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Summary

After an introduction to Brownian motion, Hausdorff dimension, nonstan-

dard analysis and Loeb measure theory, we explore the notion of a nonstan-

dard formulation of Hausdorff dimension. By considering an adapted form of

the counting measure formulation of Lebesgue measure, we find that Hausdorff

dimension can be computed through a counting argument rather than the tra-

ditional way. This formulation is then applied to obtain simple proofs of some

of the dimensional properties of Brownian motion, such as the doubling of the

dimension of a set of dimension smaller than 1/2 under Brownian motion, by

utilising Anderson’s formulation of Brownian motion as a hyperfinite random

walk. We also use the technique to refine a theorem of Orey and Taylor’s on

the Hausdorff dimension of the rapid points of Brownian motion. The result is

somewhat stronger than the original. Lastly, we give a corrected proof of Kauf-

man’s result that the rapid points of Brownian motion have similar Hausdorff

and Fourier dimensions, implying that they constitute a Salem set.
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Preface

This thesis grew from a study of Brownian motion and its relation to descriptive
complexity, initially undertaken by my supervisor, Willem Fouché [11]. I came
into contact with the fractal geometric aspects of Brownian motion through a
lecture series given by Prof. Fouché. Also inspired by the book of Kahane [21]
and the classic paper of Orey and Taylor [31], I undertook a study of the sub-
ject, specifically regarding the rapid points of Brownian motion, the points of
exceptional growth on a Brownian path. After familiarising myself with the
basics of nonstandard analysis and Loeb measure theory (at the suggestion of
my supervisor) and unaware of any work relating Hausdorff dimension and non-
standard analysis, I found a very simple and intuitive method of approaching
certain dimensional problems through hyperfinite counting arguments. By us-
ing Anderson’s construction of Brownian motion on a hyperfinite time line [7],
I found that these methods were suitable for providing a clear explanation of
the dimensional behaviour of certain sets under Brownian motion.

The rapid points of Brownian motion turn out to have other interesting and
more subtle properties, specifically regarding Fourier dimension. This consid-
ers the asymptotic behaviour of Fourier transforms of measures on exceptional
sets. These properties have been intensively investigated by Kahane [21] and
Kaufman [22], but the subject is by no means exhausted. In fact, many funda-
mental questions remain unanswered. For instance, the Fourier dimension of the
zero set of Brownian motion is unknown, even though its Hausdorff dimension
was calculated almost 50 years ago. It is even unknown whether it is a set of
multiplicity.

This thesis starts with a basic introduction to Brownian motion and Haus-
dorff dimension, with a more thorough historical sketch being provided of the
latter. Although the history of Brownian motion makes fascinating reading in
itself, I felt that focusing on Hausdorff dimension provides a good segue into a
discussion of nonstandard analysis and Loeb measure theory, which comprises
the second chapter. This part, especially, is heavily indebted to Cutland’s very
clear survey of the subject [7].

The third chapter deals with Hausdorff dimension in a nonstandard con-
text, initially inspired by the construction of Lebesgue measure as a counting
measure utilising Loeb measure theory. I have only recently become aware of
the treatment of the subject by Wattenberg [36], though our approaches are
somewhat different. It is to be expected that the results in this chapter could
also be expanded to Hausdorff measure with respect to arbitrary functions, but
this was not necessary in the context of this thesis. The chapter also discusses
capacity and Hausdorff dimension and provides a nonstandard version of Frost-
man’s lemma. This provides an initial glimpse of Chapter 6, since it is the first
encounter in this thesis of the behaviour of Fourier transforms of measures on
exceptional sets.

The fourth chapter applies the previous three to the study of the fractal
geometry of Brownian motion. Some of the well-known fractal properties of
Brownian motion are mentioned and some are proved using nonstandard no-
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tions. Although none of the results in this section are new, to my knowledge
this is the first time they have been proved using nonstandard methods. In light
of Anderson’s construction of Brownian motion, the results attain a certain in-
tuitive clarity.

The paper of Orey and Taylor [31] was the major inspiration for the fifth
chapter. Although their result is a consequence of the results in the chapter, I
provide a more constructive proof, dealing with certain properties of covering
the set of rapid points of Brownian motion with dyadic intervals. (This part is
also indebted to Kaufman’s treatment of Fourier dimension, to be discussed in
Chapter 6.) The nature of the proof lends it applicability to the study of rapid
points of complex oscillations (for some initial results in this regard, see [11]).
This theme will be pursued in an upcoming paper with Fouché.

The difficult and subtle study of the Fourier dimension of the rapid points is
the subject of Chapter 6. It is shown that the Hausdorff and Fourier dimensions
of the set of rapid points of Brownian motion are equal, implying that they
form a so-called Salem set. Raphael Salem first constructed a random set with
this property [34]. Kaufman later constructed a deterministic Salem set, a
construction which was clarified in 1996 by Bluhm [5]. This chapter is essentially
a reworking of Kaufman’s original [22] proof that the rapid points of Brownian
motion form a Salem set. I felt that not all Kaufman’s conclusions are entirely
supported in his original paper, although the fundamental ideas are sound. Here
I endeavoured to provide his argument with the necessary mathematical rigour
and to clarify the underlying intuition.

This thesis is merely an introduction to a fascinating and important math-
ematical investigation. The idea of a Salem set is not yet fully understood, but
hopefully the study of Brownian motions and their constructive counterparts,
complex oscillations, will yield greater understanding.
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1 Introduction to Brownian motion and Haus-

dorff dimension

1.1 Properties of Brownian motion

Brownian motion is a phenomenon with an essentially simple definition, but
which possesses varied and surprising properties. It is well known that the name
derives from the biologist Robert Brown, who observed the motion of a grain
of pollen suspended in a drop of water in 1828. Although this phenomenon
had been observed well before 1800, Brown’s contribution was his conclusion
that the process was not biological, but physical in nature. Although Brown is
not otherwise famous in physics or mathematics, he made many contributions to
biology, and his biographical entry in the Encyclopaedia Britannicas of 1878 did
not even mention Brownian motion. Further illustrious names associated with
the development of Brownian motion are Bachelier, Perrin and Einstein. The
true theory of mathematical (as opposed to physical) Brownian motion began
with Wiener, who in 1923 defined Brownian motion in the space of continuous
functions [37].

In this thesis we will be interested in those properties of the sample paths
(trajectories) that can be described in terms of Hausdorff and Fourier dimensions
and specifically sets where those are the same, or the so-called Salem sets. We
start with an introduction to Brownian motion, not a comprehensive one by any
means, but one which highlights the properties we will use for our investigation.

Definition 1.1. Given a probability space (Ω,B,P), a Brownian motion is a
stochastic process X from Ω × [0, 1] to R satisfying the following properties:

1. Each path X(ω, ·) : [0, 1] → R is almost surely continuous

2. X(ω, 0) = 0 almost surely

3. For 0 ≤ t1 < t2 · · · < tn ≤ 1, the random variables X(ω, t1),X(ω, t2) −
X(ω, t1), . . . ,X(ω, tn)−X(ω, tn−1) are independent and normally distrib-
uted with mean 0 and variance t1, t2 − t1, . . . , tn − tn−1.

This means that for 0 ≤ t1 < t2 < · · · < tn ≤ 1 and if the sets A1, A2, . . . , An

are Borel subsets of the reals, the probability of the event

{ω ∈ Ω : (X(t1), . . . ,X(tn)) ∈ A1 × · · · ×An} (1.1)

is given by

∫

A1

· · ·
∫

An

n
∏

j=1

1
√

2π(tj − tj−1)
exp

[−(yj − yj−1)
2

2(tj − tj−1)

]

dyn . . . dy1, (1.2)

where we have set t0 = y0 = 0.
Note that we will from now on denote a Brownian path X(ω, t) by X(t).
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To explore this definition in a familiar context we turn to C[0, 1], the set of
real-valued continuous functions on the unit interval. We denote by Σ the Borel
σ-algebra of subsets of C[0, 1], where C[0, 1] has the uniform norm topology.
We will now show how to construct Brownian motion on this space in a way
which captures the notion that Brownian motion may sometimes be viewed as
a limit of random walks. A similar construction will be used in Chapter 3 to
find a hyperfinite version of Brownian motion.

We first state the Central Limit Theorem [4], since we will later present a
theorem of Donsker, which is an extension of it.

Theorem 1.1. Let {Xj : j ≥ 1} be a sequence of identically distributed random
variables on the probability space (Ω,P,A). Assume that each of these random
variables has mean 0 and variance 1. If A is a Borel set of real numbers whose
frontier, ∂A, has Lebesgue measure 0, then

P

(

X1 + · · · +Xn√
n

∈ A

)

−→ 1√
2π

∫

A

e−t2/2dt,

as n → ∞. (The frontier of a set A in a topological space is the set of points
which are limit points for both the set and its complement.)

Now suppose that we have independent, identically distributed random vari-
ables y1, y2, . . . with mean 0 and variance 1. Let Sn =

∑n
i=1 yi. For fixed n we

want to define a process Xn(t) such that Xn(k/n) = n−
1
2Sk, for 0 ≤ k ≤ n. In

between the fractions we interpolate linearly:

Xn(t) =
1√
n

(S[nt] + (nt− [nt])y[nt]+1), 0 ≤ t ≤ 1, (1.3)

where [a] denotes the largest integer smaller than a. By the central limit theorem
we expect that the functions Xn(t) will have a limiting distribution on C[0, 1]
such that a continuous function X(t) will have X(t) = 0 almost surely, and for
0 ≤ t1 < · · · < tn ≤ 1 the increments X(t1), X(t2)−X(t1), . . . , X(tn)−X(tn−1)
will be independent and normally distributed with means 0 and variances t1,
t2−t1, . . . , tn−tn−1. For such a distribution the probability of the finitary event
[X(tj) ∈ Aj for 1 ≤ j ≤ n] would be given by Equation (1.2), where t0 = y0 = 0
and A1,. . . ,An are Borel subsets of R. This would uniquely determine the
limiting distribution. These remarks are made precise by Donsker’s invariance
principle:

Theorem 1.2. Donsker [8] There is a probability measure W on Σ, the Borel-
algebra of C[0, 1], such that, for a Borel subset A with W (∂A) = 0, we have

P(Xn ∈ A) →W (A)

as n → ∞, where the functions Xn are the functions defined above by (1.3).
Also, for X ∈ C[0, 1], almost surely X(0) = 0, and for 0 ≤ t1 < · · · < tn ≤ 1
the events X(t1), X(t2) − X(t1), . . . , X(tn) − X(tn−1) are independent and
have normal distributions all of mean 0 and variances t1, t2− t1, . . . , tn − tn−1,
respectively.
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The density function

g(t1, . . . , tn, x1, . . . , xn) =

n
∏

k=1

[2π(tk − tk−1)]
−1/2 exp

[−(xk − xk−1)
2

2(tk − tk−1)

]

,

where t0 = x0 = 0, is called the Gauss kernel. The measure in Donsker’s
theorem of which existence is guaranteed is known as Wiener measure. For
Borel subsets A1, . . . , An of R and for 0 ≤ t1 < · · · < tn ≤ 1, the probability

W ({X ∈ C[0, 1] : (X(t1), . . . ,X(tn)) ∈ A1 × · · · ×An})

is given by (1.2).
Note that we use [0, 1] as our time line purely for convenience; Brownian

motion can be defined for any interval or for all of R (for each ω).
Brownian motion in n dimensions on a probability space (Ω,B,P) is defined

as the process

X = (X1, . . . ,Xn) : [0, 1] × Ω → Rn,

where the Xi are mutually independant one-dimensional Brownian motions.
It is sometimes useful to know how new Brownian motions can be obtained

from old; the following will be used in Chapter 6.

Proposition 1.3. Let {X(t) : t ∈ [0, 1]} be a Brownian motion as defined
above. For fixed real numbers s > 0 and λ 6= 0, the following process is also a
Brownian motion:

{λ−1X(λ2t) : t ∈ [0, 1]}.

Also, {X(t) : t ∈ [0, 1]} and {tX(1/t) : t ∈ [0, 1]} have the same distribution.
Another fundamental property of Brownian motion we will depend on heav-

ily later is the Markov property. Suppose (for the moment) that we are working
with a Brownian motion X on [0,∞) instead of [0, 1] as usual. In its weaker
form, the Markov property asserts that Brownian motion can be seen as “start-
ing over” at each t ∈ R. The future of the path in a sense just depends on
the present, not on the past. Specifically, if the probability measure associated
with the process is denoted by P (as in the definition) and s ∈ R, there exists a
probability Ps such that the process starting at time s has the same distribution
as the original process; i.e.

P{ω : X(·) ∈ A} = Ps{ω : X(· + s) ∈ A},

where A is a Borel subset of R. Furthermore, the process X(t+s)−X(s) has the
same distribution as X(t). The strong Markov property states that Brownian
motion also starts over at Markov times. A Markov time for Brownian motion
is a measurable function σ(ω) on Ω with values in the positive reals satisfying

{ω : σ(ω) < t} ∈ Bt
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for all t, where Bt is the σ-algebra generated by {X(s) : s < t}. The strong
Markov property asserts that for a Markov time τ(ω), the process

X(τ(ω) + t) −X(τ(ω)), 0 ≤ t ≤ 1

is a Brownian motion.
We will mostly be focusing on the sample paths (or trajectories) of Brownian

motion, that is, the maps X(·) from [0, 1] to R for each ω. We now go on to
look at a few sample path properties, some of which will be used in the sequel.

