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Abstract 

 

Mathematics plays a pertinent role in physics. Students‟ understanding of this role has 

significant implications in their understanding of physics. Studies have shown that some 

students prefer the use of mathematics in learning physics. Other studies show mathematics 

as a barrier in students‟ learning of physics. In this study the role of mathematics in students‟ 

understanding of electricity problems was examined. The study undertakes a qualitative 

approach, and is based on an intepretivist research paradigm. 

A survey administered to students was used to establish students‟ expectations on the use of 

mathematics in physics. Focus group interviews were conducted with the students to further 

corroborate their views on the use of mathematics in physics. Copies of students‟ test scripts 

were made for analysis on students‟ actual work, applying mathematics as they were solving 

electricity problems. 

Analysis of the survey and interview data showed students‟ views being categorised into 

what they think it takes to learn physics, and what they think about the use of mathematics in 

physics. An emergent response was that students think that, problem solving in physics 

means finding the right equation to use. Students indicated that they sometimes get 

mathematical answers whose meaning they do not understand, while others maintained that 

they think that mathematics and physics are inseparable.  

Application of a tailor-made conceptual framework (MATHRICITY) on students work as 

they were solving  electricity problems, showed activation of all the original four 

mathematical resources (intuitive knowledge, reasoning primitives, symbolic forms and 

interpretive devices). Two new mathematical resources were identified as retrieval cues and 

sense of instructional correctness. In general, students were found to be more inclined to 

activate formal mathematical rules, even when the use of basic or everyday day mathematics 

that require activation of intuitive knowledge elements and reasoning primitives, would be 

more efficient. 

Students‟ awareness of the domains of knowledge, which was a measure of their 

understanding, was done through the Extended Semantic Model. Students‟ awareness of the 

four domains (concrete, model, abstract, and symbolic) was evident as they were solving the 

electricity questions. The symbolic domain, which indicated students‟ awareness of the use of 

symbols to represent a problem, was the most prevalent. 

 

Key terms; first year physics students; mathematics in physics; mathematical resources; 

intuitive mathematics; reasoning primitives; extended semantic model; electricity problems; 

students understanding  
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Chapter 1 Introduction and Background 

 

When on the morning of 09 June, 2014, as I was right in the middle of my write-up of this thesis, a 

colleague from the administration department walked into my office, saw a periodic table on the wall 

and commented, “eish this one… this  ...this ...this chemistry, physics I never really understood a 

thing at school. But you know I was good in mathematics but this one...this one … I never really got 

it”. 

I responded with a subtle but wry smile, because: 

1. She just talked about what I was doing and have been studying for the past five years (and she did 

    not know that). 

 

2. It also showed how individuals (even those seemingly lay in the science context) have a positive 

    expectation about one‟s ability in mathematics, relative to the physical sciences! 

 

1.1 Introduction  

 

Studies have shown that mathematics has a significant role to play in students‟ learning of 

physics. Others studies doubt whether we know exactly the type of role. Thompson, 

Christensen, Pollock, Bucy, and Mountcastle (2009) declare that specific mathematical 

concepts are required for a complete understanding and appreciation of physics. Uhden, 

Karam, Pietrocola and Pospiech (2012) on the other hand posit that knowledge about the 

supportive use of mathematics in physics is still fragmented. However, physics education 

research has shown that in understanding physics, conceptualization and problem solving are 

two key factors. Problem solving is described as the heart of the work of the physicist (Fuller, 

1982). Hestenes (1987) says problem solving is a process that involves following appropriate 

reasoning paths to obtain knowledge about physical objects or processes. In a majority of 

cases, such problem solving in physics involves the use of mathematics (Redish, 2005). 

While he acknowledges the use of mathematics in physics, Redish (2005) points out that 

physicists use mathematics differently than mathematicians. McDermott (1991) cautions that 

students‟ use of maths in physics problems and the success in solving equations does not 

necessarily imply that a corresponding level of conceptual understanding was reached. 

Koichu (2010) extends that further to say even advanced mathematical knowledge does not 

guarantee advanced problem-solving behaviors. While they concur, Tinkers, Lambourne and 

Windsor (1999) maintain that students‟ mathematical skills are a great concern to physicists.   
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Basson (2002) says that notwithstanding the pivotal role of mathematics in physics, students‟ 

difficulty in transferring knowledge or skills across subjects is also evident where 

mathematics and physics are concerned. Students‟ ability to transfer knowledge and skills 

across distinct disciplines is an implicit assumption of contemporary education systems. 

Roberts, Sharma, Britton and New (2007) observes that little is known with regards to 

transfer issues; and that “the ability to transfer mathematics skills into a chosen science 

discipline is of crucial importance in students‟ development as scientists and in their future 

careers” (p. 420). 

  

Most studies in the mathematics-in-physics terrain have dwelt on students‟ use and 

understanding of mathematics in physics (Larkin, 1980; Sherin, 2001; Kuo, Hull, Gupta & 

Elby, 2013). Their direction of focus has been mainly to investigate how students use 

mathematics in physics and how effective that use may be. Where studies have been on 

mathematics in physics, the focus has mostly been on physics in general (Feynman, 1992; 

Redish, 2005; Redish & Gupta 2009; Quale, 2011; Kuo et al., 2013), or again in the topic of 

mechanics. One entity who has worked extensively on the students‟ use of mathematics in 

physics is the University of Maryland Physics Education Group (MPERG) directed by Redish 

(http://www.physics.umd.edu/perg). They continue to explore ways in which the use of 

mathematics in physics could be optimised for meaningful learning of physics.  

In this study the primary object of study is how mathematics influences students‟ 

understanding of physics, as shown by the way they use mathematics in physics. Using the 

physics topic of electricity as context, first year students‟ understanding was studied. The 

choice of electricity was a deliberate shift from the focus of most physics education research 

in introductory physics, where the concentration is mostly on the topic of mechanics (Basson, 

2002; Carrejo & Marshall 2007; Hestenes, 1992). The choice was also influenced by Mulhall, 

McKittrick and Gunstone (2001) observation that “electricity in some form is seen as a 

central area of physics/science curricula at all levels of education; primary, secondary and 

tertiary” (p. 576). An additional criterion for choosing electricity was that most questions that 

students are expected to work on are quantitative and thus provide an explicit use of 

mathematics. This study is not about mathematical problem solving per se; rather, it is about 

the role that mathematics plays for students to understand (or misunderstand) the topic 

electricity in physics. An investigation that encompasses students‟ mathematical approaches 

when solving electricity problems will elucidate this role.  
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Mathematical approaches are the methods, strategies and tactics that students display when 

solving physics problems (Schoenfeld, 1992). These have a direct effect on the quality of 

learning taking place in introductory physics classes. Students‟ approaches to a particular 

learning task are usually informed by their expectations (Redish, Saul & Steinberg, 1998; 

Marshall & Linder, 2005). These expectations are what students think is required of them to 

do well in, or pass a course and they are partly influenced by pedagogy as well as students‟ 

prior learning (Redish et al., 1998). Expectations in turn inform students‟ epistemological 

stance. How students use mathematics in physics is based on their expectations of the role of 

mathematics in physics. Since students‟ mathematical approaches are linked to their 

expectations, it is therefore always prudent to base a study that covers students‟ approach to a 

learning task and the quality of learning taking place, to their expectations of the course.  

Through research - based observations on students‟ use of mathematics in physics similar to 

the ones mentioned above, Tinkers et al. (1999), from what has come to be known as Flexible 

Learning Approach to Physics (FLAP) offer plausible explanations and interventions. They 

reason that the decrease in students‟ familiarity with mathematics in physics is compounded 

by the increase in the diversity of backgrounds for recent university introductory physics 

students. These observations have among others led to widespread calls for the integration of 

mathematics and physics in physics teaching (Basson, 2002; Tinkers et al., 1999).  

1.2 Study context 

 

The first year students at the University of Botswana (UB) where this study was conducted 

come to the physics class from widely varied high school science backgrounds. They may all 

be enrolled for physics in the first year but will proceed in the second year to various 

disciplines such as engineering, earth sciences, environmental health, health sciences or 

physics teaching depending on their performance and career interest.  

 

The students are admitted from high school having met the university admission requirements 

in the science subjects at Form 5 (Grade 12). In their first year, they all do the same physics 

course, which is algebra - based.  They concurrently register for one of the two types of 

mathematics courses; one or two other science subjects (chemistry or biology) depending on 

their career interests as well as their capabilities.  
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There are four lecture streams of students in the first year doing physics; namely stream A, B, 

C and D. The streams, which are based on the availability of space, are also meant to make 

the large numbers of the physics students (N ≈ 1000) manageable during teaching. Four 

different lecturers teach the streams with each stream consisting of approximately two 

hundred and fifty (250) students. The lectures from the different streams run concurrently. 

The first year physics course (PHY 122) is three credits, which means three lecture hours per 

week. It is assessed through two continuous assessment tests in a semester. The examinations 

are written in November for the first semester and April for the second semester. This course 

also has a laboratory component and tutorials. The tutorial mark contributes to the final mark 

for the theory component, while the laboratory mark is separate.   

The 3 hour weekly laboratory sessions are attended by sixty (60) students from two (2) 

tutorial groups (30 students per tutorial). Students in a single tutorial group are selected using 

a simple chronological order of their surnames. Only in cases where a student‟s lessons clash 

on the timetable, is a student slotted in a separate group. Students work in pairs and seldom in 

threes depending on the availability of space and equipment. All the students have laboratory 

manuals and they know beforehand which experiment they will be doing that week. The 

purpose of the laboratory session is so that students can get to understand through 

experimentation, the concepts that they did in the theory classes. Students may however be 

doing an experiment whose theory they have not yet done, or one whose theory was done a 

while ago. 

The tutorial sessions are fifty (50) minutes weekly. There is an average of thirty (30) students 

in every tutorial group. Students are given about three to four questions as homework. The 

questions are mostly problem solving types and seldom conceptual. The tutors subsequently 

solve the problems for students on the board during tutorials. Students have to write a tutorial 

test every fortnight. The tutorial test involves students doing one of the problems that they 

were given a week ago, under supervision by tutors. Students then submit work on the 

particular question which is marked and contributes to the students‟ continuous assessment. 

These tutors are graduate students; physics degree holders, current and former secondary 

school physics teachers employed on one year running contracts designated either 

Temporary, Part - time or Temporary Full - time respectively. 
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1.3 Problem Statement 
 

Hewitt (1998) quotes a taxi driver who upon hearing from the conversation in the taxi that the 

professor was attending a physics conference comments, “Whew... physics, I couldn‟t stand 

that subject, I hated the mathematics” (p.194). The taxi driver, who it would be safe to 

assume that came in contact with physics up to about high school, represents an even broader 

populace in terms of what individuals perceive physics to be. Even college, university 

students and some teachers would immediately think “mathematics” once the word physics is 

mentioned. 

While it is incontestable that mathematics plays a significant role in the teaching and learning 

of physics, the paradox is that it is the use of mathematics in physics that is still a major 

deterrent in students‟ learning of physics (Albe, Venturini & Lascours, 2001; Mualem & 

Eylon, 2010).While it is still argued that the use of mathematics in physics is to simplify 

complex physical relationships and principles, the actual learning of physics by students 

portrays a contradictory picture (Redish, 2005). 

Therefore there is a need to investigate how mathematics influences students understanding 

of physics, as shown by the way they use mathematics in physics. While most previous 

investigations focused on students‟ use of mathematics in physics, the current study proposes 

to scrutinize the role that mathematics plays in first year physics students with regard to their 

understanding of the specific physics topic of electricity.  

Part of the focus of the study will be on how students‟ mathematical approaches could be 

influenced by their expectations. Previous studies on expectations are normally conducted in 

isolation. They are not linked to what actually happens in practice. Likewise, studies on 

mathematical approaches have been conducted in isolation (Uhden et al., 2012). This study 

will look at students‟ expectations of the use of mathematics in physics and link it to the 

actual practice, which are their mathematical approaches. A more holistic picture of the role 

mathematics in students‟ understanding of physics is expected then when one relates 

expectations, mathematical approaches, and subsequent understanding. 
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1.4 Rationale for the Study  

 

Physics education research, like most science education studies provides varying and 

sometimes contrasting indicators about the genesis of students‟ attitudes, behaviour, skills 

and competencies in physics. The demarcation between physics education research that is 

focused at tertiary science education and that which is focused at high school level 

exacerbates this scenario. At tertiary level, physics education research that is driven mostly 

by physics departments concentrates more on the physics content as well as students 

understanding of it (Tinkers et al., 1999; Redish, 2003). At a high school level, studies that 

are mostly driven by university science education departments focus more on teaching 

methodologies and on the teacher (Antimirova, Goldman, Lasry, Milner-Bolton & 

Thompson, 2009; Fensham, 1992; Tinkers et al., 1999). The result is a gap in our 

understanding of the genesis of students‟ expectations, and their competencies such as 

mathematical aptitude in physics when they exit high school and on entry to university as 

first year students. 

In physics education research at tertiary level, more focus has also been on conceptual 

understanding rather than mathematical manipulations (Gaigher, Rogan, & Braun, 2007). 

This study focuses on how the use of mathematics in physics by first year students aids their 

conceptual understanding of physics. This approach is comparable to one adopted by Kuo et 

al. (2013) who were focused on how and when students blend intuitive and formal 

mathematical ideas, and made a case that equations can express a holistic conceptual 

meaning. 

 

Investigating the role of mathematics in students‟ understanding of physics is a case of 

interrelationships between two branches of knowledge, namely mathematics and physics as 

well the epistemological energies involved. The use of epistemology, a field concerned with 

ways of knowledge acquisition and validation will help expose how and if transfer of 

knowledge between mathematics and physics does occur. Investigating knowledge transfer is 

important, especially when noting the distinct fields of mathematics and physics. It 

demonstrates students‟ ability to apply what they have learned in one context to a different 

context (Basson, 2002). 

With the above understanding, how the use of mathematics in physics by first year students at 

UB influences their learning of physics will be investigated through this study. The 
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mathematics engrained in physics problem-solving could play a significant part in students‟ 

understanding of physics and consequently their teaching of it after graduating from 

university as some of them go on to become physics teachers in high school. 

