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Abstract

Value-at-Risk (VaR) model fails to predict financial risk accurately especially during finan-
cial crises. This is mainly due to the model’s inability to calibrate new market information
and the fact that the risk measure is characterised by poor tail risk quantification. An al-
ternative approach which comprises of the Expected Shortfall measure and the Lognormal
Jump-Diffusion (LJD) model has been developed to address the aforementioned shortcom-
ings of VaR. This model is called the Simulated-Expected-Shortfall (SES) model. The
Maximum Likelihood Estimation (MLE) approach is used in determining the parameters
of the LJD model since it’s more reliable and authenticable when compared to other non-
conventional parameters estimation approaches mentioned in other literature studies. These
parameters are then plugged into the LJD model, which is simulated multiple times in gen-
erating the new loss dataset used in the developed model. This SES model is statistically
conservative when compared to peers which means it’s more reliable in predicting financial
risk especially during a financial crisis.

Keywords: Historical-Simulation VaR model, Jump-Diffusion models, ES model, Coher-
ence, Fat-tailed distribution, HES model and SES model
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Chapter 1

INTRODUCTION

1.1 Background

According to Escanciano and Pei (2012), Value-at-Risk (VaR) models are standard tools
used in measuring market risk/financial risk used by financial institutions and their reg-
ulators. van Greuning and Bratanovic (2009) defines market risk as losses due to unfair
movements in market prices resulting from changes in the prices (volatility) of fixed-income
instruments, equity instruments, commodities, currencies, and related off-balance-sheet in-
struments. These unfair movements are induced by financial crises encountered in the
financial markets from time-to-time. Financial crises escalates losses encountered in nor-
mal day-to-day trading operations to peaky-proportions due to random jumps of various
independent variables used to model the valuations of instruments modelled by the VaR
measure. The main consequences of financial crises on the VaR model is that, due to the
random jumps and deviation from the historical data’s trend used in model, VaR measure
tend to under-predict market risk. Model risk of VaR model translates in most cases for
financial institutions using it as a risk measure into financial losses which is due to mis-
matches between the reserve (i.e. capital calculated by VaR) and actual losses encountered
by the financial institutions.

This dissertation focuses on the consequences on the VaR model based on the 2008 sub-
prime mortgage crisis and possible model interventions in reducing the model risk noted.
The 2008 subprime mortgage crisis was caused by a saturation of subprime mortgages in
the United State (US) housing sector prior to 2008. Subprime mortgage is a bond or home-
loans issued to individuals who are not financially fit. From 2005 onwards, default rate
began to spike as owners of these subprime mortgages were unable to make their monthly
payments. Since these subprime mortgages were used as underlying assets for derivative
known as home-loan bond, its demise spread systemically throughout the economy. Also
owners of these “so-called” home-loan derivative with high returns bought Credit Default
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Swaps (CDS)1 to protect themselves from default risk of the subprime mortgagers. The
involvement of the CDS and other exotic instruments in the subprime mortgage sage am-
plified its influences in the global economy (refer to appendix A from detailed description
of the aforementioned crisis studied). However, during this crisis VaR models employed by
various financial institutions under-predicted market risk “severely” causing some of the
players to lose billions of dollars.

In order to respond to the challenges described above, there has been a growing development
in attempts to develop tail sensitive and random jumps incorporative measures in market
risk modelling literature. This is an emerging stochastic area in the field of quantitative
risk modelling broadly referred to as Expected Shortfall (ES) or Conditional Value-at-Risk
(CVaR). Artzner et al. (1997), Duffie and Pan (1997) and McNeil et al. (2005) investigated
the ES/CVaR measures’ mathematical properties in depth and as well justified reasons as
why these approaches are candidates to replace VaR, especially after the subprime crisis.

1.2 Problem statement

VaR model under the historical simulation approach discussed in section 1.1 is unable to
capture losses beyond the α percentile during financial crises because of extreme volatility
in the markets causing unstableness. Boucher et al. (2014) submitted that the under-
prediction observed in VaR during the subprime crisis and other crises before then are
mainly attributed to the fact that, risk models like the VaR have high model risk levels
during turbulent times. These high levels of model risk during financial crises because risk
models to under forecast risk prior to the crisis events, to be slow to react as a crisis unfolds,
and then slow to reduce risk levels post crisis.

Boucher et al. (2014) state that standard risk measures failed to forecast extreme risks
and regulators required financial institutions to quantify the model risk issues seen during
financial crisis. These under-prediction realisations of the risk models are causing regulators
globally to question the efficiency of these models in predicting estimates of risk used for
capital calculations. Therefore this dissertation studies ways of improving predictability of
the risk model used to estimate market risk by improving the measure’s ability in detecting
irregularities in price movements induced by financial crisis.

1.3 Significance of the study

The current trending issue among the financial institutions (mainly in Banks) regarding
risk management techniques since the subprime financial crisis in 2008 is about employing

1CDS is an insurance policy which protects its owners from defaulting risk.
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Extreme Value Theory (EVT) techniques. The focal point of this dissertation is using EVT-
based methodologies in solving the research problem presented in section 1.2. Findings
derived from the dissertation might aid on whether EVT-based methodologies in measuring
banking risks such as market risk are both feasible and practical when considering regulators’
view when coming to adequately measuring the risks facing financial institutions especially
during severe market turbulences induced by financial crisis.

1.4 Research objectives and hypotheses

1.4.1 Research objectives

The following are the main objectives that will be fulfilled by this research:

• Develop a risk measure where the dynamics of the risk factors follows a jump-diffusion
process.

• Develop a risk measure more robust than other similar models studied in the literature
to date, namely the historical-simulation VaR model and Expected Shortfall (ES)
models under non-parametric approach.

1.4.2 Hypotheses of the research

Apart from other analysis conducted in this dissertation to test the validity of the Simulated
Expected Shortfall (SES) model; the appropriateness of the jump-diffusion model will also
be investigated.

1.5 Delimitations

The following are the elements not discussed or included in this research:

• Focus on market risk only.

• Reports and additional governance structures around the VaR modelling.

• The VaR modelling technique analysed only extends to financial institutions only.

• This study excludes all information and influences of financial crises before 2004.

1.6 Definitions of crucial terms in the dissertation

This section explains some of the crucial terms used throughout the dissertation.
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Definition 1 Backtesting – McNeil et al. (2005) defines a backtesting procedure as a mon-
itoring approach which evaluates the performance of methods and compare their relative
performance.

Definition 2 Basel Accord Capital (BAC) framework is minimum guidelines to identify
and manage risk to an acceptable level.

Definition 3 Basel Committee of Banking Supervision (BCBS) is a committee established
by the Central-Bank Governors of the Group of Ten (G-10) at end of 1974 (McNeil et al.
(2005), p.8).

Definition 4 Capital – van Greuning and Bratanovic (2009) defines capital as reserve
funds saved by the financial institutions with the Central Reserve Bank to safe-guide depos-
itors money and sustainability of the industry by reducing systemic risk.

Definition 5 Coherency - A risk measure satisfying the four axioms of translation invari-
ance, subadditivity, positive homogeneity, and monotonicity is called coherent. (Artzner
et al. (1999), p. 210).

• Translation invariance: For all XεG and all real numbers α, we have ρ (X + α× r) =
ρ(X)− α.

• Subadditivity: For all X1 and X2 ε G, ρ(X1 + X2) ≤ ρ(X1) + ρ(X2).

• Positive homogeneity: For all λ ≥ 0 and all XεG, ρ(λX) = λρ(X).

• For all X and Y εG with X ≥ Y , we have ρ(Y ) ≤ ρ(X).

All of the above axioms are extracted from (Artzner et al. (1999), p. 209 – 210).

Definition 6 Expected Shortfall (ES) or Conditional Value-at-Risk (CVaR) – For a loss L

with E(|L|) <∞ and distribution function FL; the ES at confidence level α (0, 1) is defined
as

ESα =
(

1
1− α

) ∫ 1

α
qu(FL)du, (1.1)

where qu(FL) = FL is the quantile function of FL

Definition 7 Financial crises are market turbulences which cause unruling fluctuations
in the financial markets’ risk factors which are used in the risk models predicting risks.
Financial crisis in general cause losses for many companies since this unexpected losses are
usually not calibrated in the quantitative methods used by the financial institutions.

Definition 8 Financial institutions are entities using depositor’s funds to run their daily
operations and generate profit.
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Definition 9 Jump-diffusion model are defined by Feng and Linetsky (2008) as special class
of the diffusion modelling framework by adding jumps to the diffusion dynamics of the state
variable. Whereas Hull (2009) defines jump-diffusion as a risk measure that models where
asset price has jumps superimposed on to a diffusion process such as Geometric Brownian
Motion (GBM).

Definition 10 Leptokurtosis – A distribution is leptokurtic if it is more peaked in the center
and thicker tailed than the normal distribution with the same mean and variance. Occa-
sionally, leptokurtosis is also identified with a moment-based kurtosis measure larger than
three (Haas and Pigorsch (2009), p.308).

Definition 11 Market risk – van Greuning and Bratanovic (2009) defines market risk
as losses due to unfair movements in market prices resulting from changes in the prices
(volatility) of fixed-income instruments, equity instruments, commodities, currencies, and
related off-balance-sheet instruments.”

Definition 12 Model risk is probability that model estimates from the risk models fails
to assimilate the phenomenal being modelled accurately and therefore result in inaccurate
decision-making.

Definition 13 Optimisation is defined by Kreyszig (1999) as an iterative numerical and
computer-based process used to determine or solve given problem. Usually issues solved
using optimisation techniques cannot traditionally be solved by finite-based problem solving
approaches.

Definition 14 Regulators are referees in the financial industry ensuring depositors’ funds
are used appropriately by the Banks and as well relevant reserves are kept to safe guide the
depositors’ funds.

Definition 15 Return – Let St be the price of a financial asset at time t. Then the contin-
uous return, rt, is rt = log

(
St

St−1

)
. The discrete return Rt, is Rt =

(
St

St−1

)
− 1. Both are

rather similar if -0.15 <Rt <0.15, because rt = log (1 + Rt) (Haas and Pigorsch (2009),
p.308).

Definition 16 Risk models - Boucher et al. (2014) cited that risk models are quantitative
methodologies used to estimate and forecast risks based on historical data collected of the
respective risk being measured.

Definition 17 Subprime financial crisis is the market turmoil which originated in the
United States (US) subprime mortgage segment and quickly spread into other market seg-
ments and countries according to Ackermann (2008).
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Definition 18 Subprime mortgage are homeloans credit contracts issued to borrowers who
have poor credit record or no record.

Definition 19 Tail – The (upper) tail, denoted F (x) = P (X>x), characterises the prob-
ability that a random variable X exceeds a certain “large” threshold x. For analytical pur-
poses, “large” is often translated with “as x →∞”. For financial returns, a daily change of
5% is already infinitely large. A Gaussian model essential excludes such event (Haas and
Pigorsch (2009), p.308).

Definition 20 Value-at-Risk (VaR) is the maximum expected loss on an investment over
a specified horizon at a particular confidence level (Escanciano and Pei (2012), p. 2233).

1.7 Structure of the dissertation

In addition to this chapter, there are four chapters. Chapter 2 (Literature review) presents
overall background information and concepts relevant to the dissertation. It starts by pro-
viding a detailed definition with regard to VaR and as well explains reasons behind VaR not
being able to measure market risk during financial crisis from literature findings outlined
in the various studies. Then this chapter continues to discuss developments conducted over
the years in fixing shortcomings about the VaR measure and expand on the significance of
the dissertation using the literature studies. Finally it discusses various methods studied in
literature to solve the problem outlined in section 1.2.

Chapter 3 (Methodology) discusses the current VaR model implemented in practice, that
is, the Historical-simulation Value-at-Risk (HVaR) model. The aim of this discussion is
then to provide a comparison between HVaR and the proposed method to highlight model
benefits from the new approach. Remaining section in this chapter outlines detailed aspects
about the proposed methodology and statistical tests employed to validate the principle of
the model on whether or not is sound and robust. Chapter 4 (Data analysis and model
results) details how the data gathering was carried out and sections thereafter discusses the
empirical findings from tests and modelling processes defined in chapter 3.

Chapter 5 (Conclusion and recommendations) concludes this dissertation. It highlights
what has been achieved by this research, assess the limitation that constrains the research
problem and suggests future directions for further research.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

Chapter 2 outlines in detail a review of the literature and researches related to the use
of quantitative risk models in estimating various risks impacting the financial industry,
specifically focusing on market risk/ financial risk. The chapter is divided into sections that
include:

• The historical developments of VaR, its appealing properties as a risk measure and
shortcomings especially during financial crisis;

• Regulatory view and other banking related problems concerning VaR;

• Current interventions and discussions post 2008 subprime financial crisis;

• Academic response to VaR ineffectiveness in predicting market risk;

• Limitations of current literature on VaR; and

• Possible solutions in literature that would fix gaps in literature studies investigating
VaR.

2.2 Originations of VaR and its appealing properties versus

its shortcomings in measuring market risk during finan-

cial crisis

Holton (2002) stated that, VaR’s origins can be traced back as far as 1922 to capital re-
quirements the New York Stock Exchange imposed on member firms. Then the work of
Markowitz (1952) and Roy (1952) regarding portfolio selection further expanded the use of
VaR in the portfolio theory field. However, during 1922 to 1998 the use of VaR as a risk tool
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or capital model was somehow capped to fewer users. According to Holton (2002) during the
early 1990s banks began to increase their market exposures in the financial markets which
meant minimum guidelines stipulated in the 1988 Basel I Accord were no longer sufficient
to measure market risk. Regulators at that time viewed quantification approaches as not
being unique in the various banks because some banks were ahead in terms of measuring
and managing risks when compared to others. Therefore, the regulators with an aim to
promote effective risk management processes in the financial sector stated in their various
regulations governing banks (i.e. based on Basel II Accord), that if banks can prove their
processes are sound and efficient, they can use their own internal models to calibrate risk
including market risk. After Basel II Accord was implemented in the financial sector, the
use of VaR increased with great proportion prior to this accord. The VaR methodology
stipulated in Basel II Accord is based on the RiskMetrics method developed and published
online by JP Morgan prior 1998 which state that historical data can be used to calculate
daily market risk. Today VaR is a standard risk management tool for market risk and
regulatory capital figures. The popularity of VaR is due to the fact that it’s easily under-
standable and according to Kerkhof and Melenberg (2004) VaR model is also popular with
the regulators due to its backtesting abilities; refer to section 1.6 for definitions of key words
used above.

However, VaR fails on many occasions to predict market risk especially during a financial
crisis. Artzner et al. (1997, 1999) and Wirch (1999) cite that, VaR is not coherent. Accord-
ing to definition 5 in section 1.6 a measure is coherent if and only if the axioms of translation
invariance, subadditivity, positive homogeneity and monotonicity hold. VaR model is not
coherent because it violates the subadditivity axiom which implies the aggregated VaR of
a set of portfolio is greater than the sum of the individual portfolios. According to McNeil
et al. (2005) VaR model does not take into account diversification effect existing between
portfolios, hence the alluded estimation. McNeil et al. (2005) also cited that, VaR sub-
additivity axiom holds if returns are normal or close to normality but Haas and Pigorsch
(2009) state that financial returns are not normal but leptokurtic. Based on arguments
provided by scholars such as Danielsson and de Vries (2000) and Haas and Pigorsch (2009),
VaR model will continue to violate the subadditivity axiom since returns are non-normal.
Then, apart from the coherency issue discussed above, Danielsson and de Vries (2000) state
that VaR model is highly dependent on extreme returns which makes this risk model a
poor tail estimating approach. Using Danielsson and de Vries (2000)’s argument, it can be
concluded that VaR’s model risk emanates from its tail risk problems since VaR discard
any losses beyond the measuring percentile chosen in the quantile process defined in chapter
3. Finally, since the VaR model used in practice is based on historical simulations; VaR
especially during financial crisis fails to capture the random jumps due to market turbu-
lences since it assumes the historical trend will continue in the future. Somehow there is a
delayed response of VaR to incorporate spikes or market jumps and this observation is also
supported by Boucher et al. (2014)’s study.
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Although VaR modelling process is able to summarise market risk exposures into a single
understandable figure and the fact that it can be backtested. However the cons against VaR
exceed the pros hence the continuous failing trend seen, especially during financial crisis.

2.3 Regulatory perspective on VaR’s under-predicting ten-

dencies during financial crisis

Section 2.2 has primarily focused on VaR risk measure as a quantification tool and its flaws.
However, VaR modelling issues seen in the recent financial crisis are not purely a mathe-
matical problem but a regulatory issue as well. The minimum guidelines used by VaR are
extracted from banking-based regulations using Basel Accord as a point of reference.

The objective of financial regulators or central banks in various countries is to protect the
financial system from systemic risks which can emanates from their processes and manage-
ment of risk in general. Another key objective is to protect the depositor funds used by the
financial institutions. These regulators achieve these objectives and other by instilling a
culture of sound and efficient risk management practices by regulating the capital require-
ments needed for risk-taking issues existing in financial institutions. Since the inception of
the BCBS in 1974 and the development of the Basel Accord in 1988; financial regulators
have used this framework as a base for their own regulations in their respective countries.
1988 Basel I Accord framework suggested to financial institutions with exposures to credit,
market and operational risks to take 8% as the pillar I capital reserve and there are other
capital charges based on the financial environment of that country and the organisation it-
self. Then, the 1998 Basel II Accord stipulated that instead of using the 8% capital charge
to calculate pillar I; internal model can be used provided the risk management practices
and operations are sound and approved by the respective financial regulator. 1998 Basel II
Accord was governing the financial institutions (i.e. banks) when the 2008 subprime crisis
materialised.

Moosa (2010)’s views on the 1998 Basel II Accord failing the financial system is that fi-
nancial regulators should have not allowed banks to use their own internal models because
this allowance created inconsistencies in the regulatory sphere for financial institutions.
Whereas Rossignolo et al. (2013)’s empirical study on Portugal, Ireland, Greece and Spain
(PIGS) outlines that even the suggested interventions (inclusion of sVaR) in Basel III in
terms of market risk are insufficient to capture tail extremity as seen in 2008 subprime
crisis. As well Danielsson and de Vries (2000) cited that tail extremities from one crisis
to another are unique and then using the inference, it can be concluded that using tail
extremity of one crisis is not sufficient to forecast future tail extremities since market risk
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cannot be capped. Rossignolo et al. (2013)’s concise on sVaR being included is that, its
inclusion does not improve significantly the market risk quantification process to estimate
tail risk. Unfortunately during a financial crisis risks accounted for are usually situated at
the tail extremity region of the distribution not accounted for by the risk measure such as
VaR. Blundell-Wignall and Atkinson (2010) perspective is that, the 1998 Basel II Accord
framework failed banks by placing heavy reliance on rating agencies.

The literature reviewed above are in agreement that, the 1998 Basel II Accord should have
been more conservative in its allowance of internal models or it should have suggested
more tail risk sensitive measure to calibrate market risk and others. Blundell-Wignall
and Atkinson (2010)’s study cite that, 2010 Basel III Accord will work provided there are
few modifications and the South African Reserve Bank (SARB) through working papers
are suggesting that for market risk, Expected Shortfall (ES) is the best replacement for
VaR. Scholars such as Kerkhof and Melenberg (2004) argue that central banks would be
skeptical to use ES since it’s not backtestable. At present, it is definitely unclear about
the direction that the regulators will take in terms of the 2010 Basel III Accord to improve
the predictability of tail risk, especially during financial crisis for market risk estimation
process.