Proposition 1.4. Almost all sample paths of a Brownian motion are nowhere
differentiable.

The original proof of this is due to Dvoretzky, Erdős and Kakutani [9]. Al-
though this result has no immediate bearing on this thesis, it does serve as
an indication of the interesting fractal properties Brownian paths may have.
A more complete introduction to such matters is given in Chapter 3; for now
it suffices to mention that some of the earliest exceptional sets (what are now
called fractals) occurred in the construction of functions that are nowhere differ-
entiable. Later we shall be considering the structure of the sets of rapid points
of a Brownian motion X. Given 0 < α < 1, these are the elements t of [0,1] for
which

lim sup
h→0

|X(t+ h) −X(t)|
√

2|h| log 1/|h|
≥ α. (1.4)

These sets have Lebesgue measure 0 almost surely and have rather unusual
properties. They are exceptional points of rapid growth, since the usual local
growth behaviour is described by Khintchine’s law of the iterated logarithm [25]:

P

{

lim sup
h→0

|X(t0 + h) −X(t0)|
√

2|h| log log 1/|h|
= 1

}

= 1,

for any prescribed t0 ∈ [0, 1]. The modulus of continuity of a continuous function
f is given by

ωf (h) = sup
|t2−t1|≤h

|f(t1) − f(t2)|.

For Brownian motion we find that, for small enough h,

ω(h) ≤
√

2C|h| log |h|−1,

for some constant C > 0. If we set

S(h, a, b) = sup
a≤t≤b

|X(t+ h) −X(t)|,

then for any 0 ≤ b < a we have, almost surely, that

lim sup
h→0

S(h, a, b)
√

2|h| log 1/|h|
= 1.
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This result was established by Lévy [19]. With some changes in Lèvy’s proof,
the result can be strengthened such that the following holds, almost surely [31]:

lim
h→0

S(h, a, b)
√

2|h| log 1/|h|
= 1.

Our study will be concerned primarily with the so-called fractal properties asso-
ciated with these paths, that is, the Hausdorff dimensional properties. Toward
the end we will also consider so-called Fourier dimensional properties. In the
following section we give a brief introduction to Hausdorff dimension.

1.2 Hausdorff dimension

Before we introduce Hausdorff dimension, it might be worthwhile to briefly
discuss the notion of topological dimension. Although the topological dimension
is not much used in the sequel, we present a short discussion of it here in order
to contrast it with the subtler Hausdorff dimension, and to hopefully provide
some indication of why (and how) the second concept was a consequence of the
shortcomings of the first.

The intuition behind topological dimension is an old one and can be traced
back to Euclid, although his notions were somewhat imprecise. Also, the very
name presupposes the existence of topology (in which field Hausdorff accom-
plished his most famous work [17]).Although it is easily proved that the dimen-
sions coincide for certain sets, it is not so obvious how the two dimensions are
linked in any intuitive way. It does however seem likely that the precise formu-
lation of topological dimension (as given below), which shifts attention to the
idea of topological cover, may have led to the consideration of the “size” of the
cover, which leads us naturally to Hausdorff dimension. The notion had to be
separately formulated, since the size of the cover is of no interest in the case of
integer dimensions.

The main players in the story of topological dimension were Brouwer, Lebesgue,
Menger and Urysohn. An important rôle was certainly also played by Cantor.
In showing that the line and the plane have a one-to-one correspondence (Je le
vois, mais je ne le crois pas - “I see it but I don’t believe it” [28]), Cantor put
to rest the notion that n-dimensionality is the same as saying that a set can be
described by n parameters. In what is in retrospect a prelude to the subtleties
of Brownian motion to follow, he also constructed a function that is continuous
and non-constant but has a derivative 0 except on a set of Lebesgue measure 0—
a so-called singular function, known as the “devil’s staircase”. A fuller account
of the fascinating history of the concept of dimension is given in [28].

Formally, we can define the dimension of a set as follows [28]: The topological
dimension (defined in a way also now known as the “covering dimension”) of
a compact metric space F is ≤ r iff for every ε > 0, there is a cover of order
≤ r + 1 of F by finitely many closed sets with diameter < ε. A cover has order
≤ r + 1 iff every r + 2 distinct sets in the cover has empty intersection.

It is not hard to apply this definition in simple cases; given a closed interval
of R, any finite cover by intervals with diameter < ε can reduce to a “better”, or
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more efficient, cover in which none of the covering intervals will intersect more
than 2 of the others.

We now turn to Hausdorff measure and dimension. In the definition that
follows, note that if we only allowed for exponents of integer value, we would
obtain something not far removed, and not richer than, topological dimension.
Allowing for real numbers as exponents allows Hausdorff measure and dimension
to assign non-zero values to sets which would have had a Lebesgue measure and
a topological dimension of zero.

Given a compact set A on the unit interval (or any bounded subset of R)
and ε > 0, we consider all coverings of the set by open balls Bn of diameter
smaller than or equal to ε. For each cover we form the sum

∞
∑

n=0

|Bn|α,

where | · | denotes the diameter of a set (i.e., the maximum distance between
any two points). We will call these the α-Hausdorff sums for A, always with
reference to a given cover. For each A we can take the infimum over all such
sums, as {Bn} ranges over all possible covers of A:

Sε
α(B) = inf

{Bn}

∑

n

|Bn|α.

As ε decreases to 0, Sε
α(B) increases to a limit Hα(A) (which might be infinite)

which is called the α-Hausdorff measure of A, or the Hausdorff measure of A
in dimension α (we will refer to this as just “the measure” when the context is
clear). Since Hα is σ-subadditive but otherwise satisfies the requirements of a
measure, it is an outer measure.

Definition 1.2. The Hausdorff dimension, dimA, of a compact set A ⊆ [0, 1] is
the supremum of all the α ∈ [0, 1] for which, for any cover B of A, Sα(B) = ∞.
This is equal to the infimum of all β ∈ [0, 1] for which there exists a cover C of
A such that Sα(B) = 0.

To see that the supremum of the one set of values is indeed equal to the
infimum of the other, let 0 < α < β ≤ 1 and consider the following:

∑

n

|Bn|β ≤ sup
n

|Bn|β−α
∑

n

|Bn|α.

Hence, if Sα(A) <∞, Sβ(A) = 0, or equivalently, Sα(A) = ∞ if Sβ(A) > 0.
We can now also see why the size of the cover is of no interest for integer

dimensions; the α-Hausdorff sums simply diverge or are 0 on any non-integer
real, as can be easily seen by dividing the unite interval into n pieces, and
considering the sums

∑

n−α as n→ ∞.
Usually, little is known about the value of the measure Hα where α = dimA.
It might be valuable at this point just to give some motivation behind the

creation and use of Hausdorff dimension. From Hausdorff’s original paper [16]
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we may infer that his original intention was somewhat akin to some of the
motivation behind the creation of non-standard analysis (which we shall soon
be using in this context). In this paper he states:

In this way,the dimension becomes a sort of characteristic measure of
graduality similar to the ‘order’ of convergence to zero, the ‘strength’
of convergence, and related concepts.

When we formulate the basic concepts of nonstandard analysis, we shall see that
it too discriminates between different rates of convergence. Hausdorff amusingly
called the concept a “small contribution” to the measure theory of Lebesgue
and Caratheodory. His concern seemed to be that the usual Lebesgue measure
would simply assign a value of 0 to many perfect linear sets which exhibit inter-
esting behaviour, thus effectively preventing the study of its structure according
to usual measure theory. His dimension does go some way towards giving an
indication of the structure of the set being studied, thus yielding far more infor-
mation than Lebesgue measure (or any measure absolutely continuous thereto)
would. The different measures do coincide sometimes. For instance, the Haus-
dorff dimension of the interval [0, 1] is 1, and the corresponding measure H1 is
also 1. It should not be hard to guess what the Hausdorff dimension and corre-
sponding measure for the empty set is, seen as a subset of [0, 1]. The Hausdorff
dimension of the rational numbers in [0, 1], or indeed of any countable set, is 0.
This can be seen by ordering the set and, for any given α ∈ (0, 1], covering the

kth point by an open ball of diameter 1/2
k
α . Thus, for any α, there is a cover

of which the α-Hausdorff sum is 1. The supremum of the set for which a cover
yields an infinite sum is therefore 0.

Although we work almost exclusively with compact sets in one (topological)
dimension, it is possible to do so in any number of dimensions. The principles
remain exactly the same and the Hausdorff dimension of a set is the same
whether we consider it as a subset of R or Rn.

An interesting class of sets one often encounters in studying Hausdorff di-
mension is the so-called Cantor-like sets, the most famous of which is the triadic
Cantor set. These will be explained more fully in Chapter 3. For now we briefly
mention some properties of Brownian paths. Hopefully this will furnish some
motivation as to why these are fascinating objects of study. Nonstandard proofs
of some of these will be offered in Chapter 4.

1.3 Some fractal properties of Brownian paths

A proper study of Brownian motion and Hausdorff dimension would fill far more
than this introduction. It is fascinating how Brownian motion seems to yield
sets with interesting dimensional properties around every corner, and also to see
what its effect is on already interesting sets. We will just mention some of the
more relevant “highlights” in this section. For a more complete introduction
the reader is referred to Kahane’s book [21].

7



For a Brownian path X(t) and a given a ∈ R the set {t ∈ [0, 1] : X(t) = a}
is called the level set of X associated to a. It is well known that these sets have
a Hausdorff dimension of 1/2, almost surely, as can be seen on pp. 250-255 of
Kahane’s book [21]. The images of subsets of [0, 1] with dimensions different
from 1/2 have more interesting properties: If such a set has dimension α < 1/2,
its image has dimension 2α with probability 1, and if it has dimension β > 1/2,
its image is almost surely of dimension 1 and has positive Lebesgue measure.
Furthermore, such a set will almost surely have an interior point (i.e., it has
a non-void interior) [21]. It will become a little clearer why the dividing line
is 1/2 when we consider nonstandard proofs of the above. These results can
be generalised to n dimensions by replacing 1/2 by n/2. We shall attempt to
understand some of these properties in an intuitively satisfying way by using
Loeb’s nonstandard measure theory. An introduction to the basics makes up
Chapter 2, after which we will define Hausdorff dimension in a hyperfinite con-
text. The remaining chapters will study first Hausdorff and then the Fourier
dimensional properties, specifically of the rapid points of Brownian motion. The
fourth chapter reproves some widely known results, but in what is hopefully a
clearer and more “hands-on” way. In the fifth chapter we give a nonstandard
proof of a theorem by Orey and Taylor [31]. What is somewhat surprising
about the proof is that certain probabilities are reflected almost surely within
the paths themselves; when we consider ratios of intervals chosen (with a certain
property) to the total number of intervals, these are almost surely similar to
the probability that an subinterval will have the required property. The sixth
chapter is a study of Kaufman’s proof that the rapid points give rise to so-called
Salem sets. There is some departure from the original, since much of it is very
sketchy and requires further clarification, a task which was undertaken in the
final chapter of this thesis.
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2 Introduction to nonstandard analysis and Loeb

measure theory

Before defining Loeb measures, we briefly introduce the nonstandard universe
in which we will be working. This exposition is largely based on the very clear
monograph of Cutland [7]. Although Loeb measures are standard measures,
their construction involves nonstandard analysis (NSA).

2.1 The hyperreals

We construct a real line ∗R which is richer than the standard reals R. This is
an ordered field which extends the real numbers in two notable ways:

(i) ∗R contains non-zero infinitesimals; that is, numbers of which the absolute
values are smaller than any real number; and

(ii) ∗R contains positive and negative infinite numbers; that is, numbers which
in absolute value are larger than any real number.

We say that x, y ∈ ∗R are infinitely close whenever x − y is infinitesimal and
denote it by x ≈ y. Thus, x ≈ y if for every ε > 0 in R, |x− y| < ε. The set of
all such y that are infinitesimally close to x is called the monad of x.

There are several ways of constructing the extended universe. We shall use an
ultrapower construction. An axiomatic approach is also possible, as developed
by E. Nelson; see for instance [30]. We prefer to use the ultrapower construction
because it is pertinent to later constructions.

Definition 2.1. A free ultrafilter U on N is a collection of subsets of N that is
closed under finite intersections and supersets, contains no finite sets and for
every A ⊆ N has either A ∈ U or N \A ∈ U .

Given such a free ultrafilter U on N we construct ∗R as an ultrapower of the
reals

∗R = RN/U .

The set ∗R that we obtain therefore consists of equivalence classes of sequences
of reals under the equivalence relation ≡U , where

(an) ≡U (bn) ⇔ {n : an = bn} ∈ U .

The equivalence class of a sequence (an) is denoted by either (an)U or, in the
sequel, by 〈an〉U . It is clear that ∗R is then an extension of R, the usual real
numbers represented by equivalence classes of constant sequences. The usual
algebraic operations such as +,×, < are easily extended, but shall be denoted in
the usual way. Functions and relations on R can be extended pointwise without
difficulty. Exactly which properties of ∗R are inherited from R is specified in the
following theorem, a restricted version of the more general transfer principle:
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Theorem 2.1. Let ϕ be any first order statement. Then ϕ holds in R if and
only if ∗ϕ holds in ∗R.