 

While a number of studies regarding students‟ use of mathematics in physics have been done 

elsewhere (Woolnough, 2002; Tuminaro 2004; Uhden et al., 2012), and physics instructors 

have also made numerous comments on the topic, no studies to my knowledge have 

investigated how mathematics influences students‟ understanding of physics, as shown by the 

way they use mathematics in physics, with specific focus on the physics topic of electricity, 

and in a setting rich in diversity as UB. A lot of university physics courses elsewhere are also 

now streamlined along engineering, health, general science and education, as early as first 

year. The group for this study is diverse in that students with all these diverse capabilities and 

interests are in one class, doing the same course. 

1.5 Objectives and Research Questions  

 

This study has three objectives.  

The first objective was to: 

 Determine first year students‟ expectations of the role of mathematics in physics.  

This is so as to establish a baseline on which students‟ mathematical approaches could be 

analysed.  

The second objective was to:  

 Determine what mathematical approach first year students use when solving 

electricity problems. 

This is so as to establish a mathematical trend from which understanding of the physics could 

be inferred.  

The third objective was to:  

 Determine  types of understanding that emerge when students  solve electricity 

problems 

 

This is so as to discern the variation and extent of understanding as indicated by their 

different mathematical approaches.  
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With a better understanding of students‟ approximate cognition on the mathematics 

embedded in physics; the expectation is that task design and problem solving exercises that 

involve the use of mathematics in particular, could be structured to highlight mathematical 

approaches that enhance student understanding of physics. The idiosyncrasy, if any with 

regard to the use of mathematics in the topic of electricity should also surface. 

 

This study intends to focus on how mathematics influences first year students‟ understanding 

of physics, as shown by the way they use mathematics in the physics topic of electricity and 

answer the following research questions: 

a. What are students‟ expectations of the role of mathematics in physics? 

b. What mathematical approaches do students use when solving electricity problems?  

c. What types of understanding emerge when students use certain mathematical 

     approaches to solve electricity problems? 

 

1.6 Operational definition of key terms 

 

For the purpose of this study, the following terms and phrases shall mean:  

Integration: Effectively combined use of mathematics and physics; when mathematics is  

                     used to optimal benefit in students‟ learning of physics. 

Baseline: Foundation upon which emerging patterns of use of mathematics in physics can be 

                explained. This foundation will be used to explain the variation of students‟ 

                mathematical approaches.    

Mathematical Resources: Conceptual or mental models that are activated when students use  

                                             mathematics in physics.  

Extended Semantic Model:  A framework that describes students‟ understanding of their  

                                                 application of mathematics in physics. 

MATHRICITY: Tailor - made conceptual framework describing students‟ use of  

                             mathematics in the physics topic of electricity.  
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1.7 Dissertation overview  

 

The first chapter offers a background on the use of mathematics in physics and how it could 

lead to students understanding of physics. The various approaches that have previously been 

used to investigate the field are outlined. The divergence that the current study carves from 

the previous ones is stated. The problem statement, rationale and context of the study are 

given. Objectives are stated and research questions are teased out to give direction to the 

study.  

In chapter 2, a review of previous and relevant research on students‟ use of mathematics in 

physics is presented. In chapter 3 the review crystallizes into a conceptual framework that 

will be used in analyzing students‟ work. Chapter 4 lays down the research method that was 

used in collecting data as well as that was used in analyzing it. Validity, reliability as well as 

ethical considerations are given. In chapter 5 results from an expectation survey as well as 

focus group interviews are presented and analyzed to offer a baseline to the study.  

Students‟ actual work on electricity problems is analyzed by means of the developed 

conceptual framework in chapter 6. Chapter 7 discuss the results from both chapters 5 and 6, 

contrasts among themselves and with previous similar studies. The findings are summarized 

and conclusions made in line with objectives/research questions. Instructional implications 

and future studies that may arise are also offered. 
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Chapter 2 Literature Review  

 

2.1 Introduction  

 

In this chapter previous work in the mathematics - in - physics literature is reviewed, 

critiqued and inferences made with specific attention to the study objectives.  

The review starts broadly, with a general overview on how mathematics contrasts with 

physics. The varying pedagogical approaches with regard to the use of mathematics in 

physics are outlined. Students‟ use of mathematics in physics is also discussed within the 

context of problem solving. From their engagement in problem solving, it emanates that some 

students view mathematics as invaluable in their learning of physics, and that others still 

think that mathematics is a barrier.  

The literature review is then narrowed to students‟ learning outcomes in electricity. Various 

learning outcomes are discussed with a deliberate focus on students‟ use of mathematics in 

the topic of electricity. Studies from a physics education research group with extensive work 

on mathematics in physics (MPERG) are purposely presented. These studies led to the last 

and very important sub - section to be considered, mathematical thinking in physics.  

2.2 Contrasting mathematics and physics 

 

The relationship between mathematics and physics is an ongoing debate in physics education 

research. However, there are some settled aspects of this debate that students should be able 

to demonstrate understanding of. One of these pertains to the notion that physics and 

mathematics are two strongly interdependent and closely linked areas in the scientific terrain. 

A common perspective on the relationship between physics and mathematics is to perceive 

physics as applied mathematics. This perspective is but, only partly valid. This is partly 

because historically, it was only until the Maxwell‟s equations towards the end of 19
th

 

century that the use of mathematics in physics became profound. While the Ptolemy (2
nd

 

Century); Copernicus (16
th

 century); and especially Galileo (17
th

 century) eras did use some 

mathematics in physics experiments and observations, it was to a relatively minimal extent. 

Most of the physics during that period was without mathematics. James Clerk Maxwell 

(1831–1879) could be credited with pioneering the pivotal role of mathematics in physics as 

he applied the mathematics of calculus with ingenuity to electromagnetic concepts. Maxwell 
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precisely elaborated not just his theory of electricity and magnetism, but an outline of what 

was then still a novel approach to the use of mathematics in physics, explaining how 

mathematics ought to be used in physics (Tweney, 2011). 

 

Proponents of conceptual physics propose a non - mathematical way of learning physics. 

They argue that students should learn and appreciate the physics concepts well before they 

can be asked to apply mathematics in solving physics problems. Hewitt (2010) continues his 

more than three decades development of a conceptual approach for learning physics; where 

students are engaged with analogies and imagery from real-world situations. This approach is 

said to build a strong conceptual foundation (Hewitt, 1998; 2006; 2010) that is necessary for 

introductory physics students. The students are expected to then be able to use equations of 

physics and better understand the relationship amongst concepts and the everyday world, 

through application of mathematics later in their advanced years of learning. 

 

Effective ways in which students approach physics and subsequently achieve meaningful 

learning from the different physics pedagogical structures is the essence of contemporary 

physics education research. Be it in lectures, laboratories or a tutorial, dealing with 

mathematics in physics is one of contemporary physics students‟ major engagements (Redish, 

2005). Feynman (1992) accentuates mathematics as an integral part of physics; that all the 

laws of physics are mathematical; and that it is impossible to explain honestly the beauties of 

the laws of nature (physics) in a way that people can feel, without their having some deep 

understanding of mathematics. Feynman (1992) is cited by Reif (1995) proclaiming, 

“Ordinarily, I try to get the pictures clearer, but in the end the mathematics can take over and 

be more efficient in communicating the idea of the picture” (p. 22).  

 

It is however important for students to first understand that although physics and mathematics 

are so intertwined that it is difficult to deal with one exclusively without the other. Key 

physical concepts must be learnt before the mathematical formulas. Tinkers et al. (1999) 

quote Einstein (1954) proclaiming that, “the view that qualitative thought must precede 

quantitative calculations is neither new nor an invention of educationalists, yet as physics 

teachers we often forget this basic point” (p. 223). McDermott (2001) concurs and points out 

that students‟ understanding of important physical concepts and the ability to do the 

reasoning necessary to apply them is of greater lasting value than even correctly memorized 

formulas which are likely to be forgotten after the course ends. 
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Mathematics is the language through which physicists communicate to show the relationship 

between physics concepts, establishing some as laws, as well as in explaining physics 

principles. Mathematical symbols, what they represent and their manipulation are a 

convenient abbreviation for physicists (Redish, 2005). While the relationship between some 

physics concepts and the explanation of principles can be done qualitatively without 

mathematics, Reif (1995) cites Einstein emphasizing the importance of mathematics in 

physics by proclaiming, “The physicist work demands the highest possible standard of 

rigorous precision in the description of relationships such that only the mathematical 

language can give” (p. 23). Mathematics stamps a “scientific” signature on physics. It 

logically corroborates the qualitative physics theories, principles and laws through accurate 

and precise validity.   

Mathematics plays a similar role in physics as it does in all other science and non-science 

subjects. In physics however, its role and the extent of its contribution is more than in most 

subjects. Mathematics elevates the scientific accuracy of physics above that of other sciences 

where less mathematics is used. The dual purpose of mathematics in physics is described as 

that of language plus logic (Feynman, 1992). Maxwell‟s view of mathematics in physics is 

described as “enhancing the formal derivational and calculation role of mathematics” and 

opening “a cognitive means for the conduct of „experiments in the mind‟ and for 

sophisticated representations of theory” (Tweney, 2011, p. 687).   

 

Being premised on the understanding that physical sciences are mathematical in character, 

Uhden et al. (2012) puts forth both philosophical and historical examples to illustrate how 

intrinsically, physics contain mathematics. They are the predictive power of mathematics in 

the invention of new physical theories; the mathematical nature of basic physics concepts; as 

well as the observation that great scientists could be classified as either or both 

mathematicians and physicists.  

 

Physics and mathematics may be said to be different types of knowledge (Friegej & Lind, 

2006). They categorize these types of knowledge as: 

Situational knowledge (knowledge about typical problem situations); conceptual 

knowledge (facts, concepts, principles of a domain); procedural knowledge 

(knowledge about actions which are important for problem solving) (p. 440). 
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Pettersson and Scheja (2008) also agree with the classification of knowledge as either 

conceptual or procedural. They describe conceptual knowledge as being particularly rich in 

relationships and can be thought of in terms of a connected web of knowledge. Procedural 

knowledge on the other hand refers to knowledge of rules or procedures for solving 

mathematical problems. Conceptual knowledge is further explained as a type of 

understanding that involves knowing both what to do and why whereas procedural 

knowledge involves simply, knowing how to do something. 

 

In addition to being categorised as different “types”, knowledge may also be classified in 

terms of quality. Friegej and Lind cite Anderson (1987) and Krems (1994) who classify 

“qualities of knowledge” as: 

Hierarchical (superficial vs. deeply embedded); inner structure (isolated knowledge 

elements vs. well structured, interlinked knowledge); level of automation (declarative 

vs. compiled); and level of abstraction (colloquial vs. formal) (p. 440). 

Understating of both the knowledge type and qualities of knowledge classifications will help 

put the contrasting of mathematics and physics into perspective. Physics entails the use of 

mathematics for a number of reasons. These include quantification, abbreviation, denoting 

relationship between phenomena, succinct portrayal of physical relationships and symbolic 

representation of phenomena (Redish, 2005). However, literature is abound that shows how 

physics and mathematics differ. For example, physics is meant to explain the interactions 

amongst objects and processes in the natural world, and come up with rules and 

generalization that govern these interactions. Whereas mathematics is touted as being about 

rigor, precision, exactness and accuracy (Hestenes, 1992), physics is about the best 

approximation (Buffler, Allie, Lubben & Campbell, 2002). To Hestenes (1992; 2010), 

mathematics is sometimes called the science of patterns; whereas to Basson (2002), 

mathematics is concerned with; quantity, shape, data, space, and structure.  

 

While mathematics is abstract, physics - with the exception of theoretical physics for 

advanced courses - deals with physical objects and processes. Roberts et al. (2007) argue that 

pure mathematics tends to be abstract, and not tied to physical context. Physics is concerned 

with exploring natural systems while mathematics is a logically structured body of 

knowledge which existed as a separate reality transcending the physical universe (McGinnis, 

2003). The area of measurements and its concomitant use of units is one distinct aspect 
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between mathematics and physics. Mathematics involves calculations while physics involves 

applying the calculations in a natural context. Numbers in mathematics can stand for anything 

real or imaginary; they do not have to have no units. Numbers in physics however, quantify a 

physical entity which is measurable and therefore have units. In physics, symbols stand for 

ideas rather than quantities (Redish, 2005). In most cases, physics theories are based on 

experiment or observation, while mathematical theories simply exemplify the extent of the 

ingenious, almost artistic imagination of man (Feynman, 1992). 

 

On another debate contrasting mathematics and physics Hestenes (2010) quotes a 

mathematician, Arnold (1997): 

Mathematics is a part of physics. Physics is an experimental science, a part of natural 

science. Mathematics is the part of physics where experiments are cheap….In the 

middle of the 21
st
 centuries it was attempted to divide mathematics and physics. The 

consequences turned out to be catastrophic… (p. 14). 

Discussion has also centered on how differently mathematics and physics are done despite 

their seemingly Siamese relationship. There is a fundamental difference in the way 

mathematics is done and the way science (physics) is pursued (McGinnis, 2003). He argues 

that there‟s a difference in the process of validation, in that mathematics involves congruence 

of numbers, while physics is concerned with congruence of concepts. McGinnis quotes that 

some pre-service science teachers who participated in their study, felt that “mathematics is 

more than just its connections to science” (p.30). The statement implies that mathematics can 

still exist independent of science (physics). The reverse cannot be said about science 

(physics). 

 

With the awareness of most of the stated types and qualities of knowledge, Mazur (2009) 

observes that the type of knowledge organization in the current teaching in lectures and 

tutorials promote rote learning rather than critical enquiry. Problem solving, a common 

instructional practice in physics lectures and tutorials, and one where the use mathematics is 

predominant, is discussed in the next subsection, so as to establish the type or quality of 

knowledge from which it is based.  
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2.3 Problem solving in physics  

 

Problem solving is a critical dimension in the use of mathematics in physics. It has been 

identified as a generic skill that is espoused by institutions as desirable, and expected as a key 

competency in students when they finally graduate (Billing, 2007). Studies on problem 

solving have been done in many other disciplines other than physics. These disciplines 

include mathematics, computer programming, engineering and medical science. There are 

notable similarities in the way problems are solved in these diverse disciplines.   