2.4 Current developments relating to VaR

Artzner et al. (1997) noted that Historical simulation Value-at-Risk (HVaR) model had
mathematical inefficiencies in its modelling process as discussed in section 2.2. Then Artzner
et al. (1999) and McNeil et al. (2005) responded to these inefficiencies by suggesting tail
sensitive risk measure known as the Expected Shortfall (ES) model. These developments
were made before the 2008 subprime financial crisis but were ignored on bases that VaR risk
measure is still operative. The 2008 subprime crisis merely amplified the message outlined
by Artzner et al. (1997, 1999) and McNeil et al. (2005). Post the 2008 subprime crisis,
Rossignolo et al. (2013) indicated that regulators were aiming at reducing the model risk
levels in the VaR modelling process by adding the sVaR component into the model. sVaR
operates on the same methodology as VaR but its stressed period are severe than VaR’s
one. Moosa (2010) on the other hand, suggest in the study that 2008 subprime crisis high-
lighted the flaws of the 1998 Basel II Accord framework. Whereas, Blundell-Wignall and
Atkinson (2010) discussions indicate that the main instigator in the recent crisis was due
to the financial regulators allowance in the use of internal models to measure risk because
this issue introduced inconsistencies into the governance of the stability of the financial
industry as a whole. Boucher et al. (2014) in no so many words, supports Blundell-Wignall
and Atkinson (2010) findings by stating that post the crisis, financial institutions needs to
justify the validity of the risk models to the regulators due to high model risk level in an
uncertain environment.
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The fundamental message echoed prior and post the 2008 subprime crisis from a modelling
perspective by various scholars such as McNeil et al. (2005) and Boucher et al. (2014) is
the importance of using risk measures that a tail sensitive or based on Extreme Value The-
ory (EVT) methods. Danielsson and de Vries (2000) defines EVT methods as statistical
studies which investigates the importance of the tail of the distribution in measuring fat-
tail/leptokurtic distribution models. The theoretical developments of VaR are now aligned
with practical developments since the financial regulators are fostering use of more tail sen-
sitive measures as a risk measurement tool. Banks are slowing moving to the ES measure
and VaR will be used for backtesting since VaR and ES are calculated from similar distri-
bution. This is the same developments promoted by scholars such as McNeil et al. (2005).

It’s clear that developments made in VaR in practice, regulatory and theoretically are
beginning to be aligned in the sense that more tail sensitive risk measures are suggested
consistently across the trio. Although regulatory perspective this time is more stringent
since it suggest that standardised-based methodologies proposed in the 1988 Basel I Accord
should form basis for the calculation of capital despite the allowance of using internal models.

2.5 Academic responses to VaR inefficiencies as risk man-

agement tool

Since the inception of VaR modelling process, various studies have been conducted to solve
the limitation in the modelling process. This is mainly motivated by the fact that VaR
modelling process is an intuitive approach summarising market risk into a single easily
understandable figure. However, Acerbi and Tasche (2002) indicates in their study that by
using ES risk measure fixes the VaR inefficiencies in tail risk estimation without necessarily
impairing the intuitiveness of VaR. As cited in section 2.3 that, the ES measure is both
coherent and tail sensitive since it includes all losses beyond the assigned percentile level
α (i.e. usually, α = 0.01). As a result of the model’s intuitiveness, Yamai and Yoshiba
(2005) cites that the VaR risk measure has become standard risk measure for financial risk
management due to its mathematical competency when measuring tail risk. Since the ES
measure does not severely impair the intuitiveness position held by VaR, Yamai and Yoshiba
(2005) suggest that ES risk measure can replace VaR since it’s a better estimate than VaR
in terms of tail risk modelling. McNeil et al. (2005) has provided a detailed proof outlining
the fact that the ES risk measure is coherent since it does not violate the subadditivity
axiom; refer to the theorem below:
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Theorem 1 The translation invariance, positive homogeneity and monotonicity properties
follow easily from the representation ESα= 1

1−α

∫ 1
α V aRu(L)du and the corresponding prop-

erties for quantiles. It remains to show subaddivity.
Consider a generic sequence of rvs L1, · · · , Ln with associated order statistics L1,n ≥ · · · ≥
Ln,n and note that for arbitrary m satisfying 1 ≤ m ≤ n we have

m∑
i=1

Li,n = sup{Li1 + · · ·Lim : 1 ≤ i1< · · ·<im ≤ m}. (2.1)

Now consider two random variables (rvs) L and Lα with joint df F and a sequence of
iid bivariate random vectors (L1, Lα1), · · · , (Ln, Lαn) with the same df F. Writing (L +
Lα)i := Li + Lαi and (L + Lα)i,n for an order statistic of (L + Lα)1,· · · ,(L + Lα)n, we
observe that we must have
m∑

i=1

(L + Lα)i,n = sup{(L + Lα)i1 + · · ·+ (L + Lα)im : 1 ≤ i1< · · ·<im ≤ m}

≤ sup{Li1 + · · ·+ Lim : 1 ≤ i1< · · ·<im ≤ m}+ sup{Lα1 + · · ·+ Lαm : 1 ≤ i1< · · ·<im ≤ m}

=
m∑

i=1

Li,n +
m∑

i=1

Lαi,n.

(2.2)

By setting m=[n(1-α)] and letting n → ∞, we infer from lemma 2.20 (i.e. McNeil et al.
(2005), p.46) that ESα(L + Lα) ≤ ESα(L) + ESα(Lα).

Despite the findings made by Artzner et al. (1997, 1999), Yamai and Yoshiba (2005) and
McNeil et al. (2005) promoting the ES risk measure beyond the VaR model. Kerkhof and
Melenberg (2004) states that, the ES measure is not backtestable. This might be a concern
for the financial regulators since their objectives are to ensure risk measures’ performance
are maintained at high standards. According to Boucher et al. (2014) and other scholars,
VaR is backtestable since it operates under the assumption that the daily comparison of
the actual risk and the VaR estimate are independent Bernoulli random variable. This
backtesting algorithm is based on Christoffersen (1998) methodology and from this it can
be inference that backtesting over y period follows a Binomial distribution with parameters,
T and α. T (T = 250) is the number of days considered in y period and α (i.e. α = 0.01)
is the percentile level of VaR model.

Furthermore as mentioned above that HVaR is used in practice to measure market risk
but the HVaR risk measure tend to have a delayed response to any movements outside the
incorporated historical data sample used in the model. Bali et al. (2008) in their paper cite
that, the time volatility issue of HVaR can be fixed by using Autoregressive Conditional
Hetroscedasticity (ARCH) model, initially presented by Engle (1982). The importance of
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methodologies such as the ARCH and ES are amplified by findings from Alexander et al.
(2012) which state that financial losses suffered by financial institutions during 2007 - 2009
global financial crisis is due to VaR’s high level model risk issues. Contrary to the ARCH
and the ES risk measures, Alexander et al. (2012) developed conditional-based VaR using
multiple constraints as the ES model to measure market risk and this model proven to be
effective than the normal HVaR.

In summary, literatures studies have iterated VaR inefficiencies since its inception. Only
after the 2008 subprime financial crisis, the financial regulators, financial institutions and
other stakeholders begin to notice some of the scholars’ views. Although the various aca-
demic responses have been adopted into the revised 2010 Basel III Accord; modifications
are still required to align these methodologies to practical feasibility status.

2.6 Limitation in the current financial risk quantification

process

The literature studies discussed in previous sections, however neglects the fact that, HVaR
models’ limitations regarding estimation errors are not accounted for in these interventions.
HVaR risk measures are multivariate statistical models which imply that large sample size
is required for the models’ precision to be accurate. Yamai and Yoshiba (2005) is in support
of this observation and explicitly indicates that the HVaR and ES risk measure are affected
by estimation errors, such as limited sample size results in the sampling fluctuation. Few
studies are focusing on treating this dependency of these models relating to the estimation
error issues discussed above. Another element in financial risk modelling tools is that, these
risk measures are heavily dependent on historical extremities when forecasted future risk.
This assumes that previous transgressions will continue in the future, which is not the case.
These limitations will be addressed by the proposed method in chapter 3. The next section
outlines various model-based method that could be employed in minimising the estimation
errors noted by Yamai and Yoshiba (2005).

2.7 Possible solutions to the estimation errors of VaR and

ES risk measures

The financial risk quantification tool known as HVaR have been widely researched in litera-
ture and the ES model which supposed to replace HVaR according to the trending researches
post the 2008 subprime crisis. However, the discussions in section 2.6 conveys that the esti-
mation errors of HVaR and ES risk measure have been significantly neglected in literature
since the focus is on the improvement of capturing tail-related losses, especially during fi-
nancial crisis. Therefore, this section discusses in detail various employable methods that
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can be used to reduce the estimation error noted in Yamai and Yoshiba (2005)’s study. This
section is sub-divided into the following subsections:

• Jump-diffusion models;

• Principal component;

• Factor Analysis; and

• Other stochastically-based models.

2.7.1 Jump-diffusion models

Historical developments of the jump-diffusion models

Jump diffusion models have been widely used in modern finance to model the discontinu-
ities of underlying stock in an option derivative. Then an option derivative is defined by
Hull (2009) as a derivative which gives it owners’ the right to buy or sell an asset. Mer-
ton (1976) develops a Gaussian-based jump-diffusion model in calibrating option pricing
when the returns of the underlying stock are discontinuous. Then Kou (2002) developed,
the Double Exponential Jump-Diffusion (DEJD) model which is a higher-order model than
Merton (1976). Kou and Wang (2004) further reemphasised the important of the DEJD
models in calculating an option price accurately. According to Kou (2002) the discontinu-
ity issue with the asset pricing of options was mainly due to the misalignment between the
model assumptions of the Black-Scholes option pricing model used since the early 1970s and
the empirical behaviour of such returns. The Black-Scholes model assumes that returns of
underlying stocks for the options are normally distributed whereas empirical evidence indi-
cates that these returns are asymmetric leptokurtic distributed.

Based on the literature discussions yield in the preceding paragraph it can be concluded that
jump-diffusion models are ideal instruments to model discontinuities or sudden jumps in
historical data trend. In the next sub-subsection it’s outlined clearly that, the λ in the Pois-
son process embedded in the jump-diffusion models is responsible in calculating/assigning
the discontinuity based on historical data trend. To conclude this section Moazeni et al.
(2013) cited that, the jump-diffusion model could be used in obtaining robust price outputs
under uncertain financial environment. Uncertain environment are similar circumstances
presented by financial crisis.

Mathematical properties of Jump-Diffusion models

The following are the main properties regarding the jump diffusion modelling process:

• The jump-diffusion models are based on two robust stochastic processes namely the
Poisson process and Brownian motion process; the mathematical benefits retrieved
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from these processes have been highlighted in detail in Swanepoel (2009) and Allison
(2009).

• Jump-diffusion models due to the Poisson process, its estimation tends to follow a more
heavy-tailed distribution which suits/match most of the empirical studies performed
on financial asset pricing;

• All parameters used in the model can be derived using Maximum Likelihood Estima-
tion (MLE) process and there are few papers supporting this statement, for example,
Ramezani and Zeng (2007); and

• The sub-processes amalgamated in forming the jump-diffusion models are backed-up
by extensive literature both in mathematical statistics and applied financial statistics
which attests its robustness and accuracy in modelling phenomenal with embedded
random market jumps.

Jump-diffusion models are extensively investigated in literature, however for improving
model risk of the option pricing models where underlying assets/stock are discontinuous.
Jump-diffusion application in reducing estimation errors discussed in section 2.6 in a risk
management tool framework have not been used anywhere in literature as yet. The jump-
diffusion model is dynamic and complex in modelling pricing than other models. In this
dissertation this jump-diffusion modelling process defined in appendix C will be used reduce
to estimate error in the proposed model. However in literature jump-diffusion models are
not the models which could be used to induce stresses in prices or risk modelling of financial
risk. The following section discusses other alternatives to the only jump-diffusion model
aforementioned.

2.7.2 Principal component

Johnson and Wichern (2007) define Principal Component Analysis (PCA) as a statistical
methodology which explains the variance-covariance structure of a set of variables through
a few linear combinations of these variables. The overall objectives of PCA are namely,
data reduction and interpretation. Johnson and Wichern (2007) on page 431 continues to
define PCA formally as follows:

“Let the random vector X̄T ={X1, X2, · · · , Xp} have the covariance matrix Σ with eigenval-
ues λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0.
Consider the linear combinations

Y1 = ā1X̄= a11X1 + a12X2 + · · ·+ a1pXp

Y2 = ā2X̄= a21X1 + a22X2 + · · ·+ a2pXp
...
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Yp = āpX̄= ap1X1 + ap2X2 + · · ·+ appXp

Then, using equation (2-45)1, directly taken from the source, we obtain

V ar(Yi) = aT
i Σai∀i = 1, 2, · · · , p

Cov(Yi, Yk) = aT
i Σak∀i, k = 1, 2, · · · , p

(2.3)

The principal components are those uncorrelated linear combinations Y1, Y2, · · · , Yp whose
variances in (2.3) are as large as possible. ∴ Cov(Yi, Yk) = 0 & VaR{Yi} is large.”
Loretan (1997) used this PCA methodology described above to generate market risk factors
for normal and severe market circumstances. Note that, market data used in market risk
estimation is normally highly correlated and this cause problems in statistically models;
PCA is a solution to this problem because it generates uncorrelated linear combinations.
According to Loretan (1997), market risk factors are generated as follows:

• The observed data X is transformed into return format, that is,

X =


X11 X21 X31 · · · Xn,1

X12 X22 X32 · · · Xn,2

...
...

...
. . .

...
X1,p X2,p X3,p · · · Xn,p

, ∴ trans{X}=


X11
X12

X21
X22

X31
X32

· · · Xn,1

Xn,2

X12
X13

X22
X23

X32
X33

· · · Xn,2

Xn,3

...
...

...
. . .

...
X1,p−1

X1,p

X2,p−1

X2,p

X3,p−1

X3,p
· · · Xn,p−1

Xn,p

.

• The trans{X} matrix is then checked whether it is compatible with PCA; this is
achieved by assessing the axis symmetry2 of the variables in the matrix.

• Once it has been proven that the criteria holds for symmetric axes, the researcher can
proceed with the PCA using statistical packages, like SAS, R and E-views.

• The risk factors retrieved from the above methodology is then used to infer on the
current portfolio and the same methodology is applied to get the profit and loss vector;
refer to appendix B on the methodology used in getting this vector.

• Lastly, since the Principal Component (PC) is random, we may pick tail-event quan-
tiles of the empirical distribution of the PC to generate corresponding tail events of the
observable series (Loretan (1997), p.30). Therefore, the PCA model-driven method
can be used in generating robust scenarios to be implemented for estimating market
risk. This is in line with the aim of this research that is, discovering a methodology
of generating risk factors employable in market risk estimation model, which caters
for large market turbulence which prevails during a financial crisis.

1The linear combinations, Z=CX have,

µz=E(Z)=E(CX)=Cµx

Σz = Cov(Z) = Cov(CX) = CΣxC · · · (2.45) {Johnson and Wichern (2007), p.76}
2The joint distribution of the transformed data is assessed for symmetric properties in its axes. Lore-

tan (1997) have implemented non-parametric density estimation in testing this because there is no formal

statistical test developed for testing this phenomenal.
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2.7.3 Factor analysis

Factors analysis can be considered as an extension of principal component analysis (Johnson
and Wichern (2007), p.482). Therefore, in substituting the methodology above of determin-
ing risk factors or scenarios, the Factor Analysis Model (FAM) can be used because factor
models provide more information than the PCA. PCA is used for finding optimal ways of
the combining variables, while the FAM may be used to identify the structure underlying
variables. The main aim is to create stressed risk factors using quantitative method to
minimise subjective and since FAM is similar to PCA; the defined methodology in section
2.4.1 could be used. Johnson and Wichern (2007) defines the factor model in the following
manner:

“Let X be a random vector with p components; X has a mean µ and covariance matrix
Σ. The factor model postulates that x is linearly dependent upon a few unobservable ran-
dom variables F1, F2, · · · , Fm called common factors, and p additional sources of variation
ε1, ε2, · · · , εp, called errors or sometimes, specific factors. In particular, the factor analysis
model is

X1 − µ1 = l11F1 + l12F2 + · · ·+ l1mFm + ε1
X2 − µ2 = l21F1 + l22F2 + · · ·+ l2mFm + ε2

...
Xp − µp = lp1F1 + lp2F2 + · · ·+ lpmFm + εp

or, in matrix notation,

X - µ=L(p×m) F(m×1) + ε(p×1)

The coefficient lij is called the loading of the ith variable on the jth factor, so the matrix L

is the matrix of the factor loadings.”

2.7.4 Other model-based methods

Other model-driven methods of generating scenarios are based on methodologies extracted
from non-parametric statistics.

These non-parametric methods are advanced for the scope of this dissertation and therefore
will not be discussed, they are namely:

• Non-linear regression; determining risk factors for complex derivative like an option
which is not linear and not normal distributed. Therefore, scholars have developed
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non-parametric algorithms for computing these scenarios which involved density func-
tion estimation procedures applied usually in non-parametric statistics.

• Others are namely, the GARCH and ARCH models from the time-series area in statis-
tics, geometric brownian motions, etc. These processes have been excluded in the liter-
ature because this dissertation focuses on jump models and its influences in improving
the SES model’s predictability.

The above methodologies determine market risk factors from functional form modeling
structures because simulating market risk factors from historical data have shown weakness
in the power of predicting risk accurately. One of the objectives for the research is to
minimise the model’s error rate brought by the historical simulation approach. Therefore
the modeller will use one of these approaches discussed above to generate market risk
factors for computing market risk exposures; since these approaches have a functional form
the modeller can construct few scenarios in the model to compensate for stress market
situations as seen in the 2008 subprime crisis.

2.7.5 Model-based’ summary

Table 2.1: Rationale behind the chosen model-based risk sce-
nario method

MODEL MATHEMATICAL FORMULA-
TION

USABLE OR NOT IN GENERAT-
ING RISK SCENARIOS FOR THE
VaR MODEL POST 2008

Principal compo-
nent Yi = aT

i Σai,∀i = 1, 2, · · · , p (2.4)
This method allows the modeller to define
the underlying structure of the data us-
ing uncorrelated data. Using this method
will not create the artificial market jumps
observed in the financial movements; how-
ever this method is mostly useful in sum-
marizing the data.

Factor analysis Similar to the principal component. Same motivation as above.

Jump-diffusion
model

See appendix C under section C.2 for the
mathematical formulation of the jump-
diffusion models.

Using jump-diffusion models in generat-
ing risk scenarios is useful since it mimics
real financial movements which has mar-
ket jumps randomly induced in the histor-
ical data. Such jumps are normally seen
in stressed financial markets.

Continued on next page
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Table 2.1 – Continued from previous page
MODEL MATHEMATICAL FORMULA-

TION
USABLE OR NOT IN GENERAT-
ING RISK SCENARIOS FOR THE
VaR MODEL POST 2008

Other High-order diffusion processes like the
Cox-Ingersoll-Ross (CIR) defined as

Dyt = −k(yt − θ)dt + (η2yt)
1
2 dWt (2.5)

Or ARCH model defined as,

Xt = σtZt (2.6)

Where, σ2
t = α0 +

∑p
i=1 αiX

2
t−i.

These model could work in generating the
required risk scenarios in the simulated
model. The only problem is that they take
into consideration the volatility which fur-
ther complicates matters. The risk scenar-
ios required by the simulated model is the
model which consider price jumps mean-
while keeping volatility constant.