A first order statement ϕ (or ∗ϕ in ∗R) is one referring to elements (fixed
or variable) of R (respectively, ∗R) and to fixed functions and relations on R

(respectively, ∗R), that uses the usual logical connectives and (∧), or (∨), implies
(→) and not (¬). Quantification may be done over elements but not over
relations or functions; that is, ∀x, ∃y are allowed, but ∀f , ∃R are not. As an
example, the density of the rationals in the reals can be written as

∀x ∈ R∀y ∈ R(x < y → ∃z ∈ R(z ∈ Q ∧ (x < z < y))),

an expression meaning, “between every two reals is a rational”. From the trans-
fer principle we can therefore immediately conclude that the statement is true
in ∗R, that is, that the hyperrationals are dense in the hyperreals. The corre-
sponding transferred statement is as follows:

∀X ∈ ∗R∀Y ∈ ∗R(X < Y → ∃Z ∈ ∗R(Z ∈ ∗Q ∧ (X < Z < Y ))),

In transferring, every set, relation and function in the original statement is
replaced by its nonstandard extension, according to the ultrapower construction.

We say that an element x of ∗R is finite if there is some r ∈ R such that
x < |∗r|. A simple but important theorem is the following:

Theorem 2.2. If x ∈ ∗R is finite, then there is a unique r ∈ R such that
x ≈ r. Any finite hyperreal is thus expressible as x = r + δ with r ∈ R and δ
infinitesimal.

Proof. [1]Suppose x ∈ ∗R is finite. Let D1 be the set of r ∈ R such that
∗r < x and D2 the set of r′ ∈ R such that x < ∗r′. The pair (D1,D2) forms
a Dedekind cut in R, hence determines a unique r0 ∈ R. A simple argument
shows that |x− ∗r0| is infinitesimal. �

We call r0 in the above theorem the standard part of x and denote it as either
◦x or as st(x). Both are used, sometimes in conjunction, to improve readability.

The following theorem will find application in the next chapter.

Theorem 2.3. Let (sn) be a sequence of real numbers and let l ∈ R. Then

sn → l as n→ ∞ ⇐⇒ ∗sK ≈ l for all infinite K ∈ ∗N.

Proof. [7] Suppose that sn → l and let K ∈ ∗N be a fixed infinite number.
We must show, for all real ε > 0, that |∗sK − l| < ε. From ordinary real analysis
we know that there exists some n0 ∈ N such that

∀n ∈ N [n ≥ n0 → |sn − l| < ε].

According to the transfer principle, the following is true in ∗R:

∀N ∈ ∗N [N ≥ n0 → |∗sN − l| ≤ ε].
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In particular, |∗sK − l| < ε as required.
Conversely, suppose that ∗sK ≈ l for all infinite K ∈ ∗N. For any given real
ε > 0 we have

∃K ∈ ∗N∀N ∈ ∗N [N ≥ K → |∗sN − l| < ε].

By transferring this “down” to R, we get

∃k ∈ N ∀n ∈ N [n ≥ k → |sn − l| < ε].

By then taking n0 any of such extant k, we have that sn → l. �

2.2 The nonstandard universe

The principles of the previous section can be used in a much broader context
than just real analysis. Given any mathematical object M (whether it is a
group, ring, vector space, etc.), we can construct a nonstandard version ∗M.
We use a somewhat more economical construction however, by starting with
a working portion of the mathematical universe V and ending up with a ∗V

which will contain ∗M for every M ∈ V. This has the added advantage of
preserving some of the relations between structures through the more general
transfer principle.

We start with the superstructure over R, denoted by V = V (R). It is defined
as follows:

V0(R) = R

Vn+1(R) = Vn(R) ∪ P(Vn(R)), n ∈ N

V =
⋃

n∈N

Vn(R).

(P(A) denotes the power set of the set A.)
If a larger (or simply different) universe is required, start the same process

with a more suitable set than R.
Next one must construct a mapping ∗ : V (R) → V (∗R) associating to an

M ∈ V a nonstandard extension ∗M ∈ V (∗R). The nonstandard universe can
now be constructed by means of an ultrapower

VN/U ,

and then utilising a “Mostowski collapse” [1]. This is somewhat more compli-
cated to do than in the case of ∗R and we do not go into detail here. It is
sufficient to consider the nonstandard universe as the set of objects

∗V = {x : x ∈∗M for some M ∈ V}.

Sets in ∗V are called internal sets. It should be noted that ∗V ∈ V (∗R), but
that V (∗R) contains sets that are not internal.
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We now also have a transfer principle which specifies which statements may
be moved from one structure to the other. A bounded quantifier statement is
a statement which can be written so that all quantifiers range over a fixed set.
Thus, quantifiers like ∀x ∈ A or ∃y ∈ B are allowed, but not unbounded quanti-
fiers such as ∀x and ∃y. Note that often boundedness is implied in the exposition
and is not always specifically indicated in the statement. When given a bounded
quantifier statement ϕ, we obtain its nonstandard version ∗ϕ by replacing every
set, function or relation in ϕ by its nonstandard counterpart. Specifically, since
we can consider relations and functions as sets as well, we replace each set A by
its nonstandard counterpart ∗A, whilst the logical connectives in the statement
ϕ remain the same. Thus, a variable x ranging over R becomes a variable X
ranging over ∗R, a function f is replaced by its extension ∗f , and a relation R
is replaced by its extension ∗R.

Theorem 2.4. A bounded quantifier statement ϕ holds in V if and only if ∗ϕ
holds in ∗V.

The transfer principle can after some consideration be seen to apply only to
internal sets. For instance, the concept of supremum implies that each bounded
set will have a least upper bound. However, N seen as a member of ∗R is
bounded, but has no supremum. It is therefore an external (i.e. non-internal)
set.

We show now that the concept of supremum transfers. The proof also pro-
vides an illustration of how to change a bounded quantifier statement ϕ into
∗ϕ.

Proposition 2.5. Every nonempty internal subset of ∗R with an upper bound
has a least upper bound.

Proof. The notation used in this proof refers back to our construction of
the nonstandard universe. We express the fact that any nonempty subset of the
standard real numbers has a least upper bound by the statement

Φ(R, V2(R)) = ∀A ∈ V2(R)[A 6= ∅ ∧ (∃x ∈ R(∀y ∈ A(y < x))) →
∃z ∈ R(∀y ∈ A(y < x) ∧ ∀u ∈ R∀y ∈ A (y ≤ u→ z ≤ u))].

Since the statement Φ = Φ(R, V2(R)) is true in V (R), the transferred ∗Φ =
Φ(∗R, ∗V2(R)) condition is true in V (∗R). The nonstandard version of the above
statement that will hold is

Φ(∗R,∗V2(R)) = ∀A ∈∗V2(R)[A 6= ∅ ∧ (∃X ∈∗R (∀Y ∈ A(Y < X))) →
∃Z ∈∗R (∀Y ∈ A(Y < X) ∧ ∀u ∈∗R∀Y ∈ A (Y ≤ U → Z ≤ U))].

(The capitals for the variables are not necessary and just serve to indicate that
the statement is indeed nonstandard.) �

The transfer principle yields the following properties, which will be used
later:
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Proposition 2.6. Let A ⊆∗R be an internal set.

(i) If A contains arbitrarily large finite numbers, then it also contains an
infinite number.

(ii) If A contains arbitrarily small positive infinite numbers, then it contains
a positive finite number.

These two are known as the overflow and underflow properties, respectively.
We give the proof as another illustration of the use of the Transfer Principle.

Proof.

(i) Since A is an internal set, if it has an upper bound, it must have a least
upper bound. However, if it did not contain an infinite number, it would
be bounded by any infinite number. Such a number would necessarily be
infinite, leading to a contradiction.

(ii) The same type of proof as in (i) holds here, once it is recognised that the
transfer principle guarantees that an internal set bounded from below has
an infimum. �

Note that these properties are also easily obtained from the ultrafilter con-
struction. By taking reciprocals, similar properties can be seen to hold for
infinitesimals.

An important property of any nonstandard universe constructed as an ul-
trapower is that of ℵ1-saturation:

Proposition 2.7. If (Am)m∈N is a countable decreasing sequence of nonempty
internal sets, then ∩m∈NAm 6= ∅.

A useful reformulation of this is known as countable comprehension: Given
any sequence (An)n∈N of internal subsets of an internal set A, there is an internal
sequence (An)n∈∗N of subsets of A that extends the original sequence. This
property will be used in the construction of Loeb measure.

2.3 Nonstandard topology

Before doing analysis in a nonstandard universe, we must clearly understand the
topology. Firstly, we see that the concept of being infinitely close, and therefore
the idea of a monad, can be extended:

Definition 2.2. Let (X, τ) be a topological space.

(i) For a ∈ X the monad of a is

monad(a) =
⋂

a∈U∈τ

∗U.

(ii) For x ∈ ∗X, we write x ≈ a if x ∈ monad(a).
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(iii) x ∈∗X is said to be nearstandard if x ≈ a for some a ∈ X.

(iv) For any Y ⊆ ∗X, we denote the nearstandard points in Y by ns(Y ).

(v) st(Y ) = {a ∈ X : x ≈ a for some x ∈ Y } is called the standard part of Y .

The following result allows us to generalise the pointwise standard part map-
ping:

Proposition 2.8. A topological space X is Hausdorff if and only if

monad(a) ∩ monad(b) = ∅ for a 6= b, a, b ∈ X.

This means we can define the function

st : ns(∗X) → X

as

st(x) = the unique a ∈ X with a ≈ x.

Again, we use the notation ◦x = st(x) interchangeably.
We mention some general topological results.

Proposition 2.9. Let (X, τ) be separable and Hausdorff. Suppose Y ⊆ ∗X is
internal and A ⊆ X. Then

(i) st(Y ) is closed,

(ii) if X is regular and Y ⊆ ns(∗X), then st(Y ) is compact,

(iii) st(∗A) = A (closure of A),

(iv) if X is regular, then A is relatively compact iff ∗A ⊆ ns(∗X).

Since we will be dealing almost exclusively with continuous functions, we
should introduce corresponding notions in the nonstandard universe.

Definition 2.3. Let Y be a subset of ∗X for some topological space X and let
F : ∗X → ∗R be an internal function. Then F is said to be S-continuous on Y
if for all x, y ∈ Y we have

x ≈ y ⇒ F (x) ≈ F (y).

The following result allows us to switch from the one notion of continuity to
another.

Theorem 2.10. If F : ∗X → ∗X is S-continuous on an interval ∗[a, b] for real
a, b and F (x) is finite for some x ∈ ∗[a, b], then the standard function defined in
[a, b] by

f(t) =◦F (t)

is continuous and ∗f(τ) ≈ F (τ) for all τ ∈ ∗[a, b].

Given a real function f defined on an interval [a, b], we shall call any function
F on ∗[a, b] such that f(t) =◦F (t), a lifting of f .
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2.4 Loeb measure

A Loeb measure is a standard measure, but constructed from a nonstandard
one. That is, the Loeb measure exists on a σ-algebra and obeys all the usual
rules for a measure, for example countable additivity.

We start with a given internal set Ω, an algebra A of internal subsets of Ω
and a finite internal finitely additive measure µ on A. Thus µ is a function from
A to ∗[0,∞) such that µ(Ω) < ∞ and µ(A ∪ B) = µ(A) + µ(B) for disjoint
A,B ∈ A. (We focus only on bounded Loeb measures; infinite ones shall not
concern us in the sequel.) We can then define the mapping

◦µ : A → [0,∞)

by ◦µ(A) =◦(µ(A)). This is finitely additive and therefore (Ω,A, µ) is a stan-
dard finitely additive measure space. This is not usually a measure, since ◦µ is
not always σ-additive. We shall see shortly, however, that it is almost a mea-
sure. The following crucial theorem was proved by Loeb [27]. It is possible to
give a quick proof using Caratheodory’s extension theorem, but we shall follow
Cutland [7] and give a more straightforward approach.

Theorem 2.11. There is a unique σ-additive extension of ◦µ to the σ-algebra
σ(A) generated by A. The measure theoretic completion of this measure is the
Loeb measure associated with µ, denoted by µL. The completion of σ(A) is the
Loeb σ-algebra, denoted by L(A).

The more straightforward proof depends on the notion of a Loeb null set:

Definition 2.4. Let B ⊆ Ω, where B is not necessarily internal. We call B a
Loeb null set if for each standard real ε > 0 there is a set A ∈ A with B ⊆ A
and µ(A) < ε.

This allows us to make precise the notion that A is almost a σ-algebra:

Lemma 2.12. Let (An)n∈N be an increasing family of sets, with each An in A
and let B =

⋃

n∈N
An. Then there is a set A ∈ A such that

(i) B ⊆ A

(ii) ◦µ(A) = limn→∞
◦µ(An) and

(iii) A \B is null

Proof. Let α = limn→∞
◦µ(An). For any finite n,

µ(An) ≤ ◦µ(An) +
1

n
≤ α+

1

n
.

Let (AN )N∈∗N be a sequence of sets in A extending the sequence (An)n∈N, made
possible by ℵ1 saturation (see 2.2). The overflow principle then guarantees an
infinite N such that

µ(AN ) ≤ α+
1

N
.
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If we now let A = AN , (i) will hold because An ⊆ A for each n. Also, µ(An) ≤
µ(A) for finite n, so ◦µ(An) ≤◦ µ(A) ≤ α and therefore ◦µ(A) = α. This gives
(ii). For (iii), note that A \ B ⊆ A \ An and ◦µ(A \ An) = ◦µ(A) − ◦µ(An) → 0
as n→ ∞. �

Thus A is a σ-algebra modulo null sets. We can now define the concepts
Loeb measurable and Loeb measure exactly:

Definition 2.5. (i) Let B ⊆ Ω. We say that B is Loeb measurable if there is a
set A ∈ A such that A4B (the symmetric difference of A and B) is Loeb null.
The collection of all the Loeb measurable sets is denoted by L(A). The algebra
L(A) is known as the Loeb algebra.