Polya, in his 1945 article; How to solve it, could be credited with pioneering academic work 

on problem solving in general and his 1957 article is broadly cited for what he termed the 4-

step problem solving strategy which was to be applied to problem solving in general. This 

involved the distinct steps of: Understanding the Problem, Devising a Plan, Carrying out the 

Plan, and Looking Back. Since this seminal work, a lot has happened.  

 

A significant focus of early research in physics education particularly around the beginning 

of the 1980‟s was on problem solving.  The focus then was mainly to compare how experts 

and novices solved problems differently, and on metacognition (Tuminaro, 2004). One of the 

prevalent perceptions then was that problem solving was seen as a means to an end, and not 

as a goal in itself (Schoenfeld, 1992). A student engaged in problem solving was set to get to 

a correct solution, and not so much about the ontology of problem solving itself. Problem 

solving was mainly seen and used as a heuristic. 

 

Problem solving in physics is regarded as the heart, an organ without which an organism is 

dead, or a system nonexistent (Fuller, 1892). Maloney (1994) agrees with Van Heuvelen 

(1991) that problem solving as a component of physics instruction is performed to enhance 

conceptual understanding of students, and that to a great extent; it involves mathematical 

manipulation of physics formulae. Contradictorily, students view problem solving as merely 

to determine the value of one or more unknown quantities (Van Heuvelen, 1991; Redish, 

2003).  

 

The use of mathematics in physics is outlined as calculation, derivation and representation 

(Tweney, 2011). While acknowledging the role of calculation and derivation as important, 

Tweney emphasizes the role of a special kind of problem solving in which relationships are 

seen across physical domains. More advanced problem solving behaviors would be observed 
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when students work within a conceptually-embodied mathematical world than when the 

focus is on symbolic and formal-axiomatic worlds (Koichu, 2010). 

According to Van Heuvelen (1991), an appropriate order of knowledge construction based on 

cognitive and epistemological frameworks is imperative for students‟ effective learning of 

physics through problem solving He indicated that in this knowledge structure, students 

should be able to see relationships and similarities in diverse pieces of information. On the 

other hand knowledge organization is described as hierarchical for experts but fragmented for 

novices (Reif & Heller, 1982). This hierarchically organized knowledge is deemed effective 

for problem solving while fragmented knowledge is much less dependable. In similar early 

studies on problem solving approaches between experts and novices (Larkin, McDermott, 

Simon & Simon, 1980a; Chi, Feltovich, & Glaser, 1981); experts were observed to organize 

knowledge by categorizing problems in terms of underlying concepts and principles, while 

novices used surface features. In physics education research, it is noted that experts have a lot 

of tacit knowledge and that their knowledge can be used to make scientific inferences and 

also that they are able to select various principles that can be applied in problem solving 

(Abdullah, 2006).   

 

With a general picture of what the purpose of problem solving in physics is, or should be; 

different types of approaches used in problem solving are discussed. 

2.3.1 Use of Algorithms and Heuristics in Problem Solving  

Methods for solving problems can often be characterised in terms of algorithms or heuristics 

(Pretz, Naples & Sternberg, 2003; Ormrod, 2004). Algorithm here refers to step-by-step 

procedures which when followed correctly, will guarantee a correct solution every time. 

Heuristics on the other hand refers to general strategies or “rules of thumb” for solving 

problems (Ormrod, 2004). Ormrod says that basic-level mathematics and physics problems 

are often solved using the heuristic of combining algorithms, by making use of several 

algebraic procedures in succession. Some of the well-known heuristics mentioned in the 

study include; successive refinements, means ends analysis, and working backward.  

2.3.2 Multi – Step Strategy 

Multiple representations are said to have cognitive as well as affective roles in students‟ 

learning, and that they enhance the development of conceptual understanding (Adadan, 

2013). Notable studies that developed problem solving strategies that are specific to physics 

include Reif (1995), Heller and Heller (2001), and Redish (2003).  
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The multi-representational problem-solving strategy requires the use of pictorial, 

diagrammatic, procedural, and mathematical physics skills (Van Heuvelen, 1991; Reif, 

1995). A pictorial representation portrays the situation, step by step from the start to the end 

of a process. This helps in the construction of diagrams that are more physical depictions of 

the process. The diagram serves several purposes. It summarizes the prominent features of a 

process and multiple diagrams can be used to describe more complex processes. Diagrams 

assist with construction of the mathematical representation of the situation (Van Heuvelen, 

1991). The practice of constructing and interpreting diagrams of various kinds is claimed to 

contribute to the development of physical intuition (Hestenes, 1987). In using a multi 

representational strategy, “the solution to a problem relies on a whole series of 

representations with the value of the unknown being only a small and final part of the 

solution” (Reif, 1995, p. 4).The Reif strategy consists of a three step approach which includes: 

Analyse the Problem, Construction of a Solution, and Checks; where the student has to 

evaluate if the goal has been achieved, and that the final answer is sensible and consistent.  

Some other extensive work on problem solving in physics was also done by Heller and 

Hollabaugh (1992). They proffer a multi-step strategy as an effective approach in problem 

solving. The strategy has evolved over time to encompass other pedagogical developments. 

When solving a problem, the Heller and Heller strategy recommends that students must begin 

with a qualitative approach and then progress toward a quantitative approach. These two 

main approaches can be summarized in terms of five steps. These are: Focus the Problem, 

which includes sketching a picture; Describe the Physics, which includes drawing a diagram; 

Plan a solution, which includes identifying the target quantity and illuminating unknowns; 

Execute the Plan includes putting in numerical values, and finally Evaluate the Answer, 

which means evaluating meaning and sensibility. 

The critical stages of problem solving in physics as proposed by Reif & Heller (1982); Heller, 

Keith & Anderson (1992); and Heller & Heller (2000) have subtle variations to those 

proposed by other researchers. In their congruence is that problem solving involves a 

chronological sequence of visualizing the problem; planning a solution; executing the plan, 

and finally checking and evaluating the solution. The executing the plan stage indicated here, 

is mainly mathematical. 
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2.3.3 Group Work  

Group work is one other general strategy that has been demonstrated to be effective for 

students working on problem solving exercises (Johnson, Johnson & Holubec, 1992). While 

it does not specifically address students‟ use of mathematics in physics, it is a better and more 

effective learning of physics in general as it offers students opportunities to practice problem 

solving strategies until they become more natural (Heller, Keith, & Anderson,1992). It is 

based on the premise that groups can solve more difficult problems than individuals. 

Effective use of mathematics in physics would emerge if students are engaged, discuss and 

try to make sense out of physics problems. In these sessions, students can get practice 

developing and using the language of physics, which is to a significant extent mathematical. 

It is believed that group work is an effective activity that helps students learn (Johnson, 

Johnson & Holubec, 1992). 

The various problem solving strategies used or recommended for use by students show an 

inclination towards procedure – how students should do certain tasks. Less effort is spent on 

explaining what or why they are doing it. The use of heuristics and algorithms, as well as the 

multi-step strategy is comparable to the touted recipe or cook-book approach used in 

introductory physics laboratories (Redish 2003). Students may be just following these steps 

with little or no conceptual understanding of what they are doing. As a result of their use of 

mathematics in the various problem-solving experiences, one thing that comes out is that 

students develop either a positive or negative attitude towards learning physics (Kessels, Rau 

& Hannover, 2006). 

2.4 The dichotomy in students’ use of mathematics in physics  

 

Some students find mathematics helpful while others find it detrimental to them in their 

learning of physics. Maloney (1994) observes that for most students, “there is a dichotomy 

between learning to solve physics problems and solving physics problems to learn” (p.351). 

2.4.1 Mathematics as indispensable in students’ learning of physics  

Hewitt (2006) proclaims that;  

When the ideas of science are expressed in mathematical terms, they are 

unambiguous…. when findings in nature are expressed mathematically, they are 

easier to verify or to disprove [and that]…the methods of mathematics and 

experimentation led to enormous success in physics (p. 8).  
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Albe, Venturini and Lascours (2001) quotes Henry (1996) saying, “In the physics class, the 

routine use of at least some mathematics, essentially arithmetic, algebra or analytical tools, 

would seem to be inevitable” (p.198). 

When focusing on the significance of mathematics in thermal physics, Thompson et al. 

(2009) note that, as with most physics areas, specific mathematical concepts are required for 

a complete understanding and appreciation of physics. Such mathematical applications as 

equations, graphs and diagrams they posit, simplify the analysis of complex physics 

problems.  

Traditionally physics is presented in the form of rules, laws and principles, mathematically 

elaborated by formulas and equations (Tseitlin & Galili, 2005). The authors note that many 

physics educators consider the mastering of mathematics as an indisputable premise for 

successful learning and study of physics. The same study quotes Hecht (1996a, b) and Hewitt 

(1998) who noted that in many universities the type of physics course is determined 

according to the mathematics used: “calculus”, “algebra” and “conceptual” (without 

mathematics). Calculus - based and algebra - based vary in that for calculus, it is 

continuously changing quantities that are being calculated, while for algebra, it is the 

relationship between variables that is of interest. Students start using algebra at elementary 

stages, but engage calculus much later and thus introductory university level students are 

more likely to be familiar with algebra than with calculus.  

Physics teachers have a tacit understanding strongly shared by students that the important 

aspects of physics have to do with manipulation of mathematical symbols (Mulhall & 

Gunstone, 2008 cite Barros & Elias, 1998). Several references in the same study are quoted 

all glorifying the importance of mathematics in physics. Wertheim (1997) is quoted saying, 

“a major psychological force behind the evolution of physics has been the a priori belief that 

the structure of the natural world is determined by a set of transcendent laws” (p. 436). 

Davies (1991) agrees; “the belief that mathematical laws of some sort underpin the operation 

of the physical world is now a central tenet of the scientific faith” (p. 436). Ayene, Damtie 

and Kriek (2010) conclude in their study on the level of mathematics required to do physics 

that students had difficulty in solving problems because they lacked some fundamental 

mathematical techniques. 
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2.4.2 Mathematics as a barrier in students’ learning of physics 

Transferring knowledge flexibly across different contexts has been reported as one of the 

shortcomings of physics and mathematics teaching.  Physics students have been observed to 

be very deficient in the application of mathematics in physics, even when they are doing well 

in their mathematics courses and this has surprised many physics instructors (Redish, 2005). 

This resonates well with Basson‟s (2002) claim that even when students are proficient in their 

application of a certain skill in mathematics, the same students still struggle or fumble when 

required to apply the same skill in physics. Woolnough (2000) though expressing it slightly 

differently, supports both observations entirely. This knowledge transfer that is required of 

students is a high order cognitive skill and is related to one‟s meta-cognitive abilities (Roberts 

et al., 2009). 

 

Still with regards to knowledge transfer, the use of mathematics like any other language is 

said to be context dependent (Basson, 2002). Most students who perform well in mathematics 

and physics fail to make substantial links between these contexts largely because of conflicts 

between the different belief systems (Woolnough, 2002). Woolnough (2000) points out that 

since there is the real world, the physics world, and the mathematical world, each with 

different characteristics and belief systems; then mathematics and physics are different belief 

systems which are ontologically different. The different belief systems are described as: 

 

The real world is where phenomena, such as motion, are complicated. Many factors 

and influences act simultaneously, making these difficult to analyse. Experiments to 

try to analyse what is happening rarely work. The physics world is full of specific 

rules which apply to specific and often artificial situations. Some of these are 

counterintuitive and contradict what happens in the real world (McCloskey, 1983). 

There are many problems to be solved, which generally use a variety of equations. 

Experiments can be done and they will work as long as you have sophisticated 

equipment. Graphs can be drawn, and these describe what happened in the 

experiment. The mathematical world is full of rules which relate to x and y, and to 

coefficients such as a, b and c. There are many graphs which are characterized by x 

and y axes with scales that are even and without units (p. 264). 

 

Students have been found to experience difficulties in manipulating different physical 

concepts (magnetic interaction, force, speed, current, field) simultaneously and in choosing 

those that are suitable for explaining a given problem (Maarouf & Benyamna, 1997). These 
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are said to be compounded by the use of a high level mathematical formalism. A subsequent 

study (Albe et al., 2001) also concluded that for the students observed, there seemed to be a 

lack of clarity between the verbal explanation of the physics phenomena and the 

interpretation of the mathematics formula; and cites Gill (1999) as noting the paradox that 

students who do cope with the mathematics courses are still unable to apply them in context. 

Woolnough (2000) reports that students regrettably become so firmly rooted in the familiarity 

of the algebra that they do not venture into the more forbidding territory of the physics behind 

the equation; noting that failure to assign units in some calculations is an indication that 

students have not yet begun to develop a conceptual link between the mathematics and the 

physical world. This conceptual link is what Bing and Redish (2008) refer to as “physical 

mapping”; or the interplay between the physical system of interest and the mathematics used 

to model it, which they further say, demonstrates that mathematics in physics class is only 

valid in so far as it reflects the physical system under study. Woolnough (2000) reports year 

11 students failing to assign units to the calculated slope and concluding that this is because 

mathematical knowledge is carefully compartmentalized and that what students are being 

asked to do in physics contravenes the belief system they apply to work in their mathematics 

compartment. 

 

Results from Alibert (1988) who was cited by Albe et al. (2001) contrasting university 

students‟ performance in mathematics and physics showed that in both subjects, the students 

systematically prefer automatic, algorithmic procedures. The study noted that these 

preferences are overwhelming to the detriment of reflection on the role and status of 

procedures in mathematics and in physics.  

In a separate study aimed at identifying the origin of the difficulty in understanding the 

mathematics of differentials among high school and undergraduate physics students, 

Martinez -Torregrosai, Lo‟Pez - Gay, & Gras - Marti (2006) claim to have shown that only a 

small fraction of physics students in pre-university courses, and in the first courses of 

scientific-technical degrees, use the mathematics of differential calculus in physics fully 

understanding what they are doing. They went further and pronounced calculus as a situation 

that may worsen students‟ attitudes towards physics and mathematics.  