The financial market movements jump randomly up or down depending on the stress in-
stilled in the market; these jumps are in most cases are due to or caused by mismatched
data which cause VaR to under-predict as seen in 2008 crisis. Therefore from the pool
of model-based methods listed and summarised in the table above; the selection of an
appropriate model-based risk scenario method should fulfil the requirement stated in the
preceding sentences. Based on this, the jump-diffusion model will be used in generating risk
scenarios because it creates artificial jumps using the underlying data fed to the model; this
will allow modelling data to mimic financial movements seen in the real financial markets,
hence improving the mismatch mentioned in earlier sections.
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Chapter 3

METHODOLOGY

3.1 Introduction

The chapter presents in detail the full mathematical construction of the proposed model to
address the research problem defined in the previous chapters. It begins by describing the
HVaR methodology in full as well as other VaR approaches investigated in literature but
not used in practice. The aim of this section is to provide baseline when comparing the
proposed model’s benefits against HVaR. The remaindering sections focuses on outlining the
proposed methodology and statistical tests employed to assess its validity. These sections
are segmented as follows:

• Section 3.3 presents all work pertaining to the proposed model. It begins by explain-
ing the algorithm proposed in addressing the research problem. Then, the following
section outlines other analytical aspects of the proposed model not fully discussed
under the proposed algorithm section;

• Section 3.4 discusses in brief detail other models also study in literature; and

• Section 3.5 then concludes the chapter by looking in a usable benchmarking method-
ology in assessing the proposed model efficiency and validity.

3.2 Historical-simulation Value-at-Risk (HVaR) model and

other VaR approaches

The focus of discussions presented this far was on VaR and why it failed in the 2008 sub-
prime financial crisis. However few discussions have been yield outlining; what is VaR?
Which other approaches of VaR are investigated in literature and why they are not used?
These questions are all answered in this section.
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There are many definitions provided in literature about, what is VaR? However, McNeil
et al. (2005)’s definition is more in aligned with the detailed description on how the HVaR
method is calibrated. McNeil et al. (2005) defines VaR model in general for a given confi-
dence level α ε (0,1) as,

V aR∆
α (L) = inf{θεR : P∆(θ<L) ≤ (1− α)} = inf{θεR : FL(θ) ≥ α} (3.1)

where,

• ∆ is the holding period parameter (usually ∆ = 10 in practice);

• α is the confidence level, for example α = 0.99; and

• V aR∆
α (L) is the loss at α-quantile in the loss distribution constructed using returns

of prices contained in a portfolio.

The VaR method defined in equation (3.1) above can be calibrated mainly under the fol-
lowing approaches, refer to the subsections below.

3.2.1 Variance-Covariance Method

The Variance-Covariance method assumes that the distribution of the returns in the port-
folio is normally distributed over the sample period.

Variance-covariance VaR approach - Model assumptions

The following are the model assumptions:

• The risk factor changes Xt+1
iid∼ Nd(µ,Σ).

• The linearized loss in terms of the risk factors is a sufficiently accurate approximation
of the actual loss and simplify the problem by considering the distribution of L∆

t+1 =
l∆[t](Xt+1 with l∆[t]

1(McNeil et al. (2005), p.48).

Variance-covariance VaR approach - Additional information

This approach is not employed in practise due to the following reasons:

• It assumes linearity which is not always applicable in the industry; and

• Exotic financial instruments and other non-linear financial product may not follow
the normal distribution assumed in this approach.

1l∆[t] = −(ft(t, Zt) +
Pd

i=1 fzi(t, Zt)xi), where Zt is a d-dimensional time dependent vector used in the

valuation, xi are the various risk factors incorporated in the model and t is time.
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A stylised fact of empirical finance suggests that the distribution of financial risk factors
is leptokurtic and heavier-tailed than the Gaussian distribution. The implication is that
an assumption of Gaussian risk factors will tend to underestimate the tail of the loss dis-
tribution and measures of risk, like VaR and Expected Shortfall (ES), which are based on
this tail (McNeil, et al., (2005), p.49). Based on these rationales provided, the variance-
covariance VaR model fails to model risk accurately in practise; hence this method is not
used by financial companies to calibrate risk.

3.2.2 Historical Simulation Method

The Historical simulation methods assumes that the distribution of the returns in the port-
folio is constant over the sample period, as cited by Danielsson and de Vries (2000).

Historical-simulation VaR approach - Model assumptions

The assumption is that the distribution of returns is constant over the sample period.

Historical-simulation VaR approach - Additional information

In the previous method described, L = l[t](Xt+1) was established under some explicit para-
metric model for Xt+1 which is not the case; historical simulation method can be thought
of as estimating the distribution of loss operator under the empirical distribution of data
Xt−n+1, · · · , Xt. This approach of VaR model is used under the prescription of the Basel
regulatory framework. It allows the model to incorporate other dimensions of financial
instruments in the calculation of risk without mathematical limitations seen in the first
approach. Due to this the model was selected in 1998 as a risk measure for market risk
and this dissertation will discuss alternative methods of enhancing or replacing this model
because of its shortcoming observed in 2008 financial crisis; (see appendix A).

3.2.3 Monte-Carlo Method

The Monte-Carlo method assumes that the distribution of the returns in the portfolio is
fat-tailed distributed in simulation algorithm over the sample period.

Monte-Carlo VaR approach - Model assumptions

The following are the assumptions:

• Parametric model for Xt+1 is used to kick-start the simulation; and

• The linearity of risk factors is not assumed.
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Monte-Carlo VaR approach - Additional information

This VaR approach is as good as the selected parametric model used in the simulation
section of the modelling approach. In market risk, parametric models like the GARCH
seem to be desirable candidates for calculating simulated risk factors due to its heavy-tailed
attribute. However this method as well is not employable in practice due to its dependency
to parametric model to run the VaR model effectively.

3.2.4 VaR approach used in practice

As highlighted in section 3.2.2 the historical-simulation method is easy to implement and
reduces the risk-measure estimation issue into a one-dimensional problem. This attribute
made this approach to be favorable among the financial regulators and institutions in cap-
turing the dynamic risk levels in the financial markets; hence its inauguration in 1998 as a
risk measure which estimate market risk.

3.2.5 An overview of the HVaR modelling process

Figure 3.1 outlines in short the historical-simulation VaR process as a simulation model
using historical data in forecasting a portfolio’s performance based on its progression cur-
rently.

Figure 3.1: VaR definition
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The historical-simulation VaR model shown in Figure 3.1 is defined formally as follows:

Consider a general portfolio P which comprised of l positions f1(t), f2(t), · · · , fl(t). The
risk factors or returns are calculated as outlined in definition 15 in section 1.6. Which
implies the vector of the risk factors or returns (i.e. denoted by rt) is an (m × 1) vector
where m = l − 1. In the simplest case, these positions can be directly associated with a
fundamental risk factor or it can be associated with a financial derivative which is a complex
function of risk factors

fi(t) =

{
rj(t) 1 ≤ i ≤ l

fi(r1(t), r2(t), . . . rm(t)) 1 ≤ j ≤ m
(3.2)

The value of the portfolio V (t) is determined by the holding αi in each position fi(t),
1 ≤ i ≤ l

V (t) = α1f1(t) + α2f1(t) + . . . + αlfl(t) (3.3)

Let us assume that the time series information associated with each risk factor rj(t), 1 ≤
j ≤ m has the following chronological order

rj(t1)
rj(t2)

...
rj(tn)


historic

current

. . . 1 ≤ j ≤ m (3.4)

where n represents the number of elements in the time series. This information is used to
generate n− 1 historical scenarios using either the ratio method or the difference method,
depending on the configuration for that risk factor,

drj(tk) =


rj(tk)

rj(tk−1) 1 ≤ j ≤ m

rj(tk)− rj(tk−1) 2 ≤ k ≤ n

(3.5)

The base scenarios for these methods are defined as follows

drj(t1) =


1, 1 ≤ j ≤ m

0, Otherwise

(3.6)

The n − 1 scenarios can now be used to determine possible movements in the risk factors
given that their current values rj(tn) are known

rj,k(tn+1) =

{
rj(tn)drj(tk) 1 ≤ j ≤ m

rj(tn) + drj(tk) 2 ≤ k ≤ n
(3.7)
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These movements are then used to recalculate the positions

fi,k(tn+1) =


rj,k(tn+1) 1 ≤ i ≤ m

1 ≤ j ≤ m

fi(r1,k(tn+1), r2,k(tn+1), . . . , rm,k(tn+1)) 2 ≤ k ≤ n

(3.8)

which are used to revalue the portfolio

Vk(tn+1) = α1f1,k(tn+1) + α2f2,k(tn+1) + . . . + αlfl,k(tn+1) 2 ≤ k ≤ n (3.9)

The change in value of the portfolio is just the difference between these valuations and the
current value

4Vk = Vk(tn+1)− V (tn) . . . 2 ≤ k ≤ n (3.10)

Note that in the case of the base scenarios we have

4V1 = 0 (3.11)

The next step involves formulating the vector 4V

4V =


4V2

4V3

...
4Vn

 (3.12)

These n− 1 deviations represent either a positive or negative movement in the value of the
portfolio which must be sorted in ascending order

4V ↑= sort(4V, ascending) (3.13)

In the final step, the integer I is determined which indexes the 1% percentile of 4V ↑. The
1-day VaR is simply

I = round{n− 1
100

} (3.14)

V aR1−α(1) = 4V ↑ (I) (3.15)

An empirical formulation of this VaR modelling process has been provided under appendix
B.
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3.3 Simulated Expected Shortfall (SES) model

Instead of using historical data as stipulated in the traditional VaR methodology explained
in section 3.2.5; a jump-diffusion model will be implemented on the historical data to
transform the data into a more receptive to volatile financial market environment (i.e.
robust dataset).

3.3.1 Overall SES modelling process description

The following dynamics are proposed to model market risk accurately through minimising
the shortcomings mentioned in the previous about the HVaR measure. This is achieved by
combining the jump diffusion and HES models into a single modelling framework. Mastro
(2013) developed an empirical method in modelling jump diffusion models under Merton
(1976) conceptual. Let an (m× 1) vector S represent the historical data of portfolio price
daily movements and St is the portfolio’s position today. The vector S is transformed into
prices’ returns with discontinuous behaviour through incorporating Mastro (2013) jump-
diffusion model and it follows for i = (1, · · · ,m),

RS(jump−dif)
=

 R =
(

Si
Si−1

)
= e(µD×dt+σ×RAND(n)×

√
dt+Q) · · · , if(λ× dt>UniDist(i))

R =
(

Si
Si−1

)
= e(µD×dt+σ×RAND(n)×

√
dt) · · · , if(λ× dt ≤ UniDist(i))

(3.16)
where S is the historical aggregated asset prices in a portfolio, R is the return calculated
from changes in S and RS(jump−dif)

is the transformed returns which includes the discon-
tinuity behaviour. In equation (3.16), there is a market jump if (λ × dt) >UniDist(i),
where λ is the intensity parameter of the Poisson process in the jump diffusion, dt is the
daily frequency and finally UniDist(i) is the uniform distribution at i ∀i = (1, 2, · · · ,m).
Furthermore if (λ × dt) ≤ UniDist(i) it implies that there is no jump. Note that, these
functions denoted in equation (1) are discretised (i.e. introducing logs on both sides) version

of Mastro (2013), which is defined as
(

Si
Si−1

)
= e

h“
α−σ2

2
−λk

”
t+σtWt

i ∏Nt
i=1 Yi. The following

parameters denoted in equation (3.16) need to be estimated, namely, the drift parameter
incorporating jumps (i.e. µD), negative market jump coefficient (i.e. q1), positive market
jump coefficient (i.e. q2), volatility portfolio parameter (i.e. σ), standard normal random
generator (i.e. RAND(n)), random generator (i.e. rand) and market jump coefficient
Q = (q1 + (q2 − q1)× rand).

Equation (3.16) is iterated 100 times with an aim of simulating a (m − 1 × 100) matrix
of RS(jump−dif)

to improve prediction on the returns since jump-diffusion model’s paths
generated are not unique. Then these 100 simulated paths are then averaged into a (m−1×1)
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vector of “ave
(
RS(jump−dif)

)
” defined as follows:

ave
(
RS(jump−dif)

)
=


rj(t1)
rj(t2)

...
rj(tn)


historic

current

. . . 1 ≤ j ≤ m (3.17)

where n represents the number of elements in the time series. This information is utilised
to generate n− 1 jump-diffusion historically based scenarios using either the ratio method
or the difference method, depending on the configuration for that risk factor (i.e. return),

drj(tk) =


rj(tk)

rj(tk−1) 1 ≤ j ≤ m

rj(tk)− rj(tk−1) 2 ≤ k ≤ n

(3.18)

The base scenarios for these methods are defined as follows

drj(t1) =


1, 1 ≤ j ≤ m

0, Otherwise

(3.19)

The n−1 scenarios can now be used to determine possible movements in the risk factors(i.e.
returns) given that their current values rj(tn) are known

rj,k(tn+1) =

{
rj(tn)drj(tk) 1 ≤ j ≤ m

rj(tn) + drj(tk) 2 ≤ k ≤ n
(3.20)

These movements are then used to recalculate the positions

Si,k(tn+1) =


rj,k(tn+1) 1 ≤ i ≤ m

1 ≤ j ≤ m

Si(r1,k(tn+1), r2,k(tn+1), . . . , rm,k(tn+1)) 2 ≤ k ≤ n

(3.21)

which are used to revalue the portfolio

Vk(tn+1) = α1S1,k(tn+1) + α2S2,k(tn+1) + . . . + αlSl,k(tn+1) 2 ≤ k ≤ n (3.22)

The change in value of the portfolio is the difference between these valuations and the
current value

4Vk = Vk(tn+1)− V (tn) . . . 2 ≤ k ≤ n (3.23)

Note that in the case of the base scenarios we have

4V1 = 0 (3.24)
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The next step involves formulating the vector 4V

4V =


4V2

4V3

...
4Vn

 (3.25)

These n− 1 deviations represent either a positive or negative movement in the value of the
portfolio which must be sorted in ascending order

4V ↑= sort(4V, ascending) (3.26)

In the final step, the integer I is determined by the index α percentile of 4V ↑. The 1-day
VaR is simply,

I =
(

n− 1
100

)
V aR∆

α (1) = 4V ↑ (I), · · · (i.e.4 = 1)
(3.27)

Then use V aR∆
α (1) in equation (3.27) as an indicator for the calculation of market risk

under the SES modelling framework. Let ω denote all 4V s in equation (3.26) that are
greater than V aR∆

α (1).

SES
mean41−α

=


(∑

j ωj

)
n

× τ, · · · (∀j = (m, · · · ,−∞)and m >I); and

SES
median41−α

= median{ωj} × τ, · · · (∀j = (m, · · · ,−∞)and m >I)

(3.28)

The τ factor in equation (3.28) is used to rectify the average method applied on the trans-
formed returns. This τ is used mainly to regain the volatility introduced by the jump
diffusion model which was minimised by the average method.

3.3.2 Other analytic aspects of the (SES) model

Parameter estimation method and its validity tests

In section 3.3.1, the mathematical detail of the Simulated Expected Shortfall (SES) model
proposed was described in full. However, this algorithm defined above has not yet been
tested. Therefore, the following sections discuss the validity of the parameters defined in
equation (3.16). The model has five parameters mentioned in section 3.3.1, however this
section before the validity test of the parameters, discusses how to derive these parameters
from an empirical perspective; see the description in the table below.
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Table 3.1: Detailed parameters explanation

Parameters Formulation Description
q̂1 q̂1 = inf l{f̃ϕi(t) : ϕiεZ+} Estimated downward market jump

coefficient
q̂2 q̂2 = supl{f̃ϕi(t) : ϕiεZ+} Estimated upward market jump co-

efficient
µ̂D µ̂D = µ̂σD2 + 1

2 × σ̂2 Estimated drift parameter incorpo-
rating jump effect

λ̂ λ̂ = K
Y ears Estimated intensity parameter in

the Poisson Process
σ̂ σ̂ = std√

dt
Estimated volatility parameter

Where f̃ϕ(t) denotes the vector of continuous return as per definition 15 in section 1.6 which
are calculated from the aggregated positions and (M1, std,M3 and M4) are the moments
of the returns as defined in Table 3.2. Then dt = 1

252 is the “time frequency” parameter
and 252 is used because there are approximately 252 trading/business days in a year where
markets are operative and then Y ears = n × dt. Other used formulations in Table 3.1

are µJump =
( q1+q2

2

)
, K = outlierparam and µ̂σD2 = (M1−µJump×bλ×dt)

dt . Furthermore the
moments of continuous returns vector (i.e. denoted by f̃ϕ(t)) for given m positions (i.e.
vector S) discussed in section 3.3.1 is defined as follows; see Table 3.2.

Table 3.2: Moments of return calculation

Parameters Formulation Description
M1 M1 =

(
1
l

)
×

∑l
i=1f̃ϕi(t) First moment

std std =

√Pl
i=1 (f̃ϕi−M1)2

n−1 Standard deviation

M2 M2 = std2 Second moment
M3 M3 =

(
1
l

)
×

∑l
i=1[ (f̃ϕi(t)−M1)3] Third moment

M4 M4 =
(

1
l

)
×

∑l
i=1[ (f̃ϕi(t)−M1)4] Forth moment

Note that, parameters defined in Table 3.1 are the parameters whose validity will be assessed
in this section and whereas Table 3.2 conveys supporting formulas needed to calculate the
parameters in Table 3.1; see appendix D (i.e. section D.1.1 for the formulation of K defined
above. Therefore, subsequent to estimating the parameters as defined in Table 3.1 required
by the chosen model; Mastro (2013) developed a set of optimised variables which can be
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used in validating the validity of the modelling methods used to determine the parame-
ters in the MATLAB algorithm. These optimised parameters are determined by running
“fminsearch” optimising engine in the MATLAB and previously determined λ̂, q̂1 and q̂2 in
Table 3.1 are used as input into the optimisation process. This optimisation process will be
defined as follows,

â =

 λ̂

q̂1

q̂2

 INPUT−−−−→ OPTIMIZATION ENGINE OUTPUT−−−−−−→
︷︸︸︷
a =


︷︸︸︷
λ︷︸︸︷
q1︷︸︸︷
q2

 (3.29)

local minimum criteria2 is used in selecting
︷︸︸︷
a apart from other tolerance measures embed-

ded in the “fminsearch” optimising engine. From equation (3.29) calculations, the following
optimised parameters were determined which are defined in the table below.

Table 3.3: Detailed parameters explanation (optimised)

Parameters Formulation Description︷︸︸︷
q1

︷︸︸︷
q1 = inf l{f̃ϕi(t) : ϕiεZ+} Optimised downward market

jump coefficient︷︸︸︷
q2

︷︸︸︷
q2 = supl{f̃ϕi(t) : ϕiεZ+} Optimised upward market

jump coefficient︷︸︸︷
µD

︷︸︸︷
µD = µ̂σD2 + 1

2 × σ̂2 Optimised drift parameter in-
corporating jump effect︷︸︸︷

λ
︷︸︸︷
λ = K

Y ears Optimised intensity parame-
ter in the Poisson Process︷︸︸︷

σ
︷︸︸︷
σ = std√

dt
Optimised volatility parame-
ter

In addition to the parameters defined in Table 3.1 and Table 3.3, Mastro (2013) added
another algorithm which calculates the parameters but using self-assessed values. This have
been included here to validate whether the empirical data extracted in this dissertation is
similar to the data used by Mastro (2013) in modelling discontinuity of price for energy
stock. The values used are shown in the table below.

