theorem holds for some n > 0. That is, after Lemma 4.3.4

has been applied and the formula is converted to CNF, 2n clauses are generated

from these positive modal literals.

We must now show that the theorem holds for a clause ϕ′ which has n + 1

positive modal literals. We can rewrite ϕ′ = ψ1 ∨ 2ϕ1 ∨ . . . ∨ 2ϕn as ϕ′ =

ψ1 ∨ ψ2 where ψ2 = ψn ∨ 2ϕn+1 and ψn = 2ϕ1 ∨ . . . ∨ 2ϕn. We first apply

Lemma 4.3.4 to 2ϕn+1 to get ψ2 = ψn ∨ (2ϕn+1 ∧ ϕn+1).

By the inductive hypothesis, when Lemma 4.3.4 is applied to ψn and the result

is converted to CNF, it becomes 2n clauses – we denote each clause as ψ1, . . .,

ψ2n . By substitution, we now have

ψ2 = (ψ1 ∧ . . . ∧ ψ2n) ∨ (2ϕn+1 ∧ ϕn+1).

Applying the distributive law (Definition 2.2.21) gives

ψ2 = (ψ1 ∨ (2ϕn+1 ∧ ϕn+1)) ∧ . . . ∧ (ψ2n ∨ (2ϕn+1 ∧ ϕn+1))

The re-application of the distributive law gives

ψ2 = (ψ1 ∨ 2ϕn+1) ∧ (ψ1 ∨ ϕn+1) ∧ . . . ∧ (ψ2n ∨ 2ϕn+1) ∧ (ψ2n ∨ ϕn+1)

which is now in CNF and contains 2n + 2n = 2n+1 clauses. That is, the theorem

holds.

a

111

The theorem was proved for a single NNF clause which contains n positive

modal literals. If we have m NNF clauses in a modal formula, each of which has

n positive modal literals, the number of clauses generated will be 2nm. Hence,

the application of the CNF rule causes an exponential increase in the number

of clauses.

4.3.2 Approaches to the KT KCSP algorithm

The work that follows expands the work done in the paper by Brand et al. [18]

to include the modal logics KT and S4. The prototype of the K KCSP algorithm

which was kindly provided by Brand was applicable only to formulae in CNF and

was applicable only to the modal logic K. I now discuss the enhancements I have

made to deal with modal formulae not in conjunctive normal form, as well as the

enhancements made to the prototype to make provision for the modal logics KT and

S4. We begin with KT .

We have seen that after reflexivity has been applied to a modal formula and it is

translated back into CNF, we end up with an exponential increase in the number of

clauses. Therefore, I propose two alternate approaches:

1. As was the case with the K KCSP prototype, convert the input formula to

CNF. Thereafter, at each modal layer, apply Lemma 4.3.4 to the positive modal

literals in the formula and convert the result back to CNF before processing by

the constraint solver. This approach maintains the formula in CNF. I refer to

this approach as KT KCSP CNF.

2. Do not convert the input formula or the formula after Lemma 4.3.4 has been

applied into CNF. I refer to this approach as KT KCSP NoCNF.

4.3.3 The KT KCSP CNF algorithm

Algorithm 6. The KT KCSP CNF algorithm schema can be represented as follows:

112

function KT KCSP CNF(ϕ)

ϕneg = ¬ϕ;

ϕinit = to cnf(ϕneg);

KT CSP CNF(ϕinit);

end;

function KT CSP CNF(ϕ) // succeeds if ϕ is satisfiable

ϕkt = apply reflexivity(ϕ);

ϕcnf = to cnf(ϕkt);

ϕcsp = to csp(ϕcnf); // backtrack if this fails

µ := csp(ϕcsp);

Θ =
∧
{α : 2α = 1 is in µ};

for each 2β = 0 in µ do

KT CSP CNF(Θ ∧ ¬β); // backtrack if this fails

end;

The algorithm proceeds as follows: The initial formula is negated and then con-

verted to CNF. Thereafter, at each modal layer, after Lemma 4.3.4 has been applied,

the formula is converted first to CNF and then to a constraint satisfaction prob-

lem. It is submitted to the ECLiPSe constraint solver, which either returns a truth

assignment or backtracks.

The only difference between this and the K KCSP algorithm (Section 3.5.4) is the

application of Lemma 4.3.4 and the conversion of the result to CNF.

4.3.4 The KT KCSP NoCNF algorithm

We begin by considering an input formula and then look at an example that illustrates

the benefits of not applying CNF. This example serves to introduce the approach we

will be taking.

In the K KCSP algorithm, the input formula was first converted into negation

negative form (Definition 2.2.18) and then into CNF. We now propose the conversion

of the input formula into only NNF. This conversion occurs only once.

In the following example, we convert a modal formula to CNF and then generate

113

its partial truth assignments (Definitions 3.4.6 and 3.4.8). We compare this with the

case where CNF is not applied. This serves to illustrate the approach we will use in

the KT KCSP NoCNF prototype.

Example 4.3.8. Consider the modal formula

ϕ = 2ψ ∧ (¬2ψ1 ∨ (¬2ψ2 ∧ ¬2ψ3))

which consists of modal literals.

When we convert this formula to CNF, we get

ϕ′ = 2ψ ∧ (¬2ψ1 ∨ ¬2ψ2) ∧ (¬2ψ1 ∨ ¬2ψ3)

There are several possible truth assignments that the constraint solver can return,

these being:

(1) µ = {2ψ, ¬2ψ1}
(2) µ = {2ψ, ¬2ψ1, ¬2ψ2}
(3) µ = {2ψ, ¬2ψ1, ¬2ψ3}
(4) µ = {2ψ, ¬2ψ2, ¬2ψ3}

If we do not convert the formula to CNF, we can instead verify the satisfiability

of

ϕ1 = 2ψ ∧ ¬2ψ1

and

ϕ2 = 2ψ ∧ ¬2ψ2 ∧ ¬2ψ3

with the proviso that ϕ2 is processed only if ϕ1 is not satisfiable.

The possible truth assignments the constraint solver will return in this case are

(5) µ = {2ψ, ¬2ψ1}
(6) µ = {2ψ, ¬2ψ2, ¬2ψ3}

Now suppose that ¬ψ1 is unsatisfiable (recall that ¬2ψ1 becomes ¬ψ1 at the next

modal layer). If this was a complex formula in that it consisted of many modal layers,

114

it could take considerable resources before establishing that it is unsatisfiable. In the

case in which the formula was translated into CNF, ¬ψ1 is processed three times,

causing backtracking each time; in the second case, it gets processed only once. a

The approach I propose is as follows: Instead of converting the formula into

CNF, add a step in which we selectively construct the modal formula to convert

into a constraint satisfaction problem and then pass to the constraint solver. In the

event that this formula is not satisfiable, the constraint solver will backtrack and an

alternate formula will be constructed for processing. This process will be repeated

until either a satisfiable result is returned or no further processing is possible.

Prior to defining the algorithm, I provide an alternate way of structuring a modal

formula.

Definition 4.3.9. A NNF clause ψ in a modal formula ϕ can be represented as

ψ = ψ′ ∨ θ1 ∨ . . . ∨ θn

where

ψ′ =
∨
{l : l ∈ P} ∨

∨
{2α : 2α ∈ B+} ∨

∨
{¬2β : 2β ∈ B−}

and P is a set of propositional literals, B+ and B− are sets of modal atoms and θ1,

. . ., θn are NNF formulae (Definition 2.2.18).

Example 4.3.10. Consider the NNF clause

ψ = p1 ∨ p2 ∨ (p3 ∧ (2p4 ∨ p5)) ∨ ¬2p6

In terms of the above definition, it can be rewritten with ψ′ = p1 ∨ p2 ∨ ¬2p6,

where θ1 = (p3 ∧ (2p4 ∨ p5)). a

I now define the KT KCSP NoCNF algorithm.

Algorithm 7. The KT KCSP NoCNF algorithm schema can be represented as fol-

lows:

115

function KT KCSP NoCNF(ϕ)

ϕneg = ¬ϕ;

ϕnnf = to nnf(ϕneg);

KT CSP NoCNF(ϕnnf);

end;

function KT CSP NoCNF(ϕ) // succeeds if ϕ is satisfiable

ϕkt = apply reflexivity(ϕ);

ϕformula = construct formula(ϕkt);

ϕcsp = to csp(ϕformula);

µ := csp(ϕcsp); // backtrack if this fails

Θ =
∧
{α : 2α = 1 is in µ};

for each 2β = 0 in µ do

KT CSP NOCNF(Θ ∧ ¬β); // backtrack if this fails

end;

The input formula is first converted into negation normal form (Definition 2.2.18)

and Lemma 4.3.4 is applied, returning ϕkt. The new function construct formula

proceeds as follows. Each clause in ϕkt is grouped as per Definition 4.3.9. The

formula ϕformula is constructed as the conjunction of the ψ′ components of each NNF

clause. If there is no ψ′ component in an NNF clause, the θ1 component is used

instead. This formula is then converted into a constraint satisfaction problem and

fed to the constraint solver. If the constraint solver cannot find a solution, it will

backtrack to construct formula and a new formula will be built using the remaining

θi clauses.

This is demonstrated in the following example.

Example 4.3.11. Consider the modal formula

ϕ = 2ψ3 ∧ (¬p1 ∨ (p4 ∧ 2ψ1)) ∧ (p2 ∨ (¬p2 ∧ 2ψ2))

which becomes

ϕ′ = 2ψ3 ∧ ψ3 ∧ (¬p1 ∨ (p4 ∧ 2ψ1 ∧ ψ1)) ∧ (p2 ∨ (¬p2 ∧ 2ψ2 ∧ ψ2))

116

after Lemma 4.3.4 has been applied.

In terms of Definition 4.3.9, the first clause has ψ′1 = 2ψ3, the second has ψ′2 =

ψ3, the third has ψ′3 = ¬p1 and θ21 = (p4 ∧ 2ψ1 ∧ ψ1) and the fourth has ψ′3 = p2

and θ31 = (¬p2 ∧ 2ψ2 ∧ ψ2). The function construct formula successively generates

the following formulae to submit to the constraint solver.

(1) ϕ1 = 2ψ3 ∧ ψ3 ∧ ¬p1 ∧ p2

(2) ϕ2 = 2ψ3 ∧ ψ3 ∧ ¬p1 ∧ (¬p2 ∧ 2ψ2 ∧ ψ2)

(3) ϕ3 = 2ψ3 ∧ ψ3 ∧ (p4 ∧ 2ψ1 ∧ ψ1) ∧ p2

(4) ϕ4 = 2ψ3 ∧ ψ3 ∧ (p4 ∧ 2ψ1 ∧ ψ1) ∧ (¬p2 ∧ 2ψ2 ∧ ψ2)

The constraint solver processes the first of these formulae and only if it is not

satisfiable will it backtrack and process the next formula. a

We can see from the above example that this approach displays the same expo-

nential behavior as the conversion to CNF – if the modal formula consisted of three

NNF clauses, each of which had a θ1-component, construct formula would generate

eight formulae in total. However, as we have seen in Example 4.3.8, there are benefits

to selectively constructing the modal formula to submit to the constraint solver.

4.3.5 The initial KT KCSP prototypes

The prototypes discussed in the previous two sections were tested using the Heuerding-

Schwendimann KT data sets (discussed on page 103). Any data set that takes more

than one hundred CPU-seconds to return a result is discounted. Wherever all 21 data

sets have been solved, it is indicated by the ‘>’ symbol. The results obtained for each

class are listed in Table 4.1. In order to obtain a clearer understanding of the results,

they are classified in the second table in terms of the number of data sets solved in

each of 5 categories. For the n-data sets, the CNF prototype solved between 0 and

5 data sets for 4 classes while being unable to solve 21 data sets for any class. For

the p-data sets, all 21 data sets were solved for only one class, this being kt poly p.

Ideally, the higher the numbers in the last column, the more successful the solver is.

The KT KCSP CNF prototype was unable to solve any data sets in the kt grz n,

kt grz p and kt t4p p classes. An analysis shows that this is due to the large number

117

CNF NoCNF CNF NoCNF

n n p p
kt branch 12 3 18 2
kt 45 7 8 9 8
kt dum 11 14 3 5
kt grz 0 > 0 9
kt md 5 5 5 4
kt path 10 10 2 2
kt ph 7 7 3 4
kt poly 2 2 > >
kt t4p 1 3 0 3

0-5 6-10 11-15 16-20 21

CNF n 4 3 2 – –
p 6 1 – 1 1

NoCNF n 4 3 1 – 1
p 6 2 – – 1

Table 4.1: Initial results of the KT KCSP prototypes

of clauses generated by the CNF conversion – in fact, after 10 minutes, no result was

returned for the first data sets. KT KCSP NoCNF on the other hand solved 21, 9 and

3 data sets respectively for each of these classes. For the data sets of the kt branch

class, KT KCSP CNF returned significantly better results than KT KCSP NoCNF

– in this case, the CNF conversion is beneficial. For the kt path and kt poly classes,

both prototypes solved the same number of data sets and for the remaining classes,

there are not significant differences in their performance.

Note that in most cases a smaller number of problems were solved for p-data sets

than for n-data sets.

The KT KCSP CNF and KT KCSP NoCNF prototypes used so far have been

based on the code of Brand, with the addition of Lemma 4.3.4 in both cases and the

removal of the conversion to CNF in the second prototype. In order to improve these

results, the prototypes need to be further enhanced. These enhancements are detailed

in the remainder of this chapter. They have, to my knowledge, not been applied in a

constraint logic environment before.

118

4.3.6 KT – Enhancement 1 – Propositional and modal simplification

We saw in the previous chapter (Sections 3.1.4 and 3.4.1) that simplification results

in significant improvements in performance for all the solvers developed – this is

an obvious area to address. The K KCSP prototype includes simplification at a

propositional level – we now look at whether any further improvements are possible.

Unit subsumption and unit resolution (Rules 3.4.1 and 3.4.2) are both applied

to modal formulae which are in conjunctive normal form. In the KT KCSP NoCNF

prototype, a modal formula is no longer in CNF and hence simplification is not applied

to clauses, simply because the clauses are no longer programmatically in the correct

format. We consider the implications thereof in the next example.