 

More controversy continues however. Koichu (2010) for example, argues that several of the 

existing explanations regarding students‟ difficulties in problem solving are incomplete. He 
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refutes explanations such as, “students miss solutions since they invest little effort in 

planning”, "students perform poorly when solving non-routine problems as they have too 

narrow a repertoire of tentative solution starts” and “students fail in solving non-routine 

problems since they lack certain heuristics in their arsenals” (p. 270 - 271). Koichu questions 

why students at times miss mathematically simpler ideas in preference for more involving 

formal mathematical approaches in their problem solving endeavors. 

 

All this preceding literature is important, but in so far as it relates to mathematics - in- 

physics, in general. Since the current study is focused on electricity as a topic in physics, the 

next section looks at studies on the topic specifically with regards to students‟ mathematical 

approaches and patterns of understanding.  

2.5 Students’ learning outcomes on electricity as a topic in physics  

 

As one of the physics topics commonly taught in first year, the topic of electricity impacts in 

the overall epistemological development of first year students. It is commonly taught after 

mechanics, and just before modern physics. Research on student learning in higher education 

illustrates that different academic disciplines have their distinctive ways of learning and that 

their successful studying involves adjusting to the discipline - specific way of what it means 

to learn in the subject area (Entwistle, 2005). Though it is normally presented as Electricity 

and Magnetism, the electricity component is distinct enough and can be analyzed as a 

separate entity.  As in other physics topics, students‟ use of mathematics in problem solving 

is still a major part of their learning in the topic of electricity. 

2.5.1 Students use of mathematics in the topic of electricity 

Literature on the significance of mathematics in the physics topic of electricity is scanty. 

However, one such study on student difficulties with mathematics in electricity and 

magnetism (EM) indicates that students‟ struggle with fundamental EM concepts and this 

could be closely related to their difficulties with mathematics (Pepper, Chasteen, Pollock, & 

Perkins, 2012). The authors note that students have difficulty combining physics ideas with 

mathematical calculations and that at times students do not access appropriate mathematical 

tools. Pepper et al. (2012) note that the various mathematical skills that include: using an 

appropriate mathematical tool, envisioning the spatial situation and connecting it to the 

mathematics and translating between physics knowledge and math tools are difficult on their 

own, and that combining them in the EM course may be  even more challenging.  
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In a study focusing on problem solving in electrostatics, McMillan and Swadener (1991) 

observe that though the majority of students were able to solve the problems quantitatively, 

none of them was able to use qualitative reasoning in support of their solutions. In a study 

that deals with the use of mathematics in investigating the physics of electromagnetic 

concepts, Albe et al., (2001) reported that teachers indicated that they felt that the 

mathematical representation of physical phenomena was a real barrier to students 

understanding. The same study quotes Greca and Moreira (1997) who observed that most 

students in the second year of engineering school demonstrate poor organization of 

knowledge. This they say is demonstrated by the fact that students‟ mental representation of 

the magnetic field is a propositional representation, “a definition or a formula” (p. 198). 

These representations are manipulated routinely to resolve the traditional problems of 

electromagnetism. Greca and Moreira also put forward that, the emphasis placed on the 

mathematical aspects of field lines impedes physical understanding of the magnetic field [and 

electric field]. This could be interpreted to mean that instruction inadvertently focuses 

students‟ attention on the mathematics than on the concepts, which consequently is an 

ineffective approach in learning physics (Thong & Gunstone, 2008; Gunstone, Mulhall & 

McKittrick, 2009; Jones, 2010).  

2.5.2 Students conceptual understanding of electricity 

In order to develop conceptual understanding, Van Heuvelen (1991) says that construction of 

a knowledge structure is a necessary condition. This knowledge construction may be 

achieved when there is transfer of conceptual understanding from one context to another. 

However most studies, even those on conceptual understanding focus on student 

misunderstanding or shortcomings with  regard to scientific concepts and also “relatively 

little effort has been put into exploring the nature of the understanding experienced by 

students in the course of studying” ( Pettersson & Scheja, 2008, p. 767). 

 

In a study involving the study of electromagnetic concepts, Thong and Gunstone (2008) state 

that students‟ knowledge structure often does not include key relationships in any form, 

neither mathematical nor qualitative; and that many introductory students‟ knowledge of the 

topic of electricity relies mainly in their explanations on a form of DC circuit and its 

associated aspects that includes: battery, parallel/series arrangement, Kirchhoff‟s Law and 

Ohm‟s Law. Gunstone et al. (2009) points to instruction as perpetuating students‟ abilities to 

solve only algorithmic DC circuit problems at the expense of anything else. 
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Conceptual change researchers offered conflicting interpretations regarding what constitutes 

effective teaching of the topic of electricity (Mulhall et al., 2001). The study identified two 

interrelated issues which are noted to be of fundamental importance but observed to be 

missing from the teaching and learning of electricity, namely: the range of 

models/analogies/metaphors appropriate in the teaching/learning of electricity, as well the 

meaning of conceptual understanding in electricity and how this changes with the different 

levels of education. This study demonstrated instances where even high school teachers could 

not differentiate between the electricity concepts of voltage, potential difference and EMF.  

 

Undergraduate physics programs reveal little or no attention to students‟ conceptual 

understanding of electrical parameters such as voltage, potential difference and emf 

(Gunstone et al., 2009). They note that the focus is on more complex mathematical 

representations. The authors argue that the fact that some high school examination questions 

are sometimes observed to be conceptually inadequate may actually be an indication that 

even university academic physicists who were part of the panel drawing questions in the 

study, have some forms of confusion and inconsistency in the conceptual understanding of 

electricity. They further argue that the inconsistencies demonstrated by high school teachers 

may also be a result of their undergraduate university teaching.  

2.5.3 Students’ misconceptions of electricity  

Electricity is not only a basic area in physics but also an area very fertile for students‟ 

alternative conceptions (Afra, Osta & Zoubeir, 2009). Specifically with regards to the topic of 

electricity, Kenneth (2012) notes that, most students start with misconceptions that have 

become embedded over many years and are difficult to change. Kenneth explains that the 

major reason is that electrical concepts are counter - intuitive and non-sensory or abstract in 

nature.  

Afra et al. (2009) say that since the application of electricity encompasses many aspects of 

everyday life, students tend to develop views and imagery of electrical concepts that are very 

different from scientific ones. In addition, Afra et al. cites earlier researchers who noted 

students view of voltage either as an outcome of a mathematical relation, or as a property of 

current. With regards to resistance, Afra et al. claim that studies also reveal that many 

students fail to develop a conceptual understanding about its role in a circuit. Dega, Kriek and 
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Mogese (2012) note that students‟ view of Ohm‟s law as the most important concept in 

electricity and magnetism, encourages some of these misconceptions. 

 

One other misconception regarding electric field was in a study by Thong and Gunstone 

(2008) where students indicated that they understood electric field as not being affected by 

any addition of charges. Leppavirta (2012) observes that with regards to the example of two 

electric point charges, students think that “when the net charge of the first point charge is 

increased; it exerts greater force only on the second point charge but does not affect the force 

on the charge itself” (p.756). Leppavirta says this explanation fails to consider the symmetry 

of the electric forces. Students are known to have persistent misconceptions when they have 

to demonstrate understanding that Newton's laws extend to electric and magnetic situations ( 

Maloney et al., 2001) and Planinic, 2006 cited by Leppavirta, 2012).  

 

Dega, Kriek and Mogese (2012) list and explain the following as categories of alternative 

conceptions in the topic of electricity: naïve physics; lateral alternative conceptions; 

ontological alternative conceptions; Ohm‟s p-prims, mixed alternative conceptions and loose 

ideas. Predominant misconceptions related to electric currents are listed by Afra et al. (2009) 

as: 

 The unipolar model - where students do not recognize the need for a closed 

circuit, and therefore treat electric components as electric sinks that transform 

the current sent by a battery into light and/or heat. 

 

 The attenuation model - whereby the current leaving a battery from one end is 

fused-up by the elements in the circuit, and the unused portion returns back to 

the other terminal of the battery.  

 

 The sharing model, where the current sent by a battery is split and shared 

among the different components in the circuit. (p. 104). 

 

Some of the models of students‟ misconceptions from simple electric circuits identified by 

Kapartzianis Kriek (2014) include:  

 

“The unipolar/sink model; the clashing currents model; the weakening current model; 

the shared current model (Osborne & Freyberg, 1985; Koumaras et al., 1990; Driver 

et al., 1994; Borges & Gilbert, 1999; Koltsakis & Pierratos, 2006); the sequence 

model (Shipstone, 1984; Engelhardt & Beichner, 2004); the local reasoning model 

(Cohen, Eylon & Ganiel, 1983; Heller & Finley, 1992); the short circuit model 
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(Shipstone, Jung & Dupin, 1988; Engelhardt & Beichner, 2004); the battery as current 

source (Heller & Finley, 1992; Borges & Gilbert, 1999); battery and resistive 

"Superposition principle”;  term confusion and  rule application error (Koumaras et 

al., 1990; Engelhardt & Beichner, 2004) and topology (Engelhardt & Beichner, 

2004)”. 

 

These lists of misconceptions explain what exacerbates students understanding of the topic of 

electricity. Compounded with students inefficient use of mathematics, studies on students‟ 

effective learning of electricity becomes imperative. There are no studies specifically 

orientated to look at how mathematics influences first year students‟ understanding of the 

topic of electricity. However, in-depth studies on students use and understanding of 

mathematics in physics in general have been conducted by Redish and University of 

Maryland Physics Education Research Group (MPERG). Though their approach is towards 

physics in general, this entity provides an opportune place to anchor the current study.  

2.6 MPERG and related studies on students’ use of mathematics in physics 

 

Redish, together with the Maryland Physics Education Research Group (MPERG) have 

worked extensively on the relationship between mathematics and physics and how it affects 

students learning of physics (Redish, Steinberg & Saul, 1996; Tuminaro, 2004; Redish, 2005; 

Tuminaro & Redish, 2007; Bing & Redish, 2007; Redish & Gupta, 2009; Redish & Bing, 

2010). While the di Sessa (1993) p-prims and the Sherin (1996; 2001) symbolic forms studies 

“ploughed” the cognitive field on students‟ use of mathematics in physics (see sections 

3.4.2.1 and 3.4.2.2), Redish and MPERG studies have “cultivated” it extensively. These 

broad but extensive approaches are illustrated henceforth.  

2.6.1 Students’ interpretation of constants and variables 

Introductory physics students are expected to successfully interpret many different 

mathematical entities including: numbers (2,e,5/7); universal constants (c, G, h ,k) 

experimental parameters m, R, T, k (spring), initial conditions (x0,v0), independent variables ( 

x,y,t) and dependent variables (x,y,t) (Redish et al.,1996).  The fact these (numbers, 

constants, experimental parameters, conditions and variables) are many and different; and 

that the difference is not always apparent as in the preceding case of independent and 

dependent variables, compounds the problem of students understanding the proper use of 

mathematics in physics. 
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The use of constants is a common problem related to the enterprise of deriving physics 

formulae and problem solving by students (Dawkins, Dickerson, McKinney & Butler, 2008). 

It is rarely explicitly explained to students where the constants come from, whether they are 

natural values resulting from the relationship of a specific select set of physical variables, or 

they are a retrospective value inserted so as to make the formulae valid. These authors argue 

further that all the students know is that a constant is that which never changes. The basic 

mathematics of direct proportionality, inverse proportionality or ratio relationships are given 

peripheral attention in physics problem solving and so, in general students do not understand 

relationships, mathematical models and what they mean conceptually (Dawkins et al., 2008).  

 

If interpretation of the above mentioned entities (numbers, constants, experimental 

parameters, conditions and variables) is correct and meaningful, students should be able to 

follow a reverse process, and formulate physics problems out of real-world situations  

(Redish, 2003). However, derivation of formulae, which may unpack the relationship 

between variables, is given minimal attention in physics problem solving (Van Heuvelen, 

1991). Students do not seem to understand that symbols in physics have a different purpose, 

that they represent meaning about physical systems rather than expressing abstract 

relationships. 

 

Redish (2005) advocates for developing physics curricula with the understanding that 

mathematics is used differently in physics since, “physicists and mathematicians label 

constants and variables differently; loading meaning onto symbols leads to differences in how 

physicists and mathematicians use and interpret equations; and that blending physical 

meaning with mathematics changes the way physicists look at equations” (p. 2). Tuminaro 

(2004) points out that; the equal symbol, the variables and the relationship between the 

variables are three things one must successfully interpret in order to understand an algebraic 

equation. Interpretation is closed linked with the language used, and the broad area of study 

for this is semantic analysis. 

2.6.2 Semantic analysis 

Similar to a host of previously mentioned studies, and even everyday perceptions, Redish and 

Gupta (2009) looked at mathematics distinctively as a language. They then implored the field 

of cognitive semantics, “a subfield of linguistics that is concerned with how ordinary 

language is imbued in meaning” (p. 1) to find out how students make meaning with 
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mathematics in physics.  This was on the premises that, whatever form of challenges students 

have with the use of mathematics in physics; the critical issue appears to be “making 

meaning”. The study ushered in additional levels of; structure, interpretation and tools when 

it comes to the use of mathematics in physics context. “Making meaning” is therefore directly 

linked to interpretation. 

 

The Redish and Gupta study illustrates that novices in physics problem solving, just like 

mathematicians, often focus on the grammar of an equation rather than the physical meaning. 

A further outcome of the study was that expert physicists often use implicit, tacit, or unstated 

knowledge (see section 2.4.1) in their application of mathematics to physics and that this 

contributes to students missing the meaning of use of mathematics in physics. 

 

Mathematics adopts a terse and minimalist view - consisting mainly of heuristics, and 

sometimes devoid of meaning - while physics provides a much richer context (Redish & 

Gupta, 2009). Evans and Green (2006) observe that the difference in the semantic structure 

reflects a difference in conceptualization and conceptual structure. They argue that this can be 

the case even though the objective information or meaning provided by an active sentence is 

identical to that provided by a passive sentence. In the active sentence, the focus is on the 

actor, while the passive formulation draws greater focus to that which is undergoing the 

action. The difference in focus could imply a different organization of the knowledge 

network, which could in turn lead to differences in how a subsequent domain of knowledge is 

accessed. 