2This criteria select optimising value which satisfies the following inequality: f(
z}|{
a ) ≤ f(ba),∀ba in the

interval.
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Table 3.4: Detailed parameters explanation (theoretical)

Parameters Formulation Description
µ µ = 0.11 Drift parameter
σ σ = 0.25 Volatility parameter
µD µD = µ− σ2

2 Drift parameter incorporating jump effect
λ λ = 5 Rate of jumps per year = Intensity of Poisson

Process
q1 q1 = −0.14 Downward market jump coefficient
q2 q2 = 0.15 Upward market jump coefficient

Then using the information from Table 3.1, Table 3.3 and Table 3.4; a parameter accuracy
test can be developed using Table 3.4’s input as basis for the test. It is essential to validate
the parameters of Mastro (2013) since this method is untested under risk management tools.
However if the error rate is between 2% to 5%, then the comparison is deemed accurate.
Then, equation (3.30) denotes formulas used in calculating the error rate coefficients in
validating these parameters (see section 4.3):

Π1 =


(

((θest−θtheo)+100)×θest

θtheo

)
(θest − θtheo) + 100


Π2 =


(

((θoptimise−θtheo)+100)×θoptimise

θtheo

)
(θoptimise − θtheo) + 100


(3.30)

where, θtheo =


µD

σ

λ

q1

q2

 , θest =


µ̂D

σ̂

λ̂

q̂1

q̂2

 , θoptimise =



︷︸︸︷
µD︷︸︸︷
σ︷︸︸︷
λ︷︸︸︷
q1︷︸︸︷
q2


and θtheo is directly extracted from (Mastro (2013),p.45).

However, the parameter accuracy test is the only test that can be performed in under-
standing the empirical data modelled. Other tests involve the distribution properties’ and
goodness-of-fit tests. According to Haas and Pigorsch (2009), leptokurtic data modelled
under financial scenario-based method are usually fat-tailed distributed and have a kurtosis
of 3 or greater. This kurtosis of 3 is statistical significant since it is one of the indicators
which shows that a distribution is leptokurtic and it is easily attained from empirical data.
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The moments defined in Table 3.2 are used to calculate the skewness and kurtosis used in
testing the “data’s properties” and its definitions are as follows,

Skewness =
[

M3

M1.5
2

]
, and

Kurtosis =
[

M4

M2
2

− 3
]

.

(3.31)

As mentioned above, another test regarding the data is to test whether empirical data
used in the modelling framework fits the jump-diffusion model technique employed. In this
dissertation the Kolmogorov-Simirnov test is used since it is flexible according to Mastro
(2013) findings as it can compare two unknown distributions. Mastro (2013) cited that,
the test finds the largest difference Dn in the Cumulative Distribution Function (CDF) of
two distributions. Mastro (2013) further state that for jump-diffusion based scenario, the
test compares the binned empirical CDF to the theoretical jump-diffusion CDF to give a
maximum vertical distance as

Dn = sup
x
|ΦJD(x)− Φdata(x)| (3.32)

where supx is the suprenum distance of the set of distances (i.e. CDF of the jump-diffusion
and CDF of data respectively as shown in equation (3.32)). Finally Mastro (2013) defines
the maximum vertical distance as follows,

dn =
√

nDn, (3.33)

where n is the sample size. This Dn and dn are then used as key input parameters in
the formal test of Kolmogorov-Smirnov in detremining the p-values; refer to Table 4.2.
Detailed description is noted in Mastro (2013)’s research. Finally, the graphical tests for
the Kolmogorov-Smirnov are shown and discussed further under chapter 4.

Implementation of the jump-diffusion model in generating simulated positions

The parameter estimation method discussed above is subsequently used in simulating f̂i(t)
∀ i=0, 1, 2, · · · , l+1, see equation (3.16). The simulations are ran 100 times per “m” instru-
ments contained in portfolio P analysed by the SES model and this process is conducted
as follows:

Θestn×5 =


µ̂D1 σ̂1 λ̂1 q̂11 q̂21

µ̂D2 σ̂2 λ̂2 q̂12 q̂22

...
...

...
...

...
µ̂Dm σ̂m λ̂m q̂1m q̂2m

 INPUT−−−−→ f̂i(t) =

{
f̂0(t)× e( cµD×dt+bσ×ω×

√
dt+η) . . . if(λ× dt>β)

f̂0(t)× e( cµD×dt+bσ×ω×
√

dt+0) . . . if(λ× dt<β)

(3.34)
where β ia the UniDist(i). The process shown in equation (3.34) is done 100 times and then
averaged out to reduce variance brought by the simulation process. However, averaging the
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simulated f̂i(t) does cause the model to under-predict due to the flattening of the jumps
by the averaging process defined in D.2 under appendix D. To conclude, the f̂i(t) were
then plugged in equation (3.15) in section 3.3.1 in order to calibrate risk number under the
defined simulated-model in this section.

3.4 Other models

Chapter 3 has focused on describing the current financial risk measure (i.e. HVaR) and the
proposed model (i.e. SES). However there are other models which the proposed method will
be compared against to assess its validity and this section discusses these methods in depth.
The HVaR modelling process (i.e. chapter 3, section 3.2.5), shortcomings (i.e. chapter 2,
section 2.2 - 2.5) and numerical example (appendix B) have been discussed throughout the
dissertation.

3.4.1 Historical Expected Shortfall

McNeil et al. (2005) defines the Historical Expected Shortfall (HES) model as outlined in
definition 6 in section 1.6 except the returns are calculated from the historical data collected.
This method operates on the same notions defined for HVaR but instead of taking the risk
measure as defined in equation (3.15), with HES model all losses beyond equation (3.15)
are taken as the risk measure. This implies that HES risk measure using equation (3.15) is
calculated as follows,

HESα = function (x1, · · · , xm|(such that) · · · (x1, · · · , xm)>V aR1−α(1)) (3.35)

where (x1, · · · , xm) are losses. To re-emphasis on the equation 3.35 using the Profit and Loss
(P&L) vector defined in equation (B.5) in appendix B; if VaR is -0.23 and then HES will be
the function of -0.53 and -0.69. In practice, HES is the mean of all losses beyond V aR1−α,
which implies in the case of the example in appendix B; HESα(1) = (−0.53−0.69)

2 =-0.61. This
implies that for the given portfolio in appendix B, in one day, there is an expectation of
0.61 maximum losses expected based on historical movements.

3.4.2 Historical-simulation VaR (HVaR)

Prior 2008 subprime crisis the implemented model in predicting market risk exposures was
the “historical-simulation VaR model”, however, post the financial crisis it was decided
that this model is unable to predict risk due to its inabilities to handle complex financial
movements caused by stresses in the economy and as well the model does not test the
severity of the constructed loss distribution, FL. This modelling process has been fully
outlined in section 3.2 and appendix B. This model will be used as a deciding factor testing
the ultimate predictive-power of the proposed model (i.e. SES model) in this dissertation.
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3.5 Benchmarking

The model discussed in section 3.2.5 and section 3.4 outputs various risk measures. Another
way of assessing the model benefits of the proposed method is by checking against developed
models in practice to see what contribution the new model has. This can be achieved by
comparing the means of the risk estimates output by the models by using the following
model outlined by Kutner et al. (2005),

Yijk = µijk + εijkm (3.36)

where µijk are parameters and εijkm are independent N(0, σ2) for all, i = 1, · · · , a, j =
1, · · · , b, k = 1, · · · , c, and m = 1, · · · , n. However this methodology of Analysis of Variance
(ANOVA) is linear-based method of determining these means’ comparisons. Therefore, the
model shown above can model the hypotheses defined below.

• Hypothesis 1

H0 : µSESmean = µHESmean = µHESmedian

H1 : µSESmean 6= µHESmean 6= µHESmedian

• Hypothesis 2

H0 : µSESmedian
= µHESmean = µHESmedian

H1 : µSESmedian
6= µHESmean 6= µHESmedian

• Hypothesis 3

H0 : µV aR = µHESmean = µHESmedian

H1 : µV aR 6= µHESmean 6= µHESmedian

However, Haas and Pigorsch (2009) stated in their paper that financial data modelled by the
financial risk measure such as VaR are leptokurtic distributed and not normal. Therefore,
the ANOVA testing method since is based on assumption that test samples are normally
distributed it will not be feasible to use this method here. However, Kruskal and Wallis
(1952) developed a non-parametric test which is used for comparing two or more groups
which are non-normal distributed. This test is more appropriate for testing comparison
among more than two groups. The null hypothesis is that the samples come from the same
population against the alternative hypothesis that they come from different population and
these hypotheses are cited from Kruskal and Wallis (1952). Furthermore, this test is the
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distribution-free version of the F-test in a one-way ANOVA. Kruskal and Wallis (1952)
cited that, the statistical attributes of the Kruskal-Wallis test shown below are the main
differentiator when compared to other methods, such as the Wilcoxon and the Wilcoxon-
Mann-Whitney tests.

• H is the test statistics and H =
[

12
N(N+1) × ΣT 2

c
nc

]
− 3× (n + 1); where N is the total

number of subjects, Tc is the rank total for each group and nc is the number of subjects
in each group;

• df is the degrees of freedom which is (N − 1) and where N is the number of groups
compared. The df of Chi-squared distribution at 5% significance level is used in
deciding which hypothesis to conclude; and

• If H >V ∼ Chi Squared(df,0.05) or p-value >0.05, reject the null hypothesis.

3.6 Summary

This chapter presents mathematical algorithms of the current VaR approach employed
in practice to model market risk. This is done to motivate changes incorporated in the
proposed model under section 3.3.1. This chapter also gives detail description of other VaR
approaches and reasons behind for their abandonment as risk management tools. Then,
section 3.3.2 outlined other statistical tests that need to be conducted to assess the validity
of the proposed model in full totality. Section 3.4 discussed other risk measures which
will be compared against the proposed method to assess its predictability. In addition to
this, other benchmarking test such as the Kruskal-Wallis are defined and will be used to
further re-emphasize the validity of the model. Unlike chapter 2 which presented survey of
literature concerning the research problem; however chapter 3’s discussions are focusing on
methodologies and tests that will be used in the dissertation to solve the problem posed in
section 1.2.
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Chapter 4

DATA ANALYSIS AND MODEL

RESULTS

4.1 Introduction

This chapter present all empirical evidences gathered from mathematical formulations de-
fined in chapter 3.

• Section 4.2 discusses the data infrastructure and extraction process followed to gather
the data used;

• Then section 4.3, further outlines various data quality tests performed to assess the
data creditability and its overall fit into the methodology defined in section 3.3.1;

• Section 4.4 discusses the empirical findings from the parameter validity test and con-
clude on whether parameters determined under Mastro (2013)’s algorithm are accurate
based on the theoretical-basis of jump-diffusion models;

• Simulation results attained from using section 3.3.1’s methodology are discussed in
full and some of the reservation about the simulative process; and

• Finally, section 4.6 discuss the validation or benchmarking process defined in section
3.5 and as well few literature observations based on tests used to assess the proposed
model’s performance.

4.2 Data and data extraction process

Prior to discussing the model results attained using the methodologies defined in chapter
3, a brief discussion on data extraction and data clean-up processes will be conducted. The
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data used in the model was extracted from “Thomson Reuters” application and only Mining
sector shares were extracted due to the following reasons:

• The aim of the dissertation is to show that the SES model proposed mitigates all
shortcomings seen in VaR modelling process during a financial crisis. Therefore in-
struments which were most vulnerable during the 2008-2009 subprime crisis in South
Africa were selected and most of these instruments were from the mining sector.

• From the “Top40” share index, the shares with the highest volatility parameter was
selected and this test as well mostly chosen the mining shares.

• The final attribute used in ascertaining which instruments to use in the model; equi-
ties/shares and options have been researched intensively in literature and the prices
of these instruments are reactive to economic climate changes which fit the objective
of the required data. However “option products” were excluded from this research
since their historical data is limited to build a solid simulation model.

These were the main criteria used in selecting the set of instruments used in this empirical
illustration of the modelling process defined clearly in chapter 3. The share/equity portfolio
P comprises of the following shares:

Table 4.1: Modelling data description

Parameters Formulation Description
AGL Anglo American PLC Mining sector
BIL BHP Billiton Mining sector
AMS Anglo American Plat Ltd Mining sector
ANG Anglogold Ashanti Limited Mining sector
ARI African Rainbow Minerals Limited Mining sector
IMP Impala Platinum Holdings Limited Mining sector
OML Old Mutual PLC Financial & Insurance sector
GFI Gold Field Limited Mining sector

However the application used to retrieve the data excludes all holidays and weekends from
the data since South African financial markets are non-functional during these events. The
only data clean-up issue is that, the date variable is duplicated per instrument extracted
from “Thomson Reuters” application; this is rectified by removing other duplicated date
vectors from the raw dataset. The information extracted stretches from 31-August-2008 to
04-March-2014, which implies that, it also incorporated the subprime crisis period which
forms the crux of this investigation.
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4.3 Data fit tests

The initial step in any modelling process is checking whether the collected data mentioned
in section 4.1 fits the modelling structure selected. If the modelling data does not fit the
respective model, it implies that certain data transformation needs to be implemented so
that it fit or select another model more appropriate for the data collected. The first test
conducted is the Kolmogorov-Smirnov test, see the table below:

Table 4.2: Kolmogorov-Smirnov: Goodness-of-fit test

Share code Dn dn D − α p-value
AGL 0.005710 0.278935 0.027842 0.999999
BIL 0.009160 0.469408 0.027842 0.980233
AMS 0.013663 0.667383 0.027842 0.764616
ANG 0.008111 0.396199 0.027842 0.997557
ARI 0.026679 1.303199 0.027842 0.066968
IMP 0.014124 0.689923 0.027842 0.727939
OML 0.010321 0.504123 0.027842 0.961247
GFI 0.009788 0.478104 0.027842 0.976253

As stated in Mastro (2013) that significance level for this test is set at 5% and any p-
value lesser than 5% it implies that H0 is rejected. However, the tested null hypothesis is
FJD(x) = Fdata(x),∀ x, where F denotes Cumulative Density Function (CDF). All p-values
in Table 4.2 are above the significance level which suggests that null hypothesis is not re-
jected. This suggests that modelling data defined in section 4.1 fits the theoretical jump
diffusion model. Therefore the model is deemed a proper fit to the data.

The second part of the Kolmogorov-Smirnov (K-S) test is to construct theoretical band
under which data is expected to belong if it’s fully represented by the jump-diffusion model.
The construction of the graphical test uses all attributes denoted in Table 4.2. The graphs
below are only showed for six of the eight shares analysed in this study. These graphs
confirm that the model does fit the data properly.
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Another important attributes mentioned in Mastro (2013) literature is that financial data
used tend not to follow the traditional Gaussian distribution as prescribed in VaR model.
VaR model is sub-additive if the log returns as outlined in definition 15 in section 1.6 are
elliptically distributed and Mastro (2013) argues that the return will be far from this elliptic
distribution assumption. Financial data in most cases tends to be modelled by heavy-tailed
distributions; Mastro (2013) suggests that in proving that jump-diffusion model contains
this attribute, the kurtosis and skewness of the data needs to be compared against the data.
If jump-diffusion distribution is heavy-tailed then these values should be close to each other.
The computation of skewness and kurtosis is sensitive to jumps and other outliers in the
data, hence the implementation of the least-squares method. This method defined from
equation (3.31) minimises least squares objective which show data as positive whereas the
theoretical distribution is shown as a negative. The following table shows the skewness and
kurtosis calculated under this methodology.

Table 4.3: Kurtosis and skewness: The fat-tailed analysis

SHARE CODE skewnessdata kurtosisdata skewnessestimated kurtosisestimated

AGL -0.083915 4.659652 0.062636 5.349719
BIL 0.273800 4.634329 -0.057673 4.547337
AMS -0.327286 2.921829 0.002345 3.911881
ANG 0.328662 3.264361 0.072149 4.138707
ARI -0.404772 5.122530 -0.057438 4.635580
IMP -0.287252 2.764744 -0.183598 3.214796
OML -0.157283 7.343557 -0.094876 7.684796
GFI 0.172834 3.817916 0.222672 4.185137

The data’s distribution and jump-diffusion theoretical distribution have similar fat-tail trend
as per definition under Mastro (2013), see the skew and kurtosis in Table 4.3. This concludes
that the data is fitting the jump-diffusion modelling process. This means that jump-diffusion
model can be implemented in estimating historical data with market jumps as shown in
equation (3.16). The graphs below confirm the conclusion drawn from Table 4.3.
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4.4 Parameter-estimation method results

In this research there were three jump-diffusion models considered, namely, Pareto-Beta
Jump-Diffusion (PBJD), Double Exponential Jump-Diffusion (DEJD) model and Lognor-
mal Jump-Diffusion (LJD)/Merton (1976)) model, see appendix C for more description. In
appendix C it has been mentioned that movements of the returns are used in calculating
the parameters, however the detailed method followed is carved out under section 3.3.2.
The complex jump-diffusion models like the PBJD and DEJD models require additional
parameters to be able to illustrate the complex dimensions. In literature, non-conventional
methods are used in estimating the density functions since their jump magnitudes are mod-
elled by parametric distributions, for example under PBJD model up-jump is modelled by
Pareto(ηu) and down-jump its modelled by Beta(ηd,1). Since these estimation methods have
no defined statistical method in checking its validity without constructing a non-parametric
method. On this basis both PBJD and DEJD models have been excluded from the dis-
sertation. In Mastro (2013), he suggests that parameters can be validated by estimating
these parameters from data and subsequently calculate another set of parameters from an
optimising tool using the initially estimated parameters from data as initial values for the
LJD model. Then if these outcomes are similar it implies that the parameter estimation
method is valid.

Table 4.4: Estimated parameters for LJD model as defined
in Table 3.1

SHARE
CODE

Initial Price
(f0(t) in cents)

µ̂D σ̂ λ̂ q̂1 q̂2

AGL 15,530 0.202044 0.399417 4.01173 -0.173 0.138586
BIL 6,215 0.129938 0.365069 3.378299 -0.11421 0.179971
AMS 28,724 0.231226 0.428329 3.272727 -0.17589 0.119529
ANG 22,000 -0.02752 0.393059 3.695015 -0.12327 0.175643
ARI 3,500 0.445824 0.408387 4.117302 -0.20394 0.118198
IMP 6,981 0.208941 0.439604 2.533724 -0.18851 0.143432
OML 1,290 0.214252 0.353465 5.173021 -0.16511 0.146549
GFI 7,079 -0.02071 0.438176 3.695015 -0.15811 0.193927
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Table 4.5: Optimisation’s parameters for LJD model as de-
fined in Table 3.3

SHARE
CODE

Initial Price
(f0(t) in cents)

︷︸︸︷
µD

︷︸︸︷
σ

︷︸︸︷
λ

︷︸︸︷
q1

︷︸︸︷
q2

AGL 15,530 0.05443 0.286119 32.98347 -0.08232 0.084486
BIL 6,215 0.244341 0.246614 48.48774 -0.06727 0.065639
AMS 28,724 0.088596 0.294777 52.6247 -0.07348 0.073564
ANG 22,000 -0.03535 0.259353 57.6989 -0.06591 0.068024
ARI 3,500 0.266567 0.19687 95.61985 -0.06367 0.06239
IMP 6,981 0.346976 0.260357 98.39988 -0.06398 0.05874
OML 1,290 0.169895 0.213611 38.96582 -0.07832 0.0761
GFI 7,079 -0.20919 0.295252 53.57953 -0.07235 0.079899

The parameters highlighted in Table 4.4 and Table 4.5 are the parameters calculated under
Mastro (2013) modelling framework as specified in section 3.3.2. However, we need to
assess whether these parameters are accurate, especially the parameters in Table 4.4; this is
achieved by comparing these parameters to theoretical parameters extracted from Mastro
(2013) which states: µ = 0.11, σ = 0.25, λ = 5.00, q1 = −0.14 and q2 = 0.15. Equation
(3.30) will be used in calculating Π1 and Π2 which are the respective error rates for the
parameters estimated using empirical data and under optimisation technique as specified
in equation (3.29).