Example 4.3.12. Consider the modal formula

ϕ = p100 ∧
¬p101 ∧
2((¬p101 ∨ p100) ∧

(¬p102 ∨ p101) ∧
(¬p100 ∨ ((¬p0 ∨ 2(¬p100 ∨ p0)) ∧ (p0 ∨ 2(¬p100 ∨ ¬p0)))) ∧
(¬p101 ∨ ((¬p1 ∨ 2(¬p101 ∨ p1)) ∧ (p1 ∨ 2(¬p101 ∨ ¬p1)))) ∧
(p101 ∨ ¬p100 ∨ ((¬2(p102 ∨ ¬p101 ∨ ¬p1))

∧ (¬2(p102 ∨ ¬p101 ∨ p1)))))

When Lemma 4.3.4 is applied to it, we get

ϕ1 = p100 ∧ (1)

¬p101 ∧ (2)

(2((¬p101 ∨ p100) ∧
(¬p102 ∨ p101) ∧
(¬p100 ∨ ((¬p0 ∨ 2(¬p100 ∨ p0)) ∧ (p0 ∨ 2(¬p100 ∨ ¬p0)))) ∧
(¬p101 ∨ ((¬p1 ∨ 2(¬p101 ∨ p1)) ∧ (p1 ∨ 2(¬p101 ∨ ¬p1)))) ∧
(p101 ∨ ¬p100 ∨ ((¬2(p102 ∨ ¬p101 ∨ ¬p1))

∧ (¬2(p102 ∨ ¬p101 ∨ p1)))))) ∧

119

(¬p101 ∨ p100) ∧ (3)

(¬p102 ∨ p101) ∧ (4)

(¬p100 ∨ (((¬p0 ∨ ((¬p100 ∨ p0) ∧ (2(¬p100 ∨ p0)))) ∧
((p0 ∨ ((¬p100 ∨ ¬p0) ∧ (2(¬p100 ∨ ¬p0)))))))) ∧ (5)

(¬p101 ∨ (((¬p1 ∨ ((¬p101 ∨ p1) ∧ (2(¬p101 ∨ p1)))) ∧
((p1 ∨ ((¬p101 ∨ ¬p1) ∧ (2(¬p101 ∨ ¬p1)))))))) ∧ (6)

(p101 ∨ ¬p100 ∨ ((¬2(p102 ∨ ¬p101 ∨ ¬p1)) ∧
(¬2(p102 ∨ ¬p101 ∨ p1)))) (7)

By applying unit subsumption and unit resolution to the NNF clauses, this formula

can be simplified to

ϕ2 = p100 ∧
¬p101 ∧
(2((¬p101 ∨ p100) ∧

(¬p102 ∨ p101) ∧
(¬p100 ∨ ((¬p0 ∨ 2(¬p100 ∨ p0)) ∧ (p0 ∨ 2(¬p100 ∨ ¬p0)))) ∧
(¬p101 ∨ ((¬p1 ∨ 2(¬p101 ∨ p1)) ∧ (p1 ∨ 2(¬p101 ∨ ¬p1)))) ∧
(p101 ∨ ¬p100 ∨ ((¬2(p102 ∨ ¬p101 ∨ ¬p1))

∧ (¬2(p102 ∨ ¬p101 ∨ p1)))))) ∧
¬p102 ∧ (8)

(¬p0 ∨ ((¬p100 ∨ p0) ∧ (2(¬p100 ∨ p0)))) ∧ (9)

(p0 ∨ ((¬p100 ∨ ¬p0) ∧ (2(¬p100 ∨ ¬p0)))) ∧ (10)

(¬2(p102 ∨ ¬p101 ∨ ¬p1)) ∧ (11)

(¬2(p102 ∨ ¬p101 ∨ p1)) (12)

The justification for the simplification is as follows: For ϕ1 to be True, we must

have (p100) True and (p101) False. Thus, clause (3) is True and can be omitted.

In the case of the clause (4), since (p101) is False, we must have (¬p102) True and

so remove (p101) from it to give clause (8). Clause (5) has ¬p100 False and so it is

removed to give clauses (9) and (10). Clause (6) has ¬p101 True and so this clause is

True and can be removed. Finally, clause (7) has (p101 ∨ ¬p100) False – after these

120

are removed, we are left with clauses (11) and (12).

Formula ϕ1 has now been considerably simplified – the only choice points we

are left with at the current modal layer are in clauses (9) and (10). Hence, con-

struct formula will now generate at most four formulae for the constraint solver.

Before simplification was applied, we had five choice points in clause (5), five in

clause (6) and two in clause (7). Hence, construct formula could generate up to fifty

formulae (5 x 5 x 2). a

It is easily seen from the above example that unit subsumption and unit resolution

can also be applied to NNF clauses.

We begin by reconsidering the unit subsumption and unit resolution rules applied

in the DPLL SAT procedure, as specified in Rules 3.4.1 and 3.4.2 of the previous

chapter, and extend these rules as follows.

Enhancement 1. After Lemma 4.3.4 has been applied to a modal formula ϕ, we

apply the following rules:

1. For every clause ψ that is either a propositional unit clause (Definition 2.2.9)

or a unit modal literal (Definition 2.2.11), unit subsumption is applied to ev-

ery other NNF clause (Definition 2.2.18) containing ψ and such clauses are

removed, provided that ψ does not occur in a modal formula within the NNF

clause.

2. For every clause ψ that is either a propositional unit clause or a unit modal

literal, unit resolution is applied and ¬ψ is removed from every other NNF

clause in which it occurs, provided that ¬ψ does not occur in a modal formula

within the NNF clause.

This process is repeated until no further simplification is possible.

We have extended the rules of the DPLL SAT procedure to include NNF clauses

as well as unit modal literals. The proof of the modified rules is as follows.

Justification. We prove unit subsumption and then unit resolution.

1. Suppose we have a modal formula ϕ = ψ ∧ (ψ ∨ ψ1) ∧ ψ2 where ψ is a proposi-

tional unit clause or a unit modal literal, ψ1 is an NNF clause in which ψ does

121

not occur and ψ2 is the conjunction of any number of clauses. We can rewrite

ϕ as ϕ = ((ψ ∧ ψ) ∨ (ψ ∧ ψ1)) ∧ ψ2 by the distribution law (Definition 2.2.21).

This is equivalent to ϕ = ψ ∧ ψ2 by the rules of propositional logic. Hence,

clause (ψ ∨ ψ1) can be excluded from the formula.

2. Suppose we have a modal formula ϕ = ψ ∧ (¬ψ ∨ ψ1) ∧ ψ2 where ψ is a

propositional unit clause or a unit modal literal, ψ1 is an NNF clause in which

ψ does not occur and ψ2 is the conjunction of any number of NNF clauses.

We can rewrite ϕ as ϕ = ((ψ ∧ ¬ψ) ∨ (ψ ∧ ψ1)) ∧ ψ2 by the distribution

law (Definition 2.2.21). This is equivalent to ϕ = ψ ∧ ψ1 ∧ ψ2 by the rules of

propositional logic – hence, the clause (¬ψ ∨ ψ1) can be replaced with ψ1.

a

Note that in the case of the KT KCSP NoCNF prototype, this enhancement is

not applied to modal formulae within an NNF clause. Suppose we have the formula

ϕ = p1 ∧ (p2 ∨ (p3 ∧ (p1 ∨ q)))

Unit subsumption is not applied to the modal formula (p3 ∧ (p1 ∨ q)) – no simplifi-

cation is applied to ϕ.

The improvements obtained are as follows (we list the prototype used, the class

and the additional data sets that have been solved):

Additional data sets solved

CNF kt grz n(1 – 21)

kt t4p n (1 – 2)

kt 45 p (10 – 11)

kt dum p (4 – 6)

kt t4p p (1)

NoCNF kt branch n(4 – 10)

kt branch p(3 – 21)

kt 45 p(9)

kt t4p p(4)

122

This enhancement has resulted in significant improvements in the kt grz n data

sets in the case of KT KCSP CNF as well as in the kt branch p data sets in the case

of KT KCSP NoCNF. However, KT KCSP CNF is still unable to solve any of the

kt grz p data sets.

The modal formula in Example 4.3.12 comes from data set kt branch n(1). Before

simplification was applied, the KT KCSP CNF prototype solved 12 of the kt branch n

data sets while the KT KCSP NoCNF prototype solved only 3; after simplification

was applied, there was no change in the results of the KT KCSP CNF prototype

whereas the KT KCSP NoCNF prototype now solves 10 data sets. The two proto-

types have similar timings up to the tenth data set that they solve in 59.80 CPU

seconds and 65.89 CPU seconds respectively.

4.3.7 KT – Enhancement 2 – Early pruning

Lemma 4.3.4 and then simplification are applied to each modal formula – to be more

specific, they are applied to the initial modal formula and then to each of the ϕj =∧
i αi ∧ ¬βj formulae. An analysis of some of the data sets that do not perform well

shows that the following scenario can occur.

Example 4.3.13. Suppose we have the modal formula

ϕ = 2p ∧ 2ψ1 ∧ ¬2(¬p ∨ ψ2) ∧ ¬2(p ∨ ψ3)

where the ψi are of any complexity.

To prove its satisfiability at the next modal layer, we need to verify the satisfiability

of each ϕj =
∧
i αi ∧ ¬βj, as per Theorem 3.4.14. At the next modal layer, we have∧

i αi = p ∧ ψ1 from the positive modal literals and β1 = (¬p ∨ ψ2) and β2 = (p ∨
ψ3) from the negative modal literals.

We first process
∧
i αi ∧ ¬β1 = (p ∧ ψ1) ∧ (p ∧ ¬ψ2). If this is satisfiable,

we process
∧
i αi ∧ ¬β2 = (p ∧ ψ1) ∧ (¬p ∧ ¬ψ3), which we immediately find is

unsatisfiable.

Formulae ψ1 and ψ2 could be highly complex in which case a lot of resources are

expended on the first formula before the second is found to be unsatisfiable. Visually,

it is easy to see that if we have p occurring at the next modal layer from the positive

123

modal literals and ¬p from any of the negative modal literals, we would need to

backtrack. a

We propose and implement the following enhancement:

Enhancement 2. Let ϕ′ = ψ1 ∧
∧
j ¬βj where ψ1 =

∧
i αi. If a propositional unit

clause l in
∧
j ¬βj also occurs in ψ1, force a backtrack to the previous modal layer.

Justification. Suppose some βj contains a propositional unit clause l and suppose∧
i αi also contains l. We then have

∧
i αi ∧ ¬βj = l ∧ . . . ∧ ¬l ∧ . . ., which we can

immediately see is unsatisfiable. a

When this enhancement was applied to the two prototypes, no improvement oc-

curred in any of the n-data sets. The improvements obtained in the p-data sets are

as follows:

Additional data sets solved

CNF kt 45 p(12-14)

kt dum p(7)

kt ph p(4)

kt t4p p(2)

NoCNF kt dum p(6-7)

Although not many additional data sets were solved, in general the process-

ing time of the data sets was reduced. The data sets of the kt grz p class for the

KT KCSP CNF prototype remained unsolved.

4.3.8 KT – Enhancement 3 – Grouping of clauses

A further analysis shows that in some cases, propositional literals can occur in disjoint

clauses.

124

Example 4.3.14. Consider the following modal formula.

(2(¬2(¬2(¬p2 ∨ 2p2) ∨ p2) ∨ p2)) ∧ (1)

(¬2(¬2(((2(¬2(¬p2 ∨ 2p2) ∨ p2)) ∧
(¬2(2(¬2(¬p2 ∨ 2p2) ∨ p2)))) ∨
((2(¬p2 ∨ 2p2)) ∧ ¬p2) ∨ 2((¬2(¬p2 ∨ 2p2) ∨ p2) ∧
(¬2(¬2(¬p2 ∨ 2p2) ∨ p2) ∨ 2(2(¬2(¬p2 ∨ 2p2) ∨ p2))))) ∨
((¬2(¬p2 ∨ 2p2) ∨ p2) ∧ (¬2(¬2(¬p2 ∨ 2p2) ∨ p2) ∨
2(2(¬2(¬p2 ∨ 2p2) ∨ p2))))) ∨ ((¬2(¬p2 ∨ 2p2) ∨ p2) ∧
(¬2(¬2(¬p2 ∨ 2p2) ∨ p2) ∨ 2(2(¬2(¬p2 ∨ 2p2) ∨ p2))))) ∧ (2)

(2(¬2(¬p1 ∨ 2p1) ∨ p1)) ∧ (3)

(¬2p1) ∧ (4)

(((2(¬2(¬p2 ∨ 2p2) ∨ p2)) ∧ (¬2p2)) ∨ 2¬2¬p0) ∧ (5)

(2(¬2(¬p3 ∨ 2p3) ∨ p3)) ∧ (6)

(¬2p3) ∧ (7)

(((2(¬2(¬p2 ∨ 2p2) ∨ p2)) ∧ ¬2p2) ∨ 2¬p0) (8)

which contains eight clauses. We have p1 occurring only in clauses (3) and (4) and p3

occurring only in clauses (6) and (7). Hence, we can group the clauses in this formula

as {(1), (2), (5), (8)}, {(3), (4)} and {(6), (7)} and process each group separately. a

Enhancement 3. Suppose we have a modal formula ϕ. Let γ = {p1, . . ., pn} be the

set of propositional atoms pi occurring in ϕ, where pi can occur at any modal layer

in ϕ. We then group the clauses in ϕ as follows:

ϕ = ψ1 ∧ ... ∧ ψm

where each ψi is a conjunction of NNF clauses and for each pk ∈ γ, if pk occurs in

ψi, then pk does not occur in any other ψj, where j 6= i.

By determining the satisfiability of each ψi, we determine the satisfiability of ϕ.

Justification. The satisfiability of a set of clauses ψi depends on the values of their

propositional literals. Because each ψi has distinct literals, their satisfiability or

otherwise is independent of each other. Furthermore, if each ψi is satisfiable, ϕ is

satisfiable; if one of the ψis is not satisfiable, ϕ is not satisfiable. a

125

When this enhancement was applied to the two prototypes, once again no im-

provement occurred in the n-data sets. The improvements obtained in the p-data

sets were as follows:

Additional data sets solved

CNF kt grz p(1 – 3)

NoCNF kt 45 p(10 – 13)

kt grz p(10)

KT KCSP CNF is now able to solve three data sets in the kt grz p class.

4.3.9 KT – Enhancement 4 – Value assignment in unit clauses

Let us look at the top-level propositional literals at a particular modal layer. A

propositional unit clause with a positive propositional literal p must have a value of

1 to be satisfiable; a propositional unit clause with a negative propositional literal ¬p
must have a value of 0. When the constraint satisfaction problem for these literals is

constructed, we can therefore limit their domains to {1} and {0} respectively, instead

of {0, 1, u}.
We can extend this concept further: any top-level propositional literal that only

occurs positively or that only occurs negatively in the modal formula can also have

its domain set to {1} or {0} respectively. It is only in cases where we have both p

and ¬p in a formula that we need to specify a domain of {0, 1, u}.
Note that if we have p and ¬2p occurring at a particular modal layer, we do not

take ¬2p into consideration as it is not a propositional literal.

Now consider a clause which contains a positive propositional literal p to which a

value of 1 has been assigned. We can in fact replace the literal with the value 1 to

give clause (ψ1 ∨ 1), which is satisfiable. This clause therefore does not need to be

passed to the constraint solver. By reducing the number of clauses in the constraint

satisfaction problem, we reduce the number of choice points for the constraint solver.

Note that this is not the same as unit subsumption – we are now dealing with

propositional literals that are not propositional unit clauses.

We illustrate this with the following example.

126

Example 4.3.15. Suppose ϕ = (p1 ∨ ¬2p5) ∧ (p2 ∨ ¬2p6) ∧ 2p3 ∧ ¬2(p3 ∨ p4) is

processed by the KT KCSP prototype. It will return the following truth assignments,

each of which is unsatisfiable at the next modal layer:

1. µ = {p1, p2, 2p3, ¬2(p3 ∨ p4)}. The modal formula at the next modal layer is

p3 ∧ ¬(p3 ∨ p4), which is unsatisfiable and so the constraint solver backtracks.

2. µ = {¬2p5, p2, 2p3, ¬2(p3 ∨ p4)}.

3. µ = {p1, ¬2p6, 2p3, ¬2(p3 ∨ p4)}.

4. µ = {¬2p5, ¬2p6, 2p3, ¬2(p3 ∨ p4)}.

Suppose we follow the suggestion above. In the formula ϕ, we have p1 and p2

occurring only positively. Since they can be assigned a value of 1, the clauses in

which they occur can be removed. The formula that is passed to the constraint solver

then becomes

ϕ = 2p3 ∧ ¬2(p3 ∨ p4)

and now only one truth assignment is returned, this being

µ = {2p3, ¬2(p3 ∨ p4)}

which is unsatisfiable at the next modal layer. a

Enhancement 4. Suppose we have a modal formula ϕ. Let γ = {p1, . . ., pn1, ¬q1,
. . ., ¬qn2} where if pi ∈ γ, then pi occurs only positively in ϕ and if qj ∈ γ, then qj

occurs only negatively in ϕ.