 

Talmy (2000) suggests that the semantic representation of concepts takes place through the 

interaction of dual systems whose relationship is complex and indirect. The dual systems are 

conceptual structuring system and a conceptual content system. The former is schematic 

while the latter is rich and highly detailed. The two descriptions are comparable to Sherin‟s 

symbolic template and conceptual schema (see section 3.4.2.2.). The resounding point is that 

understanding physics equations includes making many connections to stores of knowledge 

about mathematical operations and how those operations connect to physical meaning beyond 

variable definitions. One other plausible connection between mathematics and physics is 

succinctly demonstrated below, by at least one other of the MPERG studies.  
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2.6.3 Mathematics - Physics entanglement 

While it is common to approach physics instruction as either conceptual or mathematical (see 

sections 2.1; 2.2; 2.3 & 2.4), Uhden et al. (2012) however argues that the use of mathematics 

in physics can lead to conceptual understanding of physics. This is in agreement with 

Tuminaro (2004) in “Mapping Mathematics to Meaning” epistemic game. Mapping 

mathematics to meaning is explained as a pattern of activities where students working on a 

physics problem begin with a physics equation, and then develop a conceptual story in the 

process. 

 

At advanced levels, mathematics penetrates the physics concept to a level where the “two” 

become inseparable, to the extent that “it does not make sense to speak of conceptual or 

mathematical” (Uhden et al., 2012, p. 276). The study suggests that there are different levels 

of mathematical reasoning in physics and points out that there is a deep interrelationship 

between mathematics and physics. Ultimately the study developed a model that showed 

“important aspects of the mathematical character of physics” (p. 499). This has also been 

observed by Redish and Gupta (2009) when presenting the four steps of modeling, 

processing, interpreting, and evaluating as critical skills in the use of math in physics. They 

like Uhden et al. also observed that, “the physics and the math get entangled” (p. 3). 

 

Still with regards to mathematics - physics entanglement, the use of mathematics in physics 

can be delineated into what is called structural mathematics and technical mathematics 

(Uhden et al., 2012). Structural mathematics is explained as the conceptual understanding of 

physics through mathematics, premised on the understanding that mathematics is in - built in 

physics principles/concepts. Technical mathematics on the other hand exists independently 

and is associated with pure mathematics manipulations. Kuo et al. (2013) concurs with the 

above, and conclude in their study that a certain level of physics understanding may result 

from exclusive mathematical manipulation; that students should be able to explain the 

physical meaning of their mathematical calculations.  

 

Uhden et al. focuses primarily on what could be considered the role of mathematics in 

physics mostly from a philosophical-based experts‟ view point, devoid of empirical students‟ 

learning experiences. The educational implications are only mentioned through extrapolation. 

What mathematics in physics is, and how that relationship influences students understanding 

of physics are separate topics of engagement which can be explored distinctively. While the 

former; what mathematics in physics is, is important to put the study in perspective, it is the 
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latter; how that relationship influences students understanding of physics that is more 

important for the current study. This would be succinctly explored as students‟ mathematical 

thinking in physics. 

 2.7 Mathematical thinking in physics 

 

Students‟ mathematical thinking in physics is described in a framework by Tuminaro (2004). 

He developed three major theoretical constructs namely; mathematical resources, epistemic 

games and frames. The framework introduces mathematical resources as the relevant 

cognitive structures for describing and analyzing mathematical thinking and problem solving. 

Epistemic games and frames provide the activation and context for the resources. 

2.7.1 Mathematical Resources 

Mathematical resources are described as knowledge elements activated in mathematical 

thinking and problem solving. They are units of thought or reasoning about use of 

mathematics in physics. In this theoretical bid students‟ mathematical knowledge consists of 

loosely organized bits of knowledge referred to as resources. Four types of knowledge 

elements which constitute mathematical resources are intuitive mathematics knowledge, 

reasoning primitives, symbolic forms and interpretive devices. These different types of 

mathematical resources are described in detail in section 3.4.2.2. Their relevance to the 

current study is demonstrated by the extent to which they contribute to the development of 

the theoretical framework (see section 3.5). Mathematical resources will play a significant 

role in identifying the mathematical approaches that students undertake when solving 

electricity problems. This is in accordance with the research question, “What mathematical 

approaches do students use when solving electricity problems? 

2.7.2 Epistemic Games and Frames  

Tuminaro describes epistemic games as “patterns of activities that use particular kinds of 

knowledge to create new knowledge or solve a problem” (p. 60). While epistemic games 

were first developed by Collins and Ferguson (1993) as normative, it was altered to be 

descriptive elements which in addition, are specific to physics as opposed to science in 

general (Tuminaro, 2004; Tuminaro & Redish, 2007) . The six different games that students 

play in the context of problem solving in physics were identified to be: Mapping Meaning to 

Mathematics, Mapping Mathematics to Meaning, Physical Mechanism Game, Pictorial 

Analysis, Recursive Plug-and-Chug, and Transliteration to Mathematics. Some of these 
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games have been used to describe students mathematical approaches in the topic of electricity 

in this study (see sections 6.2, 6.3, 6.4). 

 

Frames, is introduced to describe students‟ expectations when solving problems (Tuminaro, 

2004). This explication of frames follows the work of Goffman (1974) and Tannen (1993). 

They are structures of expectation that determine how individuals interpret situations or 

events. Frames help in “understanding how or why students “choose” to play a particular 

epistemic game in a particular context” (Tuminaro, 2004, p. 6). Three different frames are 

identified as; quantitative sense-making, qualitative sense-making and rote equation chasing. 

The prior listed six epistemic games are couched in these frames. These epistemic games are 

contrasted with the epistemological frames as developed and applied in chapter 5 (see section 

5.4, 5.5 and 5.6). 

 

Some of the mathematical difficulties that students experience may actually be a result of 

epistemological framing (Bing & Redish, 2006). Three types of‟ mindsets, which are in fact 

frames, have been identified in students‟ use of mathematics in physics. The students‟ 

mindsets are “calculation”, “chunking”, and “physical mapping”.  Calculation is when 

students pay attention to computational details, and how the mathematics is procedurally 

correct. Chunking entails hiding some mathematical detail, but “packaging parts of an 

expression together and seeing how the various packages relate to each other” (p. 420). 

Physical mapping on the other hand explains how mathematics in physics class is only valid 

insofar as it reflects the physical system under study. It focuses especially on the physical 

meaning behind numbers and their operations.  

2.8 Summary of the observations  

 

In this chapter, similarities and differences between mathematics and physics were discussed 

Mathematics was presented as a purely abstract discipline while physics represented some 

physical reality. Mathematics and physics were presented as different types of knowledge. 

Physics appeared to be favored by the conceptual knowledge description while mathematics 

would be favorably described as procedural knowledge. The use of mathematics in solving 

physics problems was outlined. Through illustration of various approaches in problem 

solving, the implicit but outstanding purpose appeared to be to enhance conceptual 

understanding of students. 
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What also surfaced is that while mathematics appears indispensable in students‟ learning of 

physics, in some instances, it can be a barrier. Some studies present mathematics and physics 

as inseparable. Others still advocate for a conceptual approach as a prerequisite to extensive 

mathematical formalism. The latter studies allude to the fact that inappropriately timed use of 

mathematics actually contributes to students difficulties in the learning of physics.  

The dearth of literature with respect to use of mathematics in the specific topic of electricity 

also came to the fore. The few studies focusing on this area were all focused on whether there 

was conceptual understanding or not. No study specifically put mathematics first – as a 

possible cause and tried to evaluate the nature of understanding that result. 

MPERG studies were isolated to illustrate the extent to which they contributed to the 

mathematics - in- physics literature. The MPERG studies are extensive, but also disjointed. 

They populate a very diverse investigation field that includes: students‟ interpretation of 

constants and variables; semantic analysis; mathematics - physics entanglement; epistemic 

games, frames and mathematical resources. In their congruence is the cognitive approach in 

investigating students‟ use and understanding of mathematics in physics. For this last point, 

MPERG studies have lent themselves credence to guide the current study. 

One of the MPERG studies Tuminaro (2004) developed a composite framework on 

mathematical thinking in physics after a holistic investigation which includes all previously 

disjointed frameworks in the spectrum of research on students‟ use of mathematics in 

physics. Tuminaro claims that in addition to synthesizing  previous studies on students use of 

mathematics in physics, he has demonstrated that; “the actual path that students follow during 

problem solving in physics varies from problem to problem and student to student” (p. 88).  

He says this fact is largely overlooked in many cognitive models of student problem solving. 

Tuminaro (2004) has in resonance with di Sessa (1993) adapted the general knowledge 

structure; where there exist general cognitive constructs that includes but are not exclusive to 

the structure of mathematics [or physics] concepts. This underscores the importance of 

likening students understanding of mathematics in physics to other cognitive processes that 

students may engage in, when studying other subjects different from mathematics or physics. 

The study purports to have developed a vocabulary and grammar as useful tools for 

understanding the nature and origin of students‟ mathematical thinking in physics. Tuminaro 

posits that the study offers all the knowledge and reasoning that is involved in mathematical 
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thinking and problem solving. This is why the MPERG studies and the Tuminaro (2004) 

study in particular have been identified as the “cornerstone” for the current study.  

Tuminaro and other MPERG studies, as well as all the previously discussed studies were 

focused on how students use and understand the use of mathematics in physics, in general. 

The current study intends to take a step back and look at how students‟ use of mathematics in 

physics may be influenced by their understanding of the role that mathematics plays in 

physics.  

This study will narrow the focus and cultivate specifically, the fresher topic of use of 

mathematics in the topic of electricity. As noted earlier, while it has become common for  

studies to focus on students‟ conceptual understanding of physics content, this study is 

retrospectively oriented to interpolate how students manipulation of mathematics in physics 

problem solving, may be influenced by their understanding of the role that mathematics plays 

in physics. More so, this study intends not only to develop and use an alternative framework, 

but also a domain (electricity) specific one. In the next chapter a conceptual framework that 

will be useful in analyzing the role of mathematics in students‟ understanding of the physics 

topic of electricity is developed. 
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Chapter 3 Conceptual Framework  

  

3.1 Introduction 

 

This chapter presents the development of a conceptual framework for analyzing the role of 

mathematics in students‟ understanding of electricity. A suitable framework could not be 

found, for example frameworks such as FLAP were either too general (see section 3.4.1), or 

was on its own inadequate such as phenomenological primitives (see section 3.4.2.1). For that 

reason, it was decided to develop a framework suitable for this study from two widely used 

frameworks namely the General Systems Theory (GST) and Extended Semantic Model 

(ESM). 

 

3.2 General Systems Theory (GST) 

 

The General Systems Theory is a widely used framework that prescribes and explains 

relationships between subjects, content and ideas in both the natural and social sciences.GST 

claims to be about defining interrelationships amongst systems (Sergei & Heather, 2002). A 

principal objective for this study, “to determine patterns of understanding that emerge when 

1
st
 year students solve electricity problems” is about “defining interrelationships”. 

 

GST also claims to be about specifying systems (Sergei & Heather, 2002). This resonates 

well with the other two objectives of this study; “to establish students’ expectations of the 

role of mathematics in physics” and “to determine what mathematical approach 1
st
 year 

students use when solving electricity problems”. The intention is to establish a baseline as 

well as any systematic approach in students‟ mathematical endeavors. The baseline should be 

provided by whatever information students give to suggest how they understand use of 

mathematics in physics. Part of the systems would be the emerging mathematical approaches 

by students as they solve physics problems, and as illuminated by the developed framework. 

 

GST acknowledges the hierarchically ordered, self-contained way in which knowledge is 

presented within tertiary science education disciplines; but notes that the theory states that the 

biggest challenge could be in integrating knowledge and material from different disciplines 

(Sergei & Heather, 2002). For this study, the self - containment of knowledge could be a 

precarious situation to disentangle. That “mathematics - in - physics” cuts across two 
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disciplines, and furthermore, that parsing physics churns out mathematics as a significant 

component heralds a challenging matrix for the investigation.  

 

Sergei and Heather (2002) argue that the flagships of science education in constructivism 

(Von Glasersfeld, 1992; Tobin & Tippins, 1993; Yager, 1995) and conceptual change 

(Hewson & Thorley, 1989; Scott, Asoko & Driver, 1992) can only be attained if  facilitated 

through science „maps‟ or outlines that identify interrelationships, connections and 

generalities of scientific knowledge in a valid manner. The role of mathematics in students 

understanding of physics would be better illuminated if the “interrelationships, connections 

and generalities” between the role of mathematics, students‟ understanding of physics and the 

physics topic in question are outlined.  

 

The utility of the GST is elaborated as being able to; identify the system of which the unit in 

focus is a part; explain the properties or behaviour of the system and finally; explain the 

properties or behaviour of the unit in focus as part or function of the system (Skyttner, 2010). 

In this study, the role of mathematics, students‟ understanding of physics and the physics 

topic of electricity are the three units in focus. The expectation is that a systematic integration 

of the three should uncover the breadth of the objectives of the study.  

From as far back as Boulding (1956), Von Bertalanffy (1968) to Skyttner (2010) the GST has 

evolved through various forms and has been hailed as a useful tool in mapping scientific 

knowledge by depicting relationships, connections and generalities. Through this framework, 

knowledge that is fragmented across subjects is harmonized. Information acquired from one 

area of science must be seen to fit into science as a whole. The theory advocates for students 

to have long-term and integrated understanding of science content, and also be able to apply 

their knowledge. 

 

A framework would be a logical display of patterns and how the patterns relate to each other. 

For this study, an effective framework should be one that is consistently applicable in 

analysing students‟ use of mathematics in the physics topic of electricity. GST is preferred as 

a guiding tool for the development of the framework and analysis of this study in general 

because, as Tuminaro (2004) suggested, a general knowledge framework would offer a whole 

range of cognitive constructs [that should include the role of mathematics in students‟ 

understanding of physics]. 
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3.3 Extended Semantic Model (ESM) 

 

The Extended Semantic Model is a model of scientific problem solving and reasoning 

focusing mainly towards conceptual understanding.  It was developed by Greeno (1989) with 

the intention to make sense of students‟ step - by - step progress when solving problems. It is 

able to show the extent of students‟ conceptual approach to problem-solving.  