(ii) For B ∈ L(A) define

µL(B) = ◦µ(A)

for any A ∈ A with A4B null. We call µL(B) the Loeb measure of B.

This brings us to the central theorem of Loeb measure theory.

Theorem 2.13. L(A) is a σ-algebra and µL is a complete σ-additive measure
on L(A).

The measure space Ω = (Ω, L(A), µL) is called the Loeb space given by
(Ω,A, µ). If µ(Ω) = 1, we refer to Ω as a Loeb probability space.

2.5 Loeb counting measure

We devote a short but separate section to the idea of counting measures because
the idea is prominent throughout the sequel.

Let Ω = {1, 2, . . . , N}, where N ∈ ∗N \ N. The set Ω is internal. Define the
counting probability ν on Ω by

ν(A) =
|A|
N
,

for A ∈ ∗P(Ω) = A. The cardinality function | · | transfers, so |A| can be
interpreted as an extension of finite, standard cardinality. The Loeb counting
measure νL is the completion of the extension to σ(A) of the finitely additive
measure ◦ν.

An easy but important example of the use of such a counting measure is in
the construction of Lebesgue measure.

Definition 2.6. Fix N ∈ ∗N \ N and let M t = N−1. The hyperfinite time line
for the interval [0, 1] based on the infinitesimal M t is the set

T = {0,M t, 2M t, 3M t, . . . , 1−M t}.

The following theorem provides an intuitive construction of Lebesgue mea-
sure.
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Theorem 2.14. Let νL be the Loeb counting measure on T. Define

(i) M = {B ⊆ [0, 1] : st−1
T

(B) is Loeb measurable}, where st−1
T

(B) = {t ∈
T :◦ t ∈ B}.

(ii) λ(B) = νL(st−1
T

(B)) for B ∈ M.

Then M is the completion of the Borel sets B[0, 1] and λ is Lebesgue measure
on M.

Proof. We only need to sketch the proof here. A more complete proof can
be found in [1]. To check that M is a σ-algebra is not difficult. Furthermore, M
contains each standard interval [a, b], since st−1

T
([a, b]) = ∩n ∈ N(∗[a − 1/n, b +

1/n]∩T), a countable intersection of internal sets. It can also be shown that λ is
a complete probability measure on M. We can then show that λ is translation
invariant and λ([a, b]) = b−a. The measure is therefore an extension of Lebesgue
measure. Now take B ∈ M and an internal A such that A ⊆ st−1

T
(B) is an inner

approximation. The set st(A) is a closed inner approximation of B; enough to
show that B is Lebesgue measurable. �

In Chapter 4 we will encounter another important use of counting measure
in constructing Wiener measure.
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3 A nonstandard version of Hausdorff dimen-

sion

In this chapter we show that a formulation of Hausdorff measure as a nonstan-
dard counting measure, similar to Loeb’s formulation of Lebesgue measure, is
possible and prove some well-known theorems using these nonstandard tech-
niques. It turns out that some interesting dimensional properties of Brownian
paths become quite easy to prove using hyperfinite counting arguments.

Before we start the proof, we need a nonstandard version of the following
result known as Frostman’s lemma [13]. We denote the β-dimensional Hausdorff
measure of a set A by measβA.

Theorem 3.1. (Frostman’s lemma) Let A be a compact subset of [0, 1] and
β ∈ (0, 1). Then measβA > 0 if and only if there exists a probability measure µ
on A such that µ(B) ≤ C|B|β for each interval B ⊆ [0, 1] and some positive C.

This is often used to prove Frostman’s theorem, which we will include at the
end of this chapter. A version of the lemma on the hyperfinite time line is as

follows. Note that we abuse the notation slightly by using ◦
(

|A′|
2Nα

)

> 0 to mean

either that the standard part of the expression in brackets exists and is larger
than 0, or that the expression is infinite.

Theorem 3.2. Let A be a compact subset of [0, 1]. Suppose T is a hyperfinite
time line based on the dyadic sequence {2n} and A′ ⊆ T is such that its standard

part is A. If ◦
(

|A′|
2Nα

)

> 0 , there exists a nonstandard measure µ on a hyperfinite

time line on [0, 1] such that the Loeb measure µL ∈ M+(A) (the set of strictly
positive measures on A) associated to µ has the property that for an absolute
constant C and an arbitrary interval B ⊆ [0, 1], it is true that µL(B) ≤ ‖B‖α.

Proof. The measure in question is not quite as simple as, for instance, the
counting measure we used to generate Lebesgue measure. In this case we have
to take into account how “close” elements of A are to each other and a uniform
counting measure cannot provide that information. Thus the construction of
the measure is not generic but will depend specifically on the nature of A.

We use a time line based on the hyperfinite number 2N , whereN = 〈1, 2, 3, ...〉U .
The measure is constructed in a number of stages, at each stage ensuring that
the inequality µm(B) ≤ ‖B‖α holds, and then showing that the total measure
of the interval is larger than 0 and normalising. On a dyadic interval B of order
m, meaning that the interval has length 2−m, count the number of elements of
BT ∩ AT and distribute the mass ‖B‖α evenly over the elements of BT ∩ AT.
Thus each element of AT in BT receives a weight of

‖B‖α

|BT ∩AT|
.

This does guarantee that the required inequality is true for this interval, but we
must bear in mind that the measure must be additive. To this effect we go back
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one step, to dyadic intervals of order m− 1. Suppose that the above interval B
is contained in an interval B′ of order m− 1. We must now check whether

µ(B′) ≤ 2α‖B‖α

|B′
T ∩AT|

.

If adjacent intervals of order m both contain elements of AT, we will need to
multiply the measure on each of these intervals by a factor of 2α

2 . We continue
doing this until we cover all dyadic intervals on the time line, both standard and
nonstandard. Thus the measure is finitely additive in the nonstandard context.
Also, the smallest the measure of any element of AT can be, will be

2α

2
2−(N−1)α = 22α−12−Nα.

Thus, the smallest the total mass over all of AT can be is

22α−1 |AT|
2Nα

.

But since we have that ◦
(

|AT|
2Nα

)

> 0, we know there will exist some finite (but

not infinitesimal) γ such that

22α−1 |AT|
2Nα

> 22α−1γ.

We normalise using the total mass and obtain, for any dyadic interval B that

µ(B) ≤ 1

γ
‖B‖α.

The inequality will then also hold for µL. An arbitrary interval D will always
be contained in two such dyadic intervals and therefore

µL(D) ≤ 2

γ
‖D‖α.

�

We prove the main result of this chapter in two separate theorems. The first
guarantees the existence of a subset of a time line from which we can compute
the dimension and the second shows that the choice of set is not very important.
It is proved for subsets of [0, 1] only, but note that it can easily be extended to
any compact interval and arbitrary (finite) dimension.

Theorem 3.3. Given a compact subset A of [0, 1], there is a subset AT on the
hyperfinite time line T and a hyperfinite number N ∈ ∗N \N such that ◦AT = A
and

◦

( |AT|
Nβ

)

= ∞ for β < α

◦

( |AT|
Nβ

)

= 0 for β > α

if and only if dimA = α.
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Proof. Suppose that β < dimA. We know that the sum diverges to infinity
as the sizes of the intervals decrease. Thus there will be some N ∈ N such that
the β-Hausdorff sum will be larger than 1 for covers constituting of sets with
diameter smaller than 2−K , for all K > N .

In the following we will state as a bounded quantifier statement that this will
hold for any cover and that such a cover always exists, a seemingly trivial point
in the standard case, but not as obvious in the nonstandard. We also use the
fact that we may require our intervals not to border on each other, for otherwise
the Hausdorff sum may be made smaller, and we require that even the smallest
sum must be larger than 1. The use of K > J is justified by the compactness
of the set A; that is, the cover will have a finite subcover, and therefore there
will be a set of diameter no smaller than 2−K for some K > J .

Let S = S(A,X,K, J) be the following statement, where X ⊂ N × N:

S = ∀x ∈ A∃(i, j) ∈ X
(

x ∈
(

i
2K ,

j
2K

])

∧ ∀(i, j) ∈ X∃x ∈ A
(

x ∈
(

i
2K ,

j
2K

])

∧∀(i, j) ∈ X
(

2−K ≤ (j − i)2−K ≤ 2−J
)

∧
[

(i, j) ∈ X ⇒ ¬(∃k ∈ {0, 1, . . . , 2K − 1}((j, k) ∈ X))
]

,

and let T = T (X,K, β) be the statement

∑

(i,j)∈X

(

j − i

2K

)β

> 1.

We then express β < dimA as:

[∃N ∈ N∀J > N∀K ≥ J∀X ⊆ {0, 1, . . . , 2K − 1} × {0, 1, . . . , 2K − 1}
(S ⇒ T )] ∧

[∃N ∈ N∀J > N∀K ≥ J∃X ⊆ {0, 1, . . . , 2K − 1} × {0, 1, . . . , 2K − 1}
(S ⇒ T )].

The transferred statement now reads as

[∃N ∈ ∗N∀J > N∀K ≥ J∀X ⊆ {0, 1, . . . , 2K − 1} × {0, 1, . . . , 2K − 1}
(∗S ⇒ ∗T )] ∧

[∃N ∈ ∗N∀J > N∀K ≥ J∃X ⊆ {0, 1, . . . , 2K − 1} × {0, 1, . . . , 2K − 1}
(∗S ⇒ ∗T )],

where ∗S and ∗T are the transferred versions of the statements S and T . Note
that this necessitates replacing only A with ∗A in the original.

We now choose any sufficiently large J ∈ ∗N \ N. The statement will still
hold if we set K = J . This results in a “cover” of ∗A by intervals of diameter
2−K . Set

AT =

{

j

2K
: (j − 1, j) ∈ X

}

,
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where X is the set the existence of which is guaranteed in the second line of the
previous transferred statement.

By the transferred statement we know that
∑

(i,j)∈X

(

j−i
2K

)β
> 1, but j− i =

1 because of the choice of K — all the infinitesimal intervals are now of the
same size. Also, |AT| = |X|; therefore |AT|

2Kβ > 1. Thus,

measβA > 0 ⇒ ∃AT ⊆ T,K ∈ ∗N \ N such that ◦AT = A and ◦

( |AT|
2Kβ

)

> 0.

Since the converse holds by the nonstandard Frostman lemma, the theorem
is proved.

We now show that any set which satisfies certain of the above properties is
rich enough to yield Hausdorff dimension.

Theorem 3.4. Consider a hyperfinite time line T based on the infinitesimal
2N , for a given N ∈ ∗N \ N. Suppose that a subset A′ of the time line is such
that st(A′) = A and for some α > 0

◦

( |A′|
2Nβ

)

> 0 for β < α and (3.1)

◦

( |A′|
2Nβ

)

= 0 for β > α. (3.2)

Then α = dimA.

Proof. Given (1), the nonstandard version of Frostman’s lemma immedi-
ately implies that dimA ≥ α. For the converse inequality, notice that the second
condition implies that for each ε ∈ R, ε > 0,

|A′|
2Nβ

< ε,

which implies the following nonstandard statement for each positive ε ∈ R:

∃N ∈ ∗N∃Y ⊆ {0, 1, . . . , 2N − 1}∀x ∈ A′∃i ∈ Y
(

x ∈ (i2−N , (i+ 1)2−N ]
)

∧
(

|Y |
2Nβ < ε

)

.

Transferring down to the standard case, we find that for each ε > 0,

∃n ∈ N∃y ∈ {0, 1, . . . , 2n − 1}∀x ∈ ◦A′∃i ∈ y (x ∈ (i2−n, (i+ 1)2−n])∧
(

|y|
2nβ < ε

)

.

This implies that measβA = 0 and therefore that dimA ≤ α. �

For computational purposes it is therefore enough to find a set in the time
line with standard part A that satisfies the conditions in the above theorem.
This fact will be used in subsequent chapters. In the sequel we refer to |AT| M tβ

as nonstandard (or NS) β-Hausdorff measure and to measβA as just β-Hausdorff
measure.
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Several of the properties of the standard β-Hausdorff measure can easily be
seen to be valid in the nonstandard case, such as its outer measure properties,
invariance under translation (and rotation, in the multidimensional case) and
homogeneity of degree β with respect to dilation.

To illustrate some applications of this formulation, we first turn to the peren-
nial example of a set of non-integer dimension, the triadic Cantor set (construc-
tion described in any book on fractals). We did not prove that its dimension was
α = log 2/ log 3, but do so now. The “base-infinitesimal” of the construction
is 〈1, 3−1, 3−2, . . . , 3−k, . . .〉U =M t = 1/N . The cardinality of the NS Cantor
set |AT| is given by |AT|〈1, 2/3, 4/9, . . . , (2/3)k, . . .〉UN . The NS β-Hausdorff
measure of A is then given by

|AT| M tβ = 〈(2/3)k〉UN〈(1/3)kβ〉U
= 〈(2/3β)k〉U ,

where we have used the obvious notation, 〈ak〉U instead of 〈a, a2, . . . , ak, . . .〉U .
The above expression then has value 1 for β = log 2/ log 3, which is then dimA
by our previous theorems. Since the standard β-Hausdorff sum for the triadic
Cantor set is also 1 for β = dimA, we suspect that the standard parts of the
nonstandard sum will be equal to the standard sum at dimA for other sets as
well. This remains to be proved. We now turn to Cantor-like sets in general.
In [31], a Cantor-like set K is a set generated by nested intervals in the following
way:

1. Let, for each m, Im,i be an interval contained in [0, 1], where i ≤Mm, and
suppose these intervals are disjoint.

2. Let Em =
⋃

1≤i≤Mm
Im,i; it is also required that Em ⊇ Em+1.