We apply the following rule to the clauses in ϕ:

For each clause ψ in ϕ, if ψ contains a propositional unit clause l and l ∈ γ, then

this clause is removed from ϕ.

Justification. If a propositional literal occurs only positively in the modal formula

ϕ, it must be assigned a value of 1 from its domain of {0, 1, u}. The NNF clause ψ

it occurs in becomes ψ = 1 ∨ ψ1 where ψ1 contains the remaining disjuncts of the

clause. No further evaluation of literals is required as the clause is True. Hence it

can be removed from the modal formula.

127

If a propositional literal occurs only negatively in the modal formula ϕ, it must

be assigned a value of 0. The NNF clause ψ it occurs in becomes ψ = ¬0 ∨ ψ1, and

no further evaluation of disjuncts is required as the clause is True. a

In this case, the results of both the n- and p-data sets were improved. The

improvements were as follows:

Additional data sets solved

CNF kt branch n(11)

kt grz p(1 – 21)

kt path p(3 – 12)

NoCNF kt branch n(11)

kt grz p(11 – 21)

kt path p(3 – 12)

This enhancement had a major effect on the kt grz p and the kt path p data sets

in both prototypes as all have now been solved. This is an indication that reducing

the number of clauses passed to the constraint solver has a significant impact.

4.3.10 KT – Enhancement 5 – Caching

The kt poly n and kt t4p p data sets still return poor results. In the kt poly n class,

only the first two data sets returned a result within the required timeframe for both

the KT KCSP CNF and KT KCSP NoCNF prototypes – in fact, the third data set

was aborted after running for more than 10 minutes.

An analysis of the kt poly n(2) data set shows the following pattern: At the second

modal layer, there are six negative modal literals, which means we will have six

branches at layer 3. At layer 3, the constraint solver returns the same positive box

and negative modal literals for three of these branches, which means that the same

formula is processed three times at the next layer. At layer 4, a similar pattern is

found. Hence a lot of reprocessing of the same formulae is taking place. This scenario

can be represented as follows:

128

Modal layer 2: Positives – ψ, Negatives – ψ1, ψ2, . . ., ψ6

Modal layer 3.1: Positives – ψ1, Negatives – ψ2

Modal layer 3.2: Positives – ψ1, Negatives – ψ2 (a repeat of Layer 3.1)

Modal layer 3.3: Positives – ψ1, Negatives – ψ2 (a repeat of Layer 3.1)

Modal layer 3.4: Positives – ψ3, Negatives – ψ4

Modal layer 3.5: Positives – ψ5, Negatives – ψ6

Modal layer 3.6: Positives – ψ7, Negatives – ψ8

Modal layer 4.1.1: Positives – ψ10, Negatives – ψ11

Modal layer 4.1.2: Positives – ψ10, Negatives – ψ11 (a repeat of Layer 4.1.1)

Modal layer 4.1.3: Positives – ψ10, Negatives – ψ11 (a repeat of Layer 4.1.1)

.

We can see from the above that the modal formula (ψ1 ∧ ¬ψ2) is generated at

modal layers 3.1, 3.2 and 3.3. Similarly, the modal formula (ψ10 ∧ ¬ψ11) is generated

at modal layers 4.1.1, 4.1.2 and 4.1.3. This means that the modal formula (ψ10 ∧
¬ψ11) will be processed nine times in total.

An analysis of the kt t4p p class shows the following pattern: In the kt t4p p(2)

data set, at layer 3, we have four positive and five negative modal literals. The first

three branches are processed and then the fourth, which contains the negative modal

literal ¬βj, turns out to be unsatisfiable. The constraint solver backtracks to layer

2 and generates a new solution that consists of the same four positive modal literals

and four of the previous five negative modal literals, one of which is ¬βj. Again, the

modal formula containing ¬βj is unsatisfiable. The constraint solver backtracks and

continues to generate minor variations of this same scenario. This process involves a

significant amount of reprocessing.

This scenario can be represented as follows:

Modal layer 3: Positives – ψ, Negatives – ψ1, . . ., ψ4, ψ5

Modal layer 4.1: ψ ∧ ¬ψ1 – satisfiable

Modal layer 4.2: ψ ∧ ¬ψ2 – satisfiable

Modal layer 4.3: ψ ∧ ¬ψ3 – satisfiable

Modal layer 4.4: ψ ∧ ¬ψ4 – unsatisfiable – so backtrack to layer 2

129

Modal layer 3: Positives – ψ, Negatives – ψ1, . . ., ψ4, ψ6

Modal layer 4.1: ψ ∧ ¬ψ1 – satisfiable

Modal layer 4.2: ψ ∧ ¬ψ2 – satisfiable

Modal layer 4.3: ψ ∧ ¬ψ3 – satisfiable

Modal layer 4.4: ψ ∧ ¬ψ4 – unsatisfiable – so backtrack to layer 2

Modal layer 3: Positives – ψ, Negatives – ψ1, . . ., ψ4, ψ7

. . .

The reprocessing in both the above scenarios can be avoided by implementing a

caching mechanism to store the formulae processed. We will need to differentiate

between those that are satisfiable and those that are unsatisfiable.

We therefore propose the following enhancement.

Enhancement 5. A cache Γ is created in which modal formulae and their respective

status are stored – Γ contains entries of the form <<modal formula>, <status>>.

Before passing a modal formula ϕ to the constraint solver, the cache is checked to see

whether the formula has already been processed. The pseudo-code for this process, in

which Γ is a global variable, is as follows:

function check cache(ϕ)

for each <ϕstored, statusstored> in Γ do

if ϕstored = ϕ then

if statusstored is True then return True

else backtrack;

if statusstored = True and ϕ ⊂ ϕstored

return True; (1)

if statusstored = False and ϕ ⊃ ϕstored

backtrack; (2)

add <ϕ, False> to Γ;

return False;

end;

In the KT KCSP CNF and KT KCSP NoCNF algorithms, the pseudo-code

130

ϕcsp = to csp(ϕformula);

µ := csp(ϕcsp); // backtrack if this fails

Θ =
∧
{α : 2α = 1 is in µ};

for each 2β = 0 in µ do

KT CSP xx(Θ ∧ ¬β); // backtrack if this fails

is replaced with the following:

ϕcsp = to csp(ϕformula);

if check cache(ϕcsp) is False then

µ := csp(ϕcsp); // backtrack if this fails

Θ =
∧
{α : 2α = 1 is in µ};

for each 2β = 0 in µ do

KT CSP xx(Θ ∧ ¬β); // backtrack if this fails

update <ϕcsp, False> in Γ to <ϕcsp, True>;

where xx = ‘CNF’ in the case of the KT KCSP CNF algorithm and ‘NoCNF’ in

the case of the KT KCSP NoCNF algorithm.

This enhancement first checks to see whether ϕ has been cached. If it has and has

been marked as satisfiable, no further processing is required. If it has been marked

as unsatisfiable, a backtrack is forced.

If ϕ has not yet been processed, it checks to see if it is a subformula of any

modal formula ϕ′ that has been cached. If this is the case and ϕ′ has been marked

as satisfiable, no further processing is required (refer to (1) below for the proof).

Otherwise, if a subformula of ϕ has been cached and marked as unsatisfiable, a

backtrack is forced (refer to (2) below for the proof).

If no information is available in the cache for ϕ, it is added to the cache with

a status of unsatisfiable. It is then processed as usual and only if it is found to be

satisfiable is its status in the store updated.

Justification. Suppose we have two modal formulae ϕ1 and ϕ2 and we know the

satisfiability of ϕ2.

131

1. Suppose ϕ1 is a subformula of ϕ2. Then ϕ2 = ϕ1 ∧ ψ1 ∧ . . . ∧ ψn where ψi are

NNF clauses.

If ϕ2 is satisfiable, each of its clauses are satisfiable, including ϕ1. If ϕ2 is not

satisfiable, any of its clauses can be unsatisfiable and so the satisfiability of ϕ1

needs to be determined.

2. Suppose ϕ2 is a subformula of ϕ1. Then ϕ1 = ϕ2 ∧ ψ1 ∧ . . . ∧ ψn where ψi are

NNF clauses.

If ϕ2 is satisfiable, because the status of the ψi clauses in ϕ1 is not known, the

satisfiability of ϕ1 needs to be determined. If ϕ2 is not satisfiable, then ϕ1 is

also not satisfiable.

a

When this enhancement was implemented, considerable improvement occurred in

the n-data sets, with some improvements in the p-data sets. These improvements can

be summarized as follows:

132

Additional data sets solved

CNF kt 45 n(8 – 21)

kt dum n(12 – 21)

kt md n(6)

kt path n(9 – 21)

kt poly n(3 – 9)

kt t4p n(3 – 21)

kt 45 p(15 – 21)

kt dum p(8 – 21)

kt path p(13 – 21)

kt t4p p(3 – 12)

NoCNF kt 45 n(9 – 21)

kt dum n(15 – 21)

kt md n(6)

kt path n(9 – 21)

kt poly n(3 – 10)

kt t4p n(4 – 21)

kt 45 p(14 – 21)

kt dum n(8 – 21)

kt md p(5)

kt path p(13 – 21)

kt t4p p(5 – 21)

However, in the class kt branch n, the 11th data set can no longer be solved within

the 100 cpu-second time limit. I attribute this to the overhead of the cache – this is

the only class negatively impacted.

4.3.11 Final results of the KT KCSP prototypes

The actual results that have now been obtained are provided in Table 4.2.

We can clearly see that the only classes that remain problematic are kt md, kt ph,

133

CNF NoCNF CNF NoCNF

n n p p
kt branch 10 10 18 >
kt 45 > > > >
kt dum > > > >
kt grz > > > >
kt md 6 6 5 5
kt path > > > >
kt ph 7 7 4 4
kt poly 9 10 > >
kt t4p > > 12 >

0-5 6-10 11-15 16-20 21

CNF n – 4 – – 5
NoCNF n – 4 – – 5
CNF p 2 – 1 1 5
NoCNF p 2 – – – 7

Table 4.2: Final results of the KT KCSP prototypes

kt branch n and kt poly n. The results of the p data sets are better in the case of the

KT KCSP NoCNF prototype.

There has been considerable improvement when these results are compared with

those in Table 4.1 – so we can conclude that both prototypes are effective, with

the KT KCSP NoCNF prototype remaining more effective than the KT KCSP CNF

prototype.

4.3.12 The exponential nature of the KT results

We next look at some of the actual results as we need to understand the exponential

nature of this class of problem.

We look at the results of the kt branch n and kt md n classes for the KT KCSP CNF

prototype.

134

- The kt branch n results are as follows:

Data set Timing (CPU-seconds) Exponential factor

1 0.00 –

2 0.03 –

3 0.09 –

4 0.19 2.11

5 0.45 2.37

6 1.13 2.51

7 2.95 2.61

8 8.64 2.93

9 28.17 3.26

10 95.14 3.50

I define a term – the exponential factor – that is calculated by taking the timing

of the current data set and dividing it by the timing of the previous data set.

We can see from these timings that this factor steadily increases and as a result,

we can project that the 11th data set will take in excess of 360 CPU-seconds to

be solved and that the 12th data set will take in excess of 1320 CPU-seconds.

Hence we have exponential behavior.

- The kt md n results are as follows:

Data set Timing (CPU-seconds) Exponential factor

1 0.00 –

2 0.00 –

3 0.02 –

4 0.09 4.5

5 0.87 9.7

6 86.52 99.5

135

In this case the exponential factor is very high – the next data set will take in

excess of 8500 CPU-seconds to solve.

These results give an idea of what is involved in improving the results of a particu-

lar class – we would need a considerable improvement for the results of the kt branch n

class to include the 12th data set. In the case of the kt md n class, one would need

a paradigm shift in the algorithm to enable the prototype to solve the 7th data set

within the 100 CPU-second time limit.

Clearly, the smaller the number of data sets solved, the higher the exponential

factor is – if we had a class for which 17 data sets were solved, the slope of the

exponential graph would be lower than the slope of a class for which only 2 data sets

were solved.

We will now look at the results obtained in previous benchmarks and then consider

some of the reasons for the poor performance of the kt md and kt ph classes.

4.3.13 Comparative benchmark results of the KT data sets

It is interesting to compare results obtained by different solvers. Such a comparison

is challenging, since different solvers use different compilers and operating systems,

and the benchmarks themselves are run using different hardware configurations. If

we compare benchmarks that were run a few years apart, the increase in CPU power

will strongly favor the more recent results. However, in the case where the problem

is NP-complete or worse, this difference will not be as marked – if we refer to the

results discussed above, we would not expect newer hardware to be able to solve the

8th data set of the kt md n class, given that we are using the same solver.

To understand the impact of using more powerful hardware, we look at the results

of the K KCSP solver, as recorded in [18] in 2003, and the results obtained running

the same data sets on a typical 2007 PC configuration (we do not provide the details

of the configuration as that is irrelevant in this context). Brand et al. made use of

Linux; our tests were run in the Windows environment. The comparison is provided

in Table 4.3.

The results for some of the data sets have improved – for example, in the case of

the k dum n class, we now solve all of the data sets instead of only 17. However, if we

look at the k d4 n class, we now solve only one additional data set – the exponential

136

Hardware of: 2004 2007 2004 2007

n n p p
branch 11 14 > >
d4 6 7 8 10
dum 17 > 11 13
grz > > 10 11
lin > > > >
path 9 12 4 5
ph 4 4 4 4
poly 16 > 9 11
t4p 6 7 8 11

Table 4.3: Comparative results of the K KCSP solver using the Heuerding / Schwendi-
mann K data sets

FaCT DLP KSAT FaCT DLP KSAT

n n n p p p
kt 45 > > 5 > > 5
kt branch 4 11 7 6 16 8
kt dum > > 12 11 > 7
kt grz > > > > > 9
kt md 5 > 4 4 3 2
kt path 3 > 5 5 6 2
kt ph 7 18 5 6 7 4
kt poly 7 6 2 > 6 1
kt t4p 2 > 1 4 3 1

Table 4.4: Results of the FaCT, DLP and KSAT solvers using the Heuerding /
Schwendimann KT data sets

nature of the timing has been retained. Hence, if we look at the results of previous

benchmarks, in cases where the timings were exponential, we can still expect to see

exponential behavior.

The benchmark results of the TANCS-1998 competition using the Heuerding /

Schwendimann KT data sets, as obtained for the KSAT, DLP and FaCT solvers [67],

are listed in Table 4.4.

We can firstly see from these results that the behavior of each solver is not con-

sistently the same. We can see that all the solvers had difficulties with the kt branch

and kt ph classes, with most of them having problems with the kt poly n, kt md p,

137

kt path p and kt t4p p classes. The KT KCSP NoCNF prototype had similar difficul-

ties with the kt ph, kt md and kt branch classes (Table 4.2). Hence we can conclude

that this prototype performs favorably.

4.3.14 An analysis of the kt ph class

We demonstrate the problem faced with these data sets by looking in detail at the

data set kt ph p(2).

After reflexivity and simplification have been applied at the first modal layer, a

subset of the formula obtained contains the following:

(1) ((p102 ∧ 2p102) ∨ p101) ∧
(2) (¬p302 ∨ ¬2p102) ∧
(3) (¬p202 ∨ ¬2p102) ∧
(4) (¬p302 ∨ ¬p202) ∧
(5) (¬p301 ∨ ¬p201) ∧
(6) (¬p301 ∨ ¬p101) ∧
(7) (¬p201 ∨ ¬p101) ∧
(8) (p202 ∨ p201) ∧
(9) (p302 ∨ p301) ∧

We cannot apply Enhancement 4 as we have propositional literals that occur both

positively and negatively. We could however establish the satisfiability of this formula

as follows:

- Let p101 = 1 (1). We must then have p301 = 0 (6) and p201 = 0 (7) that in

turn forces p202 = 1 (8) and p302 = 1 (9) . However, clause (4) cannot now be

satisfied. Hence, p101 6= 1.