 

The ESM advocates for idealized problem solving that incorporates what it characterizes as 

the four domains of knowledge. These domains of knowledge are distinct areas of focus 

when solving physics problems. According to the ESM (fig.1) the domains of knowledge 

identifiable in problem solving are; concrete, model, abstract and symbolic. These areas of 

focus are purported to be cardinal for students‟ effective use of mathematics in solving 

physics problems (Gaigher et al., 2007). Effective use here implies there is concomitant 

understanding by the solver. The concrete domain includes physical objects and events. The 

model domain is about models of reality and abstractions. The abstract domain on the other 

hand includes concepts, laws and principles. Finally, the symbolic domain is concerned with 

language and algebra. 

 

 

Figure 1: Greeno's Extended Semantic Model 

                                                                 Copied from Gaigher et al., 2007, p. 1093. 
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Greeno (1989) states that:  

The concrete aspect is concerned with that which is physically sensible. Students must 

develop intuition that helps them make physical meaning from the physics problem 

they are solving. The model domain involves portraying models of reality and 

abstractions. In the abstract domain; concepts, laws and principles explain the 

physical or concrete aspect. Finally, the symbolic domain is concerned with symbolic 

ways of representing a problem, be it metaphorically in words, or through the 

mathematics of algebra, or both (p. 1093). 

 

Scientific problem-solving and reasoning skills which lead to conceptual understanding are 

exemplified by correspondences between these domains (Greeno, 1989). Approaches to 

problem solving should show connection with other domains. Thus, a student solving a 

physics question that involves the use of mathematics is expected to indicate deliberate 

awareness of all or translation between the four domains as different areas of focus, to show 

there is conceptual understanding. 

 

Greeno (1989) further describes the four domains as made up of two layers. The layers are 

denoted layer a and layer b. Layer a contains distinct items which are independent whereas 

layer b consists of meaningful combinations of items from the respective domains in layer a. 

 

To illustrate how items may be identified in layers a and b across all the four domains an 

example is presented by taking a familiar problem encountered in most introductory physics 

electricity questions. The example of two electric point charges  

 

The a layer will constitute, independent of one another the following: two electrons 

(concrete); two dots and two arrows (model); electric force, charge and distance 

(abstract); the symbols Fe, q1, q2, r
2
 and constant ke (symbolic). 

 

The b layer will then show meaningful combination of items in the a layer: repulsion   

between two electrons (concrete); two dots joined by two arrows pointing in opposite 

direction (model); relationship between electric force, charge and distance - 

Coulomb‟s law (abstract); the  mathematical relation Fe = keq1q1/r
2
(symbolic). 
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The ESM thus prescribes that awareness by the student of the different layers as well as the 

different domains is an indication of effective use of mathematics in physics. Students‟ 

difficulty with mathematics in physics by applying the ESM was researched by Gaigher et al. 

(2007). A step by step analysis of students working on problems indicated translation across 

the different domains. They observed discordance between students‟ successful algebraic 

solution and their conceptual understanding. They noted that experts on the other hand 

demonstrated use and translation between all knowledge domains as illustrated through the 

ESM. They further state that the successive representations, qualitative analysis, and use of 

general physics principles demonstrated by experts indicate translations between all four 

knowledge domains. Gaigher et al. proposed that students will develop conceptual 

understanding from making translations across the four knowledge domains. They state that, 

“the resulting network of links that develop between concrete situations; physics concepts; 

models and symbols amounts to a broad conceptual understanding of physics” (p. 1107). 

Gaigher et al. quotes Chekuri and Markle (2004) who argue that “although problem-solving 

in physics usually involves algebraic operations in the symbolic domain, the algebra should 

always be connected to the concrete, model, and abstract domains” (p. 1094). 

 

While the Gaigher et al. study looked exclusively at the translation between the different 

ESM knowledge domains, taking one step before that should indicate how mathematics 

influences students to work and translate between the respective domains. This is the reason 

why in this study; the role of mathematics in students‟ understanding of physics, and not 

simply the familiar characterization of students‟ use of mathematics in physics, will be 

analyzed. 

 

Koichu (2010) cites Schoenfeld (1992) who observed that the interplay between 

mathematical knowledge and students‟ strategic behaviors is not well understood by the 

research community. This necessitates future studies to clearly establish not only students‟ 

mathematical approaches and patterns of understanding but more importantly the connection 

between the two.  While the MPREG studies and their derivatives (see section 2.6) display a 

disjointed approach to the analysis of students‟ use of mathematics in physics, there is 

however some general agreement with regards to the use of mathematics in physics 

instruction. While the GST will be used to guide with the development of the framework 

structure, what follows are two of the overarching approaches that usher in the background 

and justification for the content.  
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3.4 Some relevant approaches for students’ use of mathematics in physics  

 

For students‟ effective use of mathematics in physics, integration and modeling constitute the 

spectrum of suggested alternatives. 

3.4.1 Integration approach  

Integration implies developing learning programs that involve knowledge transfer so that 

students recognize the connectedness and organization of different mathematics and science 

concepts (Basson, 2002). An extensive project called FLAP (Tinkers et al., 1999) that 

integrated mathematics and physics was developed in the UK for university teaching. The 

efforts FLAP made were addressing less mathematically prepared student populations 

because of the underlying assumption that students who perform poorly in their use of the 

mathematics in physics problem solving do so because they do not have requisite 

mathematical aptitude. Student under-preparedness is a valid claim and this study will 

incorporate FLAP‟s ideas. The framework that will be developed and used in this study will 

additionally look at other factors that affect students‟ use of mathematics in physics other 

than mathematical under-preparedness. The other factors could be using mathematics to 

model physics theories, laws, principles and how students interpret that.  

3.4.2 Modeling approach  

An alternative way of presenting the relationship between mathematics and physics is 

through representation or modeling. According to Hestenes (1992, 2010), modeling is the 

construction, validation and application of models; and for Tweney (2011), science rests on 

the construction and use of appropriate mental models. Mathematics is here touted as the 

science of patterns, conceding that mathematics is essential for students understanding of 

physics. This implies that pattern recognition skills are essential to understanding physics. 

Hestenes, however, cautions that a limitation of the modeling theory lies in students being 

able to distinguish the mathematical world from the physics world. Students need to be able 

to recognize the use and limitation of models and the modeling process. In applying the 

modeling theory, Hestenes (1992) says, students should understand that solutions are 

governed by physics concepts rather than mathematical operations. Hestenes (1996) is cited 

by Cabot (2008) as saying: 
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The great game of science is modeling the real world, and each scientific theory lays 

down the rules for playing the game. The object of the game is to construct valid 

models of real objects and processes. Such models comprise the content core of 

scientific knowledge. To understand science is to know how scientific models are 

constructed and validated. The main objective of science instruction should therefore 

be to teach the modeling game (p. 7). 

Modeling is a powerful approach that has been widely applied to assist students‟ use of 

mathematics in physics meaningfully. It is broad in that it covers the nature of mathematics as 

applied to physics (and other STEM subjects) in general.  

 

According to Megowan (2007) modeling in physics is different to modeling in mathematics. 

She explains that mathematical models help organize complex ideas by focusing on patterns 

and relationships. This she posits can be “fully described by the algebraic structure” (p. 12). 

Physics models on the other hand, she observes, constitute both geometric and algebraic 

structure since they represent “real spatial and temporal phenomena” (p. 12). Dawkins et al. 

(2008) noted that in general, however, students do not understand mathematical models and 

what they mean conceptually. 

 Koichu (2010) implores future studies to focus on the development of models that gives 

insight into the entire problem solving process. Other studies extending from the modeling 

theory (Sherin, 1996, 2001; Tuminaro, 2004) have investigated the nature of mathematics-in-

physics at a much finer detail, and in the process uncovering practically more powerful 

understanding. The following subsection (3.4.2.1) presents phenomenological primitives as a 

cognitive approach towards modeling students‟ understanding of physics. The next 

subsection (3.4.2.2) details “mathematical resources” – a derivative of phenomenological 

primitives, as modeling mathematical thinking.  

3.4.2.1 Phenomenological Primitives - modeling students understanding  

In order to model students‟ understanding of physics, di Sessa (1993) came up with what he 

termed phenomenological primitives (p-prims). According to di Sessa p-prims are 

hypothetical knowledge structures that could be categorized according to source, size, 

function, and tendencies. P-prims are mental models. Facts, ideas, relations between concepts 

and habits constitute the spectrum of p-prims. Though theoretical by design, p-prims are 
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described as pragmatic mental models that could be used to describe students‟ pre-

conceptions, thinking states as well as their problem solving potential. The p-prims are said to 

be activated in various and opportune circumstances which were comprehensively explained 

(di Sessa, 1993).  

 

Though based largely on the McCloskey (1983) intuitive physics study, the di Sessa study 

uniqueness was in that it agitated for “ a computational theory of common sense and intuitive 

knowledge and its evolution in scientific  understanding” ( p. 174). The phenomenological 

primitives framework was developed in a physics context and had implications for 

instruction, students learning difficulties and also offered pedagogical resources for 

instructional design. 

 

Di Sessa noted that [any] endeavor on physics understanding and physics learning is purely 

knowledge based.  Congruent to that line of reasoning, di Sessa‟s p-prims and the breadth of 

the “towards an epistemology of physics” monograph formed a basis for substantial later 

studies on students‟ understanding of physics - especially those with a cognitive orientation, 

most of which are discussed here. The p-prim thesis has evolved as a backbone to subsequent 

epistemological studies in physics education, and notably in students‟ use of mathematics in 

physics (Sherin, 1996, 2001; Tuminaro, 2004; Jones, 2010). While they may not be 

immediately evident, p-prims will be the “seed” of the theoretical framework to be developed 

in this chapter, to illuminate how mathematics influences students‟ understanding of physics, 

as shown by the way they use mathematics in physics. 

 

P-prims, just like mathematical resources (see section 2.7.1) are theoretical cognitive 

elements carving the manifold or knowledge - in - pieces framework. They differ in that p-

prims are broader and cover a much larger range of physics, even that which may not involve 

the use of mathematics. Mathematical resources on the other hand are, and convenient for this 

study, concerned with mathematics in physics only. Few studies focus on the strategic use of 

all these different types of mathematical resources together [to give a more holistic view of 

their application] (Wilkerson-Jerde & Wilensky, 2011).   

3.4.2.2 Mathematical Resources – modeling mathematical thinking 

Students' mathematical thinking in physics is described in a framework by Tuminaro (2004). 

He developed three major theoretical constructs namely; mathematical resources, epistemic 

games and frames (see section 2.7). However, in the section, mathematical resources he 
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identified four types of mathematical resources being; intuitive mathematics knowledge, 

reasoning primitives, symbolic forms and interpretive devices. These mentioned types of 

mathematical resources were used in the development of the theoretical framework and will 

be discussed in the following paragraphs.  

Intuitive Mathematics knowledge  

Intuitive mathematics knowledge is described as basic knowledge of mathematics like 

counting and “subitizing” that is learned at a very early age. Subitizing is explained as “the 

ability that humans have to immediately differentiate sets of one, two and three objects from 

each other” (Tuminaro 2004, p.40). The use of this type of mathematics knowledge has been 

seen to be activated by students even in more sophisticated and formal mathematics used in 

advanced physics courses. (Tuminaro, 2004, p. 45) gives examples of intuitive mathematics 

knowledge resources and their descriptions as in table 3.1 below: 

 

Table 3.1: List of Intuitive Resources  

Intuitive Mathematics Knowledge  

Subitizing The ability to distinguish between sets of one, two, and three objects. 

Counting The ability to enumerate a series of objects. 

Pairing The ability to group two objects for collective consideration. 

Ordering The ability to rank relative magnitudes of mathematical objects.  

 

The intuitive mathematical knowledge resource is supported by Tweney (2011). Tweney 

explains that James Maxwell claimed that his work was founded upon that of Michael 

Faraday, and that the approach taken by Faraday, “while not mathematical in the usual sense 

(there are no formal equations in any of Faraday‟s works), was nonetheless „intuitively 

mathematical” (p. 688). Koichu (2010) has a description for what is similar to intuitive 

mathematical knowledge and calls it “relatively basic thinking”. He says this type of 

mathematical resource normally co-exists with advanced mathematical knowledge about how 

to solve problems. 

Reasoning Primitives  

The reasoning primitive type of mathematical resource is a derivative of di Sessa‟ p-prims 

(1993) (see section 3.4.2.1). They are abstractions of everyday experiences that involve 

generalizations of classes of objects and influences. Reasoning primitives were introduced to, 

“reduce the huge number of p-prims and [show] how it creates knowledge elements that exist 



43 
 

at the same level of abstraction” (Tuminaro, 2004, p. 41).  An example of reasoning 

primitives is given, where a “ p-prim like force as mover results from mapping an abstract 

reasoning primitive like agent causes effect into a specific situation that involves forces and 

motion” (p. 46).  Further examples of reasoning primitives and their descriptions are listed in 

table 3.2 below (Tuminaro, 2004, p. 46):  

 

Table 3.2: List of Abstract Reasoning Primitives 

Abstract Reasoning Primitives 

Blocking The abstract notion that inanimate objects are not active Agents in any 

physical scenario. 

Overcoming The abstract notion that two opposing influences attempt to achieve 

mutually exclusive results, with one of these influences beating out the 

other. 

Balancing The abstract notion that two opposing influences exactly cancel each other 

out to produce no apparent result. 

More is more The abstract notion that more of one quantity implies more of a related 

quantity. 

 

Symbolic Forms  

Symbolic forms are a framework that explains the way physics students and some physics 

experts view and apply physics equations. They are models that express individuals‟ 

understanding of physics equations. Tuminaro (2004) acknowledges that the symbolic forms 

he identified in the mathematical resources are the same as those introduced by Sherin (1996, 

2001).  

 

Symbolic forms are characterized as consisting of two elements; being the symbol template 

and the conceptual schema. The symbolic template explains the virtual structures through 

which mathematical expressions are seen, whereas the conceptual schema is the idea to be 

expressed in the equation. The schema is invoked when a student is given a problem; this 

schema then specifies equations and drives the solution. The symbolic forms model offers a 

moderately large vocabulary of simple ideas that successful physics students have to learn to 

express in, as well as read out of equations. 