3. Let K =
⋂

m∈N
Em.

We can further assume that K has Lebesgue measure 0, to avoid triviality. Orey
and Taylor proved the following theorem for such sets:

Theorem 3.5. Suppose that c > 0, δ > 0. The measβK > 0 if, for every
interval J ⊆ [0, 1] with |J | < δ, there is a finite integer m(J) such that

Mm(J) ≤ c|J |βMm for m ≥ m(J),

where Mm(J) denotes the number of intervals Im,i, 1 ≤ i ≤Mm contained in J .

Clearly, each of the intervals used in the construction gives rise to some
infinitesimals, depending on the rate at which their lengths converge to 0. In
the case of the triadic Cantor set, these are all the same, which makes the
construction so simple.

We can therefore consider a Cantor-like set as some union of infinitesimals.
The β-Hausdorff measure will not be as simple to calculate as the Cantor set,
since we cannot base the hyperfinite time line on a single one of the infinitesi-
mals.
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The above theorem in the nonstandard context is actually a restricted ver-
sion of Frostman’s Lemma. For the sake of completeness, we now present Frost-
man’s theorem [21], an important tool in the study of capacity and Hausdorff
dimension. The proof itself is so simple that little extra insight is gained from
a nonstandard approach. But first we have to define the notion of capacity:

Definition 3.1. A compact set A ⊂ Rd is said to have a positive capacity if it
carries a positive measure µ such that the following integral is finite:

Iα(µ) =

∫ ∫

dµ(x)dµ(y)

|x− y|α .

If there is no such measure, we say that A has capacity 0. The capacitarian
dimension of A is

dimC(A) = sup{α : CapαA > 0} = {α : CapαA = 0}.
In a sense, this is the exact opposite of Hausdorff measure, in that the integral
is finite exactly where measαA is infinite, and infinite where measαA is 0. This
notion is made precise in the following:

Theorem 3.6. Let A be a compact set in Rd and 0 < α < β < d. Then

measβA > 0 ⇒ CapαA > 0 ⇒ measαA > 0.

This implies that the capacitarian and Hausdorff dimensions of A are the same.

Proof. First we show that measβA > 0 ⇒ CapαA > 0. If measβA > 0, A
carries a measure µ such that

∫

|x−y|≤ρ

dµ(x) < Cρβ

for every y ∈ Rd and ρ > 0, dependant only on µ. Integrating on spherical
rings,

∫

dµ(x)

|x− y|α
is uniformly bounded with respect to y, and therefore Iα(µ) < ∞, implying
CapαA > 0.

We now show that CapαA > 0 ⇒ measαA > 0. If CapαA > 0 there is a
µ ∈M+(A) such that Iα(µ) <∞. Let At be the subset of A defined by

y ∈ At if and only if

∫

dµ(x)

|x− y|α ≤ t.

For large enough t, µ(At) > 0. Let A ⊆ ∪nBn such that At ∩ Bn 6= ∅ for each
n. Choose yn ∈ At ∩Bn. Then

µ(Bn) ≤ |Bn|α
∫

Bn

dµ(x)

|x− yn|α
≤ t|Bn|α and

∑

|Bn|α ≥ t−1µ(At),

implying that measαAt > 0 and therefore measαA > 0. �

Note that this theorem and Frostman’s lemma, are also valid when A is
σ-compact instead of compact.
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4 Some applications to the fractal geometry of

Brownian motion

In this chapter we discuss a nonstandard version of Brownian local time, level
sets and the effect of a Brownian motion on a set with a given dimension.
Although these results are not original, the proofs using a nonstandard version
of Hausdorff dimension are very simple and intuitive. We start with a discussion
on Brownian motion in the nonstandard context, with emphasis on Anderson’s
simple and beautiful construction [2].

4.1 Anderson’s construction of Brownian motion

The idea is to construct Brownian motion as a hyperfinite random walk, instead
of, as is often done, a limit of random walks. We start with a hyperfinite time
line T, based on a fixed N ∈ ∗N\N. We let Ω = {−1,+1}T. If ω ∈ Ω, we define
the hyperfinite random walk as a polygonal path, filled in linearly between time
points t ∈ T with B(ω, 0) = 0 and

B(ω, t+ M t) −B(ω, t) =MB(t) = ω(s)
√

M t,

where ω(s) = ±1. We let CN be the set of all such paths, AN = ∗P(C)N and
WN the counting probability on CN . This gives us the internal probability space

(CN ,AN ,WN )

which in turn gives us the Loeb space

Ω = (CN , L(AN ), PN = (WN )L).

The following theorem is due to Anderson [7]. Recall that an internal function
F is S-continuous if, whenever arguments x and y are infinitesimally close, the
corresponding function values F (x) and F (y) are infinitesimally close as well.

Theorem 4.1. 1. For almost all B ∈ CN , B is S-continuous and gives a con-
tinuous path b = ◦B ∈ C.

2. For Borel D ⊆ C,

W (D) = PN (st−1(D))

is Wiener measure.
3. The following process is a Brownian motion on the space Ω:

b(t, ω) = ◦B(w, t) : [0, 1] × Ω → R.

For a proof, as well as a nonstandard version of the central limit theorem,
see [1].
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4.2 Brownian local time

The local time of a Brownian motion gives a measure of the time a Brownian
motion spends at x. The Lebesgue measure of this set is 0, but it can be
described using Hausdorff measure, as we shall see shortly.

Definition 4.1. We define the local time l(t, x) as

l(t, x) =

∫ t

0

δ(x− b(s))ds,

where b is a Brownian motion and δ the delta function.

The integral therefore “counts” how many times the Brownian path visits x
up till the time t. The standard approach (which can be found in detail in [?])
is to show there exists a jointly continuous process l(t, x) such that

l(t, x) =
d

dx

∫ t

0

I(−∞,x](b(s))ds,

for almost all (t, x) ∈ [0, 1] × R, where IA is the characteristic function of the
set A. Note that although the definition is valid for a time line [0,∞) as well as
[0, 1], we use a bounded interval throughout. The nonstandard approach, due
to Perkins [1], is clearer and more intuitive. We think of the Brownian path
b as the standard part of a hyperfinite random walk. The following exposition
follows [1]. We start by approximating l(t, x) by

(M x)−1

∫ t

0

I[x,x+Mx](b(s))ds.

Now replace the time line [0, 1] by a discrete hyperfinite time line T and the
space R by Γ = {0,±

√
M t, . . . ,±n

√
M t, . . . ,±N

√
M t} and define the internal

process L : T × Γ → ∗R by

L(t, x) =
∑

s<t

Ix(B(s))(M t)1/2.

Perkins showed that L(t, x) has a standard part which is Brownian local time.
He used the nonstandard formulation to prove the following global characterisa-
tion of local time, which was previously known to hold only for each x separately:
Let λ(t, x, δ) be the Lebesgue measure of the set of points within a distance of
δ/2 of {s ≤ t|b(s) = x}. Then for almost all ω ∈ Ω and each t0 > 0,

lim
δ→0+

sup
t≤t0,x∈R

|m(t, x, δ)δ−1/2 − 2(2/π)1/2l(t, x)| = 0.

It is shown in [?] that local time is the same as 1
2 -dimensional Hausdorff measure.

From the nonstandard formulation, however, it is immediately clear. If we
define the set A as the set of all t ∈ [0, 1] such that b(t) = x, the nonstandard
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local time becomes simply |AT| M t1/2. But this is exactly the nonstandard
formulation of 1

2 -dimensional Hausdorff measure (up to a finite constant factor
— which depends on which author you read) We must now show that level sets
have dimension 1/2. We just show this for x = 0, since they all have similar
dimension. Denote the zero set of a Brownian path b(ω) by Aω. We now turn
to a standard property of local time to show that the dimension of this set is
1/2. It can be shown (as for instance in [?]) that local time is identical in law
to the function

Mω(t) = max
s≤t

b(s).

This implies that P [l(1, 0) > 0] = 1. By the nonstandard formulation of local
time, this immediately implies that dimA ≤ 1/2, almost surely. By the same
token, however, l(1, 0) is almost certainly finite, implying that dim(A) = 1/2.
The following lemma will be used in the subsequent section. In this case the
standard approach is easier than the hyperfinite, by using the Hölder condition
for Brownian motion.

Lemma 4.2. If A is a level set and D ⊆ A, then D has dimension 1/2 or 0.

Corollary 4.3. If dimA < 1/2, then the inverse image of any element in b(A)
(where b is a Brownian motion) has dimension 0.

4.3 The image of a set under Brownian motion

A very interesting property of Brownian motion is what it does to sets of a
certain Hausdorff dimension. If a compact subset of [0, 1] has dimension α <
1/2, its image under Brownian motion is a set of dimension 2α. (This set is
a Salem set as well, meaning it has equal Hausdorff and Fourier dimensions.
This notion will be explored in more depth in Chapter 6.) A set of dimension
α > 1/2 will have dimension 1 and will almost surely contain an interval. As
for sets of dimension 1/2, we have seen above that they may have an image
of dimension 0. No hard and fast rule exists for such sets. We now look at
nonstandard proofs of these results. The advantage of this approach is a more
intuitive (counting) argument. The following was first proved by Kaufman [21].

Theorem 4.4. Let A ⊂ [0, 1] be a compact set. If dimA = α < 1/2 and b is a
Brownian motion, dimb(A) = 2α.

Proof. The basis for the time line of the image is no longer M t, but
√

M t.
Since |B(AT )| ≤ |AT | and we know that |AT | M tβ ≈ 0 for β > α, we will
have that |B(AT )| M tβ ≈ 0 for any β > α. Therefore, |B(AT )|(

√
M t)γ ≈ 0 for

γ > 2α and we conclude that dimb(A) ≤ 2dimA (because of the continuity of
the functions involved we can conclude that |[b(A)]T | = |B(AT )|). It is left to
show that dimb(A) ≥ 2dimA. This is not quite as simple as the previous proof,
since the matter of possible level sets complicates the question of the cardinality
of the image. We overcome this by considering only the first elements of level
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sets and discarding the rest. The remaining set will have the same dimension as
the original and the image will have the same cardinality. This is made possible
because the set A has a dimension of less than 1/2. Any subsets of level sets
in A are small enough to be left out (mostly) without affecting the dimension.
For any x ∈ b(A), let Lx denote the part of the level set of x contained in A
and let L denote the collection of all these sets. We want to show now that the
standard parts of the sums

∑

Lx∈L

1

Nα
,

∑

Lx∈L

|Lx,T|
Nα

are 0 and ∞ for the same values of α. To do this, all that is necessary is to
show that the first one is infinite whenever the second one is. So suppose that

◦

(

∑

Lx∈L

|Lx,T|
Nα

)

= ∞.

We know that

|Lx,T|
Nα

= sβ
x ≈ 0

for any β > 0. This implies that

∑

Lx∈L

sβ
xN

β

Nα
=
∑

Lx∈L

sβ
x

Nα−β
≤
∑

Lx∈L

1

Nα−β
= ∞,

for β arbitrarily close to 0. Thus we may conclude that the number of level sets
is important and not the cardinality of each. But the number of level sets is
equal to the cardinality of the range, thus the standard parts of

|B(AT )|
Nα

and
|AT |
Nα

are 0 and ∞ for the same values of α. Keeping in mind that the time line of
the image is based on

√
M t and not M t, we can conclude that the dimensions

are equal.
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5 Nonstandard analysis of rapid points of func-

tions

Orey and Taylor found the exact Hausdorff dimension of rapid points of Brown-
ian paths [31]. Because of the importance of the result and the beauty of its
proof (utilising Cantor-type sets), we present a sketch of the proof in the ap-
pendix. We show in this chapter that the result holds for a more general class
of functions satisfying a few conditions which hold almost surely for Brown-
ian paths. Specifically, any function that satisfies these conditions will have a
set of rapid points of a given dimension, and Brownian motion satisfies these
conditions with probability 1.

First, we need a some definitions. Given an interval I = [a, b], we define

Rf (I) = sup
a≤s<t≤b

|f(t) − f(s)|.

When it is clear which function we are using, we usually write just R(I). For
a function f and a given 0 < α < 1, let I = I(α) denote the collection of all

intervals I in [0, 1] such that R(I) > α
√

2h log h−1, where h > 0 denotes the
length of the interval I. Given such an I, we denote by Ik the collection of all
the intervals of the form [i2−k, (i+ 1)2−k) (for i = 0, 1, . . . , 2k − 1) contained in
I. The set of α-rapid points of Brownian motion, Eα, is defined in (1.4).

We first turn to a requirement which will allow certain sets to have a dimen-
sion of, or more than, 1 − α2.

Lemma 5.1. Suppose 0 < α < 1. Let f be a continuous function and consider
an equipartition of [0, 1] into 2n pieces, each of which is further subdivided in a
further 2j pieces. If there exists some c > 0, dependant only on f , such that the
relation

|{0 ≤ k ≤ 2n − 1 : ∃t ∈ [k2−n−j , (k + 1)2−n + 2−j ](2n/2|f(k + 1)2−n) − f(t)|
≥ α

√

2n log 2}| ≥ c2(1−α2)(n+j)(5.1)

is satisfied for large enough n, the α-rapid points of f have dimension larger
than or equal to 1 − α2.