- Let p101 = 0 that gives p102 = 1 and 2(p102) = 1 (1). We must then have p302 =

0 (2) and p202 = 0 (3). This in turn forces p301 = 1 (9) and p201 = 1 (8). However

clause (5) cannot now be satisfied. Hence, the modal formula is unsatisfiable.

The above analysis quickly returns a result. However, the constraint solver solves

this problem by generating the following assignments:

138

1. µ = {p101, ¬p302, ¬p202, ¬p301, ¬p201}, and since clause (8) is False with this

assignment, the constraint solver backtracks.

2. µ = {p101, ¬p302, ¬p202, ¬p201, ¬p301} – it backtracks.

3. µ = {p101, ¬2(p102), ¬p302, ¬p301, ¬p201, p202} – it backtracks.

4. . . . and so on . . .

KT KCSP solves this particular data set in 0.00 CPU-seconds. However, for more

complex formulae such as the kt ph p(5) data set, because there are many more clauses

and possible combinations to consider, it takes a much longer time.

We saw that some of the solvers of the previous chapter apply a heuristic and

assign values to the single propositional literals. If we followed this approach, we

could set p101 = 1 and then simplify the formula. Applying the rules of Enhancement

1, we would get

(1) (¬p302 ∨ ¬2(p102)) ∧
(2) (¬p202 ∨ ¬2(p102)) ∧
(3) (¬p302 ∨ ¬p202) ∧
(4) (¬p301 ∨ ¬p201) ∧
(5) ¬p301 ∧
(6) ¬p201 ∧
(7) (p202 ∨ p201) ∧
(8) (p302 ∨ p301) ∧

Further simplification would then give us

(1) (¬p302 ∨ ¬2(p102)) ∧
(2) (¬p202 ∨ ¬2(p102)) ∧
(3) (¬p302 ∨ ¬p202) ∧
(4) ¬p301 ∧
(5) ¬p201 ∧

139

(6) p202 ∧
(7) p302 ∧

which is clearly unsatisfiable (as can be seen from clauses (3), (6) and (7)). ECLiPSe

would then backtrack and the same simplification exercise would be carried out with

p101 = 0 – we would not get to the stage of building the constraint satisfaction problem

and submitting it to the constraint solver.

This enhancement has not been included because the problem is not solved as a

constraint satisfaction problem – the question that needs to be answered is whether

such a solution is acceptable in this context, as our purpose has been to establish the

limitations of using a constraint solver. I have not felt this to be appropriate.

4.3.15 An analysis of the kt md class

For this class, in the case of the kt md p data sets, the first two problems are trivial

and take no time to solve. The third data set goes to modal layer seven and its clauses

include

(2(2(¬2(¬2(¬2(¬2(p1))))))) ∧
(¬2(¬2(¬2(¬2(p1))))) ∧
(2(¬2(¬2(p1 ∨ 2(¬2(¬2(2(¬p1)))))))) ∧
(¬2(¬2(p1 ∨ 2(¬2(¬2(2(¬p1))))))) ∧
(2(¬2(¬2(2(¬p1))))) ∧
. . .

It is very difficult to identify any pattern in these clauses and simplification and

caching do not make any difference – the clauses contain a random mix of positive

and negative box modalities. Table 4.4 shows that other solvers experienced the same

problem with this class.

4.4 Transitivity and the S4 KCSP solver

Before adding transitivity to the KT KCSP prototype, we look at the complexity of

the problem and describe how we will solve it.

140

4.4.1 Basic Issues

To illustrate the issues we are dealing with when the transitivity and reflexivity rules

are applied to a formula, we first consider the following two examples.

Example 4.4.1. Consider the modal formula 22p. We take this through several

modal layers to illustrate the effect of the application of the reflexive and transitive

rules. We apply Lemma 4.3.4, 2nϕ → ϕ, for reflexivity and the axiom, 2ϕ → 22ϕ,

for transitivity (Definition 2.3.3).

Layer 1: 22p

222p ∧ 22p ∧ p (application of reflexivity and transitivity)

Layer 2: 22p ∧ 2p (modal formula at the next modal layer)

222p ∧ 22p ∧ 2p ∧ p (application of reflexivity and transitivity)

Layer 3: 22p ∧ 2p ∧ p (modal formula)

222p ∧ 22p ∧ 2p ∧ p (application of reflexivity and transitivity)

The modal formula of Layer 3 repeats at all subsequent modal layers – we have

the same looping behavior experienced by the tableau and sequent solvers. a

The following is a more complex example. This example is taken from the s4 ipc p

data set. We do not show all the branches the constraint solver generates, as many

of these loop and it would complicate the example unnecessarily to include them.

Example 4.4.2. Consider the following modal formula which occurs at Layer 1:

Layer 1:

ϕ = 2(¬2(¬2p1 ∨ (2p1 ∧ 2p2 ∧ 2p3))) ∧
2(¬2(¬2p2 ∨ (2p1 ∧ 2p2 ∧ 2p3))) ∧
2(¬2(¬2p3 ∨ (2p1 ∧ 2p2 ∧ 2p3)))

To simplify the discussion, we rename these clauses as follows:

141

ψ1 = (¬2(¬2p1 ∨ (2p1 ∧ 2p2 ∧ 2p3)))

ψ2 = (¬2(¬2p2 ∨ (2p1 ∧ 2p2 ∧ 2p3)))

ψ3 = (¬2(¬2p3 ∨ (2p1 ∧ 2p2 ∧ 2p3)))

so that the formula can be rewritten as ϕ = 2ψ1 ∧ 2ψ2 ∧ 2ψ3. When the reflexivity

and transitivity rules are applied to ϕ, we get

ψrt = 22ψ1 ∧ 2ψ1 ∧ ψ1 ∧
22ψ2 ∧ 2ψ2 ∧ ψ2 ∧ (1)

22ψ3 ∧ 2ψ3 ∧ ψ3

which is passed to the constraint solver.

Layer 2: The constraint solver returns positives modal literals:

αL2 = 2ψ1 ∧ ψ1 ∧ 2ψ2 ∧ ψ2 ∧ 2ψ3 ∧ ψ3

and negative modal literals:

β1 = (¬2p1 ∨ (2p1 ∧ 2p2 ∧ 2p3))

β2 = (¬2p2 ∨ (2p1 ∧ 2p2 ∧ 2p3))

β3 = (¬2p3 ∨ (2p1 ∧ 2p2 ∧ 2p3))

Note that the βis originate from the ψi clauses of modal layer 1. The constraint

solver now processes each αL2 ∧ ¬βi in turn.

It begins with ϕ2 = αL2 ∧ ¬β1 = αL2 ∧ 2p1 ∧ (¬2p1 ∨ ¬2p2 ∨ ¬2p3), which we

rewrite as ϕ2 = αL2 ∧ 2p1 ∧ ψn1 where ψn1 = (¬2p1 ∨ ¬2p2 ∨ ¬2p3) (2).

Applying the reflexive and transitive rules to ϕ2 gives

ψrt ∧ 22p1 ∧ 2p1 ∧ p1 ∧ ψn1 (3)

where ψrt is defined as in (1) above. This formula is then passed to the constraint

solver.

Layer 3: The constraint solver returns positive modal literals:

142

αL3 = αL2 ∧ 2p1 ∧ p1

and negative modal literals β1, β2, β3 as above, and another negative modal literal,

β4, which can have values ¬p1, ¬p2 and ¬p3. The first result will have β4 = ¬p1. If

the algorithm backtracks, β4 = ¬p2 and the final backtrack will have β4 = ¬p3.

The constraint solver begins by processing ϕ3 = αL3 ∧ ¬β1 = αL3 ∧ 2p1 ∧ (¬2p1

∨ ¬2p2 ∨ ¬2p3), which we rewrite as ϕ3 = αL3 ∧ 2p1 ∧ ψn1, with ψn1 defined as in

(2) above.

Applying the reflexive and transitive rules to ϕ3 gives ψrt ∧ 22p1 ∧ 2p1 ∧ p1

∧ ψn1 – which is a repeat of (3) above. This branch will now loop and is therefore

satisfiable (a result we will prove later).

The constraint solver next processes ϕ′3 = αL3 ∧ ¬β2 = αL3 ∧ 2p2 ∧ (¬2p1 ∨
¬2p2 ∨ ¬2p3), which we rewrite as ϕ′3 = αL3 ∧ 2p2 ∧ ψn1, where ψn1 is defined as

in (2) above.

Applying reflexivity and transitivity to ϕ′3 gives ψrt ∧ 22p1 ∧ 2p1 ∧ p1 ∧ 22p2

∧ 2p2 ∧ p2 ∧ ψn1, which is passed to the constraint solver.

Layer 4: The constraint solver returns positive modal literals:

αL4 = αL2 ∧ 2p1 ∧ p1 ∧ 2p2 ∧ p2

and negative modal literals β1, β2, β3 as above, and β5 which can have values ¬p1,

¬p2 and ¬p3 respectively.

When we process αL4 ∧ ¬β1 and αL4 ∧ ¬β2, we loop as already shown.

The constraint solver next processes ϕ4 = αL4 ∧ ¬β3 = αL4 ∧ 2p3 ∧ (¬2p1 ∨
¬2p2 ∨ ¬2p3) = αL2 ∧ 2p1 ∧ p1 ∧ 2p2 ∧ p2 ∧ 2p3 ∧ (¬2p1 ∨ ¬2p2 ∨ ¬2p3), which

is unsatisfiable.

Since we have found an unsatisfiable branch in which there are no choice points to

backtrack to, we conclude that the formula at Layer 1 is unsatisfiable. The alternative

values for β4 and β5 are irrelevant as unsatisfiability was detected before they were

processed. a

We can see the following from the above example:

143

- Positive modal literals repeat at each modal layer (αL2 was generated from ϕ

and occurs as a positive modal literal from Layer 2 onwards).

- The modal depth of the formula does not change, unlike in the case of reflexivity

where it decreased at each modal layer – each αL2 has a modal depth of 3 which

is the modal depth of the initial formula ϕ.

- For some of the branches, the modal formula at one modal layer repeats at the

next modal layer.

To deal with modal S4 formulae, we introduce the following lemmas.

Lemma 4.4.3. For any frame F = (W,R), R is reflexive and transitive if and only

if, for n > 0,

2nϕ → (22ϕ ∧ 2ϕ ∧ ϕ)

is valid in the frame, where 2n represents n occurrences of 2.

Proof. Suppose we have an arbitrary frame F in which R is reflexive and transitive.

For n = 1, the validity of 2ϕ → (22ϕ ∧ 2ϕ ∧ ϕ) follows from a single application

of the reflexivity rule 2ϕ → ϕ and the transitivity rule 2ϕ → 22ϕ.

For n > 1, we apply the reflexivity rule to 2nϕ to get 2nϕ → (22ϕ ∧ 2ϕ ∧ ϕ),

which is valid in F . Since F and n were arbitrarily chosen, 2nϕ → (22ϕ ∧ 2ϕ ∧
ϕ) is valid in any frame which is reflexive and transitive.

Conversely, suppose 2nϕ → (22ϕ ∧ 2ϕ ∧ ϕ). Setting n = 1 gives 2ϕ → (22ϕ

∧ 2ϕ ∧ ϕ). This can be simplified as follows :

2ϕ → (22ϕ ∧ 2ϕ ∧ ϕ)

≡ ¬2ϕ ∨ (22ϕ ∧ 2ϕ ∧ ϕ)

≡ (¬2ϕ ∨ 22ϕ) ∧ (¬2ϕ ∨ 2ϕ) ∧ (¬2ϕ ∨ ϕ)

≡ (2ϕ → 22ϕ) ∧ True ∧ (2ϕ → ϕ)

– the transitive and reflexive rules respectively. a

To simplify the Lemma which follows, we will refer to 2nϕ → (22ϕ ∧ 2ϕ ∧ ϕ)

as the S4′ axiom.

144

Lemma 4.4.4. Applying the S4′ axiom at each modal layer to each occurrence of

2nϕ is a sound and complete strategy to ensure reflexivity and transitivity of R in the

S4 KCSP algorithm.

Proof. We need to show that the application of the S4′ axiom at the each modal layer

returns the same result as the application of the T and 4 axioms.

We begin by considering the current modal layer. The application of the S4′

axiom to the positive modal literal 2nϕ results in it being replaced with ϕ1 = 22ϕ

∧ 2ϕ ∧ ϕ. The application of the T and 4 axioms results in it being replaced with

ϕ2 = 2n+1ϕ ∧ 2nϕ ∧ . . . ∧ ϕ.

When the constraint solver evaluates a modal formula, it assigns a value of 1 or

u to each positive modal literal, as already discussed on page 107. This means that,

when ϕ1 and ϕ2 are processed, they are both effectively reduced to ϕ. Hence, the

constraint solver will return the same result at this modal layer.

At the next modal layer, we have 2ϕ ∧ ϕ from ϕ1 and the application of the S4′

axiom gives ϕ′1 = 22ϕ ∧ 2ϕ ∧ ϕ once more. We have 2nϕ ∧ . . . ∧ ϕ from ϕ2 and

the application of the T and 4 axioms gives ϕ′2 = 2n+1ϕ ∧ 2nϕ ∧ 2n−1ϕ ∧ . . . ∧ ϕ
once more. Since ϕ′1 = ϕ1 and ϕ′2 = ϕ2, the same argument as before holds.

The application of both sets of axioms therefore returns the same result.

a

Lemma 4.4.5. Suppose we have a modal formula ϕ at modal layer n and suppose ϕ

is also the modal formula generated at modal layer n+1. No further processing of this

branch is required as it is satisfiable.

Proof. Suppose we have a modal formula ϕ occurring both at modal layer n and at

modal layer n+ 1. The fact that we have a modal formula at layer n+ 1 means that

the formula ϕ at layer n is propositionally satisfiable. If ϕ was not propositionally

satisfiable, the constraint solver would have backtracked and no formula would have

been generated for modal layer n+ 1.

The modal formula ϕ would similarly be generated at modal layer n+ 2. Since ϕ

is generated by the constraint solver at each successive modal layer, ϕ is satisfiable

in an infinite model. a

145

Note that this lemma is not applicable to modal KT formulae as at each modal

layer, the modal depth of the formula is reduced by one – we will therefore not have

the same modal formula ϕ occurring at two successive modal layers.

Now that we have determined the lemma to apply for reflexive and transitive

accessibility relations, and have proved that a repeating formula is satisfiable, we can

define the S4 KCSP algorithm.

4.4.2 The S4 KCSP algorithm

This algorithm differs from the KT KCSP NoCNF algorithm only in that Lemma

4.4.4 is applied to the modal formula at each modal layer instead of Lemma 4.3.4. I

did not use the KT KCSP CNF algorithm as we now have (22ϕ ∧ 2ϕ ∧ ϕ) replacing

each positive modal literal. This is a conjunction of three variables – instead of

generating 2n additional clauses, we would generate 3n additional clauses if we kept

the formulae in conjunctive normal form (refer to Theorem 4.3.7).