Table 4.6: Error rates for estimated parameters - LJD model
in absolute value notation

SHARE
CODE

Π̂µD Π̂σ Π̂λ Π̂q1 Π̂q2

AGL 1.84% 1.60% 0.80% 1.24% 0.92%
BIL 1.18% 1.46% 0.76% 0.82% 1.20%
AMS 2.10% 1.71% 0.65% 1.26% 0.80%
ANG 0.25% 1.57% 0.74% 0.88% 1.17%
ARI 4.05% 1.63% 0.82% 1.46% 0.79%
IMP 1.90% 1.76% 0.51% 1.35% 0.96%
OML 1.95% 1.41% 1.03% 1.18% 0.98%
GFI 0.19% 1.75% 0.74% 1.13% 1.29%
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Table 4.7: Error rates for optimisation’s parameters - LJD
model in absolute value notation

SHARE
CODE

Π̂µD Π̂σ Π̂λ Π̂q1 Π̂q2

AGL 0.49% 1.14% 6.60% 0.59% 0.56%
BIL 2.22% 0.99% 9.70% 0.48% 0.44%
AMS 0.81% 1.18% 10.52% 0.52% 0.49%
ANG 0.32% 1.04% 11.54% 0.47% 0.45%
ARI 2.42% 0.79% 19.12% 0.45% 0.42%
IMP 3.15% 1.04% 19.68% 0.46% 0.39%
OML 1.54% 0.85% 7.79% 0.56% 0.51%
GFI 1.90% 1.18% 10.72% 0.52% 0.53%

In section 3.3.2 it has been mentioned that significant level is set at a range of 2% to 5%,
which means all error rates above this range are not accurate which suggest the parameters
determined deviate significantly between the fitted-model’s assumptions and theoretical pa-
rameters. According to Table 4.6 and Table 4.7 the parameters obtained under both regimes,
that is, empirical estimation method and optimisation estimation method are mostly within
the set range above. The error rates highlighted in red in Table 4.7 are due to the over-
conservativeness of the optimisation technique used. In summary, these two tables suggest
that parameters used in the SES model are accurate and consistent with the jump diffusion
model employed. Lastly, results obtained here are in full agreement with the literature
of Mastro (2013) since his using jump diffusion model in pricing financial instruments as
studied in this dissertation.

4.5 Simulation results - data transformation as per equation

(3.16)

The parameters calculated in Table 4.4 are plugged into simulations to improve the pre-
dictability of the transformed historical data with jumps as defined in equation (3.16). With
simulations we have another problem of inconsistencies since each simulation is different
from another. In order to solve this problem, we need to run the simulation multiple times
and averaging the different paths. Graph (a) and graph (b) in Figure 4.5 denotes averaging
paths of the modelled Mining shares calculated using empirically estimated parameters as
shown in Table 4.4 whereas graph (c) in Figure 4.5 shows the averaging paths when optimi-
sation’s parameters are used. The reason behind the inclusion of graph (c) is to test whether
the optimisation technique defined in equation (3.29) works optimally, see the graphs below.
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Note that graph (b) and graph (c) in Figure 4.6 shows the level and the severity of the
jumps per simulation conducted. These high volatilities are good in measuring risk but if
implemented as it is the model will predict risk conservatively and unreliably per simula-
tion. Therefore in order to restore the model’s predictability these various simulations are
averaged. The averaged paths denoted in graph (a) and graph (b) in Figure 4.5 are calcu-
lated using Table 4.4 whereas average paths denoted by graph (c) in Figure 4.5 and graph
(a) in Figure 4.6 are calculated using Table 4.5. The optimisation technique’s average paths
graphs are less volatile than the average paths determined by Table 4.4 parameters. This
implies that risk models using Table 4.4 will be more conservative than risk models using
Table 4.5 parameters. Another observation made is that averaging in both cases restores
the homoscedasticity but it reduces the vulnerability brought by the jump component.
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4.6 SES modelling validation test results

In the previous section it was noted that averaging of the simulated paths might fix ho-
moscedasticity of the SES model defined in section 3.3.1 but it worsens the predictability
of the model in estimating losses. Therefore in order to restore this effect without losing
the homoscedasticity retained by the averaging process; the overall risk numbers should
be multiplied by a constant factor τ assumed to be 15 in this modelling process. A more
model-based method should be investigated in follow-up research for calculating τ .

Furthermore, the SES model calculates risk numbers using mean and median approaches;
the reason for this is to find the most appropriate-way of calculating the risk more accurately
and fulfilling the objective of the research. The mean approach includes outlying elements
in the constructed loss distribution which could be seen as a positive since risk or loss during
a crisis occurs at the tail-end of the distribution. On the other hand the median approach
excludes outlying elements in the loss distribution which might be a shortcoming if the worst
possible loss is incurred. Several tests are conducted below in testing the predictability of
the model under these approaches.

4.6.1 Kruskal-Wallis results

As mentioned in section 3.5 that Kruskal-Wallis test will be used to assess whether the risk
measures output by the models discussed in section 3.2.5 and section 3.4 are independent
or not. The various implications of the hypotheses have been fully discussed in section 3.5.
The results of the Kruskal test are shown in the table below:

Table 4.8: Kruskal-Wallis results

Null Hypothesis Alternative Hypothesis p-value conclusion
H0 : µSESmean , µHESmean and
µHESmedian

are sampled from
the same distribution.

H1 : µSESmean , µHESmean and
µHESmedian

are not sampled
from the same distribution.

p-value=0.971
(H=0.059,df=2)

Do not reject H0

H0 : µSESmedian
, µHESmean

and µHESmedian
are sampled

from the same distribution.

H1 : µSESmedian
, µHESmean

and µHESmedian
are not sam-

pled from the same distribu-
tion.

p-value=0.971
(H=0.059,df=2)

Do not reject H0

H0 : µV aR, µHESmean and
µHESmedian

are sampled from
the same distribution.

H1 : µV aR, µHESmean and
µHESmedian

are not sampled
from the same distribution.

p-value=7.544e−10

(H=46.62,df=2)
Reject H0

Continued on next page
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Table 4.8 – Continued from previous page
Null Hypothesis Alternative Hypothesis p-value conclusion
H0 : µV aR, µSESmean and
µSESmedian

are sampled from
the same distribution.

H1 : µV aR, µSESmean and
µSESmedian

are not sampled
from the same distribution.

p-value=5.102e−13

(H=56.61,df=2)
Reject H0

Table 4.8 aforementioned concludes the following:

• Hypothesis 1 and hypothesis 2 do not reject the H0 which implies that the SES
models and HES models are sampled from the same empirical distribution. This
conclusion is mainly because both SES models and HES models formulations are based
on the same modelling data (i.e. historical prices of key Mining shares) and the model
outputs are sampled from similar percentile point of the empirical distribution for
both approaches. In summary, these outputs noted of the aforementioned hypotheses
suggest that statistically, the empirical distributions where SES models and HES
models are sampled from were similar if not the same. However, further investigation
should be conducted to assess whether the SES models or HES models when compared
are there any statistical benefits seen since this Kruskal-Wallis test only states the
sampling distribution among the tested groups are the same or not (see section 4.5.2);
and

• Hypothesis 3 and hypothesis 4 rejects the H0, which implies that both SES and HES
model outputs are sampled from different empirical distributions when compared to
historical-simulated VaR model outputs. However this finding should not be alarming
as in McNeil et al. (2005) states that any form of Expected Shortfall (ES) model is
simply a severe percentile reading of an empirical distribution than VaR. As stated
previously that Kruskal-Wallis does not provide the causality and therefore at this
stage no statistical meaning can be drawn from Table 4.9’s hypotheses results.

4.6.2 Predictability tests

Once a market risk measurement model (i.e. SES model) has been constructed, there is
a strong requirement to verify and quantify its accuracy. This is achieved through back
testing which compares the forecasts from the SES model to the actual portfolio returns.
An exception occurs when the actual loss exceeds the SES (i.e. SESmedian or SESmean risk
numbers) by checking the frequency of the exceptions, the quality of the SES model can be
determined.

However having a model with absence of any exceptions is highly desirable since it high-
lights the model’s conservativeness required in a risk measure for a theoretical perspective.
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These modelling outputs however have business implications since these risk estimates feed
into the regulatory capital process. Regulatory capital process is a process whereby finan-
cial institutions calculates minimum reserve it needs to keep with the financial regulator
given its risk exposures. If risk estimates from models and other process is generally high
it will result in the reserve kept by a particular financial institution being relatively high
compared to its peers. High capital charge/reserve halt business growth since the company
or organisation will have less money to run its function due to high capital charge. There-
fore an appropriate risk appetite regarding exceptions permissible in the model should be
determined.

Therefore to test the accuracy of the SES forecast one has to determine whether the fre-
quency of the exceptions is equal or close to the desired confidence level. This is achieved
by defining a time series

{Ik}N
k=1 (4.1)

for each of the N days over which the back testing is run.

The variable Ik is actually an indicator function that takes on the value one on the day that
an exception occurred and is otherwise zero.

Ik =


1 Actuallosses>SESα

0 Actuallosses<SESα

(4.2)

If the SES model is solid in terms of prediction, its sequence of exceptions noted should be
independently distributed with the same probability of occurrence. Statistically, one can
apply the binomial distribution to determine the probability of observing a certain number
of exception in a given sample size.

Assume that the time horizon is γ = 1 and the confidence interval is (1− α) = 99%. If the
SES model is accurate, then the probability of the SES being exceeded on any given day is

p = α. (4.3)

The expected number of exceptions is therefore defined to be

X = pN. (4.4)

Graph (c) of Figure 4.8 shows the overall back testing graph for the analysed period which
stretches from 31 August 2004 to 04 March 2014 (i.e. 2388 observations per instruments
extracted). Using equation (4.4), it follows that desirable exceptions expected from the SES
model is 0.01×2388 ≈ 24, the table below tabulates the exceptions for the modelling period
as shown in graph (c) of Figure 4.8.
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Table 4.9: Error rates for optimisation’s parameters - LJD
model in absolute value notation

MODEL DISERABLE EXCEPTIONS MODEL EXCEPTIONS DIFFERENCES
SESmedian 24 34 10
SESmean 24 30 6
HESmedian 24 28 4
HESmean 24 26 2
VaR 24 34 10

Despite the fact that Table 4.8 concludes that HES model’s outputs and SES model’s
outputs are sampled from the same/similar empirical distribution; Table 4.9 that is, model
exceptions table using the entire modelling dataset suggests that HES modelling processes
is more conservative than SES modelling processes. However the aim of this dissertation
is to answer the question which test whether or not would have SES modelling processes
modelled the subprime risk better than VaR if implemented prior 2008? The SES modelling
processes would have improved the under-prediction issue seen when VaR model was used.
Table 4.10 shows the exception analysis during the subprime crisis (i.e. 25 September 2008
to 31 August 2010 = 483 observation per instrument extracted).

Table 4.10: Back testing results for the 2008 subprime crisis

MODEL DISERABLE EXCEPTIONS MODEL EXCEPTIONS DIFFERENCES
SESmedian 5 1 -4
SESmean 5 0 -5
HESmedian 5 2 -3
HESmean 5 2 -3
VaR 5 3 -2

Although there are conflicting conclusions drawn from the Kruskal-Wallis test and the
modelling exception test conducted in Table 4.9 and Table 4.10. An important aspect that
should be drawn from this is that, overall both HES models and SES models would have
soften the blow if used instead of VaR in prior 2008 subprime crisis. Another conclusion
that could be drawn is that, SES modelling process due to the jump-diffusion component
is better equipped in calibrating financial risk under stressed economic climate, hence the
few model exceptions noted in Table 4.10. Tying these conclusions back to the literature
study in chapter 2, it follows that:
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• McNeil et al. (2005) states that any Expected Shortfall (ES) model is simply a severe
percentile reading of the same empirical distribution used to sample VaR; Table 4.9
and Table 4.10 suggest that HES and SES models which are special cases for expected
shortfall models are better at predicting financial risk since their estimation are around
the actual losses confidence interval, especially in stressed circumstances.

• The conservativeness in the estimation process is in agreement with Acerbi and Tasche
(2002), Yamai and Yoshiba (2005) conclusions concluded in their respective papers.

• Lastly, the backtesting graphs from Figure 4.7 and Figure 4.8 are in agreement with
conclusions aforementioned.
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4.6.3 Other backtesting perspective

Based on Table 4.10, the SES model would have been a statistically-better model than
the traditional HVaR model during the subprime crisis. Table 4.10 proves that SES model
is capable in solving some of the HVaR problems defined in section 2.2 and section 2.6.
However, if we look at the differences between the other models used in this dissertation is
small. According to Kerkhof and Melenberg (2004), it might be that, the SES model is not
backtestable just like the HES model as shown in McNeil et al. (2005). Again using Ziggel
et al. (2014)’s argument, it might be argued that the reason there are no backtesting test
for ES-based model is because there are limited literature. Although Ziggel et al. (2014)’s
methodology uses the same philosophy as defined by Christoffersen (1998). It is more con-
servative in the sense that it includes stresses in its performances test of checking VaR.
That being said there is a scarcity of literature addressing backtesting methodologies for an
Expected Shortfall type of model, hence the use of the methodology defined in section 4.5.2.

However, Kerkhof and Melenberg (2004) argues that it is difficult to backtest expected
shortfall models due to misalignment between actual and estimated losses (i.e. estimated
losses are a function of losses whereas actual losses are not a combination calculated through
mathematical formulae). But through the Hadamard differentiable derivations, the back-
testing of such measures is possible and this is supported by the work of Kerkhof and
Melenberg (2004). Therefore, based on Hadamard differentiable derivation, backtesting can
be performed through the standard normal test statistic under null hypothesis and which
is defined as ST =

√
T (γ(QT )−γ(Q))√

V
. This is where γ(Q) is the estimated risk, γ(QT ) is

the true risk and V is the variance movements of the “actual risk” in the observed period.
The SES modelling framework is a stressed version of the HES model and therefore it’s
also Hadamard differentiable. For this test, the following significant level α will be used
in accordance to Kerkhof and Melenberg (2004) findings which show that, median shortfall
with level 2α (excluded not comparable) and the mean shortfall with level 2.5α corresponds
to the HVaR with level α. Table 11 shows the Type I error results in backtesting the various
models discussed in this paper α = 0.01 and for T = {250, 500}.

Table 4.11: Type I error (in percentage) regarding backtest-
ing model estimates

T V aR0.01 HES0.025 SESmean0.025

250 4.81 5.14 5.38
500 2.91 9.38 9.33
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In concluding remarks by using Kerkhof and Melenberg (2004) methodology and their
results for V aR0.01 and HES0.025 in Table 11, it’s clear that SESmean0.025 model have large
Type I error. This implies 5.38% (for T = 250), the model will reject null hypothesis when
it’s true (i.e. null hypothesis - no model exception), see Table 4.11.

4.7 Summary

The overall conclusion which can be drawn from empirical findings outlined in chapter 4 is
that, the SES model developed in this dissertation is generally conservative than the models
defined in section 3.4. Despite, these conservativeness suggested by Table 4.9 and Table
4.10 some of the scholars have few reservations on the use of expected shortfall measures.
Kerkhof and Melenberg (2004) stated in section 4.6.3 that, these reservations are mainly
due to the fact that expected shortfall measures are usually hard to backtest.

To overcome the limitation of the ES or ES-based measures not being backtestable, Acerbi
and Szekely (2014) stated that in October 2013 the Basel Committee opted to replace
HVaR with ES but still keep HVaR measure for backtesting purposes. The financial in-
stitutions and financial regulators are arguing that, this is feasible since both HVaR and
ES risk measures are derived from the same empirical non-parametric distributions at dif-
ferent percentile levels. Also in section 4.6.3, scholars such as Ziggel et al. (2014) argued
that, the ES is not backtestable due to limited literature addressing this concept. As re-
iterated above that SES model is statistical-better than other models noted in section 3.4
and financial data selected in Table 4.1 fits the jump-diffusion modelling framework with
minimal deviations; see Figure 4.2 and Figure 4.3. That being said, SES model requires
an extensive follow-up work looking into the limitation outlined throughout the dissertation.

58



Chapter 5

CONCLUSION AND

RECOMMENDATIONS

5.1 Introduction

The Historical-simulation Value-at-Risk (HVaR) modelling approach under-predicts market
risk due to inefficiencies in the model as indicated in section 1.2. This observation was
corroborated by the mathematical inefficiencies of HVaR model outlined in section 2.2 and
section 2.3. The aim of this dissertation is to establish tail-sensitive risk measure that
calculates market risk using the designated sample size without inflating the estimation
error. This chapter concludes this dissertation by highlighting what has been achieved by
this dissertation, assessing the limitation that constrain the dissertation and suggesting
future directions for further research.

5.2 Conclusion

Financial crises, especially the 2008 subprime mortgage meltdown showed HVaR model’s
shortcomings, which were:

• Lacks ability to evaluate tail risk;

• HVaR have poor aggregation properties; and

• Unable to incorporate new information into the model as it materialises.

Artzner et al. (1997, 1999) and McNeil et al. (2005) suggested that the ES measure is a
better risk measure than VaR since it minimises the aggregation property’s risk and the
tail risk issues. But Yamai and Yoshiba (2005) stated that the HVaR and ES measures uses
minimal sample size and therefore are unable to model the fluctuations required in such
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models. Furthermore, it has been uncovered that ES is not backtestable, see Kerkhof and
Melenberg (2004) findings in their paper.

Therefore this study proposed an SES measure which takes into account the mishaps of
using limited sample size in modelling market risk. This was achieved by adding a jump-
diffusion methodology into the developed ES measure in Artzner et al. (1997, 1999) and
McNeil et al. (2005) ’s papers. Jump-diffusion models used stochastic processes, such as the
Geometric Brownian Motion (GBM) and the Poisson process to calibrate expected jumps
or discontinuities as suggested by Kou (2002) given historical movements of that asset or
portfolio. These jumps helps to cater for the lack of fluctuations due to the limited sample
size when modelling market risk under the ES model methodology, see section 3.3.1.

The results attained and discussed in chapter 4 suggested that the data extracted from
REUTERS platform fits the jump-diffusion modelling process. This outcome was con-
cluded by the Kolmogorov-Smirnov tests both formal and graphical tests. These results,
attained under the methodology described in section 3.3.1 also shown that ES measure
is not backtestable since the number of exceptions obtained in Table 4.10 does not meet
logical sense as expected. Remember ES-based measure account for tail risk which in most
cases causes model exceptions. However, based on the backtesting methodology described
in section 4.6.2; differences between VaR and ES-based or ES measure’s model exceptions
were expected to be huge especially during the 2008 subprime crises were shares peaked due
to the meltdown. The SES measure is conservative but the deviation between the model
exception for VaR and ES is significantly small (i.e. 2 according to Table 4.10). These
empirical results in Table 4.10 were backed by Kerkhof and Melenberg (2004)’s findings
in their paper which suggested that, the ES measure is not backtestable. Therefore SES
models since they were based on ES methodology described by Artzner et al. (1997, 1999)
and others are not backtestable. However, based on graphical tests outlined in Figure 4.7
and Figure 4.8 in general SES measures are conservative but future researches are required
to elevate this model to risk sensitive status approved by the financial regulators.