Extensive comparisons have been made between the symbolic forms and phenomenological 

primitives (p-prims). Symbolic forms mediate the connection between di Sessa‟s p-prims and 

equations. The origin and development of symbolic forms may be experiences working with 

physics equations as well as early mathematical experiences (Sherin, 2001). Tuminaro (2004) 
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agrees and notes that symbolic forms describe students‟ intuitive understanding of physics 

equations. These symbolic forms are in fact models as proposed and advocated for by 

Hestenes (1987, 1992) through the modeling thesis. Sherin (2001) recommends that students 

may need to learn to invent at least some simple types of mathematical models and to express 

the content of those models, prior to physics instruction.  

 

One of the eminent points from the Sherin discourse is that, “equations can be understood in 

terms of more basic and generic intuitions that cut across expert domains” (p. 8). Part of the 

argument is that students have knowledge for constructing equations that cuts across and is 

not directly associated with physical principles. Physics equations are partly understood in 

ways that may be generic to other disciplines and in some instances in ways that are physics-

specific. Some other important observations made are that; a correct use of physics equations 

maybe misleading as the solver may thus be said to understand equations in the sense of 

knowing where and how to use them, when in fact the problem solver does not understand 

why individual expressions have their particular makeup. In a follow-up study Sherin (2006) 

still puts forth as one of the hallmarks of expert physics practice; “its ability to quantify the 

entirety of the physical world; everything is described in terms of numbers and relations 

between numbers, and equations may have the same form independent of whether the 

quantities that appear are forces or velocities”(p. 552). That equations may have the same 

form independent of quantities is essentially what symbolic forms are about. 

 

Symbolic forms type of analysis is exemplified in a study of students‟ process of separating 

variables in algebraic equations, treating mathematical terms as physical objects, and moving 

these objects in a landscape of the surface the equation is written on (Wittman, Flood & 

Black, 2013). Wittman et al. explains that this is evidenced when students rearrange and 

transforms equations without any indication of formal mathematical operations.  

 

Another of the MPERG group, Jones (2010) extended the symbolic forms framework and 

applied it to the integral. Jones was able to demonstrate context-dependence on the activation 

of symbolic forms and an alternative way of effectively teaching the integral. Kuo et al. 

(2013) notes that symbol templates blend with a conceptual schema to derive meaning from 

symbolic forms. The symbolic forms model has since emerged as a fundamental pivot to 

subsequent studies on students‟ use of mathematics in physics (Tuminaro, 2004; Jones 2010). 
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Since students‟ use of mathematics in physics generally involves the use of equations, it is 

expected that the symbolic forms model will be the “root” of the theoretical framework to be 

designed and used to illuminate the role of mathematics in students understanding of physics. 

Their utility for this study will thus be demonstrated within the context of the theoretical 

framework.  

Interpretive Devices  

Interpretive devices on the other hand are described as reasoning strategies used in 

interpreting physics equations, Sherin (1996; 2001). Tuminaro (2004) categorizes them into 

formal interpretive devices and intuitive interpretive devices, where the former relies on the 

formal properties of equations and the latter “are abstracted from everyday reasoning and 

applied to physics equations” (p. 53). An example of formal interpretive devices Kieran 

(2007) cites transposing - a mathematical operation that entails changing signs when 

changing sides of the equality and carrying out the same operation on both sides of an 

equation. An example of intuitive interpreted devices on the other hand may involve feature 

analysis; where the relative sizes of physical quantities may be compared in the absence of   

numerical values.  

 

3.5 Design of the conceptual framework 

 

A suitable framework is developed by combining the two widely used frameworks namely 

GST (see section 3.2) and Extended Semantic Model (ESM) (see section 3.3), interspersed 

with mathematical resources. The GST is used to guide the arrangement of electricity 

subtopics while the ESM is used to explain students‟ patterns of understanding. Mathematical 

resources depict students ‟mathematical thinking. 

 

3.5.1 Electricity layer   

Starting with the physics topic of electricity as a unit of focus, this first year topic may then 

be pragmatically divided further into the subtopics: electric force, electric field and electric 

circuits as per the GST (see section 3.2). These sub - topics would then constitute the 

different sub - units of a core segment in an evolving framework (Fig. 2) carving out and 

existing in the physics world. In this layout, the three sub-topics should be distinguishable as 

distinct sub - units, but also connectable as the first year electricity topic. 
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Figure 2: Foundation of conceptual framework 

 

3.5.2 Mathematical Resources layer 

According to the GST categorization, “the role of mathematics” would be another unit of 

focus after the “physics topic of electricity” (first unit of focus) (see section 3.2.) A relevant 

theory of use and understanding of mathematics is adaptable to the development of the 

ensuing logic. Thus, mathematical resources as elaborated by Tuminaro (2004) are proposed 

to occupy the mathematical realm for this study. Mathematical resources represent the 

spectrum of mathematics knowledge elements which should be activated when students are 

solving electricity problems. These will be adopted as earlier explained (see section 3.4.2.2) 

to constitute another segment of the evolving framework (fig. 3).  
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Figure 3: Mathematical Resources  

 

The development of the above two segments and their inherent subsections are in line with 

the GST‟s philosophy of units, connections and systems thinking. The segments are a 

plausible way of presenting the first two units of focus being; the physics topic of electricity 

and mathematics.  

In addition to the use of mathematical resources for the stated purpose, this study will add 

another dimension that may portray the nature of students‟ understanding of physics, which is 

coming out narrowly in the previous mentioned studies. A two - pronged analyses of students 

mathematical approaches and patterns of understanding will be combined to uncover a 

reasonable relationship between the two. Earlier on (see section 2.3) Koichu (2010) was cited 

emphasizing the need to establish the interplay between students‟ mathematical knowledge 

and their strategic behaviors. 
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3.5.3 MATHRICITY 

The third unit of focus, “students‟ understanding of physics”, will be analyzed through 

Greeno‟s (1989) Extended Semantic Model (ESM). The ESM will be used to identify 

patterns of understanding as a result of the mathematics that students use in solving the 

different electricity sub-topics (see Figure 4). It will be critical for the purpose of this study to 

be able to discern which mathematical resources lead to what knowledge domain. That 

observation will help address the research question, “What patterns of understanding emerge 

when students use certain mathematical approaches to solve electricity problems? 

 

Merging the three segments; electricity sub-topics, mathematical resources and the ESM, 

results in figure 4 below. The segments are connected such that they access a common “axle” 

about which they rotate; allowing variable permutations. A single, two or all the layers could 

move to indicate; mathematical resources activated in a particular electricity problem and the 

particular learning experience gained. This will be the conceptual framework for this study. 

The framework will use a composite of resources to model the role of mathematics in 

students‟ understanding of electricity problems. Since it is about mathematics in the physics 

topic of electricity, this framework will be named MATHRICITY; combing the first part of 

the word MATHematics and the last part of the word electRICITY.  
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Figure 4: MATHRICITY  

   

A valid expectation is that as students will be working on a particular  electricity subtopic, 

say electric field, a particular mathematical resource will be activated. The mathematical 

resource indicates a mathematical approach. As a result of the mathematical approach 

applied, a particular type of understanding will ensue. This pattern of understanding is 

indicated by the domain or combination of ESM domains discernable. 

An activated mathematical resource like Symbolic Forms may link with the Symbolic 

Domain of the ESM, since both are about symbols. Symbolic Forms may also link in the 

Model Domain since as Sherin (2001) puts it, they (symbolic forms) are “some simple types 

of mathematical models” .  

The Intepretive Devices are well suited for the Model Domain. Models are representation of 

that which is physically or cognitively discernable, and assist in offering interpretation of 

phenomena.  
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The Reasoning Primitives may go with  the Abstract Domain since “reason “ is an abstraction  

that  could simply be  a congruence of “concepts, laws or principles”.  

The Intuitive Mathematics Knowledge resource is unique. This type is about “immediate” 

activation of basic mathematics that could result from a variety of contexts. Thus intuitive 

mathematics knowledge should be activated in any of the four areas of focus (domains) when 

solving physics problems. With respect to the concrete domain it is further noted that, 

students must “develop intuition” (p. 52) to make physical meaning from physical problems. 

This adds credence to the  versatility of Intuitive Mathematics Knowledge resource.  

Applying this whole framework to the investigation should reveal the knowledge domains 

that emerge when specific mathematical resources are activated by particular electricity 

problems. The electricity problems provide the context, the mathematical resource indicates 

the mathematical approach and finally the ESM domains describe students‟ understanding. 

MATHRICITY was pilot tested on a typical first year problem to demontrate its utility. 

3.6 Application of MATHRICITY through analysis of a typical first year 

      electricity question  

 

To illustrate the feasibility of the framework, a typical first year electricity textbook question 

and solution are presented and then analysed by means of  two components of the framework; 

Mathematical Resources and Extended Semantic Model (see Table 3.3).  

Sub unit – Electric force  

Example 23.1 The Hydrogen Atom ( Serway & Beichner, 2000,  p. 715) 

The electron and proton of a hydrogen atom are separated (on the average) by a 

distance of approximately 5.3 x 10
-11 

m. Find the magnitudes of the electric force and 

gravitational force between the two particles. 

Solution (only the electric force component,which is of interest to us is presented) 

From Coulomb‟s law, we find that the attractive electric force has the magnitude  

Fe = ke e
2
/r

2 
= ( 8.99 X 10

9
 N.m

2
/C

2
)(1.60 x 10

-19
 C)

2
/ (5.3 X 10

 -11
m)

2 
= 8.2 X 10

-8
 N 
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Table 3.3:  Template for Using the Developed Conceptual Framework (MATHRICITY)  

Step Activity  Description of 

activity  

Activated  

mathematical 

resource  

Awarenes/ 

translation 

between ESM 

domains  

1 From Coulomb‟s law, 

we find that the 

attractive electric force 

has the magnitude  

 

Gives a simplified 

statement of the problem 

in words, highlighting 

that the force to be 

found is attractive  

Reasoning 

primitives  

Symbolic, 

layer b 

2 Fe = ke e
2
/r

2
 Writes Coulomb‟s 

equation 

Interpretive 

devices (Formal) 

Symbolic,  layer 

b  

3 = ( 8.99 X 10
9
 

N.m
2
/C

2
)(1.60 x 10

-19
 

C)
2
/ (5.3 X 10 

-11
m)

2
 

-Substitutes numbers for  

variables and constants  

-Gives units for 

variables and constants  

Interpretive 

devices (formal)  

Symbolic, 

 layer b 

4  = 8.2 X 10
-8

 N 

 

Writes final numerical 

answer with the unit of 

force, N 

 Interpretive 

devices(formal)   

Symbolic, 

 layer a  

 

The breakdown into  steps for a solution to a problem as indicated in the table above, allows 

mathematical approaches to be identified through the activated mathematical resources. 

Awareness or  translation between ESM domains illuminates  patterns of understanding. An 

in-depth analysis of  sequencing of units, variables and constants, adds a further dimension. 

3.7 Chapter summary  

 

The General Systems Theory (GST) was used to reconstitute the topic electricity into the 

units: electric force, electric field and electric circuits. This was adopted as a segment in the 

evolving framework. Another segment of the framework was comprised of mathematical 

resources, being the activated conceptual models that students access when applying 

mathematics in physics. These are: intuitive mathematics knowledge, reasoning primitives, 

symbolic forms and interpretive devices. The Extended Semantic Model (ESM) was the third 

segment of the framework. It is about describing students‟ understanding of mathematics in 

physics. The ESM offers the domains; concrete, model, abstract and symbolic as cardinal in 

examining this understanding.  

The complete framework was thus named MATHRICITY, on the basis that it is mathematics 

in the physics topic of electricity that is being investigated. The feasibility of the framework 

was presented. The results of applying the framework to students‟ work will be presented in 
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chapter 6 to demonstrate its utility. The results will be further thrashed-out in chapter 7 to 

identify common threads among the different students‟ approaches with respect to the 

different electricity subtopics.  

The next Chapter, 4 details methodological, validity and reliability as well as ethical 

considerations in conducting the study. 
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Chapter 4 Research Method  

 

4.1 Introduction 

 

Data collection was organized in three phases. The first phase  established students‟ 

expectations of the role of  mathematics in physics; the second determined what 

mathematical approach 1
st
 year students use when solving electricity problems; and the third 

determined types of understanding that emerge when 1
st
 year students solve electricity 

problems. 

To provide data to answer the first research question, two instruments were used namely: a 

survey administered to students, and focus group interviews, both of which students‟ 

expectations on the use on mathematics in physics were explored. The survey was given pre- 

instruction with respect to the topic of interest (electricity) and focused on students‟ views on 

their use of mathematics-in-physics, in general. The interviews were conducted during the 

period when the topic of electricity was being taught. The interviews focused on students‟ 

views on their use of mathematics in physics; starting broadly and eventually narrowing to 

the specific topic of electricity.   

Copies of students' scripts were made to answer the second and third research questions. 

Previous studies on and related to students‟ use of mathematics in physics were coalesced to 

come up with a theoretical framework for this study (MATHRICITY) (see section 3.5). 

MATHRICITY was subsequently used to explain students‟ use of mathematics in the physics 

topic of electricity, when analyzing their test scripts. The analysis was also done in the 

context of what emerged from the survey and interviews. 

Table 4.1 on the following page outlines the research process followed in this study. 

 

4.2 Research Design  

 

This study is based on an intepretivist research paradigm. Interpretation is about giving 

meaning to data, developing insight, making inferences, refining understanding and offering 

explanatory lessons (Hatch, 2002). The study approach is mainly qualitative but also makes 

use of quantitative methods in analysing some of the data. Qualitative research has been 

chosen because of the richness of the data that it produces as well the in-depth information 
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that results from the analysis (Hoepfl, 1997). Qualitative research focuses on the idiosyncratic 

as well as the pervasive, with an attempt to find the uniqueness of each case (Chenail, 2000) 

and emphasizes open - mindedness and curiosity of both the participants and the researcher. 

The specific nature of this qualitative study is both descriptive and explanatory. Descriptive 

studies focus on what is going on, while explanatory studies focus on why something is going 

on (Otero & Harlow, 2009). Qualitative studies are appropriate for this research since there is 

need to uncover, characterize and interpret what is observed. How students view the use of 

mathematics in physics; how students with those types of views eventually apply 

mathematics in physics; and the meaning (why) that may be derived from all these results, are 

fertile qualitative research fields.  