Algorithm 8. The S4 KCSP algorithm schema can be represented as follows:

function S4 KCSP(ϕ)

ϕneg = ¬ϕ;

ϕnnf = to nnf(ϕneg);

S4 CSP(ϕnnf);

end;

function S4 CSP(ϕ) // succeeds if ϕ is satisfiable

ϕs4 = apply reflexivity transitivity(ϕ);

ϕformula = construct formula(ϕs4);

ϕcsp = to csp(ϕformula);

µ := csp(ϕcsp); // backtrack if this fails

Θ =
∧
{α : 2α = 1 is in µ};

for each 2β = 0 in µ do

S4 CSP(Θ ∧ ¬β); // backtrack if this fails

end;

146

n p

s4 branch 8 >
s4 45 2 1
s4 grz > >
s4 ipc 8 >
s4 md 8 10
s4 path 9 10
s4 ph 7 4
s4 s5 5 5
s4 t4p 10 13

0-5 6-10 11-15 16-20 21

n 2 5 1 – 1
p 3 1 2 – 3

Table 4.5: Initial results of the S4 KCSP prototype

4.4.3 The initial S4 KCSP prototype

The results obtained by this initial S4 KCSP prototype are listed in Table 4.5.

The results of the s4 45 n and s4 45 p data sets are particularly bad – the al-

gorithm solves the first p-data set in under 10 CPU-seconds, while the second takes

more than 100 CPU-seconds to solve (the exponential factor is huge in this case).

Note that the p-data sets generally return better results than the n-data sets.

4.4.4 S4 – Enhancements 6 and 7 – Simplification revisited

When the s4 45 data sets were examined, we found the following:

Example 4.4.6. Modal formulae can contain clauses such as

(p4 ∨ (p2 ∧ (2p1 ∨2p0 ∨2p5))) ∧2p0 ∧2p1 (4.1)

For clarity, we have three clauses, the second and third of which are 2p0 and 2p1.

When Lemma 4.4.4 is applied to this formula, it becomes

147

(p4 ∨ (p2 ∧
((22p1 ∧ 2p1 ∧ p1) ∨
(22p0 ∧ 2p0 ∧ p0) ∨
(22p5 ∧ 2p5 ∧ p5)))) ∧

(22p0 ∧ 2p0 ∧ p0) ∧
(22p1 ∧ 2p1 ∧ p1)

Simplification of such a formula is no longer straightforward, particularly when

you bear in mind that this is a simple example.

The rules of simplification (Enhancement 1) have so far been applied to unit

clauses that are either single propositional literals or single modal literals after Lemma

4.4.4 has been applied to the formula. If we were to apply simplification before

applying Lemma 4.4.4, we would have a simpler formula to deal with.

Applying subsumption to (4.1) and applying it to the modal formula (2p1 ∨ 2p0

∨ 2p5) within the NNF clause gives

(p4 ∨ p2) ∧ 2p0 ∧ 2p1

given that 2p0 and 2p1 must be True. This is a far simpler formula to deal with.

This simplification is verified in Enhancements 6 and 7. a

The enhancement which follows may seem obvious - we are however verifying that

simplication before the application of Lemma 4.4.4 is feasible.

Enhancement 6. For each unit modal literal ψ (Definition 2.2.11) in a modal for-

mula ϕ, we apply the rules of unit subsumption and unit resolution to every other

clause containing ψ before Lemma 4.4.4 is applied to ϕ.

Justification. We prove unit subsumption and unit resolution separately, as before.

1. Unit subsumption:

Suppose we have a modal formula ϕ = ψ ∧ (ψ ∨ ψ1) ∧ ψ2 where ψ is a unit

modal literal, ψ1 is an NNF clause and ψ2 consists of any number of clauses.

(a) Suppose ψ = 2p. When we apply Lemma 4.4.4 to ϕ, we get

148

ϕ′ = (22p ∧ 2p ∧ p) ∧ ((22p ∧ 2p ∧ p) ∨ ψ′1) ∧ ψ′2

where ψ′1 and ψ′2 are the expansions of ψ1 and ψ2 respectively.

If we first apply simplification to ϕ, we have 2p ∧ ψ2, which becomes

ϕ′′ = (22p ∧ 2p ∧ p) ∧ ψ′2

after Lemma 4.4.4 has been applied.

Propositional simplification establishes that ϕ′ ≡ ϕ′′.

(b) Suppose ψ = ¬2p. When we apply Lemma 4.4.4 to ϕ, we get

ϕ′ = ¬2p ∧ (¬2p ∨ ψ′1) ∧ ψ′2

Similarly, if we first apply simplification to ϕ, we have ¬2p ∧ ψ2 which

becomes ϕ′′ = ¬2p ∧ ψ′2 after Lemma 4.4.4 has been applied. Propositional

simplification establishes that ϕ′ ≡ ϕ′′.

2. Unit Resolution:

Suppose we have a modal formula ϕ = ψ ∧ (¬ψ ∨ ψ1) ∧ ψ2.

(a) Suppose ψ = 2p. When we apply Lemma 4.4.4 to ϕ, we get

ϕ′ = (22p ∧ 2p ∧ p) ∧ (¬2p ∨ ψ′1) ∧ ψ′2

If we first apply simplification to ϕ, we have 2p ∧ ψ1 ∧ ψ2, which becomes

ϕ′′ = (22p ∧ 2p ∧ p) ∧ ψ′1 ∧ ψ′2

after Lemma 4.4.4 has been applied.

Propositional simplification establishes once more that ϕ′ ≡ ϕ′′.

(b) Suppose ψ = ¬2p. When we apply Lemma 4.4.4 to ϕ, we get

ϕ′ = ¬2p ∧ ((22p ∧ 2p ∧ p) ∨ ψ′1) ∧ ψ′2

If we first apply simplification to ϕ, we have ¬2p ∧ ψ1 ∧ ψ2, which becomes

ϕ′′ = ¬2p ∧ ψ′1 ∧ ψ′2 after Lemma 4.4.4 has been applied.

Propositional simplification establishes once more that ϕ′ ≡ ϕ′′.

149

Hence, we can apply simplification using the unit modal literals before Lemma

4.4.4 is applied to the modal formula to get the same result. a

We extend unit subsumption and unit resolution as follows.

Enhancement 7. We apply the following two simplification rules to every proposi-

tional unit clause and unit modal literal ψ in a modal formula ϕ:

1. Unit subsumption is applied to every other clause containing ψ as follows:

A formula ϕ1 ∧ (ψ1 ∨ (ψ ∧ ψ2)) ∧ ψ, in which ϕ1 consists of the conjunction

of any number of NNF clauses and ψ1 and ψ2 are NNF clauses, is replaced with

ϕ1 ∧ (ψ1 ∨ ψ2) ∧ ψ.

2. Unit resolution is applied to every other NNF clause containing ¬ψ as follows:

A formula ϕ1 ∧ (ψ1 ∨ (¬ψ ∧ ψ2)) ∧ ψ, whose variables are defined as in 1.

above, is replaced with ϕ1 ∧ ψ1 ∧ ψ.

Justification. In both cases, when ψ is False, the formula is unsatisfiable and its

replacement formula is also unsatisfiable. Hence we prove the case where ψ is True.

1. Unit subsumption:

Since ψ is True, (ψ ∧ ψ2) is equivalent to (True ∧ ψ2) or ψ2 and we can replace

the formula with ϕ1 ∧ (ψ1 ∨ ψ2) ∧ ψ.

2. Unit resolution:

Since ψ is True, (¬ψ ∧ ψ2) is False and so we need to verify the satisfiability

of ψ1 – we can replace the formula with ϕ1 ∧ ψ1 ∧ ψ.

a

We summarize these enhancements as follows:

- Enhancement 6 is applied to single modal literals before the application of

Lemma 4.4.4. Recall that it is already being applied after Lemma 4.4.4.

- Enhancement 7 is applied to the modal formulae within an NNF clause before

and after the application of Lemma 4.4.4.

150

Enhancement 6 is obvious with hindsight - this is the sort of discovery which

occurs in the process of optimizing an algorithm.

When these enhancements were applied to the S4 KCSP solver, the following

improvements occurred:

Additional data sets solved

s4 45 n(3)

s4 path n(10 – 20)

s4 ph n(8)

s4 s5 n(6)

s4 45 p(2 – 12)

s4 md p(11 – 12)

s4 path p(11 – 19)

In this case, the s4 path data sets benefited the most from this enhancement.

4.4.5 S4 – Enhancement 8 – Early pruning revisited

The s4 45 n data sets were analyzed again as their results were still not good. It was

found that, after simplification, at some of the modal layers, the simplified formula

now contained p0 ∧ ¬p0.

The modal formula generated for a new modal layer is already checked to ensure

that it does not contain complementary propositional literals; however, so far this

test has not been carried out after the simplification step.

Enhancement 8. Once a modal formula has been fully simplified, the formula is

checked to ensure that it does not contain complementary literals.

The justification for this enhancement is self-evident.

The resultant improvements are as follows:

151

Additional data sets solved

s4 45 n(4 – 14)

s4 md n(9)

The timings of some of the other classes were improved, but not sufficiently to

result in any change in the number of data sets solved.

4.4.6 Final results of the S4 KCSP prototype

The final results from the S4 KCSP solver are listed in Table 4.6.

n p

s4 branch 8 >
s4 45 14 12
s4 grz > >
s4 ipc 8 >
s4 md 9 12
s4 path 20 19
s4 ph 8 4
s4 s5 6 5
s4 t4p 12 13

0-5 6-10 11-15 16-20 21

n – 5 2 1 1
p 2 – 3 1 3

Table 4.6: Final results of the S4 KCSP prototype

The data sets which have benefited the most from the enhancements are the n

classes. The results of the s4 45 class have also considerable improved.

4.4.7 The exponential nature of the S4 results

The worst class for the KCSP S4 prototype is s4 ph p. In this case, we have a very

high exponential factor – the third data set takes 0.08 CPU-seconds while the fourth

takes 49.94 CPU-seconds, giving an exponential factor of 624.25. Using this factor,

we project that the fifth data set will take at least 32,000 CPU-seconds to solve.

152

FaCT DLP S4 KCSP FaCT DLP S4 KCSP

n n n p p p
s4 branch 4 8 8 4 10 >
s4 45 > > 14 > > 12
s4 grz > > > 2 9 >
s4 ipc 4 > 8 5 10 >
s4 md 4 > 9 8 3 12
s4 path 1 > 20 2 3 19
s4 ph 4 18 8 5 7 4
s4 s5 2 > 6 > 3 5
s4 t4p 3 > 10 5 > 13

Table 4.7: Results of the FaCT and DLP solvers using the Heuerding / Schwendimann
S4 data sets

Hence, in order to improve the results, we would need to make a significant change

to the algorithm.

4.4.8 Comparative benchmark results of the S4 data sets

In Table 4.7, we list the results of the TANCS-1998 competition which were obtained

for the S4 data sets for the DLP and FaCT solvers [67] and add the results of the

S4 KCSP solver to simplify the comparison process.

We can see from these results that my results are considerably better than the

FaCT solver in most cases. However, FaCT was able to solve all s4 45 data sets,

whereas S4 KCSP solved only 14 and 12 of these data sets respectively.

When we compare my results with the DLP results, we find that in general, DLP

returns better results for n-data sets, while S4 KCSP returns better results for the

p-data sets. However, DLP solved all the s4 45 data sets and solved significantly

more of the s4 ph data sets. It is without a doubt the superior solver.

4.5 Final analysis of the constraint logic approach

To summarize what has been achieved, I have been able to add reflexivity and transi-

tivity to the accessibility relation of the modal logics KT and S4 and solve formulae

153

of these logics in the constraint logic environment, with reflexivity being the eas-

ier implementation. I have developed a prototype that does not require the modal

formulae to be in conjunctive normal form and that gives good results.

These results were however not easy to achieve as the analysis process was complex

due to the complex nature of the benchmark data. In order to optimize the prototypes,

it was necessary to carry out a detailed analysis of the data sets that returned poor

results, and then determine in what way they could be optimized. I tried many

approaches that did not return good results and were subsequently abandoned.

There were tremendous advantages to using the Heuerding / Schwendimann data

sets. Firstly, I knew whether the modal formula was satisfiable or not, which assisted

greatly in the debugging process. Secondly, the data sets were comprehensive enough

to thoroughly test the prototype – the quality of the data sets ensured correct results.

One must bear in mind that when the output is V alid or Not V alid, it becomes very

difficult to analyze erroneous results.

When the timing of the data sets was analyzed, it was found that it was affected

by the number of branches in the tree and their depth, the amount of backtracking

and the number of choice points in a clause. The enhancements therefore focused on

reducing these factors.

One of the strengths of the constraint logic approach is its ability to constrain

the domain of the variables in the modal formula. Firstly, in the K KCSP prototype,

by setting the domain of the propositional literals to {0, 1, u}, Brand et al. enabled

partial assignments to be returned. Secondly, in the enhancements I have introduced,

good results were returned by setting the domain of positive propositional unit clauses

to 1 and the domain of negative propositional unit clauses to 0 (Enhancement 4 in

Section 4.3.9). My idea was taken a step further by setting the domain of propo-

sitional literals that occurred either only positively or only negatively to {1} and

{0} respectively and then removing these clauses completely. In this way, the search

space was significantly reduced. The tableau and sequent solvers cannot duplicate

this approach.

The constraint satisfaction problem is NP-complete, whereas the modal satis-

fiability problem is PSPACE-complete. The timings of some of the classes were

exponential; however no space problems were experienced during the benchmarking

154

exercise, confirming this difference.

It is interesting to compare the enhancements made to the KCSP prototypes with

those applied to the DLP and FaCT solvers (Section 3.1.4). In particular, these tech-

niques include lexical normalization, simplification, storing the satisfiability status of

each formula in a cache, using highly optimized data structures and the implemen-

tation of backjumping, which involves bypassing nodes that do not contribute to the

current clash.

In the KT KCSP and S4 prototype, extensive simplification was implemented,

without which the results would not have been good. The concept of caching was

implemented and formulae were stored together with their satisfiability status, which

contributed significantly to the good results. Backtracking automatically takes place

in a constraint solver – whenever a failure is encountered, it automatically reverts

to the last choice point, which could be several modal layers away from the point of

failure. However, this approach is not as sophisticated as backjumping.

The two enhancements that were not implemented were lexical normalization

and highly optimized data structures. Lexical normalization, which stores common

sub-formulae, facilitates the easy identification of sub-formulae such as ϕ and ¬ϕ.

To implement it, well-defined data structures are required and so these are natural

candidates for implementation together. The way in which modal formulae in the

KCSP prototypes are represented and the way in which they are manipulated is far

from optimal – one of the drawbacks of their representation is the cumbersome way

in which lists are dealt with in a logic programming language.

Because some of my enhancements were essentially tableau optimizations, the

prototypes I have developed are in fact hybrid tableau constraint-based solvers. I have

thus been able to benefit from the optimizations of tableau and constraint solvers,

which I think makes this an interesting approach.

A shortcoming of the approach I followed was that I limited myself to the Heuerd-

ing / Schwendimann data sets, although, as already discussed, there were huge ben-

efits in doing so. If time had not precluded it, it would have been interesting to test

the performance of the prototypes against the QBF data sets which were used at the

TANCS-2000 conference. In all probability, testing the prototypes against these data

sets would have highlighted further areas of improvement. When I was looking for

155

ways to improve my results, I tended to focus on a particular class of data set and

then developed an enhancement specific to it. However, I often found that when I

implemented the enhancement, the results of other data sets unexpectedly improved.

For example, Enhancement 1 was based on an analysis of the kt branch data sets.

However, the kt grz n data sets benefited unexpectedly in that I was able to solve all

21 data sets! I therefore feel that running such a prototype against as many different

test sets as possible can only improve it.

Further enhancement of the S4 KCSP prototype was hampered by the represen-

tation of the data. Hence, this is an area which can be recommended as a future

research project.

4.6 Final remarks

The KT KCSP and S4 KCSP prototypes returned good results as we could see by

comparing their results with those obtained by other solvers. Although these solvers

were benchmarked in 2000, because of the exponential nature of the modal satisfia-

bility problem, these results are still meaningful. Although the speed of hardware has

improved significantly over the past seven years, in cases where, for instance, only 6

data sets in a class were solved in 2000, we cannot expect more than 8 data sets to

now be solved (Section 4.3.12). This class of problem is PSPACE-complete which is

where it remains. Comparison with these benchmarks has shown that the results of

the KT KCSP and S4 KCSP prototypes are highly competitive, with the KT KCSP

prototype being more so.