5.3 Limitation and constraints

Although this dissertation has achieved its aim, there are some limitations and constraints
which need to be considered. These are:

• Backtestability of the SES; and

• Calibration of τ .
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5.3.1 Backtestability of the SES

Backtesting is defined as a procedure which validates the performance of a risk measure
over given observation period. This is important to financial regulator to monitor the esti-
mation patterns of the risk measures employed by various financial institutions. Financial
regulators want models which are extremely conservative during market turbulences and
mildly conservative during normal market fluctuations. Section 4.6.3 stated that, ES-base
models such as ES-methodology defined by McNeil et al. (2005) and SES defined in this
dissertation in section 3.3.1 are not backtestable. Ziggel et al. (2014) continued to moti-
vate it is because there are limited literature studies addressing the matter in great detail.
Backtestability is an important aspect to financial regulators since it provides a consistent
measure to assess the predictability of the model across various economic cycles the model
is functioning in. Therefore introducing a consistent manner for regulators to monitor and
verify the prediction power of the risk models employed by various financial institutions to
determine whether these processes are sound. Despite these observations mainly outlined
in chapter 2 and chapter 4 of this dissertation, the SES risk measure, especially under the
mean approach is robust, see Table 4.9 and Table 4.10. However, future studies need to
explore other backtesting methods than the proposed one in section 2.4 for real-world use.
This future study will elevate the SES risk measure to the status of HVaR in terms of back-
testing and since SES model is already conservative; financial regulators might buy-into the
concept if this risk model is backtestable as well.

5.3.2 Calibration of τ

The averaging of the jump-diffusion returns done in equation (3.17) fixes the hetroscedastic-
ity introduced by the simulation process in equation (3.16). But this reduce the jump-effect
of the model estimates which constraint the predictability. Therefore, the tau (i.e. τ)
coefficient was developed to regain the predictability of the SES model and as well attain-
ing the simulated data showed in Table E.1 in Appendix E. In the present SES modelling
process this element is calculated numerically or by a model, which might be argues that
as employed currently it introduce biasness into the modelling process. Therefore future
studies need to explore linking the current SES model with the tau coefficient so that, any
modification done on the returns is re-calibrated by tau in the modelling approach.

5.4 Future work

This dissertation has established a reference point exploring other research questions. Using
this dissertation as a starting point work on a thesis investigating backtesting methodolo-
gies for an Expected Shortfall (ES) based methods such as HES and SES models in South
African Financial institutions with more diverse portfolio than the Equity portfolio used
in this research; see Table 4.1. This will assist in emphasising the model benefits of using
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ES-based method in predicting risk present in the financial industry.

The modelling framework outlined in section 3.3.1 can be extended to input calibration
or modelling of the τ -factor. By incorporating these elements in the modelling process,
it allows alignment between theoretical findings and practical application of these works
seen in literature outlined in chapter 2. This as well, will answer some of the dilemmatic
questions posed to financial institutions by the development of the 2010 Basel III Accord
framework.
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Appendix A

Subprime Crisis and its influences

on VaR model

A.1 Build-up to the 2008 financial crisis

A bond is defined as an interest-bearing instrument which guarantees regular interest pay-
ments on borrowed money during the lifespan of the instrument and principal (i.e. loaned
amount) is due at maturity. These instruments are usually issued by government or corpo-
rations (i.e. issuer of bond = creditor & recipient of the bond = borrower). For generations,
financial markets have traded bonds. The bond market grew significantly since the 1980s,
Wall Street realised late in the 80s that “bond-like” financial products could be created from
other debt-based income streams like credit cards, student loans and home mortgages. This
financial innovation resulted in the inception of the “mortgage-bond” financial instruments
and these instruments were sold vastly by various Wall Street investment banks, namely,
Goldman Sachs, Merrill Lynch, Bears Sterns, JP Morgan and Morgan Stanley.

These mortgage bonds collects thousands of home mortgages, purchased from lenders, and
packages their associated income streams (i.e. monthly mortgages payments) into financial
products, which can be bought and sold like bonds. However, these mortgage bonds had
embedded unique weaknesses, namely:

• Home owners often refinance their debt periods of low interest rates; and

• Premature repayment of the principal amount (i.e. mortgage loan amount).

Wall Street addressed these inefficiencies by structuring mortgage bond in stacked layers
called “tranches” - the lowest layer (risky tranche) representing the first N mortgages settled
early and the highest layer (less risky tranche) being the last N mortgages. Since investors
in the financial markets are seeking for high returns on their monies, they will opt for the
risky tranche.
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In the 1990s, Wall Street firm began to issue even high risk mortgage bonds than the ones
defined above; the underlying asset used in creating these mortgage bond was subprime
mortgages1. The structural “tranches of the mortgage bonds built from subprime mort-
gages, at this point, represented not only pre-payment, but also outright default. With
low-interest rate environment seen in the United State (US) during these times increased
the demand in Wall Street to buy subprime mortgages which escalated the subprime mort-
gage exposure to trillions of dollars in the US house market. This increase seen on the
subprime mortgage market created a real estate bubble which was not noticed by most of
the financial market participants.

Post the DotCom crisis in the early 2000s global economy’s interest rate was lowered with
intention of re-stimulating the economic growth suffered from the crisis. This action how-
ever, stimulated most of the home owners to refinance (i.e. take an additional mortgage
loan) their mortgages in all classes and because of lower interest rate mortgages became of
lower quality. This caused Wall Street mortgage bonds to be inherently riskier; this should
have slow downed or reduced the liquidity of the bonds because rating agencies positively
rated subprime mortgages and since rating agencies input is regarded as a key decision-
making attribute caused the market to ignore the riskiness of these loans post DotCom.
Furthermore, there’s an inherent conflict of interest between Wall Street and the rating
agencies, since its Wall Street who pays the agencies to rate their products. Likely due
to this conflict, the rating agencies assigned surprisingly high ratings for these ever-riskier
mortgage bonds.

In early 2000s all signs highlighted a creation of financial bubble over the past two decades
discussed in sections above. Wall Street still wanted to generate more profit; this led to
further growth of the lower tranches in the mortgage bonds (i.e. these tranches mostly
contained subprime mortgages). With lower mortgage bond tranches growth seen in 2003,
Mike Burry noted in his study that a massive default will result in collapse of the real
estate. Therefore, Credit Default Swaps (CDS) were created and CDS is an insurance
policy protecting its holders from adverse movements. Investors wanted to mitigate their
risk exposures from this high return mortgage bond (i.e. lower tranche) by purchasing and
paying monthly premium on these CDSs. Since the financial market did not expect financial
meltdown; the issuing of these CDSs grew exponentially since major and minor insurance
or partly-insurance companies were issuing these instruments at a fast pace. Finally in
2008, defaults were incurred in the mortgage markets due to real estate price drops and as
defaults increased especially in the subprime mortgage class caused all companies exposed
to the mortgage bond (especially the riskiest tranche) in cashing-back on their purchased
CDSs. This caused highly financial-leveraged companies to default since they failed to fully

1Subprime mortgages are non-confirming mortgages which do not meet the standards for confirming loans

by a substantial margin (Schmudde, 2009, p.719)
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all insurance claims from CDSs and this caused credit to dry-up which led to the 2008
subprime crisis.

A.2 Impact on emerging countries

Naude (2009) highlights that emerging countries relies heavily in financial-assistance from
developed countries to sustain and cultivate economic growth. Emerging countries for this
reason gets impacted if the developed countries like the US constrict its spending. In 2008
subprime crisis, the credit dry-up mentioned in A.1 caused the US to minimise its lending
to emerging countries like South Africa. This constriction reduced growth in the emerging
countries but did not cause the market volatilities seen in the financial market. Since
developed countries were under severe stress, their various currencies, imports, exports
experienced severe volatility and all of these volatilities from the key market indicators in
developed countries translated into Foreign Exchange (FX) volatility, credit spread risk,
reduction in import and exports by developed countries. These fluctuations contributed
severely to the random market jumps which were not modelable by the historical VaR-
Simulation model.

A.3 Regulatory changes in VaR modelling framework post

2008 subprime crisis

Insufficient present of regulatory body in the creation of the complex financial instruments is
one of many reasons which led to the crisis briefly discussed under A.1. Financial regulatory
bodies global responded to this crisis by amending Basel II Capital Adequacy Framework
(CAF); these amendments’ were directed to addressing modelling risk and transparency
around financial risk modelling (i.e. liquidity and Value-at-Risk (VaR) modelling processes).
However, this dissertation focuses more on regulatory changes done on VaR model. These
changes regulatory were,

• Stressed Value-at-Risk (SVaR) model was incorporated into the overall regulatory
capital, this operates in the same way as the VaR model in section 3.1 but the historical
data used in under stressed economic climate;

• The add-on factors were increased to amplify robustness of the model. Add-ons are
factors which the financial regulatory enforce the various banks to multiple their final
capital/risk numbers and this is purely based on the risk management practise and
capital modelling management implemented by the various banks;

• Regulatorycapital = [max{V aR×
√

10, 60− dayaverageV aR× add− onfactor ×
√

10}+
max{SV aR ×

√
10, 60 − dayaverageSV aR × add − onfactor ×

√
10} + ρ2 + ρ1], this is
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revised market risk number; only the modelling section of the input is studied in the
dissertation; ρ1 and ρ2 are specific and incremental risks respectively; and

• Construction of Basel III CAF which was implemented on 01 January 2013 but these
changes have been excluded.

A.4 Impact on risk measurements like VaR

As defined under the background section in chapter 1, VaR model used to estimate market
risk is a quantile model which returns minimal expected monetary loss based on the his-
torical portfolio movements. During a financial crisis portfolio movements trends tend to
deviate significantly from the historical pattern which causes a mismatch between model
data and the actual financial/portfolio movements. This mismatch causes the VaR model to
under predict risk and which implies companies using this risk measure take on additional
risks because the is no indication from the model to constraint risky operations. Eventually
it leads to monetary losses as companies realises they were delusion by the model about the
true risk exposure in the modelled period.

The VaR model is unable in a timely manner alter the modeller about change in risk as
financial market start to undergo stress circumstances brought by financial crises like the
subprime crisis seen in 2008. This is purely because historical data used haven’t included the
market jumps/movements and because its occurrence is random in nature, modellers cannot
anticipate these moves. The second properties which caused VaR model predictability or
goodness-of-fit test of the phenomenal its model to be heavily impaired is the fact that
the empirical distributions employed due to non-conventional products tended to be heavy-
tailed distribution. The actual losses tend to be beyond the designated quantile chosen as
VaR which implies VaR model lacks tail analysis hence its under-prediction if the financial
environment changes severely when compared to historical data collected. The market
conditions brought by the subprime crisis stimulated the visibility of the VaR shortcomings
due to it is inherit modelling structure as mentioned in the document.
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Appendix B

Empirical illustration of the

historical Value-at-Risk model as

currently implemented

In the empirical illustration a hypothetical bond portfolio has been created in showing the
inner-workings of the VaR modelling process. In equation (1.1) VaR is defined as,

V aR∆
α (L) = inf{θεR : P∆(θ<L) ≤ (1− α)} = inf{θεR : FL(θ) ≥ α} (B.1)

for this example ∆ = 10, α = 0.01 and let P=ft is the portfolio.

ft =



Date R157 R203 R227C SZ18 R186
12/08/13 6.06 6.79 6.12 6.62 8.16
13/08/13 6.10 6.87 6.16 6.66 8.29
14/08/13 6.06 6.82 6.12 6.62 8.26
15/08/13 6.14 6.91 6.20 6.70 8.39
16/08/13 6.17 6.92 6.23 6.73 8.38
19/08/13 6.37 7.15 6.43 6.93 8.58
20/08/13 6.32 7.13 6.38 6.88 8.52
21/08/13 6.39 7.23 6.45 6.95 8.58
22/08/13 6.48 7.36 6.54 7.04 8.65
23/08/13 6.34 7.23 6.40 6.90 8.49
26/08/13 6.37 7.26 6.43 6.93 8.52
27/08/13 6.47 7.38 6.53 7.03 8.50
28/08/13 6.58 7.45 6.64 7.14 8.51
29/08/13 6.58 7.44 6.64 7.14 8.55
30/08/13 6.47 7.32 6.53 7.03 8.45



(B.2)
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. And then from the historical data, price movements or risk factors are calculated as
follows,

f̃
t
=



Date R157 R203 R227C SZ18 R186
13/08/13

(
6.06
6.10

)
= 0.99262

(
6.79
6.87

)
= 0.98908

(
6.12
6.16

)
= 0.99269

(
6.62
6.66

)
= 1.00302

(
8.16
8.29

)
= 0.99939

14/08/13
(

6.10
6.06

)
= 1.00660

(
6.87
6.82

)
= 1.00660

(
6.16
6.12

)
= 1.00654

(
6.66
6.62

)
= 1.00604

(
8.29
8.26

)
= 1.00303

15/08/13
(

6.06
6.14

)
= 0.98697

(
6.82
6.91

)
= 0.98769

(
6.12
6.20

)
= 0.98710

(
6.62
6.70

)
= 0.98806

(
8.26
8.39

)
= 0.98451

16/08/13
(

6.14
6.17

)
= 0.99514

(
6.91
6.92

)
= 0.99783

(
6.20
6.23

)
= 0.99518

(
6.70
6.73

)
= 0.99554

(
8.39
8.38

)
= 1.0119

19/08/13
(

6.17
6.37

)
= 0.96860

(
6.92
7.15

)
= 0.96783

(
6.23
6.43

)
= 0.96890

(
6.73
6.93

)
= 0.97114

(
8.38
8.58

)
= 097669

20/08/13
(

6.37
6.32

)
= 1.00791

(
7.15
7.13

)
= 1.00281

(
6.43
6.38

)
= 1.00784

(
6.93
6.88

)
= 1.00727

(
8.58
8.52

)
= 1.00704

21/08/13
(

6.32
6.39

)
= 0.98982

(
7.13
7.23

)
= 0.98617

(
6.38
6.45

)
= 0.98991

(
6.88
6.95

)
= 0.99064

(
8.52
8.58

)
= 0.99301

22/08/13
(

6.39
6.48

)
= 0.98610

(
7.23
7.36

)
= 0.98300

(
6.45
6.54

)
= 0.98623

(
6.95
7.04

)
= 0.98721

(
8.58
8.65

)
= 0.99248

23/08/13
(

6.48
6.34

)
= 1.02129

(
7.36
7.23

)
= 1.01729

(
6.54
6.40

)
= 1.02109

(
7.04
6.90

)
= 1.01957

(
8.65
8.49

)
= 1.01826

26/08/13
(

6.34
6.37

)
= 0.99529

(
7.23
7.26

)
= 0.99587

(
6.40
6.43

)
= 0.99533

(
6.90
6.93

)
= 0.99567

(
8.49
8.52

)
= 0.99648

27/08/13
(

6.37
6.47

)
= 0.98531

(
7.26
7.38

)
= 0.98374

(
6.43
6.53

)
= 0.98544

(
6.93
7.03

)
= 0.98548

(
8.52
8.50

)
= 1.00235

28/08/13
(

6.47
6.58

)
= 0.98327

(
7.38
7.45

)
= 0.99060

(
6.53
6.64

)
= 0.98342

(
7.03
7.14

)
= 0.98458

(
8.50
8.51

)
= 0.99882

29/08/13
(

6.58
6.58

)
= 1.00000

(
7.45
7.44

)
= 1.00134

(
6.64
6.64

)
= 1.00000

(
7.14
7.14

)
= 1.00000

(
8.51
8.55

)
= 0.99532

30/08/13
(

6.58
6.47

)
= 1.01623

(
7.44
7.32

)
= 1.01639

(
6.64
6.53

)
= 1.01608

(
7.14
7.03

)
= 1.01494

(
8.55
8.45

)
= 1.01183


(B.3)

The historical VaR model is based on the 02/09/13 and the following simulation matrix H
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is determined by

H =
5∑

i=1

Price Todayi × Φ

= 6.43×



0.99262
1.00660
0.98697
0.99514
0.96860
1.00791
0.98982
0.98610
1.02129
0.99529
0.98531
0.98327
1.00000
1.01623



+ 7.28×



0.98908
1.00660
0.98769
0.99783
0.96783
1.00281
0.98617
0.98300
1.01729
0.99587
0.98374
0.99060
1.00134
1.01639



+ 6.49×



0.99269
1.00654
0.98710
0.99518
0.96890
1.00784
0.98991
0.98623
1.02109
0.99533
0.98544
0.98342
1.00000
1.01639



+ 6.99×



0.99324
1.00604
0.98806
0.99554
0.97114
1.00727
0.99064
0.98721
1.01957
0.99567
0.98648
0.98458
1.00000
1.01494



+ 8.43×



0.98491
1.00303
0.98451
1.00119
0.97669
1.00704
0.99301
0.99248
1.01826
0.99648
1.00235
0.99882
0.99532
1.01183



=



6.38
6.47
6.35
6.40
6.23
6.48
6.36
6.34
6.57
6.40
6.34
6.32
6.43
6.53



+



7.20
7.33
7.19
7.26
7.05
7.30
7.18
7.16
7.41
7.25
7.16
7.21
7.29
7.40



+



6.44
6.53
6.41
6.46
6.29
6.54
6.42
6.40
6.63
6.46
6.40
6.38
6.49
6.59



+



6.94
7.03
6.91
6.96
6.79
7.04
6.92
6.90
7.13
6.96
6.90
6.88
6.99
7.09



+



8.30
8.46
8.30
8.44
8.23
8.49
8.37
8.37
8.58
8.40
8.45
8.42
8.39
8.53



=



35.27
35.82
35.15
35.52
34.58
35.85
35.26
35.16
36.31
35.47
35.24
35.22
35.59
36.15


(B.4)

where Φ is the corresponding risk factor calculated under equation (B.3), the portfolio value
today (i.e. 2/9/13) is 35.62 and L defined in equation (B.1) for this example it has been
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formulated as follows,

L = 35.62−H

=



0.35
−0.20
0.47
0.10
1.04
−0.23
0.36
0.46
−0.69
0.15
0.38
0.40
0.03
−0.53



(B.5)

These n− 1 deviations represent either a positive or negative movement in the value of the
portfolio which must be sorted in ascending order

4L̂ ↑= sort(4L̂, ascending) (B.6)

and it follows that the integer I is determined which indexes the 1% percentile of 4L ↑.
The 10-day (since ∆ is assumed to be 10) VaR is simply

I = round

{
n− 1
100

}
(B.7)

V aR1−α(10) = 4L ↑ (I)×
√

10. (B.8)

∴ V aR{1 − α}(10) = −0.6692 ×
√

10 = −2.1162, which implies that for the hypothetical
bond portfolio modelled in this example a minimal loss of 2.12 is expected to be incurred
if the instruments are kept for 10 working days under 0.01 confidence level. It’s clear from
this empirical that historical VaR model does not disclose the severity of the losses under
FL (empirical loss distribution), which is one of the problem resulting in under-prediction
of the model.
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Appendix C

Mathematical competency of the

jump-diffusion model

Jump-diffusion models uses stochastic processes in predicting random financial market
jumps; although these models in the literature available have been implemented on futures,
options and equity, it could be extended into other more complex financial derivatives.
These models are effective in generating random jumps due to its sub-processes embedded
in the overall model and this appendix will discuss in detail the mathematical competency
of each sub-processes found under a general jump diffusion model.