Although the formulation may seem somewhat cumbersome, we do it as such
to facilitate the application to Brownian motion at a later stage.

Proof. Consider the relation

|{0 ≤ k ≤ 2n+j − 1 : ∃t ∈ [kb2−n, (k + 1)b2−n](2n/2|f(k2−n + 2−n) − f(t))|
≥ α

√

2n log 2}| ≥ c2(1−α2)(n+j).(5.2)

Everything in this relation is first order and can be transferred to a hyperfinite
context; it follows that there are infinite numbers N and J for which the relation
also holds; for convenience we set M = N + J :

|{1 ≤ K ≤ 2M : 2N/2|F ((K + 1)2−N ) − F (T ))}| ≥ α
√

2M log 2}| ≥ c2(1−α2)M .
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(F is the S-continuous nonstandard extension of f ; see Section 2.3.) Now,
instead of seeing the division of [0, 1] as an equipartition, we can consider it a
hyperfinite time line. Also, remembering the ultrapower construction, each K
for which the above holds implies the existence of a sequence of dyadic rationals
which converges to a rapid point. The hyperfinite dyadic rationals included in
the transferred relation therefore exist in the monad of an α-rapid point. But
we know that there are ≥ c2(1−α2)N points on our time line of 2N elements. To
let the quotient

|Eα|
Nβ

therefore have real part 0, N would have to be raised to a power larger than
1 − α2, for the quotient would then be a constant. Thus, dimEα ≥ 1 − α2. �

We now confirm that Brownian motion does indeed have these properties,
almost surely, and that the α-rapid points of Brownian motion therefore have
dimension 1−α2. In the following two lemmas we assume we are working with
a Brownian motion X on a space (Ω,B,P).

Lemma 5.2. If A is the set of α-rapid points of X(t), A has a Hausdorff
dimension of at most 1 − α2.

Proof. We consider a partial covering of Eα by dyadic intervals not unlike
those considered in the previous lemma. Since each member of Eα can be
approached through dyadic rationals, this will indeed form a cover in the limit.
Let n, j ∈ N and let α1 < α. We will consider j to be fixed. Define Bα1,n(ω) to
be the random set

{0 ≤ k ≤ 2n+j − 1 : ∃t ∈ [k2−n−j , (k + 1)2−n−j ](2n/2|f(k2−n + 2−n) − f(t)|
≥ α1

√

2n log 2}
Note that we can either consider these sets as subsets of the integers or as
collections of the dyadic intervals these integers represent. We shall use these
interchangeably, since it will always be clear from the context which we mean.
Let Aα1,n be the event

{|Bα1,n(ω)| ≥ 2(n+j)(1−α2
1)}.

The sets of the form Bα1,n(ω) do not form a cover of the rapid points, but it is
easily seen that the α-rapid points are contained in the limit superior of such
sets, indexed by n.

We now estimate the probability of Aα1,n. The distribution of Aα1,n is
binomial and the probability of a success is calculated in Theorem 6.4 to be
larger than 2−α2

1n2o(1). We now want to calculate the probability P(Aα1,n).
For this we use an estimate from [10] for the tail of the binomial distribution.
If S2n denotes the sum of 2n variables which may take value 1 with probability
p and 0 with probability q = 1 − p, then we have that

P{S2n ≥ r} ≤ rq

(r − 2np)2
, (5.3)
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when r > 2np. To see that we may use this estimate, using the approximations in
the proof of Lemma 6.4, we find that p < 2−nα2

1(1+o(1)) (using Feller’s estimate of
the maximum fluctuation over an interval as upper bound). We let the constant

c be determined by j in the form c ≥ 2−jα2

. Then it will be true that r > np,
for fixed j. Using the lower bound for p it is clear that

p ≥ 2−α2
1n2o(1)

> 2−α2
1(n+j) >

2−mα2
1

m
, (5.4)

where m = n+ j. Our estimate becomes

P(Aα1,n) <
2m(1−α2

1)(1 − p)

(2m(1−α2
1
) − 2mp)2

.

through the use of (5.4), and using (5.5) we obtain

P(Aα1,n) ≤ 2m(1−α2
1)(1 − 2mα2

1/m)

(2m(1−α2
1
) − 2mp)2

.

Not only can some quick calculation show that this term tends to zero as n tends
to infinity, but we also have that the sum of all the terms converges, because of
the inequalities

P(Aα1,n) <
2m(1−α2

1)(1 − 2mα2
1/m)

(2m(1−α2
1
) − 2mp)2

<
2m(m2−mα2

1 − 2m(α2
1−α12))

m(2m(1−α2
1
) − 2m)2

≤ 2(1−α2
1)m

m(2m(1−α2
1
) − 2m)2

< 2
2(1−α2

1)m

2m
since (2−α2

1m − 1)2 >
1

2
for m large

=
2

2m(1+α2
1
)
.

Seeing the above as the first step in constructing our cover, we can now proceed
to larger values of n and α1 to find intervals of smaller diameter. For such larger
values the above inequalities will still hold. We also consider, for each larger
value of n, a larger value αi, where α1 < αi−1 < αi < α. If we now consider, for
a specific sequence {αi}i∈N, the collection of intervals given by all the Bα1,n, we
obtain a cover of A. Although we have constructed the sets as unions of closed
intervals, they may as well be considered to be made up of open intervals, since
the set of dyadic rationals which are also rapid points have Hausdorff dimension
0. Although the compactness of the set ensures that we could find a finite
subcover, we do not actually need to find such a cover here, since the number
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of intervals used is small enough. If we now consider the α1-Hausdorff sum for
the cover of A obtained by the above process, we get an expression smaller than

∑

|Bαi,n|21−α2
1(n+j)

<
∑

2(n+j)(1−α2
i )2(−1−α2

1)(n+j)

= 2(α2
1−α2

i )(n+j)

which is bounded, with an exceptional probability which is as close to 0 as we
wish (since the sum of the probabilities of each exceptional case can be made
arbitrarily small by simply starting our construction at a larger value of n).
This holds for all the 1 − α2

i -Hausdorff sums. Since A is contained in the set
whose dimension we are now approximating, it must follow that dimA ≤ 1−α2,
with probability 1. �

Lemma 5.3. There exists a constant c < 1 such that Brownian motion almost
surely satisfies relation 5.2; that is, for large enough n,

|{0 ≤ k ≤ b2n − 1 : ∃t ∈ [kb2−n, (k + 1)2−n + 2−j ](2n/2|f(k + 1)2−n) − f(t)|
≥ α

√

2n log 2}| ≥ c2(1−α2)(n+j).(5.5)

Proof. We again use a binomial distribution on the set of intervals, viewing
it as a Bernoulli trial with probability of success p (as calculated in Theorem
6.5) and using another estimate of the binomial tail from [10], we find that

P

({

Sm ≤ 1

2
2(1−β2)m

})

≤ (m− r)p

(mp− r)2

=
(2m − 1

22(1−β2)m)2−β2m2o(1)

(2(1−β2)m2o(1) − 1
22(1−β2)m)2

=
2o(1)(2(1−β2)m − 1

22(1−β2)m)

(2o(1)2(1−β2)m − 1
22(1−β2)n)2

.

This clearly tends to 0 and thus the probability of more than 1
22(1−β2)m successes

in 2m trials goes to 1, which proves the lemma. �

It now follows trivially from the previous two lemmas that the α-rapid points
of a Brownian motion have almost surely a Hausdorff dimension of 1 − α2.

This theorem has the following interesting (but simple) result as conse-
quence [31]:

Corollary 5.4. For a Brownian path Xω = X,

dim

{

t : lim sup
h→o

X(t+ h) −X(t)

(2h log log h−1)
1
2

= ∞
}

= 1

with probability 1.
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Proof. It is easily seen that that for each α, the set of α-rapid points has
the property of the above set, with probability 1 (the iterated logarithm is too
weak to “contain” the growth at the rapid points). The above set therefore
contains all the E(α) and has dimension 1, with probability 1. �

We also remark that the theorem can quite easily be extended to higher
dimensions, with the most notable change being the replacement of X(t+ h)−
X(t) by the Euclidean distance |X(t+ h) −X(t)|.

As mentioned in the introduction, the notable feature of this version of the
proof is the pathwise approach it takes. In the next section we will repeatedly
use the probability that a section contains an α-rapid point, approximated by
hα2

ho(1), where h is the length of the interval. This is very close to our approxi-
mation of the ratio of intervals which are picked at any stage. The probability of
the paths having a certain property is therefore somehow reflected in each path.
This ratio is used in Section 6.2 to find upper and lower bounds on the total
mass of a measure, while the probability will lead us to the domain of validity
of the measure. As we shall see, these two in combination give us a Salem set.
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6 The Fourier dimension of rapid points

6.1 Introduction

In this chapter we explore a subtler property of the rapid points of Brown-
ian motion than their Hausdorff dimension. The main result of this chapter is
attributable to Kaufman [22], but since his proof is perhaps not entirely trans-
parent (and sometimes inaccurate) we feel it is worthwhile giving an exposition
thereof.

The Hausdorff dimension of a set gives us a measure of the “thinness” of the
set. As we shall show shortly, when it is regarded as a capacitarian dimension, it
can also yield information on the asymptotic behaviour of the Fourier transform
of measures supported by the set.

Given a measure µ on our usual set [0, 1], we define the Fourier transform of
µ as

µ̂(ξ) =

∫

[0,1]

eiξxdµ(x).

We then have the following result, which is a statement about capacity in terms
of Fourier transforms:

Theorem 6.1. If A ⊆ Rd is a compact set, then the dimension of A is the
supremum of all α for which there exist a positive measure µ such that

∫

Rn

|µ̂(ξ)|2|ξ|α−ddξ <∞.

Proof. Recall from Definition 3.1 that a compact set A ⊂ Rd is said to
have a positive capacity if it carries a positive measure µ such that the following
integral is finite:

Iα(µ) =

∫ ∫

dµ(x)dµ(y)

|x− y|α .

It follows from the Fourier analysis of Schwartz distributions that there is a
constant C = C(d, α) such that

Iα(µ) = C

∫

Rd

|µ̂(ξ)|2|ξ|α−ddξ,

as for example on p.162 of [29]. The result follows. �

Sometimes more precise information about µ̂ is required. In harmonic analy-
sis, one of the most important problems is that of the uniqueness and multiplicity
of sets. A compact set E ⊆ T = R/Z is called a set of (restricted) multiplicity
if there is a measure supported on T such that the trigonometric series

∑

n∈Z

µ̂(n)e2πinx

vanishes everywhere outside E. These sets are sometimes called M0-sets. The
concept can be extended:
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Definition 6.1. An Mβ-set is a compact set in Rn which carries a measure
µ such that µ̂(ξ) = o(|ξ|−β) as |ξ| → ∞. For a compact set E, we call the
supremum of the α such that E is an Mα/2-set, the Fourier dimension of E.
We shall denote this by dimFE.

The Fourier dimension is a somewhat more elusive character than Hausdorff
dimension (dimE). They are usually different, as for instance in the case of
the triadic Cantor set, which has positive Hausdorff dimension but a Fourier
dimension of 0 [24]. The following lemma shows that the dimensions are related;
specifically, that the Fourier dimension is majorised by the Hausdorff dimension.

Lemma 6.2. For a compact set E ⊆ Rd, dimEF ≤ dimE.

Proof. We use the previous theorem. Suppose that dimFE > 0. Choose
0 < α < β < dimFA. Then there exists some µ ∈ M+(E) (the set of strictly
positive measures on E) with |µ̂(ξ)|2 = o(|ξ|−β) as ξ → ∞. In addition there
are constants C and C1 such that

Iα(µ) = C

∫

|µ̂(ξ)|2|ξ|2−ddξ

≤ C1

∫

|ξ|≥1

dξ

|ξ|d+(β−α)
+ O(1).

Thus, CapαE > 0, and dimE ≥ dimFE. �

One of the interesting aspects of Fourier, as opposed to Hausdorff, dimension
is its arithmetical properties, as illustrated by the following theorem.

Theorem 6.3. If E has a strictly positive Fourier dimension, then the abelian
group generated by E is the entire ambient Euclidean space Rn.

Proof. We use the following result of Steinhaus [35] in the proof: If E ⊆ Rn

is such that its Lebesgue measure exists and is non-zero, then for some ε > 0,

B(ε) = {x : ‖x‖ < ε} ⊂ E − E,

where E − E is defined as the set {x− y : x, y ∈ E}.
Let α > 0 be such that for some µ ∈M+(E),

|µ̂(ξ)|2 = o(|ξ|−α) for |ξ| ≥ 1.

Set ν = µ ? · · · ? µ, the convolution product of µ with itself, k times, where k is
large enough that kα > n. From the well-known properties of convolution we
have

|ν̂(ξ)|2 = |µ̂(ξ)|2k = o(|ξ|−kα),

implying that suppν has positive Lebesgue measure (through the use of Parse-
val’s theorem). But suppν ⊂ suppµ + · · · + suppµ (k times) and therefore, for
some ε > 0,

B(ε) ⊂ (E + · · · + E) − (E + · · · + E)
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(the difference of E summed k times and itself). Since R =
⋃

n≥1 nB(ε), we can
conclude that the abelian group generated by E is Rn. �.