The enhancements applied returned good results for the KT KCSP prototypes.

However, in the case of the S4 KCSP prototype, it became much more difficult to en-

hance, particularly because of the cumbersome data structures – the implementation

of Enhancement 7 (Section 4.4.4) was challenging and took a lot of time and effort.

The implementation of lexical normalization is almost an impossibility in these pro-

totypes because of the data structures. At this point, the best option would therefore

be a rewrite of the prototype, given the requirement for optimized data structures.

As an aside, the prototypes were tested on the then latest HP hardware (July 2007)

which had 2 x 2.2 GHz AMD Opteron Processors (dual core). The improvement

in the results was insignificant. This suggests that, in order to benefit from this

156

new technology, a concurrent algorithm is required. This was, I felt, an unexpected

stumbling block as I was expecting to benefit from using the latest and most powerful

hardware.

The results I obtained support the feasibility of this implementation and therefore

further enhancements are recommended as a future research project.

Chapter 5

Conclusions and further work

We have looked at how the modal satisfiability problem can be solved in a constraint

logic environment. We have extended the solver developed for the modal logic K by

adding reflexivity and transitivity to the accessibility relation, which has resulted in

two new prototypes.

We first look briefly at an application area of modal logic, this being temporal

reasoning and identify this as an area in which the S4 KCSP prototype could be

implemented. Temporal reasoning problems occur in a vast number of application

areas, as time is a dimension which is an integral part of our lives. Scheduling

by its very nature has an embedded time dimension, as events need to occur in a

certain order. Many application areas that are addressed in computer science need

to make use of time-based information for reporting, calculations, projections and so

on. Banking applications, for example, are an area that we all are familiar with and

that have a well defined time dimension. In the medical field, vast amounts of time-

oriented clinical data need to be collected and analyzed to identify trends in disease,

to monitor patients and to record responses to new drugs. Such data can be used

to determine a diagnosis and to prescribe therapy and such an analysis is impossible

without a time dimension [116]. An overview of temporal logic, its application areas

and the temporal constraint satisfaction problem has already been provided in Section

2.8.3 – a further discussion follows which relates to the prototypes we have developed.

We then look very briefly at other application areas in which these prototypes

could be used. This is however a brief and cursory investigation and serves to present

some idea of further research areas.

This is followed by looking at ways in which the prototypes can be further en-

hanced.

157

158

5.1 Modal temporal logic

We have seen in Section 2.8.3 that the temporal constraint satisfaction problem

(TCSP) has been solved using Allen’s interval algebra. It makes use of a tempo-

ral representation based on time intervals and expresses these time intervals using a

set of 13 interval relations. We also saw that a translation of this interval algebra

into a temporal modal logic that has two modalities has been defined [41]. Since

much research has been carried out into solving TCSPs using the interval algebra,

this is a worthwhile area to take further. Modal temporal logic is able to deal with

more powerful temporal problems than the interval algebra and is more expressive

than the interval algebra, making this a useful extension. It also requires the accessi-

bility relation to be transitive, which we have already implemented in the S4 KCSP

prototype.

In order to understand some of the complexities of implementing this translation,

we repeat the following example.

Example 5.1.1. The interval algebra problem of Example 2.8.3 is translated into

the modal temporal logic, defined in Algorithm 1, as follows:

The path constraints

p1 overlaps p2; p1 starts p2

p2 meets p3

are translated into

((3(p1 ∧ p2) ∧3(p1 ∧ ¬p2 ∧3Fp2) ∧3(p2 ∧ ¬p1 ∧3Pp1)) ∨
(2(¬p1 ∨ p2) ∧3(p2 ∧ ¬p1) ∧2(¬p1 ∨ ¬p2 ∨2P (¬p2 ∨ p1)))) ∧
2((¬p2 ∨ ¬p3) ∧ (¬p2 ∨3Fp3)) ∧ ¬3(¬p2 ∧ ¬p3 ∧3Pp2 ∧3Fp3)

a

We observe the following from the temporal modal formula above, particularly

with reference to the S4 KCSP prototype:

- The formula does not have the intuitive content of the interval algebra repre-

sentation.

159

- The S4 KCSP prototype returns a result of V alid or Not V alid. If the formula

is V alid, we are not going to know anything about the relation between p1 and

p3. In Example 2.8.3, the relation between p1 and p3 was established to be

before. The S4 KCSP prototype will not however be able to return this sort of

result.

- The S4 KCSP prototype will first process the clauses equivalent to {overlaps,
meets} and then the clauses equivalent to {starts, meets}. If we had three re-

lations on the first edge and three on the second edge, it would process 6 sets

of relations. The path consistency algorithm on the other hand calculates the

relations between p1 and p3 based on the relations between p1 and p2 and those

between p2 and p3 – a totally different approach. However, it has the disad-

vantage that the composition of these relations can result in a more complex

set of relations. For example, if we have the relation before between p1 and p2

and finishes between p2 and p3, the composition operation will return {before,
during, overlaps, meets, starts} as the set of relations between p1 and p3.

- We now have modalities 2, 2P , 2F , 3, 3P and 3F – the prototype will need

to be modified to deal with more than one modality.

It is clear that it will not be a trivial matter to modify the S4 KCSP prototype to

deal with these temporal modal formulae. However, this is a potential future research

area which will be worth pursuing further.

5.2 Additional application areas

We have not so far considered the implementation of the prototypes in the area of

description logic. The majority of tableau solvers have been developed specifically to

deal with description logic and so it would be a worthwhile exercise to investigate this

further. Because of the correspondence between modal logic and description logic, as

formalized in Definition 2.8.2, this is a relatively straightforward modification. FaCT,

DLP and RACE all provide for the description logic ALC and support transitive

roles. FaCT and RACE handle qualified number restrictions and graded modalities.

RACE also provides for ABoxes, which correspond to restricted use of nominals in

160

modal logics [87]. Number restrictions, which are described on page 25, can easily be

implemented in both prototypes.

The modal logic S5 is used to reason about knowledge and belief and can be used

to reason about multi-agent systems. This is an important research area, particularly

because of current developments on the Web. The S4 KCSP prototype could be

extended to deal with it by adding the symmetric axiom, B (Definition 2.3.3).

5.3 Further areas of improvement to the prototypes

Further enhancement to the S4 KCSP prototype was hampered by the complexity

and inflexibility of its data structures. Furthermore, the original K KCSP solver has

been extensively modified in a somewhat ad-hoc manner. Hence, before any of the

suggested application areas are looked into, it is necessary to either re-design the pro-

totypes and optimize the data structures, or implement the algorithm in an alternate

constraint-based system. The *SAT solver, discussed in Section 3.4.3, makes use of

a commercially available library of data types that provides highly optimized data

structures. This approach significantly reduced their development cycle. A possible

alternative to a full re-development of the prototypes in a logic programming environ-

ment would be to use a product such as ILOG CP, which is commercially available

constraint-based optimization software. Further details of ILOG are available on their

web-site [1]. A useful paper which provides an introduction to the development of

ILOG is [108].

The pros and cons of these two options would need to be carefully evaluated and

considered.

One area which lends itself to further optimization in both the KT KCSP NoCNF

and S4 KCSP prototypes is the following. Recall that the input modal formula is con-

verted into NNF and then a formula is constructed which is fed into the constraint

solver (Definition 4.3.9 and Algorithm 7). If no solution is found, the algorithm

backtracks and the formula is reconstructed. The initial construction selects a propo-

sitional literal or a modal atom from each NNF clause whenever possible and only if

neither is available does it select an NNF formula. However, no selection criteria were

applied to these NNF formulae. This means that an NNF formula of high complexity

might be selected which would seriously increase the search space.

161

5.4 Final remarks

In this dissertation, we identified the modal satisfiability problem as an area of inter-

est. We began by looking at its complexity and found that, in the worst case, these

problems are NSPACE-complete.

We carried out an in-depth survey of the most successful solvers that have been

developed to date. We found that the majority of solvers were based on tableau

systems, although the Logics Workbench LWB, which has been based on sequent

systems, and the MSPASS solver, which has been based on the translation of modal

logics into first-order logic, are also powerful solvers. The solvers LWB, FaCT, DLP,

RACE, RACER and MSPASS all support a transitive accessibility relation. Of these,

FaCT, DLP, RACE and RACER support the description logic ALC, while MSPASS

supports the description logic ALB [97]. The solver *SAT, which is based on the

translation of modal logic into layered propositional satisfiability problems does not

support transitivity – it only supports reflexivity [119]. The KCSP solver, which is

based on the translation of modal logic into layered constraint satisfaction problems

only supports the modal logic K.

The translation into first-order logic differs from the other solvers in two ways.

Firstly, it seems to have been motivated primarily by the desire to understand why

modal logic is decidable, whereas first-order logic is not. Secondly, it is the only

solver out of those discussed above which does not build a modal tree. However, the

associated MSPASS solver has turned out to be competitive and for some data sets

of the TANCS-2000 conference, it returned the best results.

The tableau-based solvers are highly competitive and to achieve their good results,

it was necessary to apply extensive optimizations. Firstly, the modal formula is

reduced as much as possible by applying the rules of unit subsumption and unit

resolution, thereby minimizing the branches of the modal tree. When a branch is

unsatisfiable, the solver backjumps over as many nodes as possible, thereby avoiding

unnecessary processing. The results of formulae already processed are stored, again

avoiding unnecessary reprocessing. Finally, highly optimized data structures are used.

We focused on the translation of modal formulae into a layered set of constraint

satisfaction problems. This choice was made because this is a new approach and has

only been applied to the modal logic K. The obvious extensions were to add reflexive

162

and transitive accessibility relations, as this is the approach followed by other solvers.

Adding reflexivity to the existing K KCSP solver did not initially return good results.

Various enhancements were implemented, some of which improved the results signifi-

cantly and others which resulted in minor improvements. For example, Enhancement

2 resulted in only 5 additional data sets being solved by the KT KCSP CNF proto-

type and only 1 by the KT KCSP NoCNF prototype, although the timings in general

marginally improved. Enhancement 5 on the other hand resulted in an additional

7 classes of data sets being fully solved by the KT KCSP CNF prototype and an

additional 8 classes by the KT KCSP NoCNF prototype!

The full enhancement process included a number of the techniques applied by

tableau solvers. It was possible to implement these because of the Prolog-like language

embedded in ECLiPSe. Hence, we have a hybrid tableau constraint-based solver

which includes the strengths of both.

Adding a transitive accessibility relation was more complex, mainly because of

the way in which the data is represented. The caching approach was further refined

– the algorithm is an improvement on that implemented for the KT KCSP solver.

Simplification was taken to its limits with subsumption and resolution now being

applied within modal formulae in an NNF clause, and simplification was applied

before transitivity and reflexivity. Again, neither of these were included in the code

of the KT KCSP solver.

Ultimately, we have good results in a prototype which needs to be rewritten in

order to optimize its data structures. However, the efficiency or otherwise of the

code plays a very small role in the timing of the results – it is the size of the modal

tree which has the greatest effect. Reducing the number of branches is far more

important than optimizing the code – improvements in performance were always

attributable to pruning the search space and this is the area which must be focused

on. Optimizing the data structures will enable further enhancements to be easily

implemented. An example of such an enhancement is lexical normalization which

enables the identification of ϕ and ¬ϕ.

We have identified two definite areas in which the prototypes can be deployed,

these being a simple temporal modal logic into which formulae of the interval algebra

can be converted, and the description logic ALC which has been included in most of

163

the other solvers.

In conclusion, the good results obtained with the KT KCSP and S4 KCSP pro-

totypes indicate that this research area needs to be further considered.

Bibliography

[1] ILOG CP. Available at http://www.ilog.com/products/cp/, retrieved Septem-
ber 2007.

[2] The ECLiPSe Constraint Programming System. Available at
http://eclipse.crosscoreop.com/, retrieved September 2007.

[3] J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communications
of the ACM, 26(11):832–843, 1983.

[4] K. R. Apt and S. Brand. Schedulers for rule-based constraint programming. In
Proceedings of the 2003 ACM Symposium on Applied Computing, Melbourne,
FL, pages 14–21. ACM Press, 2003.

[5] K. R. Apt and M. Wallace. Constraint Logic Programming using Eclipse. Cam-
bridge University Press, New York, USA, 2007.

[6] C. Areces, R. Gennari, J. Heguiabehere, and M. de Rijke. Tree-Based Heuristics
in Modal Theorem Proving. In W. Horn, editor, Proceedings of the 14th Eu-
ropean Conference on Artificial Intelligence, Berlin, Germany, pages 199–203.
IOS Press, 2000.

[7] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, 2003.

[8] F. Baader, J. Hladik, C. Lutz, and F. Wolter. From Tableaux to Automata for
Description Logics. Fundamenta Informaticae, 57(2-4):247–279, 2003.

[9] S. Baase and A. van Gelder. Computer Algorithms: Introduction to Design and
Analysis (2nd ed.). Addison-Wesley Longman, Inc., Boston, MA, 1999.

[10] P. Balsiger and A. Heuerding. Comparison of Theorem Provers for Modal Logics
- Introduction and Summary. In H. C. de Swart, editor, Proceedings of the
International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods, Oisterwijk, The Netherlands, volume 1397 of Lecture Notes in
Computer Science, pages 25–26. Springer-Verlag, London, UK, 1998.

[11] P. Balsiger, A. Heuerding, and S. Schwendimann. A Benchmark Method for
the Propositional Modal Logics K, KT, S4. Journal of Automated Reasoning,
24(3):297–317, 2000.

[12] B. Beckert and R. Góre. Free-variable Tableaux for Propositional Modal Log-
ics. In D. Galmiche, editor, Proceedings of the International Conference on

164

165

Automated Reasoning with Analytic Tableaux and Related Methods, Pont-à-
Mousson, France, volume 1227 of Lecture Notes In Computer Science, pages
91–106. Springer-Verlag, London, UK, 1997.

[13] B. Beckert and R. Hähnle. Analytic Tableaux. In W. Bibel and P. H. Schmitt,
editors, Automated Deduction — A Basis for Applications, volume I: Founda-
tions, pages 11–41. Kluwer Academic Publishers, Dordrecht, The Netherlands,
1998.

[14] M. Ben-Ari. Mathematical Logic for Computer Science. Prentice-Hall Interna-
tional Series in Computer Science. Prentice-Hall International, Hempel Hemp-
stead, UK, 1993.

[15] A. Biere and C. P. Gomes, editors. Theory and Applications of Satisfiability
Testing - SAT 2006, 9th International Conference, Seattle, WA, volume 4121
of Lecture Notes in Computer Science. Springer-Verlag, 2006.

[16] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, Cambridge, UK, 2001.

[17] S. Brand, R. Gennari, and M. de Rijke. Constraint Programming for Modeling
and Solving Modal Satisfiability. In F. Rossi, editor, Proceedings of Principles
and Practice of Constraint Programming, Kinsale, Ireland, volume 2833 of Lec-
ture Notes in Computer Science, pages 795–800. Springer-Verlag, London, UK,
2003.

[18] S. Brand, R. Gennari, and M. de Rijke. Constraint Methods for Modal Satis-
fiability. In K. R. Apt, F. Fages, F. Rossi, P. Szeredi, and J. Váncza, editors,
Recent Advances in Constraints, International Workshop on Constraint Solv-
ing and Constraint Logic Programming, Budapest, Hungary, volume 3010 of
Lecture Notes in Computer Science, pages 66–86. Springer-Verlag, Berlin, Ger-
many, 2004.