C.1 Formulation and model assumptions

Jump-diffusion models are defined as,

Ωt = Ωt−1 × exp{µ− 0.5× Σ×Wt}
NT∏

m=1

∆m (C.1)

where,

• Ωt and Ωt−1 are initial and estimated price matrices respectively;

• µ is the drift matrix which shows the direction of the price movement, for example
if drift of a particular financial product is negative, the price movements will tend to
show a downward movement;

• Σ is the volatility matrix which shows normal price jumps from the observed period;

• Wt is a Brownian Motion (BM) process which is discussed in section C.3;

• NT is the Poisson Process (PP) which is the number of financial market jumps in the
observed period based on the data. This is discussed in section C.4; and
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• ∆m is the upward and downward jump amplitudes, this is modelled differently in
the various jump-diffusion models. In the Merton (1976)/Lognormal Jump-Diffusion
(LJD) model, ∆m is determined from the empirical whereas in the Double Exponential
Jump-Diffusion (DEJD) and Pareto-Beta Jump-Diffusion (PBJD) models the ∆m is
determined using parametric distributions, see section C.2.

The above defined model in equation (C.1) has inherited model assumptions which needs
to hold for the model to be functional, namely:

• Basic and central moment of the return data needs to exist, see equation (3.32) for
the return calculation and these returns needs to be asymptotical elliptic distributed
or close;

• Output is based on daily prices and parameter “dt” can be adjusted to calculate either
monthly, weekly, yearly or quarterly prices from the model defined above;

• The model jumps, that is, ∆m follows a parameter distribution, for example ∆m1 ∼
exp(η1) (i.e. upward jumps) and ∆m2 ∼ exp(η2) (i.e. downward jumps) in the DEJD
model;

• Returns follow a Poisson Process (PP);

• Price modelled is nonlinear but the model formulation it can be adjusted using loga-
rithm to transform equation (C.1) such that,

Ωt = Ωt−1 + [µ− (0.5× Σ×Wt)] +
NT∑

m=1

∆m; (C.2)

• Increments in the embedded sub-processes (i.e. for Poisson and Brownian motion
processes) are stationary and independent; and

• It requires large data sample.

C.2 Parameters estimation methodology for the jump-diffusion

model

The moments of the returns is used in calculating the parameters of the jump-diffusion
models discussed below. The detailed processes have been specified in chapter 3. Note that,
the more complex the jump-diffusion method/model, the more unknowns which needs to be
solved; since financial risk is modelled, heavy-tailed distribution is expected and therefore
there is a requirement to assess the kurtosis and the skewness of the data to ensure this
property holds.
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C.2.1 PBJD model

The PBJD model assumes that upward and downward jumps are generated by two indepen-
dent Poisson processes, namely N(λjt)∀, j = u, d. However the respective jump magnitudes
are modelled by Pareto and Beta distributions; these findings are stated in the work of
Ramezani and Zeng (2007).

Ramezani and Zeng (2007) defines the PBJD model as,

ft = f0e
(µ−0.5σ2)t+σ×Wt

∏
j=u,d

vj(N(λjt)) (C.3)

where ∏
j=u,d

vj(N(λjt)) =

{
1, if, N(λjt) = 0∏N(λjt)

i=1 vj
i , if, N(λjt) = 1, 2, 3, · · ·

(C.4)

This equation it can be further simplified and written in return format as defined in equation
(3.33),

f̃ϕ = log

(
f0

ft

)
= (µ− 0.5σ2)t + σ ×Wt +

∑
j=u,d

vj(N(λjt)) (C.5)

where ∑
j=u,d

vj(N(λjt)) =

{
1, if, N(λjt) = 0∏N(λjt)

i=1 vj
i , if, N(λjt) = 1, 2, 3, · · ·

(C.6)

and the Pareto and Beta density functions for the up-jump and down-jump are assumed to
follow: fV u(x) = ηu

(
1
x

)ηu+1 with V u ≥ 1 and E(Vu)= ηu

ηu−1 & σ2
V u= ηu

(ηu−2)(ηu−1)2
,similarly,

fV d(x) = ηd (ηd(x))ηd−1 with V u ≥ 1 and E(Vu)= ηd
ηd+1 & σ2

V d=
ηd

(ηd+2)(ηd+1)2
. vd ∼ Beta(ηd, 1)

& vu ∼ Pareto(ηu).

C.2.2 DEJD model

The DEJD model follows on the same premises as the PBJD model defined above. In the
DEJD model the two jumps are generated using a single Poisson model, that N(λtDEJD) =∑2

j=u,d N(λjt). On the other hand the jump magnitude are calculated by independent ex-
ponential distributions with parameter ηu and ηd respectively.

In Ramezani and Zeng (2007) its mentioned that DEJD model is one dimension less complex
than the PBJD model in the since that a single Poisson Process N(λT ) is used in generating
the jump magnitudes instead of two independent Poisson processes. It follows in return data
notation DEJD model is defined as:

f̃ϕ = log

(
f0

ft

)
= (µ− 0.5σ2)t + σ ×Wt +

N(λt)∑
j=u,d

vj(N(λt)) (C.7)
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where
N(λt)∑
j=u,d

vj(N(λt)) =

{
1, if, N(λt) = 0∏N(λt)

i=1 vj
i , if, N(λt) = 1, 2, 3, · · ·

(C.8)

C.2.3 LJD model

Merton (1976) model is a less complex jump diffusion model when compared to the two
jump diffusion model discussed above. It’s less complex because the jump magnitude V d

and V u (using Ramezani and Zeng (2007) notation) are empirically distributed and single
Poisson process is used in generating the jumps. In essence this model is a non-parametric
version of DEJD and PBJD models which relies heavily on parametric distributions.

For the Merton (1976) model, it follows that a single jump component with magnitude V is
distributed iid∼ lognormal (α, β2) and Poisson (λ) arrival rate/intensity parameter. However
Mastro (2013) has developed this model which caters for upward and downward jumps. In
return notation the model is written as,

f̃ϕ = log

(
f0

ft

)
= (µ− 0.5σ2)t + σ ×Wt +

N(t)∑
j=q1,q2

eYj (C.9)

where
Yj

iid∼ lognormal(eµ+0.5δ2
, e2µ+δ2

(eδ2 − 1), is the jump magnitude. (C.10)

C.3 Brownian motion model

In jump diffusion models, Wt is a standard Brownian motion process, here are few justi-
fications why this method is efficient. Brownian motion is a continuous stochastic process
discovered by a botanist Robert Brown in an experiment. This process is also known as
the Wiener process; Wiener was the first mathematician to describe this process in math-
ematical format. According to Allison (2009), Wiener defined the brownian motion as, a
continuous-time stochastic process{B(t), T≥0}, with state spaces={−∞,+∞} is said to be
a Brownian motion process {or Wiener process} if it has the following properties

• B(0) = 0;

• B(t) has stationary and independent increment, i.e. the distribution B(t) - B(s) de-
pends only on the length of the interval t-s, and B(t) - B(s) is independent {B(r):r≤s};
and

• For every t >0. B(t) is normally distributed with E{B(t)}=0 and var{B(t)}.
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The properties defined above makes Brownian motion process stand out when compared to
other stochastic processes and its ability to mimics market movements, hence its incorpo-
ration in the jump diffusion models.

C.4 Poisson process

Jump diffusion models are made up of various models and the last component constituting
these models is the Poisson process. This section will highlight briefly the mathematical
proficiency of this model. This Poisson process which is within the jump diffusion models
calibrates the number of observable jumps from a series of financial prices. This process
form the crux of the jump diffusion models and a process is Poisson if and only if the
following assumptions hold:

• N(0) = 0;

• ∀ t0= 0 <t1 <· · · <tn, the increments N(t1) - N(t0),N(t2) - N(t1), · · · , N(tn) - N(tn−1)
are independent random variables;

• for t≥0, s >0 and non-negative integers k, the increments have the Poisson distribu-
tion,

Pr(N(t + s)−N(s) = k) =
(λjt)ke−λjt

k!
. (C.11)

These mathematical properties highlights that the Poisson process used in the jump diffusion
models are based on sound stochastic calculus and the above definition was extracted from
Swanepoel (2009)’s course note.

C.5 Conclusion

The above proofs and theories have shown that all processes and models incorporated in
jump diffusion models are based on sound mathematical principles. Therefore the researcher
must ensure that all underlying assumptions of models used in the selected jump diffusion
model holds before deeming the modeling results accurate.
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Appendix D

Matlab code

D.1 Introduction

All code denoted below is extracted from Mastro (2013) apart from the ANOVA testing
section.

D.2 Main script - Jump-Diffusion Model Execution

This is the main function which is used in calculating the parameters and “goodness-of-fit”
tests as specified in chapter 3.

Comment: These lines clears and close all active windows within Matlab prior to executing
the function or Matlab codes.

clear all;
close all;
clc;
format long;

Comment:Importing data into Matlab platform.
[sNUM, sTXT, sRAW ]=xlsread(‘PriceData’);

Comment:Redefining the uploaded data.
SData=sNUM;

Comment: The Matlab code below formats and create a text document which documentaries
the parameters calculated in the loop below.
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diary results.txt

diary on

for i=1:size(SData,2)
S = SData(:,i);
ModelJumpDiffusion(S);
end

diary off

D.2.1 Modeling Process

This function is called in the main script defined above in calculating parameters. This
function uses other functions in calculating parameters and validating the results.

Comment: “S” is the data uploaded from Reuters and it’s an input in this function.
function ModelJumpDiffusion(S)

These global variables are usable throughout the code.

global M1 M2
global fjd fData Centers lengthLD dt
global LSflag

Comment: If LSflag = 1 use Least-Square (LS) estimation or if LSflag = 2 then use Multi-
nomial Estimation (MME).
LSflag = 1;

Comment: Assume daily prices but could add as an input in the function.
dt=1/252
SQRTdt=sqrt(dt);

Comment: This section of the code uses the actual data imported to calculates time variables
required later in estimating the parameters from data. As well log of the transposed actual
data is calculated.
if(nargin == 1), steps = length(S);
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Years=steps*dt;
TimeLength=dt*steps; time=linspace(0,TimeLength,steps);
[C,R] = size(S);
if(C>R)
S=S’;
end
Lns=log(S);
end

Comment: Note that in chapter 3, it was mentioned that theoretically-based estimates are
calculated as a comparison element in the parameter validity test, for more information
refer to Law & Kelton (1982) or refer to the code below.
if(nargin == 0),
Szero=50;
mu=0.11; Comment: drift parameter which is denoted by µ

vol=0.25; Comment: volatility parameter which is denoted by σ

musig2=mu-0.5*vol^ 2;
lambda=5; Comment: rate of the jumps per year = Intensity of Poisson Process which is
denoted by λ

q1=-0.14; q2=0.15; Comment: The amplitude of the down and up jump respectively.
Comment: nuMean = Average Jump size measured relative to previous stock prices &
logNuP1=log(nuMean+1) (i.e. Drift of ln(jumps))
nuMean=(exp(q2)-exp(q1))/(q2-q1) - 1;
Years=7.5; steps= Years*252;
lambdadt=lambda*dt;
TimeLength=dt*steps;
time=dt*steps;
time=linspace(0,TimeLength,steps); Comment: Measured in “years”
S(1)=Szero; Comment: LnS(1)=log(Szero); where Szero is the initial value or f0(t) in equa-
tion 3.15
rand(’state’,0); randn(’state’,0);
UniDist=rand(1,steps);

Comment: Hanson suggests using center to avoid end bias in distribution and calculated as;
jumpleft= (1−λ×dt)

2 and jumpright=(1-jumpleft).
The following loop below calculates simulated price from actual data, that is, parameters
used in the data transformation section.

for i=2:steps
if(lambdadt>UniDist(i))
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Comment: if((UniDist(i)≥jumpleft)&(UniDist(i)≤jumpright))
Q=q1+(q2-q1)*rand; Comment: Distributed-Size Jump

Comment: LnSi = LnSi−1 + (musig2× dt + σ × randn×
√

dt + Q);

S(i)=S(i-1)*exp(musig2*dt+vol*randn*SQRTdt+Q);

else Comment: No Jumps only Drift-Diffusion

Comment: LnSi = LnSi−1 + (musig2× dt + σ × randn×
√

dt);

S(i)=S(i-1)*exp(musig2*dt+vol*randn*SQRTdt);
end

end
Comment: S = e(LnS);
end

LnS=log(S); Comment: calculate as if logarithmic returns log(St/S0) which are normally
distributed.

LogDelta=log(S(2:end))-log(S(1:end-1)); lengthLD=length(LogDelta);

M1=mean(LogDelta); Comment: Technically this is the first raw moment
StanDev = std(LogDelta);
M2=StanDev^ 2; Comment: 2nd Central Moments
M3=mean((LogDelta-M1).^ 3); Comment: 3rd Central Moments
M4=mean((LogDelta-M1).^ 4); Comment: 4th Central Moments

Skew=M3/(M2^ 1.5);
Kurtosis=M4/(M2^ 2)-3;

xmin=min(LogDelta); estQ1=xmin;
xmax=max(LogDelta); estQ2=xmax;

sorted=sort(LogDelta);

q25=sorted(floor(0.25*lengthLD)); q75=sorted(floor(0.75*lengthLD));
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estMuJump =(estQ1 + estQ2)/2;
estNuMean = (exp(estQ2)-exp(estQ1))/(estQ2-estQ1)-1;

Comment: Count returns +/- 3 standard deviations as number of jumps and divide by
years of data to estimate lambda and recalculates diffusion volatility without outliers. This
modified approach is discussed in L.Clewlow, C. Strickland, V.Kaminski,“Extending Mean-
Reversion Jump Diffusion”.

outliersBottom=0; outliersTop=0;
neg3sd= M1-3*StanDev;
pos3sd= M1+3*StanDev;
bottom = 1; Comment: step through sorted array to find outliers
while (sorted(bottom)<neg3sd)
outliersBottom=outliersBottom+1; bottom=bottom+1;
end

top = lengthLD; Comment: Could also use Matlab ’find’ function
while (sorted(top)>pos3sd)
outliersTop=outliersTop+1; top=top-1;
end

StanDev = std(LogDelta(bottom:top));
estVol = StanDev/sqrt(dt); Comment: Estimated annualized volatility
estLambda = (outliersTop+outliersBottom)/Years;
estMuDsig2 = (M1-estMuJump*estLambda*dt)/dt;
estMuD = estMuDsig2+0.5*estVol^ 2;

Comment: bin data based on process developed in D. Synowiez, Computers and Mathemat-
ics with application, 56, 2120 (2008)

k=round((((xmax-xmin)*lengthLD^(1/3)/(2.64*q75-q25)))+1);
db=(xmax-xmin)/k;
Edges=zeros(1,k+2); Centers=zeros(1,k+1);

for i=1:(k+2)
Edges(i)=xmin+(i-1.5)*db; Comment:-0.5*db ...(k+0.5)*db
end

for i=1:(k+1)
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Centers(i)=xmin+(i-1)*db; Comment: +0*db...k*db
end

Comment: fData= Actual frequency in each bin
[fData]=histc(LogDelta,Edges); fData=fData(1:end-1);

Comment: Estimation more stable with proper pre-estimation (above) of estLambda,estQ1,
estQ2

param=zeros(1,3); Comment: Lambda, q1,q2 are independent variables
param(1)=estLambda; param(2)=estQ1; param(3)=estQ2;

[pnew,likelihood]=fminsearch(’LikeEval’,param);
Comment: likehood=-likelihood;
Comment: fprintf(1,‘Likelihood=%6.4 f \n’,likelihood);

calcLam=pnew(1); a=pnew(2); b=pnew(3);
muJump=(a+b)/2;
sigJ2=(b-a)^ 2/12;
calcMuDsig2=(M1-muJump*calcLam*dt)/dt;
calcSig=sqrt((M2-(sigJ2+muJump^ 2)*calcLam*dt)/dt);
calcMuD=calcMuDsig2+0.5*calcSig^ 2;
calcNuMean=((exp(b)-exp(a))/(b-a))-1;

fJD=((1-calcLam*dt)/(calcSig*sqrt(dt)))*myNormPDF((Centers-...
(calcMuDsig2)*dt)/(calcSig*sqrt(dt)))+(calcLam*dt/(b-a))*...
(myNormCDF((Centers-a-(calcMuDsig2)*dt)/(calcSig*sqrt(dt)))-...
myNormCDF((Centers-b-(calcMuDsig2)*dt)/(calcSig*sqrt(dt))));

fJD=lengthLD*fJD/sum(fJD);

fprintf(1, ‘\t\t \t mu \t vol \t\t lambda \t q1 \t q2 \n’);
if(nargin == 0),fprintf(1,...
‘Simulated \t %6.6f \t %6.6f \t %6.6f \t %6.6f \t %6.6f \n’,...
mu, vol, lambda, q1, q2);
end

fprintf(1,...
‘Estimated \t %6.6f \t %6.6f
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textbackslash t %6.6f \t %6.6f \t %6.6f \n’,...
estMuD, estVol, estLambda, estQ1, estQ2);
fprintf(1,...
‘Calculated \t %6.6f \t %6.6f \t %6.6f \t %6.6f \t %6.6f \n’,...
calcMuD, calcSig, pnew);

estM1=(calcMuDsig2+calcLam*muJump)*dt;
estM2=(calcSig^ 2+calcLam*(sigJ2+muJump^ 2))*dt;
estM3=(3*sigJ2+muJump^ 2)*muJump*calcLam*dt;
estM4=(muJump^ 4+3*sigJ2^ 2+6*muJump^ 2*sigJ2)*calcLam*dt...
+3*(calcSig^ 2+calcLam*(sigJ2+muJump^ 2))^ 2*dt^ 2;
estSkew=estM3/(estM2^ 1.5);
estKurtosis=estM4/(estM2^ 2)-3;

fprintf(1, ‘\n\t\t\t Skew \t Kurtosis \n’);
fprintf(1, ‘Data \t \t %6.6f \t %6.6f \n’,Skew,Kurtosis);
fprintf(1, ‘Estimated \t %6.6f \t %6.6f \n\n’,estSkew,estKurtosis);

GoodFit(fJD,fData,lengthLD,Centers) Comment: Goodness of fit statistics

Comment: fDataANDfJD=[fData;fJD]’;
Comment:figure; bar(Centers,fDataANDfJD,’group’);

figure;
subplot(1,2,1);
plot(Centers,fData,Centers,fJD,’–’);
xlabel(’Log-Return’); ylabel(’Frequency’); axis tight;
if(nargin == 0) Comment: self-simulation
title(’JD Self-Simulated’);
else
title(’JD of Asset Data’)
end
subplot(1,2,2); semilogy(Centers,fData,Centers,fJD,’–’);
xlabel(’Log-Return’); ylabel(’Log-Frequency’); axis tight;
legend(’Data’,’J/D Fit’,’location’,’South’)
if(LSflag == 1) Comment: self-simulation
title(’with Least-Squares fit’);
else
title(’with Multinomial Estimation’);
end
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ES= zeros(1,steps); ES(1)=S(1); Comment: Elns(1)=log(S(1));
for i=2:steps Comment: Calculate expectation
Comment: Elnsi = Elns(i−1 + ((calcMuD + calcNuMean× calcLam)× dt);
ES(i)=ES(i-1)+((calcMuD+calcNuMean*calcLam)*dt);
end

Comment: ES(exp(Elns);

time=time+2003; Comment: start in Year 2003

figure
plot(time,ES,‘:’,time,S)
legend(‘J/D Expected’,‘Data’,‘Location’,‘NorthWest’)
title(‘Uniform-Jump/Diffusion’)
xlabel(‘Time[Y ears]’); ylabel(‘Price, S t’); axis tight;
end

LikeEval function

function LH = LikeEval(parameter)