When the Fourier and Hausdorff dimensions of a set coincide, it is called
a Salem set, after Raphael Salem. The first (nontrivial) set known to have
this property almost surely was constructed by Salem [34]. Trivial examples
of such sets are the balls in any dimension; for example, the interval [0, 1] has
both dimension equal to one (as a subset of R), and the appropriate measure in
both cases is the Lebesgue measure. For quite a while the only Salem sets were
random sets. Gatesoupe [14] showed how to construct Salem sets of arbitrary
dimension 0 < α < d for d > 1 by using rotations, given Salem sets in R of
Fourier dimension β, 0 < β < 1. Only in 1981 did Kaufman [23] devise a way to
construct Salem sets of arbitrary dimension 0 < α < 1, with certainty. In 1996
C. Bluhm [5] expanded this construction. We give a summary of Bluhm’s result
in the following section, since in section 6.2 we will consider the probabilistic
construction of Salem sets. Also worth mentioning is the result of Rudin [33],
using a set introduced by Salem: There exist M0-sets which are independent in
Rd over the rationals. Such a set carries a pseudomeasure which is not a measure,
but all discrete measures it carries have the same norm whether considered as
pseudomeasures or measures. For a wide class of thin sets, the Brownian image
of the set is a Rudin set, i.e. an M0-set independent over the rationals.

6.1.1 Construction of a deterministic Salem set

First, we fix some notation to be used in this section. For x ∈ R,

‖x‖ = minm∈Z|x−m|.
The set of prime numbers will be denoted by P, and we let PM = P ∩ [M, 2M ].
The inspiration for the construction is the set of α-well-approximable number,
defined as

F (α) =

∞
⋂

k=1

∞
⋃

q=k

{x ∈ [0, 1] : ‖qx‖ < q−1−α}.

The Hausdorff dimension of this set is 2/(2 + α). This has been known for
quite some time, since the work of Jarnik [20] and Besicovitch [3]. Although
the set Sα to be defined momentarily resembles F (α) strongly, the set of α-
well-approximable number is dense in [0, 1], which Sα is not. Also used in the
paper of Bluhm is the prime number theorem in the following by Hardy and
Wright [15]:

lim
M→∞

#PM

M/ logM
= 1

where #PM denotes the number of prime numbers smaller than M . For the
Cantor-type construction that is used, a sequence of integers (Mk)k∈N is con-
structed recursively, satisfying

M1 < 2M1 < M2 < 2M2 < M3 < 2M3 < · · · .
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Furthermore, according to the prime number theorem we can find such a se-
quence which also satisfies, for every k ∈ N,

PMk
6= ∅ and #PMk

≥Mk/(2 logMk).

We now consider the following set:

F̄q(α) = {x ∈ [0, 1] : ‖qx‖ ≤ q−1−α}.

We conclude that the set is compact by writing it as a union of closed intervals:

F̄q(α) = [0, q−2−α] ∪
(

q−1
⋃

m=1

[

m

q
− q−2−α,

m

q
+ q−2−α

]

)

∪ [1 − q−2−α].

The set which then carries an appropriate measure for it to be a Salem set of
dimension 2/(2 + α) is defined by

Sα =

∞
⋂

k=1

⋃

p∈PMk

F̄p(α).

The nonzero measure µα constructed by Bluhm on the set Sα satisfies the decay
condition

µ̂α(x) = o(log |x|)|x| −1

2+α , |x| → ∞.

6.1.2 The occurrence of Salem sets in Brownian motion

Thus far it may appear that Salem sets are extremely rare and possibly of little
intrinsic value. However, once we turn to random sets, specifically those associ-
ated with Brownian motion, Salem sets seem to arise naturally and often. For
instance, consider any subset of [0, 1] of Hausdorff dimension (strictly) between
0 and 1/2. We have seen in Chapter 4 that the dimension doubles under the
action of Brownian motion; perhaps even more interestingly, the set has be-
come a Salem set [21]. When the dimension of the original set is larger than
1/2, its dimension clearly cannot be doubled, since both Hausdorff and Fourier
dimensions are bounded by 1. The image does however attain this maximum,
and what is more, will contain a set of positive Lebesgue measure [21] (clearly,
Brownian motion does not respect topological dimension either). For a thorough
study of Brownian images and Salem sets, there is a whole series of (difficult)
papers by Kaufman, as listed on p.289 of [21].

There is another instance where the Brownian motion brings forth Salem
sets which we will examine closely in the next section (again, due to Kaufman).
We have already concerned ourselves with the Hausdorff dimension of the rapid
points. What is more surprising than these properties is the fact that this
“encoding” of the dynamics of Brownian motion as a linear set also generates a
set with similar Fourier dimension, almost surely.
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There are still many questions remaining in the study of Fourier dimensional
properties of Brownian motion. It is (to the author’s knowledge) not yet known
what the Fourier dimension of the zeroset of Brownian motion is, although we
have seen in an earlier chapter that it has a Hausdorff dimension of 1/2. We
have clearer results for sets of Hausdorff dimension unequal to 1/2, but still do
not entirely understand why this dividing line has such an effect on dimension.

6.2 Large increments of Brownian motion

The main result of this section is the following:

Theorem 6.4. (Kaufman [22]) With probability 1, a certain compact subset
of Eα, the α-rapid points of a given Brownian motion X, carries a probability
measure µ such that µ̂(ξ) = o(ξ

1
2
(α2−1)), 1 ≤ ξ < ∞. That is, Eα is a set of

Fourier dimension 1 − α2.

In proving this we will need a lemma. Suppose that {ξn;n ≥ 1} is a set of
independent random variables with a common distribution

P{ξn = 1} = p = 1 − P{ξn = 0}.

We want estimates for sums of the form
∑

(p − ξn)an. Let σ2 =
∑ |an|2. We

let B = max|an|.

Lemma 6.5. Provided that Y B < 2pσ2 and all else as above,

P{|
∑

(p− ξn)an| ≥ Y } ≤ 4

(

exp−1

4
p−1σ−2Y 2

)

. (6.1)

Proof. We use a basic inequality that can be easily obtained by writing out
the series expansion of e:

pet(1−p) + (1 − p)e−pt ≤ 1 + p(1 − p)t2 ≤ et2p,

which is valid for 0 ≤ p ≤ 1, −1 ≤ t ≤ 1. We now turn to Chebyshev’s
inequality, which states that

P{X ≥ k} ≤ 1

k
E(X)

for any random variable X with finite expectation. Kaufman mentions that he
deduces the final inequality by using Chebyshev, but it is never indicated how
this should be done. We now give the details required to obtain an estimate of
the probability

P{|
∑

(p− ξn)an| ≤ Y }.

Note that this will be the same as the probability

P{e|
�

(p−ξn)an| ≤ eY }.
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Set X =
∑

(p − ξn)an. Because of the assumed independence of the ξn, the
expected value of etX can be evaluated by the integral

∫

etXdP =

n
∏

i=1

∫

e−(p−ξn)antdP

=
∏

(pe−(1−p)ant + (1 − p)epant)

≤
∏

ept|an|2

= eptσ2

.

Note that we have used the basic inequality repeatedly with ant instead of just
t, and must require that 0 ≤ max |an|t ≤ 1. It then follows that

P{X ≥ Y } ≤ et2pσ−tY .

By symmetry we can conclude that

P{|X| ≥ Y } ≤ 2 exp(ptσ2) exp(−tY ). (6.2)

We now choose a specific value of t to minimise the right-hand side of the
inequality. It is easily seen that t = Y/2pσ2 is such a value. This yields

P{|X| ≤ Y } ≤ 2 exp

(

−1

4
p−1σ−2Y 2

)

,

as long as Y B ≤ 2pσ2. We do still require an inequality for complex values of
an and can obtain a rough but useful one by considering the above for separate
real values and considering the probabilities of |X| ≤ Y/2, and then doubling
the right hand side. We then obtain

P{|X| ≤ Y } ≤ 4 exp

(

−1

4
p−1σ−2Y 2

)

.�

To proceed with the proof of the theorem we need some further inequalities.
Let

S = max |X(b) −X(a)|, 0 ≤ a < b ≤ 1.

The exact distribution of S was found by Feller [10], but we need only an
approximation of the following form:

P{S ≥ Y } = exp(−1

2
Y 2) exp o(Y 2), Y → ∞.

In the original paper it is never mentioned how one arrives at this probability
(except for indicating that it is a consequence of the reflection principle and
the Gaussian distribution). We obtain this estimate from the distribution of
Brownian motion and from the reflection principle as follows: The maximum
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difference will clearly exceed Y if M(1) (the maximum of a path over [0, 1])
exceeds Y , since m(1) (the minimum over [0, 1]) is almost surely less than 0.
By André’s reflection principle (see, for instance [19]), we have

P{M(1) ≥ Y } = 2P{B(1) ≥ Y }.

The probability we want to estimate is clearly larger than this (obviously more
than twice as large, again by the reflection principle).
To get an upper bound, consider the two Markov times τm(ω) and τM (ω) which
signify the t ∈ [0, 1] on which the Brownian path reaches its minimum and
maximum for the first time, respectively. (These passage times are well-defined;
see for instance p.25 of [18].) We create a new time by taking the least of the
two:

τ(ω) = min(τm(ω), τM (ω)).

With this Markov time we form a new Brownian motion, which is the old one
reflected about τ :

B1(t) = 2B(τ(ω)) −B(t).

Now, all paths for which S ≥ Y will have the property that the corresponding
paths of B1 have maxima or minima exceeding Y . However, all of the reflected
paths which have this property do not necessarily have that S ≥ Y for the
original Brownian motion. The probability of this set therefore provides the
upper bound we seek. Explicitly, the probability is given by

P{M(1) ≥ Y or m(1) ≤ Y }
= P{M(1) ≥ Y } + P{m(1) ≤ −Y } − P{M(1) ≥ Y and m(1) ≤ −Y }
= 4P{X(1) ≥ Y } − P{M(1) ≥ Y and m(1) ≤ −Y }
≤ 4P{X(1) ≥ Y }

We have therefore that the desired probability is bounded from above and below
by terms which are both e−

1
2
Y 2

eo(Y 2) (since that is also the distribution of the
tail of Brownian motion) and can therefore be approximated by the same form.

Suppose now that

g(h) =
√

2h log h−1

Next we want to use this to find the probability of the event

X(h) −X(t) ≥ (β − 2b
1
2 )g(h),

where h tends to 0, 0 < β < 1 and b is the reciprocal of an integer (which we
will later assume to be large enough for our purposes).
Kaufman obtains this by combining the probabilities of two events. His reason-
ing, however, is not clear, since the events are very much not independent, and
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do not necessarily lead to the desired approximation. We now indicate how this
probability can be estimated.

We will need the estimate of the tail of Brownian motion in the following
form [31]:

P{X(t+ h) −X(t) > λh
1
2 } = e−

1
2
λ2(1+o(1)). (6.3)

The desired probability will be larger than the probability of the maximum
fluctuation over [0, h] being greater than βg(h) and the maximum over 0 ≤ t ≤
bh being less than 2b

1
2 . This is given by

P{S([0, h]) ≥ βg(h)} − P{M([0, bh]) ≥ 2b
1
2 g(h)}.

Using 6.3, we approximate the first part by

P{S([0, h]) ≥ βg(h)} = exp [β2 log h+ o(β2 log h−1)]

= hβ2

(1 + 0(1)). (6.4)

In approximating the second part, we use the fact that the probability of
{X(bh

1
2 ) ≥ b

1
2Y } is equal to that of {X(h) ≥ Y } (see Proposition 1.3.2). Setting

Y = 2b
1
2 g(h), we get

P{M([0, bh]) ≥ 2b
1
2 g(h)} = 2P{X(bh) ≥ 2b

1
2 g(h)}

= 2P{X(h) ≥ 2bg(h)}
= e−

1
2
Y 2

eo(Y 2)

= exp [(4 log h)(1 + o(1))]

= h4(1+o(1)). (6.5)

Subtracting 6.5 from 6.4, we find a probability of hβ2

(1+ o(1)−h4ho(1)). In his

paper, Kaufman uses the fact that the probability is larger than hβ2

ho(1). Note
that, as the second term in our probability also approaches 1, we may use the
same approximation.

We can now start our construction. Let 0 ≤ r < s ≤ 1 and let In be a
division of the interval (r, s) into N equal intervals of length (s − r)N−1. We
further subdivide each interval In into intervals Iq

n of length (s− r)bN−1, where
we assume that b−1 ∈ Z and 1 ≤ q ≤ b−1. We select Iq

n with lower extremity x
if

X(x+ h) −X(t) ≤ (β − 2b
1
2 )g(h) on x ≤ t ≤ x+ bh,

where h is the length of the interval. The selection of the intervals Iq
n (1 ≤

n ≤ N) are mutually independant for each q, with the probability p = pN ≥
N−β2

No(1) for large N , as shown above. Let µ0 be Lebesgue measure on [r, s]
and let ξ be the characteristic function of the selected intervals. For a Borel
subset A of [r, s], define

µ1(A) = p−1ξ(A)µ0(A).
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(We suppose that ξ(A) = 1 if there is some x ∈ A such that ξ(x) = 1, and
ξ(A) = 0 otherwise.)

Lemma 6.6. For any ε > 0 and large enough N , the inequality

|µ̂1(u) − µ̂0(u)| < ε(1 + u)
1
2
(α2−1)

holds for all u > 0, with probability approaching 1 as N → ∞.