[19] I. Bratko. Prolog (3rd ed.): Programming for Artificial Intelligence. Addison-
Wesley Longman, Inc., Boston, MA, 2001.

[20] S. Cerrito and M. Mayer. A Polynomial Translation of S4 into T and
Contraction-Free Tableau for S4. Logic Journal of the IGPL, 5(2):287–300,
1997.

[21] B. F. Chellas. Modal Logic : An Introduction. Cambridge University Press,
Cambridge, UK, 1980.

[22] L. Chittaro and A. Montanari. Temporal Representation and Reasoning in Arti-
ficial Intelligence: Issues and Approaches. Annals of Mathematics and Artificial
Intelligence, 28(1-4):47–106, 2000.

166

[23] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of
Finite-State Concurrent Systems using Temporal Logic Specifications. ACM
Transactions on Programming Languages and Systems, 8(2):244–263, 1986.

[24] E. M. Clarke, O. Grumberg, and D. E. Long. Model Checking and Abstraction.
ACM Transactions on Programming Languages and Systems, 16(5):1512–1542,
1994.

[25] J. Cohen. Constraint Logic Programming Languages. Communications of the
ACM, 33(7):52–68, 1990.

[26] S. Cook. The Complexity of Theorem Proving Procedures. In Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, Shaker Heights, Ohio,
pages 151–158. ACM Press, New York, USA, 1971.

[27] M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem
Proving. Communications of the ACM, 5(7):394–397, 1962.

[28] M. Davis and H. Putnam. A Computing Procedure for Quantification Theory.
Journal of the ACM, 7(1):201–215, 1960.

[29] H. de Nivelle and M. de Rijke. Deciding the Guarded Fragments by Resolution.
Journal of Symbolic Computation, 35(1):21–58, 2003.

[30] H. de Nivelle, R. A. Schmidt, and U. Hustadt. Resolution-Based Methods for
Modal Logics. Logic Journal of the IGPL, 8(3):265–292, 2000.

[31] L. del Cerro, D. Fauthoux, O. Gasquet, A. Herzig, D. Longin, and F. Massacci.
Lotrec: The Generic Tableau Prover for Modal and Description Logics. In
R. Góre, A. Leitsch, and T. Nipkow, editors, Proceedings of the 1st International
Joint Conference on Automated Reasoning, Siena, Italy, volume 2083 of Lecture
Notes In Computer Science, pages 453–458. Springer-Verlag, London, UK, 2001.

[32] S. Demri. Uniform and Non Uniform Strategies for Tableaux Calculi for Modal
Logics. Journal of Applied Non-Classical Logics, 5(1):77–98, 1995.

[33] M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The Constraint Logic Programming Language CHIP. In Proceed-
ings of the International Conference on Fifth Generation Computer Systems,
Tokyo, Japan, pages 693–702. ACM Press, New York, USA, 1988.

[34] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume B: Formal Models and Sematics,
pages 995–1072. MIT Press, 1990.

[35] R. Epstein and W. Carnielli. Computability (2nd ed.). Wadsworth/Thomson
Learning, Belmont, CA, 2000.

167

[36] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge, MA, 1995.

[37] M. Fitting. Proof Methods for Modal and Intuitionistic Logics, volume 169 of
Synthese Library. Kluwer Academic Publishers, Boston, MA, 1983.

[38] T. Frühwirth. Constraint Handling Rules. In A. Podelski, editor, Constraint
Programming: Basics and Trends, Châtillon-sur-Seine, France, volume 910 of
Lecture Notes in Computer Science, pages 90–107. Springer-Verlag, 1995.

[39] T. Frühwirth. Theory and Practice of Constraint Handling Rules. Journal
of Logic Programming, Special Issue on Constraint Logic Programming, 37(1-
3):95–138, 1998.

[40] T. Frühwirth, A. Herold, V. Küchenhoff, T. le Provost, P. Lim, E. Monfroy,
and M. Wallace. Constraint Logic Programming - An Informal Introduction.
In G. Comyn, N. E. Fuchs, and M. Ratcliffe, editors, Logic Programming in
Action, Zurich, Switzerland, volume 636 of Lecture notes in Computer Science,
pages 3–25. Springer-Verlag, 1992.

[41] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional
Modal Logics: Theory and Applications, volume 148 of Studies in Logic and the
Foundations of Mathematics. Elsevier Science, Amsterdam, The Netherlands,
2003.

[42] E. Giunchiglia, F. Giunchiglia, R. Sebastiani, and A. Tacchella. SAT vs Trans-
lation Based Decision Procedures for Modal Logics: A Comparative Evaluation.
Journal of Applied Non-Classical Logics, 10(2):145–172, 2000.

[43] E. Giunchiglia and A. Tacchella. System Description: *SAT A Platform for the
Development of Modal Decision Procedures. In D. A. McAllester, editor, In-
ternational Conference on Automated Deduction, Pittsburgh, PA, volume 1831
of Lecture Notes in Computer Science, pages 291–296. Springer-Verlag, 2000.

[44] F. Giunchiglia, M. Roveri, and R. Sebastiani. A New Method for Testing Deci-
sion Procedures in Modal and Terminological Logics. In L. Padgham, E. Fran-
coni, M. Gehrke, D. L. McGuinness, and P. F. Patel-Schneider, editors, Pro-
ceedings of the 1996 International Workshop on Description Logics, Cambridge,
MA, volume WS-96-05 of AAAI Technical Report, pages 119–123. AAAI Press,
1996.

[45] F. Giunchiglia and R. Sebastiani. Building Decision Procedures for Modal Log-
ics from Propositional Decision Procedure - The Case Study of Modal K. In
M. A. McRobbie and J. K. Slaney, editors, Proceedings of the 13th Interna-
tional Conference on Automated Deduction, New Brunswick, NJ, volume 1104
of Lecture Notes in Computer Science, pages 583–597. Springer, London, UK,
1996.

168

[46] F. Giunchiglia and R. Sebastiani. Building Decision Procedures for Modal
Logics from Propositional Decision Procedures. The Case Study of Modal K(m).
Information and Computation, 162(1-2):158–178, 2000.

[47] R. Goldblatt. Logics of Time and Computation (2nd ed.). CSLI Publications,
Stanford, CA, 1992.

[48] R. Goldblatt. Mathematical Modal Logic - a View of its Evolution. Journal of
Applied Logic, 1(5–6):309–392, 2003.

[49] R. Góre. Tableau Methods for Modal and Temporal Logics. In M. D’Agostino,
D. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods,
pages 297–396. Kluwer Academic Publishers, 1999.

[50] V. Haarslev and R. Möller. RACE System Description. In P. Lambrix,
A. Borgida, M. Lenzerini, R. Möller, and P. F. Patel-Schneider, editors, Pro-
ceedings of the 1999 International Workshop on Description Logics, Linköping,
Sweden, volume 22, pages 130–132. 1999.

[51] V. Haarslev and R. Möller. Consistency Testing: The RACE Experience. In
R. Dyckhoff, editor, Proceedings of the International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods, St. Andrews, Scot-
land, volume 1847 of Lecture Notes in Computer Science, pages 57–61. CEUR-
WS.org, London, UK, 2000.

[52] V. Haarslev and R. Möller. RACER System Description. In R. Gor, A. Leitsch,
and T. Nipkow, editors, Proceedings of the First International Joint Confer-
ence on Automated Reasoning, Siena,Italy, volume 2083 of Lecture Notes in
Computer Science, pages 701–706. Springer-Verlag, London, UK, 2001.

[53] J. Y. Halpern. Reasoning about Knowledge: A Survey. In D. M. Gabbay, C. J.
Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence
and Logic Programming (Volume 4): Epistemic and Temporal Reasoning, pages
1–34. Oxford University Press, Oxford, UK, 1995.

[54] J. Y. Halpern. The Effect of Bounding the Number of Primitive Propositions
and the Depth of Nesting on the Complexity of Modal Logic. Artificial Intelli-
gence, 75(2):361–372, 1995.

[55] J. Y. Halpern and Y. Moses. Knowledge and Common Knowledge in a Dis-
tributed Environment. In Proceedings of the Third Annual ACM Symposium
on Principles of Distributed Computing, Vancouver, Canada, pages 50–61. ACM
Press, New York, USA, 1984.

[56] J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal
logics of knowledge and belief. Artificial Intelligence, 54(3):319–379, 1992.

169

[57] E. Hemaspaandra. Modal Satisfiability is in Deterministic Linear Space. In
P. Clote and H. Schwichtenberg, editors, Proceedings of the 14th Annual Con-
ference of the EACSL on Computer Science Logic, Fischbachau, Germany, vol-
ume 1862 of Lecture Notes in Computer Science, pages 332–342. Springer-Verlag
London, UK, 2000.

[58] A. Heuerding, G. Jäger, S. Schwendimann, and M. Seyfried. Propositional Log-
ics on the Computer. In P. Baumgartner, R. Hähnle, and J. Posegga, editors,
Proceedings of the 4th International Workshop on Theorem Proving with Ana-
lytic Tableaux and Related Methods, Schloß Rheinfels, Germany, volume 918 of
Lecture Notes in Computer Science, pages 310–323. Springer-Verlag, London,
UK, 1995.

[59] A Heuerding, G. Jäger, S. Schwendimann, and M. Seyfried. The Logics Work-
bench LWB: A Snapshot. Euromath Bulletin, 2(1):177–186, 1996.

[60] A. Heuerding and S. Schwendimann. A Benchmark Method for the Proposi-
tional Modal Logics K, KT, S4. Technical Report IAM-96-015, 1996.

[61] A. Heuerding, M. Seyfried, and H. Zimmermann. Efficient Loop-Check for Back-
ward Proof Search in Some Non-classical Propositional Logics. In P. Miglioli,
U. Moscato, D. Mundici, and M. Ornaghi, editors, Proceedings of the 5th In-
ternational Workshop on Theorem Proving with Analytic Tableaux and Related
Methods, Terrasini, Italy, volume 1071 of Lecture Notes in Computer Science,
pages 210–225. Springer-Verlag, London, UK, 1996.

[62] J. Hintikka. Knowledge and Belief. Cornell University Press, New York, USA,
1962.

[63] I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics.
PhD thesis, University of Manchester, UK, 1997.

[64] I. Horrocks. Benchmark Analysis with FaCT. In R. Dyckhoff, editor, Proceed-
ings of the International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods, St. Andrews, Scotland, volume 1847 of Lecture
Notes in Computer Science, pages 62–66. Springer-Verlag, London, UK, 2000.

[65] I. Horrocks and P. F. Patel-Schneider. Optimizing Description Logic Subsump-
tion. Journal of Logic and Computation, 9(3):267–293, 1999.

[66] I. Horrocks, P. F. Patel-Schneider, and R. Sebastiani. An Analysis of Empirical
Testing for Modal Decision Procedures. Logic Journal of the IGPL, 8(3):293–
323, 2000.

[67] I. Horrocks and P.F Patel-Schneider. FaCT and DLP: Automated reasoning
with analytic tableaux and related methods. In H. C. de Swart, editor, Pro-
ceedings of the International Conference on Automated Reasoning with Ana-
lytic Tableaux and Related Methods, Oisterwijk, The Netherlands, volume 1397

170

of Lecture Notes in Computer Science, pages 27–30. Springer-Verlag, London,
UK, 1998.

[68] J. Hudelmaier. An O(n log n)-Space Decision Procedure for Intuitionistic Propo-
sitional Logic. Journal of Logic and Computation, 3(1):63–75, 1993.

[69] U. Hustadt and R.A.Schmidt. On Evaluating Decision Procedures for Modal
Logic. In M. Pollack, editor, Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, Nagoya, Japan, volume 1, pages 202–209.
Morgan Kaufmann Inc., 1997.

[70] U. Hustadt and R. A. Schmidt. An Empirical Analysis of Modal Theorem
Provers. Journal of Applied Non-Classical Logics, 9(4):479–522, 1999.

[71] U. Hustadt and R. A. Schmidt. MSPASS: Modal Reasoning by Translation
and First-Order Resolution. In R. Dyckhoff, editor, Proceedings of the Interna-
tional Conference on Automated Reasoning with Analytic Tableaux and Related
Methods, St. Andrews, Scotland, volume 1847 of Lecture Notes in Aritifical In-
telligence, pages 67–71. Springer-Verlag, London, UK, 2000.

[72] U. Hustadt, R. A. Schmidt, and C. Weidenbach. Optimised Functional Transla-
tion and Resolution. In H. C. de Swart, editor, Proceedings of the International
Conference on Automated Reasoning with Analytic Tableaux and Related Meth-
ods, Oisterwijk, The Netherlands, volume 1397 of Lecture Notes in Computer
Science, pages 36–37. Springer-Verlag, London, UK, 1998.

[73] M. Huth and M. Ryan. Logic in Computer Science: Modeling and Reasoning
about Systems. Cambridge University Press, New York, USA, 2000.

[74] G. Jaeger, P. Balsiger, A. Heuerding, and S. Schwendi-
mann. K, KT, S4 test data sets. Available at
http://www.iam.unibe.ch/∼lwb/benchmarks/benchmarks.html, retrieved
September 2007.

[75] G. Jaeger, P. Balsiger, A. Heuerding, and S. Schwendimann. LWB software.
Available at http://www.lwb.unibe.ch/, retrieved September 2007.

[76] J. Jaffar, P. J. Stuckey, S. Michaylov, and R. H. C. Yap. An abstract machine
for CLP(R). ACM SIGPLAN Notices, 27(7):128–139, 1992.

[77] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,
University of California, Los Angeles, CA, 1968.

[78] S. Kripke. Semantic considerations on modal logic. In Acta Philosophica Fen-
nica, volume 16, pages 83–94. 1963.

[79] P. B. Ladkin and A. Reinefeld. Fast Algebraic Methods for Interval Constraint
Problems. Annals of Mathematics and Artificial Intelligence, 19(3-4):383–411,
1997.

171

[80] R. E. Ladner. The Computational Complexity of Provability in Systems of
Modal Propositional Logic. SIAM Journal on Computing, 6(3):467–480, 1977.

[81] M. Lagoudakis and M. Littman. Learning to Select Branching Rules in the
DPLL Procedure for Satisfiability. In H. Kautz and B. Selman, editors, LICS
2001 Workshop on Theory and Applications of Satisfiability Testing, Boston,
MA, volume 9. Elsevier Science, 2001.

[82] J. Lassez, M. J. Maher, and K. Marriott. Unification Revisited. In Foundations
of Logic and Functional Programming, Trento, Italy, volume 306 of Lecture
Notes In Computer Science, pages 67–113. Springer-Verlag, New York, USA,
1988.

[83] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99–118, 1977.

[84] F. Massacci. Strongly Analytic Tableaux for Normal Modal Logic. In A. Bundy,
editor, Proceedings of the Twelfth International Conference on Automated De-
duction, Nancy, France, number 814 in Lecture Notes In Computer Science,
pages 723–737. Springer-Verlag, New York, USA, 1994.

[85] F. Massacci. Design and Results of the Tableaux-99 Non-classical (Modal) Sys-
tems Comparison. In N. V. Murray, editor, Proceedings of the International
Conference on Automated Reasoning with Analytic Tableaux and Related Meth-
ods, Saratoga Springs, NY, volume 1617 of Lecture Notes in Computer Science,
pages 14–18. Springer-Verlag, London, UK, 1999.

[86] F. Massacci. Single Step Tableaux for Modal Logics. Journal of Automated
Reasoning, 24(3):319–364, 2000.