Comment: LikeEval returns negative of CHI SQUARE(λ,a,b) fit to data or negative of
Multinomial Maximum Likelihood

global M1 M2 Comment: mean and variance
global fData Centers lengthLD dt
global LSflag Comment: 1 for LS;2 for MME

Comment: λ, a, b are independent variables

lambda=parameter(1);
a=parameter(2);
b=parameter(3);

Comment: µ and σ of dependent on (λ,a,b) via M1(mean) and M2(variance), see F.Hanson,
J.J. Westman, Jump-Diffusion Stock Models in Finance: Stochastic Process Density with
Uniform Jump Amplitude
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muJump=(a+b)/2;
sigJ2=(b-a) ^ 2/12;
muSig2=(M1-muJump*lambda*dt)/dt;
sig=sqrt((M2-(sigJ2+muJump^ 2)*lambda*dt)/dt);
mu=muSig2+0.5*sig ^ 2;

Comment: uniform jump-diffusion log return probability density equation derived by D.
Synowiec, Comp.Math w/ App. 56, 2120 (2008), uses a normalized PDF and CDF which
calculated with myNormPDF and myNormCDF. PDF and CDF functions are not in stan-
dard Matlab package

fjd=((1-lambda*dt)/(sig*sqrt(dt)))*myNormPDF((Centers-...
(mu-0.5*sig*sig)*dt)/(sig*sqrt(dt)))+(lambda*dt/(b-a))*...
(myNormCDF((Centers-a-(mu-0.5*sig*sig)*dt)/(sig*sqrt(dt)))...
-myNormCDF((Centers-b-(mu-0.5*sig*sig)*dt)/(sig*sqrt(dt))));

Comment: Normalize so total frequency(fjd)=length(Energy or Stock Prices)

if(LSflag ==1)
fjd=lengthLD*fjd/sum(fjd);
Comment: Unweighted Chi Square approach: Fairly Stable and give reasonable results
LH=sum((fjd-fData). ^ 2);

Comment: Multinomial Maximum Likelihood Derived in Floyd B. Hanson, John J. West-
man and Zongwu Zhu,“Maximum Multinomial Likelihood Estimation of Market Parameters
for Stock Jump-Diffusion Models, in Mathematics of Finance”

LH=-sum((fData.*log(fjd)));
end
end

else

GoodFit function

function GoodFit(f1,f2,n,binCenters)

Comment: GootFit function provides goodness of Fit measure assume two CFD vector are
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the same length

CDF1=cumsum(f1)/n;
CDF2=cumsum(f2)/n;
Comment: Kolmogorov-Smirnov statistic

Dn1=max(abs(CDF1-CDF2));
dn1=Dn1*sqrt(n);

Comment: dn=scaled distances between two CDFs
j=1:1000; Comment: assume 1000 ∼ infinity for this calculation
Pd1=signif(dn1); Comment: Pd1=significance level of scales values of dn
fprintf(1,‘Kolmogorov-Smirnov \n’);
fprintf(1,‘Dn = %6.6f Scaled dn = %6.6f Significance = %6.6f \n’,...
Dn1, dn1, Pd1);

d=0.01:0.01:2.5;
pd=signif(d);

d05band=1.36/sqrt(n);
fprintf(1,‘D-alpha = %6.6f \n’, d05band);

d05up=CDF1+d05band;
d05down=CDF1-d05band;
figure
subplot(1,2,1);plot(binCenters,d05up,’-.’,binCenters,CDF1,binCenters,...
CDF2,binCenters,d05down,‘-.’)
legend(‘+d \alpha = 0.05’,‘ \ Phi {JD}’,‘ \ Phi {Data}’,‘-d { \ alpha=0.05}’,...
‘location’,‘NorthWest’)
axis tight
xlim([-0.05,0.05])
title(‘Reject CDF if Empirical CDF falls outside +/-D { \alpha=0.05}’)
text(0,0.67,‘ \downarrow’);
text(0,0.5, ‘ \uparrow 5% Critical Level’);
xlabel(‘Log-Return’); ylabel(‘Cumulative Distribution’)

subplot(1,2,2); plot(d,pd)
xlabel(‘Scaled Max CDF Error d=n ^ 0.5D n’);
ylabel(‘Significance \alpha’)
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text(dn1,Pd1,‘ \downarrow JD Significance Level’,‘VerticalAlignment’,...
‘bottom’)
title(‘Kolmogorov-Smirnov Significance level’)

Comment:H0 CFD1=CFD2 confidence
Comment: (no basis toreject at significance level alpha) if(dn¡q(1-alpha))
end

function Pd= signif(d);
ld=length(d);
j=1:1000; Comment: assume 1000 ∼ infinity for calculation
for i=1:ld
Pd(i)=2*sum((-1). ^ (j-1).*exp(-2.*j. ^2.*d(i). ^2));

end
end

myNormCDF function

function ncdf = myNormCDF(x)

ncdf = 0.5*(1+erf(x/sqrt(2)));
ncdf = 0.5*erfc(-x/sqrt(2));
end

myNormPDF function

function npdf=myNormPDF(x)
npdf= (1/sqrt(2*pi))*exp(-(x.*x)/2);
end

D.3 Simulation/Data transformation section

Comment: After testing the validity of the parameters and data-fits test; the modeller should
implement the jump diffusion model so that f̂i(t) is determined as defined under equation
(3.15).
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Comment: These lines clears and close all active windows within Matlab prior to executing
the function or Matlab codes.
clear all;
close all;
clc;
warning off;
format long;

[sNUM, sTXT, sRAW ]=xlsread(’Estimates’); Comment: Import estimates for jump-diffusion
Est=sNUM; Comment: Redefining the uploaded data

S0 = Est(:,1);
Mu = Est(:,2);
Vol = Est(:,3);
Lambda = Est(:,4);
Q1 = Est(:,5);
Q2 = Est(:,6);

dt = 1/252; Comment: dialy
time = 10; Comment: in years
steps = time/dt;

N = 100;
M = size(sNUM,1);

SVec = zeros([steps,M]);

for i=1:M

MCVec = zeros([steps,N]);

for j=1:N

MCVec(:,j) = SimJD2(S0(i),Mu(i),Vol(i),Lambda(i),Q1(i),Q2(i),dt,time,steps);

end
SVec(:,i) = mean(MCVec,2);

end
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Comment: plots the average path and from this path its visible as to why τ element in-
corporated in section (3.3) is necessary. The averaging part stabilises the path, therefore
minimising the variance but this also flattens the jump effect; hence the need to τ .

plot(SVec);hold on;zoom on;
legend(‘AGLJ’,‘BILJ’,‘AMSJ’,‘ANGJ’,‘ARIJ’,‘IMPJ’,‘OMLJ’,‘GFIJ’);
Comment: This line of code copy the data onto an Excel platform
xlswrite(‘Simulated2.xls’, SVec, ‘sheet1’,‘A2’)

D.3.1 Simulation code

This is the code used to generate the simulated f̂i(t) mentioned in equation 3.15. This
is a supporting function to the script mentioned above, which averages these simulations
produced by this Matlab code.

function Jump1Diff=SimJD2(S0,mu,vol,lambda,q1,q2,dt,time,steps)

Comment: input explanation
Comment: S0 - initial values of the shares
Comment: mu - individual drift parameters for each share
Comment: vol - Volatility for each share
Comment: lambda - Intensity parameter for each share
Comment: q1 - is the amplitude of the downward jump
Comment: q2 - amplitude of the upward jump

Comment: Data used in the parameter estimation method stretches from Aug 2004 to Aug
2013 and based on this, I have to simulate 9 years’ worth of data.

musig2=mu-0.5*vol ^2;
nuMean=(exp(q2)-exp(q1))/(q2-q1) - 1;
logNuP1=log(nuMean+1); Comment: Drift of ln(jumps)

SQRTdt=sqrt(dt); Jump1Diff(1) = S0; Jump1(1)=0; Comment: Diffusion (1)=Szero;
JumpDistDiff(1) = S0; JumpDist(1)=0;
Jump1DiffExpect(1) = S0; JumpDistDiffExpect(1)=S0;

for i=2:steps
Jump1DiffExpect(i)=Jump1DiffExpect(i-1)*exp((mu+nuMean*lambda)*dt);
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JumpDistDiffExpect(i)=JumpDistDiffExpect(i-1)*exp((mu+nuMean*lambda)*dt);

Comment: we set nu(1Jump)=nuMean(distributed) -<E[1Jump]=E[Distributed Jump]

if(lambda*dt>rand)
Jump1Diff(i)=Jump1Diff(i-1)*exp(musig2*dt+vol*randn*SQRTdt+logNuP1);
Jump1(i)=Jump1Diff(i-1)*(exp(logNuP1)-1); Comment: one-size jump
Q=q1+(q2-q1)*rand;
JumpDistDiff(i)=JumpDistDiff(i-1)*exp(musig2*dt+vol*randn*SQRTdt+Q);
JumpDist(i)=JumpDistDiff(i-1)*exp((Q)-1); Comment: Distributed-Size Jump
else Comment: No Jumps only Drift-Diffusion
Jump1Diff(i)=Jump1Diff(i-1)*exp(musig2*dt+vol*randn*SQRTdt);
JumpDistDiff(i)=JumpDistDiff(i-1)*exp(musig2*dt+vol*randn*SQRTdt);
Jump1(i)=0; JumpDist(i)=0;

end
end

end

D.4 Risk Modelling

Comment: This code calculates the various model compared and studied in this dissertation.
For the simulated model, the outcome determined in D2 is used as input in this section.

Comment: These lines clears and close all active windows within Matlab prior to executing
the function or Matlab codes.

clear all; close all; clc;

Comment: Import the actual data.

[NUM,TXT, RAW ]=xlsread(‘PriceData’);
shares = NUM;
shares(:,2:end) = shares(:,2:end)/100;
n = length(shares);

Comment: 8 years or more
Comment: data=shares(n-2*tau:n-1,:);
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data=shares;

Comment: Annualized parameters

dt = 1;
tau = 252;

Comment: Allocation of the shares

portval = 1e6;
allocation = portval*(1/8);
currprice = shares(end,2:end);
N = floor(allocation./currprice);

Comment: import simulated data1
[sNUM, sTXT, sRAW ]=xlsread(‘Simulated’);
sshares1 = sNUM;
sshares1(:,2:end) = sshares1(:,2:end)/100;

Comment: 8 years or more
Comment: sdata = sshares(n-2*tau:n-1,:);
sdata1 = sshares1;

Comment: import simulated data1
[sNUM, sTXT, sRAW ]=xlsread(‘Simulated2’);
sshares2 = sNUM;
sshares2(:,2:end) = sshares2(:,2:end)/100;

Comment: 8 years or more
Comment: sdata = sshares(n-2*tau:n-1,:);
sdata2 = sshares2;

Comment: VaR, SES(median), SES(mean), HES(mean) & HES(median)- All of the method-
ologies are prescribed under Chapter 3.

for i=1:8*tau-1

Comment: actual share price
hdata = data(i:tau+(i-1),:);
cprice = data(tau+i,2:end);
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tprice = data(tau+i+1,2:end);

cport = sum(cprice.*N);
tport = sum(tprice.*N);

rdata = Returns(hdata(:,2:end),dt);

Comment: simulated share price1
hsdata1 = sdata1(i:tau+(i-1),:);
rsdata1 = Returns(hsdata1(:,2:end),dt);

Comment: simulated share price2
hsdata2 = sdata2(i:tau+(i-1),:);
rsdata2 = Returns(hsdata2(:,2:end),dt);

for j=1:length(cprice)
eprice(:,j) = N(j)*cprice(j)*(rdata(:,j));
esprice1(:,j) = N(j)*cprice(j)*(rsdata1(:,j))*1;
esprice2(:,j) = N(j)*cprice(j)*(rsdata2(:,j))*1;
end

eport = sum(eprice,2);
esport1 = sum(esprice1,2);
esport2 = sum(esprice2,2);

epnl = eport-cport;
espnl1 = esport1-cport;
espnl2 = esport2-cport;

Comment: Historical Expected Shortfall(HES) model
a =quantile(epnl,0.01);
X =epnl(epnl’¡a);
HESmean(i) = mean(X);
HESmedian(i) = median(X);

Comment: Simulated Model 1 - Expected Shortfall (SES) model
b =quantile(espnl1,0.01);
Y =espnl1(espnl1’¡b);
SESmean1(i) = mean(Y)*15;
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SESmedian1(i) = median(Y)*15;

Comment: Simulated Model 2 - Expected Shortfall (SES) model
c =quantile(espnl2,0.01);
Z =espnl2(espnl2’¡c);
SESmean2(i) = mean(Z)*15;
SESmedian2(i) = median(Z)*15;

Comment: Historical VaR model
var(i) = quantile(epnl,0.01);

Comment: Simulated 1 VaR model
svar1(i) = quantile(espnl1,0.01)*15;

Comment: Simulated 2 VaR model
svar2(i) = quantile(espnl2,0.01)*15;

Comment: actual PnL
apnl(i)= tport-cport;

end

Comment: defining matrices for the graphical test
R=[];
R=[HESmean’,HESmedian’, SESmean1’,SESmedian1’,var’,svar1’,apnl’];

H = [];
H = [SESmean1’,SESmedian1’,SESmean2’,SESmedian2’,apnl’];

G = [];
G = [var’,svar1’,svar2’,apnl’];
Comment: defining matrices for the ANOVA testing conducted below
D = [];
D = [HESmedian’,HESmean’,var’,SESmean1’];

E = [];
E = [HESmedian’,HESmean’,var’,SESmedian1’];

F = [];
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F = [var’,SESmean1’,SESmedian1’];

W = [];
W = [var’,SESmedian1’];

Z = [];
Z = [SESmean1’,SESmedian1’];

Comment: Graphical tests for the predictability of the SES models versus other benchmark-
ing models
figure
subplot(3,1,1);
plot([R -R])
legend(‘HESmean’,‘HESmedian’, ‘SESmean1’,‘SESmedian1’,‘var’,‘svar1’,‘apnl’)
title(‘Robustness of the Simulated Jump-Diffusion Model(SES)’);
xlabel (‘Time [Years]’);ylabel(‘Loss vs Risk estimates’);
axis tight;

subplot (3,1,2);
plot([H -H])
legend(‘SESmean1’,‘SESmedian1’,‘SESmean2’,‘SESmedian2’,‘apnl’)
title(‘Consistency graphical test’);
xlabel (‘Time [Years]’);ylabel(‘Loss vs Risk estimates’);
axis tight;

subplot (3,1,3);
plot([G -G])
legend(‘var’,‘svar1’,‘svar2’,‘apnl’)
title(‘Robustness of the Simulated Jump-Diffusion VaR Model’);
xlabel (‘Time [Years]’);ylabel(‘Loss vs Risk estimates’);
axis tight;

Comment: Graphical tests about the representation of the simulated data against the back-
drop of the historical data

figure
subplot(2,1,1)
hist([rdata rsdata1])
legend(‘Returns of historical data’,’Returns of simulated data1’)
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title(‘Consistency in simulated data in representing historical data’);
xlabel (‘Time [Years]’);ylabel(‘Returns’);
axis tight;

subplot(2,1,2)
hist([rdata rsdata2])
legend(‘Returns of historical data’,’Returns of simulated data2’)
title(‘Consistency in simulated data in representing historical data’);
xlabel (‘Time [Years]’);ylabel(‘Returns’);
axis tight;

Comment: Respective ANOVA tests conducted
diary ANOVA.txt

diary on

display(’—start—’);
[P,ANOV ATab, Stats] = anova1(D)
title(‘Historical Expected Shortfall (HES) mean model versus Simulated Expected Shortfall
(SES) mean model’);
display(‘—end—’);

display(‘—start—’);
[P,ANOV ATab, Stats] = anova1(E)
title(‘Historical Expected Shortfall (HES) median model versus Simulated Expected Short-
fall (SES) median model’);
display(‘—end—’);

display(‘—start—’);
[P,ANOV ATab, Stats] = anova1(F)
title(‘Historical VaR model versus Simulated Expected Shortfall (SES) mean model’);
display(‘—end—’);

display(‘—start—’);
[P,ANOV ATab, Stats] = anova1(W)
title(‘Historical VaR model versus Simulated Expected Shortfall (SES) median model’);
display(‘—end—’);

display(‘—start—’);
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[P,ANOV ATab, Stats] = anova1(Z)
title(‘Simulated Expected Shortfall (SES) mean model versus Simulated Expected Shortfall
(SES) median model’);
display(‘—end—’);
diary off

D.4.1 Supporting code to Risk model

Comment: This function calculates the returns used in the comparison conduct in the main
script as defined under section D.3.

function RetData=Returns(data,dt)

m=size(data,1);
k=size(data,2);
n=m-1;

for j=1:k

for i=2:m
Sin1 = data(i-1,j);
Si = data(i,j);

RSi = Si/Sin1;

CalcData(i-1,:)=[RSi];

end

RetData(:,j) = CalcData;

end
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Appendix E

Simulated data

AGL BIL AMS ANG ARI IMP OML GFI
15,530.61 6,215.00 28,724.08 22,000.07 3,500.00 6,981.25 1,289.52 7,078.98
15,568.61 6,223.80 28,592.84 22,015.91 3,506.57 7,007.61 1,293.03 7,093.12
15,547.43 6,238.71 28,617.20 22,035.16 3,511.22 7,039.12 1,297.20 7,124.81
15,582.48 6,254.07 28,581.41 21,983.99 3,514.14 7,046.83 1,294.50 7,123.27
15,677.30 6,247.19 28,560.48 21,942.27 3,515.38 7,075.80 1,300.56 7,098.63
15,625.85 6,234.16 28,502.57 21,942.08 3,519.46 7,092.67 1,300.60 7,105.96
15,568.90 6,240.29 28,452.61 21,938.53 3,524.20 7,090.49 1,297.43 7,133.72
15,511.15 6,252.47 28,336.47 22,029.45 3,530.04 7,071.09 1,297.23 7,118.08
15,542.67 6,238.65 28,362.84 22,041.47 3,525.70 7,039.36 1,291.74 7,152.18
15,587.99 6,238.52 28,384.05 22,135.02 3,530.77 7,048.72 1,292.58 7,149.33
15,581.09 6,246.65 28,393.88 22,083.67 3,521.16 7,037.81 1,289.82 7,178.04
15,606.81 6,243.35 28,426.61 22,066.91 3,518.14 7,039.74 1,292.52 7,174.27
15,542.03 6,249.92 28,470.70 22,164.66 3,527.38 7,041.04 1,292.48 7,154.14
15,532.98 6,243.13 28,603.56 22,173.18 3,527.93 7,021.59 1,290.25 7,124.94
15,558.77 6,239.03 28,623.59 22,149.04 3,539.83 7,039.89 1,288.08 7,124.46
15,542.86 6,221.03 28,593.20 22,208.99 3,558.66 7,028.74 1,294.16 7,119.55
15,593.91 6,228.27 28,623.49 22,156.30 3,566.41 7,037.20 1,299.90 7,096.89
15,599.30 6,258.73 28,553.99 22,208.02 3,589.17 7,042.64 1,297.61 7,061.70
15,616.19 6,255.84 28,628.89 22,133.48 3,594.70 7,087.47 1,297.28 7,106.36
15,623.66 6,268.59 28,698.98 22,093.46 3,607.96 7,127.04 1,294.72 7,128.86
15,615.98 6,274.27 28,694.98 22,051.29 3,618.64 7,140.58 1,293.37 7,126.97
15,646.99 6,280.57 28,759.53 22,018.17 3,630.66 7,118.44 1,293.09 7,118.79

Table E.1: Sample of the simulated data
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