Proof. Each q = 1, . . . , b determines a decomposition µ1 =
∑b−1

q=1 µ
q
1 and

µ0 =
∑b−1

q=1 µ
q
0. Because b is fixed it suffices to prove the inequality for each

pair µ̂q
1 and µ̂q

0 (each of which is already a summation over 1, . . . , N) and we
drop the superscript from now on. By letting fn(u) be the Fourier transform of
Lebesgue measure, we get that

µ̂0(u) − µ̂1(u) =

N
∑

n=1

(1 − p−1ξn(u))fn(u),

where |fn(u)| ≤ 2|u|−1. We set C(u) = max |fn(u)| and rewrite the sum as in
Lemma 6.5:

∣

∣

∣

∣

∣

N
∑

n=1

(p− ξn)fn(u)

∣

∣

∣

∣

∣

< εp(1 + u)
1
2
(α2−1), (6.6)

where B = C(u) and σ = NC2(u). We now divide up the positive reals and
prove inequality 6.6 for each section.

Suppose 0 < u ≤ N . On this interval we replace fn(u) with an upper bound
for max |fn(u)|, which is 2N−1 and σ2 with the upper bound N−1. Since the
new sum is larger, proving the new inequality will imply the original one. We
can also easily enough get rid of the factor 2 and replace the upper bound for
max |fn(u)| by N−1. Now let Y = εpN

1
2
(α2−1). We are therefore considering

the inequality

P
{∣

∣

∣

∑

(p− ξn)N−1
∣

∣

∣
≥ εpN

1
2
(α2−1)

}

. (6.7)

Lemma 6.5 is applicable because

Y B = εpN−1N
1
2
(α2−1) < pN−1 = pσ2.

Lemma 6.5 then gives us a probability of less than 4e−
1
2
p−1N2Y 2

. Some quick
calculation shows that

p−1N2Y 2 ≥ cε2Nα2β2−1No(1), (6.8)

which is larger than N δ for some positive value of δ. For u > N we need a
slightly finer approximation, but the same principle is in operation. We set
B = 2u−1, σ2 = 4Nu−2 and Y = εpu

1
2
(α2−1). Again, to apply Lemma 6.5
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we must verify that Y B < 2pσ2: Comparing the two sides we find that it will
certainly be true when uα2+1 < N2. Calculating the probability we find an
exponent of

1

4
cε2pN−1uα2+1, (6.9)

which because of our estimation of p and the fact that u > N , is larger than N δ

for some δ > 0.
When uα2+1 ≥ N2, we choose a small constant 0 < η < 1 and set t = ηB−1.

Using this in 6.2, we find that the exponent of the probability is

t2pσ2 − tY = η2pN − 1

2
ηuεpu

1
2
(α2−1)

≤ η2pN − 1

2
ηuεN1+β2

No(1)

≤ η2N − 1

2
ηεN2+β2

No(1). (6.10)

The inequality will then hold for the finite number of u which can be represented
as u = jN−2, 0 ≤ j ≤ N4, except on a set of measure exp(−N δ1), where
δ1 = min{δ(u)|u = jN−2; 0 ≤ j ≤ N4}. Because the expression µ̂1(u) − µ̂0(u)
has derivative of at most 2, we interpolate between the fractions to find that for
all u in the interval,

|µ̂1(u) − µ̂0(u)| < ε(1 + u)
1
2
(α2−1) +

2

N2

with probability at least 1− exp(−N δ), which still implies the statement of the
lemma.

For those u > N2, we find in inequality 6.9 an upper bound of

η2N − 1

2
ηεN3+β2

No(1), (6.11)

which is independent of u and also tends to 0 as N → ∞. Originally, this case
was handled by the inequality

‖µ̂1‖ < 2u−1p−1
∑

ξn < 4u−1N = o(u−
1
2 ).

We fail to see how this leads to the required result. It can, however, be done as
follows: We find the largest of the estimates 6.8 - 6.11, which gives us a certain
upper bound on the probability of the extraordinary event. This upper bound
tends to 0. The implication is, of course, that by enlarging N we can make the
probability arbitrarily small. Thus follows the lemma. �

We now proceed to the proof of Theorem 6.4.We let β1 = β − 2b−
1
2 tend to

α such that the difference is a sequence η1, η2 = η2, η3 = η3, . . . converging to
0, where η1 < 1/2. Now assume that the construction in the lemma has been
accomplished on the interval [0, 1], with N = N1 such that the lemma holds
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except on a set of probability at most η1. We then create a measure µ2(A) =
p−1
2 ξ2(X)µ1(A), with p2 and ξ2 being the probability and characteristic function

applicable to a difference (between α and β1) of smaller than η2, respectively.
Note that p2 here refers to the probability associated with a division of into N2

intervals (since we use the number of intervals to approximate the probability),
and therefore p1 is still taken into account. Lemma 6.6 is not shown in [22] to
lead to similar results for all n. How the iterated construction of µn (which is
crucial to the theorem) is accomplished is not mentioned either.

The lemma can now be applied to show that

|µ2(u) − µ1(u)| <
ε

4
(1 + u)

1
2
(α2−1)

with probability approaching 1. The difference in applying the lemma with a
“starting measure” of µ1 as opposed to µ0 is a factor p−1

1 ξn. We can factor out
p1 and bound the characteristic function by 1, and since p1 is fixed (since N1

is) we can adjust the ε to obtain the necessary inequality. We suppose that N2

is chosen large enough so that the lemma holds except on a set of maximum
measure η2 = η2.

A direct consequence of Lemmas 5.2 and 5.3 is that the total mass of the
consecutive measures are bounded from above by 1 and from below by some
constant c strictly larger than 0, for all N large enough. This follows because
the proofs of the lemmas are still valid when the interval-ratio hβ2

is replaced
by a term hβ2

ho(1). The constant c is absolute, thus we can be assured that
none of the measures converge to zero. At each stage we then normalise the
measures to maintain a total mass of 1 throughout. It is asserted in [22] that
the measures have weight smaller than 1 + η + · · · + ηn at each stage, but no
argument supporting this is given.

Taking into account that the supports are nested as well, these measures
converge to a measure µ on a subset of Eα. This satisfies

|µ̂1(u) − µ̂n(u)| < ε2−n(1 + u)
1
2
(α2−1).

This measure has the required property, because

|µ̂(u) − 0| ≤ |µ̂(u) − µ̂n(u)| + |µ̂0 − 0|
≤ ε(2−n + · · · + 2−2 + 1)(1 + u)

1
2
(α2−1) + |µ̂0(u)|

and therefore

|µ̂(u)|
(1 + u)

1
2
(α2−1)

≤ 2ε+
2u−1

(1 + u)
1
2
(α2−1)

.

This last expression clearly approaches 2ε as u → ∞. We therefore have, for
arbitrarily small ε and η, a measure µ which has the desired property except
on a set of measure less than 2η. Here is where Kaufman concludes his proof of
the theorem. We feel, however, that it is necessary to complete the argument
as follows.
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Our measure was determined by our choices of ε and η. These basically
determine how large N should be chosen at each stage. The question now is
whether different choices of (ε, η) yield different measures µ. Given a sequence
{εi, ηi}, where both components tend to 0, we can find a sequence of measures
µ(εi, ηi), each of which satisfies the same relations as the measure we have
constructed above. We have obtained a sequence {N1

i } for the construction
of the measure µ(ε1, η1). In the construction of µ(ε2, η2), we can assume that
the sequence {N2

i } is a subsequence of {N1
i }, since the size of the chosen N at

each stage is really all that matters. Because of the nature of the construction,
this implies that smaller ηi and εi simply assume that the same construction is
started with a larger Ni, but will have the same limit. This implies that µ is
indeed the required measure.
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7 Appendix

As a short digression we will give a summary here of part of Orey and Taylor’s
proof that the α-rapid points of Brownian motion have dimension 1− α2. This
is a beautiful application of the power that Cantor-like sets may indeed posses
(Mandelbrot [28] employs the term “Cantor dusts”), since the lower bound of
dimension is determined through that of a Cantor-like subset. We will need
the concept of a Hausdorff measure function. In our previous use of Hausdorff
sums we merely raised the diameter of each set in the cover to a power α.
This corresponds to a Hausdorff measure function ψ(x) = xα. We define the
ψ-Hausdorff measure of a set a in exactly the same way as the α-Hausdorff
measure in Chapter 1, except that the terms |B|α in the sums are replaced by
ψ(|B|). The ψ-Hausdorff measure of A is denoted as ψ −m(A).

Before we start the proof proper, we present a lemma concerning Cantor-like
sets.

Lemma 7.1. Suppose that ψ is a Hausdorff measure function and c > 0, δ > 0.
Let K be a Cantor-like set with representation

K =

∞
⋂

m=1

Em, Em+1 ⊆ Em, Em =

Mm
⋃

i=1

Im,i,

where the Im,i (1 leqi ≤Mm) are disjoint closed subintervals of [0, 1]. Then

ψ −m(K) > 0

if, for every interval J ⊆ [0, 1] with |J | < δ, there is a finite integer m(J) such
that

Mm(J) ≤ cψ(|J |)Mm for m ≥ m(J), (7.12)

where Mm(J) denotes the number of intervals Im,i (1 ≤ i ≤ Mm) contained in
J .

This lemma can be used to show that ψ −m(K) = 1 for the classic Cantor
triadic set, as shown in Chapter 3.

The easier part of the proof, which we consider first, considers the upper bound
for the dimension. We define, as in Chapter 6,

S(a, b) = max
a≤<s<t≤b

|X(t) −X(s)|,

where X of course represents a Brownian motion. When [a, b] = I, we define
S(I) in the obvious way. We let E(α) (α > 0) denote the set of α-rapid points
of X, as usual. Take α2 < α1 < α and consider the collection I = I(α1) of
intervals I ⊆ [0, 1] such that

S(I) > α1(2h log h−1)
1
2 , |I| = h.
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Using the estimate

P{S(I) > λ|I| 12 } = e−
1
2
λ2(1+o(1))

for the upper tail of S(I), we can conclude that there is a δ = δ(α2) such that

P{I ∈ I} < |I|α2
2 , 0 < |I| < δ.

Let Cn consist of all closed intervals of length hn = exp−n/ log n and left-hand
endpoints ih/ log n (i = 0, 1, 2, . . . , [h−1

n log n]). To any point t ∈ E(α) there
corresponds a sequence of intervals In = [t, t+ un] such that un → 0 and

S(In) >
1

2
(α1 + α)(2un log u−1

n )
1
2 .

For small enough un, each such In is contained in one of the intervals Cm∩I for
suitable m. Each point of E(α) is therefore covered infinitely often by intervals
from the collection

⋃∞
m=1 Cm∩I. The above estimate for the tail of S now yields

E{Tm} ≤ (h−1
m logm)h

α2
2−1

m logm.

Thus, for each ε > 0,

P{Tm > h
α2

2−1−ε
m } ≤ hε

m logm.

By using the Borel-Cantelli lemma we can show that almost surely there is an
integer m0 = m0(ω) such that

Tm ≤ h
α2

2−1−ε
m , m ≥ m0.

Therefore
∑

Tmh
s
m <∞, s > 1 − α2

2 + ε

and dimE(α) ≤ 1 − α2
2 + ε. Letting ε→ 0 and α2 → α through countable sets,

we find that

dimE(α) ≤ 1 − α2.

To prove the opposite inequality, they consider a collection I of intervals [u, v] ⊆
[0, 1] such that

X(v) −X(u) ≥ α
√

2(v − u) log (v − u)−1,

whereX of course represents a Brownian motion. The Lévy modulus (mentioned
in Chapter 1) tells us that

|X(t) −X(s)| < 2
√

|t− s| log |t− s|−1
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for |s− t| small enough. Given some α0 > α, this then guarantees the existence
of some b = b(α, α0) such that for a sufficiently small interval I = [u, v] ⊆ [0, 1],

X(v) −X(u) > α0

√

2(v − u) log (v − u)−1 (7.13)

implies that [t, v] ∈ I for all t ∈ I(b) = [u, u+ b(v−u)] ⊆ [u, v]. We can assume
b to be the reciprocal of an integer. Now, suppose that ρm is the reciprocal of an
integer, ρm+1 < bρm and bρm/ρm+1 is an integer for all integer m. We then let
Fm be the class of all intervals of the form [iρm, (i+1)ρm], i = 0, 1, 2, . . . , p−1

m −1
and let F+

m denote the sequence of those intervals in Fm which satisfy (7.2) with
α0 replaced be α. Let

F+
m(b) = (I(b) : I ∈ F+

m).

A sparse subsequence of F+
m(b) is then used to construct a Cantor-like subset of

the set of α-rapid points, which may be quite sparse but still has large enough
dimension.

Now, if J is a sub-interval of [0, 1], we denote by Nm(J) the random variables
which count the number of intervals I of F+

m contained in J and we let Nm =
Nm([0, 1]). These variables have a binomial distribution, which leads to the
following:

Lemma 7.2. Given ε > 0, δ > 0, then there almost surely exists an integer m0

such that

|Nm(J) − E{Nm(J)}| < εE{Nm(J)}

for all J ⊆ [0, 1] such that |J | ≥ δ, and all m ≥ m0(ε, δ).

This takes care of the intervals that are large compared to ρm, but does not
quite work for the small ones. For these we use the following:

Lemma 7.3. Given β0 < β = 1− α2
0, there is an absolute constant c such that

almost surely there is an m1 such that

Nm(J) ≤ c|J |β0Nm

for all J ⊆ [0, 1] with |J | ≤ ρm, m ≥ m1.

Combining these we have constructed a Cantor-like set which has dimension
close to 1 − α2. By then having α0 converge to α and ε converge to zero,
the theorem is proved. It should be noted that these are significant steps by
themselves, since convergence in the area of dimension is not always clear cut.
For instance, a nested sequence of Cantor-like sets of dimension 1 can converge
(by taking the intersection) to a set of dimension 0.
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