[87] F. Massacci and F. M. Donini. Design and Results of TANCS-2000 Non-classical
(Modal) Systems Comparison. In R. Dyckhoff, editor, Proceedings of Interna-
tional Conference on Automated Reasoning with Analytic Tableaux and Related
Methods, St. Andrews, Scotland, volume 1847 of Lecture Notes in Computer
Science, pages 52–56. Springer-Verlag, London, UK, 2000.

[88] I. Meiri. Combining qualitative and quantitative constraints in temporal rea-
soning. Artificial Intelligence, 87(1-2):343–385, 1996.

[89] G. Mints. Gentzen-type systems and resolution rules. Part I. Propositional
logic. In P. Martin-Löf and G. Mints, editors, Proceedings of the International
Conference on Computer Logic, Tallinn, USSR, volume 417 of Lecture Notes in
Computer Science, pages 198–231. Springer-Verlag, London, UK, 1990.

[90] D. G. Mitchell, B. Selman, and H. J. Levesque. Hard and Easy Distributions
of SAT Problems. In W. R. Swartout, editor, Proceedings of the 10th National
Conference on Artificial Intelligence, San Jose, CA, pages 459–465. MIT Press,
1992.

172

[91] B. Nebel. Solving Hard Qualitative Temporal Reasoning Problems: Evaluating
the Efficiency of Using the ORD-Horn Class. In W. Wahlster, editor, 12th
European Conference on Artificial Intelligence, Budapest, Hungary, pages 38–
42. John Wiley and Sons, Chichester, UK, 1996.

[92] B. Nebel and H. Bürckert. Reasoning about temporal relations: a maximal
tractable subclass of Allen’s interval algebra. Journal of the ACM, 42(1):43–66,
1995.

[93] A. Nerode and R. A. Shore. Logic for Applications. Springer-Verlag, New York,
USA, 1997.

[94] L. A. Nguyen. A New Space Bound for the Modal Logics K4, KD4 and S4. In
M. Kutylowski, L. Pacholski, and T. Wierzbicki, editors, Proceedings of the 24th
International Symposium on Mathematical Foundations of Computer Science,
Szklarska, Poland, volume 1672 of Lecture Notes in Computer Science, pages
321–331. Springer-Verlag, London, UK, 1999.

[95] A. Nonnengart. First-Order Modal Logic Theorem Proving and Functional
Simulation. In R. Bajcsy, editor, Proceedings of the 13th International Joint
Conference on Artificial Intelligence, Chambéry, France, volume 1, pages 80–
85. Morgan Kaufmann Inc., 1993.

[96] H. Ohlbach. Translation Methods for Non-Classical Logics - an Overview. Bul-
letin of the IGPL, 1(1):69–90, 1993.

[97] H. Ohlbach, A. Nonnengart, M. de Rijke, and D. Gabbay. Encoding Two-Valued
Non-Classical Logics in Classical Logic. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, pages 1403–1486. Elsevier Science,
Amsterdam, The Netherlands, 2001.

[98] H. Ohlbach and R. A. Schmidt. Functional Translation and Second-Order Frame
Properties for Modal Logics. Journal of Logic and Computation, 7(5):581–603,
1997.

[99] J. Otten. ileanTAP: An Intuitionistic Theorem Prover. In D. Galmiche, editor,
Proceedings of the International Conference on Automated Reasoning with An-
alytic Tableaux and Related Methods, Pont-à-Mousson, France, volume 1227 of
Lecture Notes in Computer Science, pages 307–312. Springer-Verlag, London,
UK, 1997.

[100] J. Otten and C. Kreitz. A Connection Based Proof Method for Intuitionistic
Logic. In P. Baumgartner, R. Hähnle, and J. Posegga, editors, Proceedings of
the 4th International Workshop on Theorem Proving with Analytic Tableaux
and Related Methods, Schloß Rheinfels, Germany, volume 918 of Lecture Notes
in Computer Science, pages 122–137. Springer-Verlag, London, UK, 1995.

173

[101] G. Pan, U. Sattler, and M. Vardi. BDD-Based Decision procedures for the
Modal Logic K. In B. Konev, R. Schmidt, and S. Schulz, editors, Journal of
Applied Non-Classical Logics, volume 16, pages 169–208. Elsevier Science, 2006.

[102] G. Pan, U. Sattler, and M. Y. Vardi. BDD-Based Decision Procedures for K.
In A. Voronkov, editor, Proceedings of the 18th International Conference on
Automated Deduction, Copenhagen, Denmark, volume 2392 of Lecture Notes in
Computer Science, pages 16–30. Springer-Verlag, London, UK, 2002.

[103] P. F. Patel-Schneider. TANCS-2000 Results for DLP. In R. Dyckhoff, edi-
tor, Proceedings of the International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods, St. Andrews, Scotland, volume 1847
of Lecture Notes in Computer Science, pages 72–76. Springer-Verlag, London,
UK, 2000.

[104] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, Providence, RI, pages 46–67.
IEEE Computer Society, 1977.

[105] A. N. Prior. Time and Modality. Oxford University Press, Oxford, UK, 1957.

[106] A. N. Prior. Past, Present and Future. Oxford University Press, Oxford, UK,
1967.

[107] A. N. Prior. Papers on Time and Tense. Oxford University Press, Oxford, UK,
1969.

[108] J. F. Puget. A C++ Implementation of CLP. In Proceedings of the 2nd Singa-
pore International Conference on Intelligent Systems, Singapore. 1994.

[109] F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming.
Elsevier Science, New York, USA, 2006.

[110] K. Schild. A Correspondence Theory for Terminological Logics: Preliminary
Report. In J. Mylopoulos and R. Reiter, editors, Proceedings of the 12th Inter-
national Joint Conference on Artificial Intelligence, Sydney, Australia, pages
466–471. Morgan Kaufmann Inc., 1991.

[111] R. A. Schmidt. Decidability by Resolution for many Modal Logics. Journal of
Automated Reasoning, 22(4):379–396, 1999.

[112] R. A. Schmidt and D. Tishkovsky. Multi-agent Logics of Dynamic Belief and
Knowledge. In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Proceedings
of the 8th European Conference on Logics in Artificial Intelligence, volume 2424
of Lecture Notes in Artificial Intelligence, pages 38–49. Springer-Verlag, London,
UK, 2002.

[113] M. Schmidt-Schauß and G. Smolka. Attributive Concept Descriptions with
Complements. Artificial Intelligence, 48(1):1–26, 1991.

174

[114] E. Schwalb and R. Dechter. Processing Disjunctions in Temporal Constraint
Networks. Artificial Intelligence, 93(1-2):29–61, 1997.

[115] E. Schwalb and L. Vila. Temporal Constraints: A Survey. Constraints, 3(2-
3):129–149, 1998.

[116] Y. Shahar. Dimension of Time in Illness: An Objective View. Annals of Internal
Medicine, 132(1):45–53, 2000.

[117] H. Simonis and M. Dincbas. Chapter 15: Propositional Calculus Problems in
CHIP. In F. Benhamou and A. Colmerauer, editor, Constraint Logic Program-
ming: Selected Research, pages 269–285. MIT Press, Cambridge, MA, 1993.

[118] A. Szalas. Temporal logic of programs: a standard approach. In L. Bolc and
A. Szalas, editors, Time and logic: a computational approach, pages 1–50. UCL
Press Ltd., London, UK, 1995.

[119] A. Tacchella. Evaluating *SAT on TANCS 2000 Benchmarks. In R. Dyckhoff,
editor, Proceedings of the International Conference on Automated Reasoning
with Analytic Tableaux and Related Methods, St. Andrews, Scotland, volume
1847 of Lecture Notes in Computer Science, pages 77–81. Springer-Verlag, Lon-
don, UK, 2000.

[120] J. Thornton, M. Beaumont, A. Sattar, and M. Maher. Applying Local Search
to Temporal Reasoning. In Proceedings of the 9th International Symposium
on Temporal Representation and Reasoning, Manchester, UK, page 94. IEEE
Computer Society, Washington, DC, 2002.

[121] A. Turing. Computability and λ-Definability. Journal of Symbolic Logic, 2,
1937.

[122] P. van Beek. Reasoning about Qualitative Temporal Information. Artificial
Intelligence, 58(1-3):297–326, 1992.

[123] P. van Beek and D. W. Manchak. The Design and Experimental Analysis of
Algorithms for Temporal Reasoning. Journal of Artificial Intelligence Research,
4:1–18, 1996.

[124] J. van Benthem. Temporal patterns and modal structure. Logic Journal of the
IGPL, 7(1):7–26, 1999.

[125] P. van Hentenryck and V. A. Saraswat. Strategic Directions in Constraint
Programming. ACM Computing Surveys, 28(4):701–726, 1996.

[126] P. van Hentenryck, H. Simonis, and M. Dincbas. Constraint Satisfaction Using
Constraint Logic Programming. Artificial Intelligence, 58(1-3), 1992.

175

[127] M. Vardi. Why is Modal Logic so Robustly Decidable? In P. G. Kolaitis
N. Immerman, editor, Descriptive Complexity and Finite Models, Proceedings
of a DIMACS Workshop, Princeton University, volume 31 of DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, pages 149–184.
American Mathematical Society, 1996.

[128] M. G. Wallace. Survey: Practical Applications of Constraint Programming.
Constraints Journal, 1(1), 1996.

[129] M. G. Wallace. Constraint Logic Programming. In A. C. Kakas and F. Sadri,
editors, Computational Logic: Logic Programming and Beyond, Essays in Hon-
our of Robert A. Kowalski, Part I, volume 2407 of Lecture Notes in Computer
Science. Springer-Verlag, London, UK, 2002.

[130] M. G. Wallace, S. Novello, and J. Schimpf. ECLiPSe: A Platform for Constraint
Logic Programming. ICL Systems Journal, 12(1):159–200, 1997.

[131] L. A. Wallen. Matrix Proof Methods for Modal Logics. In J. Dermott, edi-
tor, 10th International Joint Conference on Artificial Intelligence, Milan, Italy,
pages 917–923. Morgan Kaufmann Inc., 1987.

[132] C. Weidenbach, B. Gaede, and G. Rock. SPASS & FLOTTER version 0.42. In
M. A. McRobbie and J. K. Slaney, editors, Proceedings of the 13th International
Conference on Automated Deduction, New Brunswick, NJ, volume 1104, pages
141–145. Springer-Verlag, London, UK, 1996.

[133] M. Wooldridge. Intelligent agents. In G. Weiss, editor, Multiagent Systems A
Modern Approach to Distributed Artificial Intelligence, pages 27–77. MIT Press,
2000.

[134] M. Zakharyaschev, K. Segerberg, M. de Rijke, and H. Wansing. The Origins
of Modern Modal Logic. In M. Zakharyaschev, K. Segerberg, M. de Rijke,
and H. Wansing, editors, Advances in Modal Logic 2, Uppsala, Sweden. CSLI
Publications, 1998.

[135] H. Zhang. SATO: an Efficient Propositional Prover. In W. McCune, editor, Pro-
ceedings of the 14th International Conference on Automated Deduction, North
Queensland, Australia, volume 1249 of Lecture Notes in Artificial Intelligence,
pages 272–275. Springer-Verlag, London, UK, 1997.

Index

ECLiPSe, 84, 91

accessibility relation, 8

euclidean, 16

reflexive, 16, 99, 105

serial, 15

symmetric, 16

transitive, 16, 99, 139

Allen, 29

arc consistency, 79

atom

modal, 10

propositional, 10

atomic proposition, 6

axiom schema, 8

backjumping, 49, 80

backtracking, 49, 79

binary decision diagram, 94

caching, 49, 127

canonical form, 10

CHIP, 79, 84

CHR library, 84, 92

clause

modal, 11

NNF, 12

propositional, 11

CLP(R), 79

combinatorial problem, 76

computable, 18

computational complexity, 19

conjunctive normal form, 13

conversion to, 13

definition, 13

connective, 6

constraint

agent, 82

entailment, 83

graph, 30

handling rule, 84

propagation, 84, 85

simplification, 84

logic programming, 77

propagation of, 78, 79

solver, 78, 79

store, 81

constraint satisfaction

definition of, 76

temporal, 28

constraint-based modeling, 90

decidable, 5, 18

decision problems

EXPTIME, 20

NEXPTIME, 21

NP, 20

NP-complete, 20

NP-hard, 20

P, 19

PSPACE, 20

description logic, 24, 160

definition of, 26

176

177

DLP, 48, 49, 96, 102, 136, 152, 154, 161

DPLL, 35, 65

SAT algorithm, 66

early pruning, 73, 122, 150

exponential factor, 134, 152

FaCT, 48, 49, 96, 102, 136, 152, 154, 161

finite model property, 23

first-fail, 80

first-order logic, 22, 51, 161

FLOTTER, 64

functional translation, 60

optimized, 63

Gentzen sequent calculus, 36, 101

rules of, 50

guard, 83, 84

guarded fragment, 59

Heuerding-Schwendimann data sets, 103,

153

Horn clause, 77

inference, 25, 79, 83

interval algebra, 29

composition table, 29

networks, 30

intractable, 20

K KCSP, 86

algorithm, 88

Kripke, 7

frame, 8

modal K, 14

model, 8

semantics, 8

state, 8

structure, 8

world, 8

KSAT, 68, 74, 94, 136

algorithm, 72

KT KCSP, 105

KT KCSP CNF, 111

algorithm, 112

KT KCSP NoCNF, 112

algorithm, 115

lexical normalization, 48, 154

literal

modal, 10

propositional, 10

top-level, 68

unit modal, 11

logic

definition of, 14

logic programming, 77

loop checking, 101

LWB, 51, 161

modal

atom, 10

clause, 11

depth, 11

literal, 10

satisfiability, 18

complexity of, 21

temporal logic, 7, 18

unit clause, 11

178

validity, 18

modal logic

axioms of, 14

definition of, 8

K, 14

K(m), 17

K4, 15

knowledge and belief, 23, 160

KT, 15, 99

multi-modal, 17

normal, 14

S4, 15, 99

S5, 15, 160

semantics, 15

T, 15

temporal, 27, 158

definition of, 31

modality, 6, 7

model checking, 18

modus ponens, 14

MSPASS, 64, 96, 161

negative normal form, 12

no-good learning, 80

normal form, 10

path consistency, 79

algorithm, 31

polynomially bounded, 19

prenex normal form, 53

Prior, 27

propagation rule, 85

propositional

atom, 10

clause, 11

literal, 10

unit clause, 11

propositional logic, 6, 14

definition of, 6

quantified Boolean formula, 95

RACE, 48, 49, 96, 161

RACER, 161

reflexivity, 16, 41, 99, 105

refutation proof, 36

relational

model, 8

semantics, 8

translation, 56

resolution, 55, 77

unit, 66, 120, 147

restricted assignment, 71

S4 KCSP, 139

algorithm, 145

SAT, 65

satisfiability, 9, 18, 65

semantic

branching, 49

semi-functional translation, 63

sequent solver, 51

simplification, 49, 118, 146

rule, 84

single step tableau, 41

Skolemization, 54

SPASS, 64

179

splitting, 66

subsumption, 24

tableau rules

π-rules, 42

v-rules, 42

cut rule, 40

K, 39

KT, 41

S4, 41

tableau system

explicit accessibility, 41

free-variable, 44

implicit accessibility, 37

single step, 41

temporal

constraint

qualititative, 28

quantitative, 28

constraint graph, 30

constraint satisfaction, 28

modality, 27

reasoning, 157

tense logic, 27

tractable, 19, 20

transitivity, 16, 41, 99, 139

tree model property, 22, 59, 75

truth assignment

partial, 69

restricted, 69

total, 68

Turing machine, 19

unification, 55, 78

unit

modal literal, 11

propagation, 65

validity, 9, 18

well-formed formula, 7, 8

	Title page
	SUMMARY
	Contents
	List of Tables
	Acknowledgements
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Bibliography
	Index