 

Table 4.1: Study design  

The Role of Mathematics in First Year Students’ Understanding of Physics 

Aim Objectives Research 

questions 

Research Sub 

Questions 

Instruments Methodology 
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Establish 

students‟ 

expectations of 

the role of  

mathematics in 

physics 

What are the 

students‟ 

expectations 

of role of 

mathematics 

in physics? 

  

Survey  

 

 

Focus group 

interviews protocol 

 

Administer a survey 

questionnaire 

 

Conduct focus group 

interviews 

 

To determine 

what 

mathematical 

approach1
st
 

year students 

use when 

solving 

electricity 

problems 

 

 

What are the 

mathematical 

approaches 

students' use 

in solving 

electricity 

problems? 

Are there different 

mathematical 

approaches when 

students solve electric 

circuit problems? 

Are there different 

mathematical 

approaches when 

students solve electric 

field problems? 

Are there different 

mathematical 

approaches when 

students solve electric 

force problems? 

 

 

 

 

 

 

 

 

Students' test 

scripts 

 

 

 

 

 

 

 

 

Categorize students‟ 

mathematical 

approaches in terms 

of mathematical 

resources activated 

and students‟ use of 

units, variables and 

constants 
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To determine  

types of 

understanding 

that emerge 

when 1
st
 year 

students solve 

electricity 

problems 

 

 

 

 

What types of 

understanding 

emerge when 

students use 

certain 

mathematical 

approaches to 

solve 

electricity 

problems? 

 

 

 

 

What types of 

understanding emerge 

when students solve 

electric circuit 

problems? 

What types of 

understanding emerge 

when students solve 

electric field 

problems? 

What types of 

understanding emerge 

when students solve 

electric force 

problems? 

 

 

 

 

 

 

 

Students test scripts 

 

 

 

 

 

 

 

Categorize students 

types of 

understanding by 

means of the 

Extended Semantic 

Model (ESM) 

 

4.3 Instruments 

 

The three instruments that were used to collect all the data for this study are; the expectation 

survey, students‟ test scripts as well as focus group interviews. Data from these three were 

deemed appropriate to explore the boundaries of the research problems.  

4.3.1 Expectation survey 

Surveys are important evaluation tools that help in understanding a social or cognitive 

practice like pedagogy. Redish (2003) states that a cost-effective way to determine the 

approximate state of class knowledge is to use a carefully designed research-based survey. As 

baseline, an expectation survey was designed and administered to students, to find out “What 

are the students’ expectations of role of mathematics in physics?” The survey was conducted 

at the end of the first semester, in the form of a questionnaire.  

The survey was developed by coalescing selected items from three established science 

education questionnaires, namely: Maryland Physics Expectation – MPEX (appendix A) 

developed by Redish, Saul and Steinberg (1998); Views Assessment Student Survey –VASS 

(appendix B) developed by Halloun and Hestenes, (1998) and Epistemological Belief 

Assessment Physics Survey – EBAPS (appendix C) developed by Elby, Frediksen, Schwartz 

and White (1998).The chosen items from these three questionnaires were those deemed 

relevant to the study as they addressed particularly the first objective of the study; Establish 

students’ expectations of the role of mathematics in physics.  
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MPEX could not be chosen as a whole as most items addressed students‟ expectations on 

introductory physics in general. Item (19) from MPEX, “the most crucial thing in solving a 

physics problem is finding the right equation to use” is an example of an item used in the 

construction of SERMP item 11 where it reads exactly the same. Item 18 from SERMP, “the 

first thing that I do when solving a physics problem is to search for formulae that relate 

givens to unknowns” was derived from VASS, from where it was item 35 and initially read 

“The first thing I do when solving a physics problem is: (a) represent the situation with 

sketches and drawings (b) search for formulas that relate givens to unknowns”. EBAPS 

contributed to the construction of SERM item 25 “I treat equations as representations of 

reality” where the original item (12) was “when learning science, people can understand the 

material better if they relate it to their own ideas”. 

The resultant questionnaire was then named Student Expectation of the Role of Mathematics 

in Physics (SERMP) (appendix D).SERMP consisted of thirty (30) items put along a 5 point 

Semantic scale  of; strongly agree, agree, neutral, disagree and strongly disagree. The items 

were parsed from categories that would depict students‟ perceptions on the 

“interrelationships, connections and generalities” between mathematics and physics. 

Surveys only measure what students think they think (Redish, 2003). To really see how 

students think about mathematics in physics, their actual work during problem solving will 

provide that critical information. Accordingly, copies of students‟ test scripts when working 

on electricity questions were made for analysis. 

4.3.2 Test scripts 

A key source of data was the students‟ work in their test scripts. Two sets of students‟ test 

scripts were collected for the duration when the students were doing the electricity topic, 

which was the second semester. The first test consisted of questions mainly from the electric 

force and electric field subtopics while the second test covered the electric circuits subtopic. 

Copies were made of students‟ scripts submitted for marking, with their informed consent.  

Students work from the electric force; electric field and electric circuit subtopic were 

evaluated. The particular students‟ solutions identified for even more detailed analysis were 

scanned and stored to make up this report. Data from the documents were analyzed in a bid to 

answer the two research questions; “What are the mathematical approaches students use in 
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solving electricity problems”, and “What patterns of understanding emerge when students use 

certain mathematical approaches to solve electricity problems”? 

4.3.3 Focus group semi - structured interviews 

According to Wilson (1997) focus group discussions in educational research are normally 

employed in concurrence with other qualitative methods. The major advantage of focus group 

interviews is their capacity to produce “concentrated data on precisely the topic of interest” 

Mogan (1996). Being interviewed in a group gives informants a sense of security and comfort 

that may lead to more candid and reflective responses than in individual interviews (Gorrad, 

2001). 

 
Focus group semi - structured interviews were conducted with the students. The interviews 

were audio recorded and later transcribed (appendix H). Each tutorial group was interviewed 

about 2-3 times during the semester. Overall, 7 episodes of interviews covering 

approximately 7 hours were conducted. This was a period when the topic of electricity was 

being taught. The time interval between interviews of the same group was about 2-3 weeks. 

GST concepts were used in aiding the design of the interview questions. Questions were also 

framed along the continuing analyses filtered from students‟ responses to the SERMP as well 

as from their work on tests scripts. The interviews intended to further elicit “students’ 

expectations of the role of mathematics in physics”, with particular emphasis to the topic of 

electricity. 

4.4 Validity and Reliability of the Instruments  

 

Validity, an essential quality in research data, has to do with whether the data are, in fact, 

what they are believed or purported to be (Bless & Higson - Smith 1995; Charles, 1998). 

Reliable information in qualitative studies simply means that the information has to be 

consistent, that similar results will be obtained in a similar environment. This is done with the 

understanding that individuals are different, and that a student‟s state of mind may be 

influenced by many external factors, but also that the fluctuations in individual responses 

tend to average out over a large enough class.  

4.4.1 Validity and Trustworthiness of SERMP 

The original MPEX instrument (appendix A) was validated through discussion with faculty 

and physics education experts, student interviews, and by giving the survey to a variety of 
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"experts". It was also given repeatedly to groups of students. It was refined after testing it 

through more than 15 universities and colleges in the USA (Omasits & Wagner, 2006). 

The VASS (appendix B) originally developed at the Arizona State University (ASU), has 

been administered to over ten thousand US high school and university students and in many 

countries around the world.  It has been validated for surveying student views about knowing 

and learning science and for evaluating science or mathematics instruction and related 

reforms (Redish, 2003). 

The EBAPS (appendix C) on the other hand was validated after making two sets of revisions 

based on pilot subjects and informal feedback, and getting about one hundred students on 

whom it was administered write down their reasons for responding as they did to each item 

(Redish, 2003). 

The SERMP survey, derived from items in the above three, was expected to have a good 

measure of validity as the original items were validated. However, to obtain construct validity 

the SERMP was in addition given to two lecturers from the Science Education Department at 

the UB and two other lecturers from the Physics Department at the same institution for 

validation. The science education lecturers focused mostly on the ability of the questionnaire 

items to communicate, as well as the individual and holistic structure of the questionnaire 

items, face validity. The physics lecturers knew how well the students may interpret the items 

since they were the ones teaching them. Therefore theirs was both face and content validity. 

Some of their overall comments included; aligning the items with the research questions and 

objectives, getting rid of negatively structured questions, and having only one statement in an 

item. All their suggestions were subsequently incorporated. A notable comment from one 

science education lecturer (who was not yet aware of all the instruments used in the study) 

was that “SERMP alone was not adequate to conduct the whole study”, adding that, 

“Actually taking students scripts and analysing them would add more value to the study”. 

Another science education lecturer had suggested, “Why don‟t you go and literally sit in the 

lecture to see how and what the students are being taught?” This was however not done, since 

being aware of the course content and analysing students‟ test script was considered 

adequate. Teaching methodologies, though important, are not part of this study.    
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4.4.2 Validity and Trustworthiness of the focus group interview  

Interview questions were influenced by students‟ response to the SERMP as well what 

obtained from the continuing script analysis. The questions were shared and discussed with a 

colleague prior to interviews, who advised on keeping the questions as open as possible, and 

on allowing where possible, the interview to progress based on what the students were 

saying. The first interview was deliberately structured as general, with students asked to 

discuss the overall physics experience. This was so as to build rapport and establish proper 

context. Taking note of the context enhances validity and the right questions to be asked. 

Rapport ensures reliability as students will discuss without any form of bias. That one 

researcher was involved in all the interviews; and that there were at least two interviews 

conducted per group are other measures of reliability.  

4.4.2.1 Focus group participants 

The three (3) tutorial groups from which focus groups were chosen were identified. Students 

form those groups volunteered to participate in the interviews. Students chose a group leader 

who would communicate with the researcher on the convenient time to hold the interviews. 

They all gave their cell phone numbers to the researcher who sent messages to all of them to 

remind them of the agreed interview time.  

4.4.2.2 Interview time schedule 

The interviews were scheduled for one (1) hour. They were conducted during the day in - 

between lessons. While the researcher suggested the week when he would like to conduct the 

interviews, the students were the ones who agreed on the right day and time for the interview.   

4.4.2.3 Focus group moderator 

The researcher was the focus group moderator and has more than 10 years of teaching 

physics at tertiary level. He has teaching experience across four (4) different tertiary 

institutions in total; two (2) universities and two (2) colleges. This breadth of experience and 

the knowledge of physics and physics teaching gained enabled him to guide the discussion 

with the UB first year physics students with a good measure of credibility. 

4.4.3 Validity and Trustworthiness of the test Scripts  

Being aware of the course plan, the researcher was sure that the test scripts were valid, as the 

questions asked in the tests were from the same content reflected in the course plan. 
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The UB physics department moderates all first year test questions. The course instructor sets 

the test, and then a team of physics lecturers converge to assess and adjust the suitability, 

level and the timing that each question may require. 

4.4.4 Pilot study 

SERMP was piloted midway through the first semester to three (3) tutorial groups (N = 40) 

who would not be part of the groups that the questionnaire was given to for further analysis. 

Students‟ responses were checked for consistency and were also found to be giving the 

required information. A recurring comment from more than one student was that they did not 

understand the meaning of the word “intuitive “ which was used in item16 that initially read, 

“ a mathematical solution to a physics problem must make intuitive sense to me”. The item 

was changed to, “a mathematical solution to a physics problem must be meaningful to me”. 

The amount of time (at most 20 minutes) that it took students to complete the questionnaire 

was found to be both practical and fair. 

4.5 Participants  

 

Diverse trends in the background of students entering their physics degree courses, as well as 

the decreasing familiarity with mathematics, exacerbate the problem of use and 

understanding of mathematics in physics (Tinkers et al., 1999). In Botswana, since the 

University of Botswana (UB) is the only institution currently offering physics degrees, all 

high school completers from urban, rural, resourced and under resourced schools converge at 

the university to offer a rich and interesting population for investigating the topic. Race, 

nationality, and ethnic mix also contribute to the diversity of this study population. 

 The population was also chosen because the course is algebra-based physics, which is 

considered appropriate and adequate for the purpose of this study. This is so considering that 

most first year students would be more proficient in algebra than for example calculus 

(Martinez -Torregrosai et al., 2006).  

Six (6) tutorial groups of the 2011/12 cohort of the UB responded to the questionnaire. Each 

of the tutorial groups consisted of about 30 students [N = 193].  It is from these same groups 

that copies of tests scripts were obtained for analysis. Three groups of ten students per group, 

each group coming from a separate tutorial group participated in the focus group interviews. 

The interview groups were from the same tutorial groups whose test scripts were copied for 

analysis. 
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4.6 Analytical Framework 

 

Remly (n.d.) quotes Stake (1995) declaring that, “Analysis in qualitative studies concentrates 

on the instance, trying to pull it apart and put it together more meaningfully - analysis and 

synthesis in direct interpretation” (p. 75). Gorrad (2001) says it is a systematic search for 

meaning.  

4.6.1 Survey and interview analysis 

The survey was administered during the tutorial sessions towards the end of the first semester 

to 193 first year physics students from six (6) tutorial groups. The tutorial groups chosen 

were different from those involved in the pilot study (N = 40).  

Initially SERMP comprised of five (5) Semantic scale options (Strongly Disagree, Disagree, 

neutral, Agree, Strongly Agree) which were then coalesced into three (3) options (Disagree, 

Neutral, and Agree). Responses to the “strongly agree-agree” and the “strongly disagree - 

disagree” options were brought together to form the “agree” and “disagree” options 

respectively, because in retrospect, the options were found to offer no noticeably different 

responses.   

The analysis of the SERMP involved first noting students‟ frequency response to individual 

items. Students‟ responses to similar items were then put together into categories, in a bid to 

systematically search for meaning, and give a more organized and coherent view of students‟ 

thinking. Outstanding responses were also noted and their significance evaluated. These are 

worth noting because in qualitative studies, even “the point out of the graph” is important, as 

it may sometimes offer very valuable insight (Ritchie & Lewis, 2003). 

With regards to analysis of interview, the first step involved transcription of the audio-taped 

data. The transcription involved listening to the tapes several times, back and forth to pick all 

the important details. Cues such as gestures and tone were also taken note of during the time 

of the interview, as these are important aspects of communication as well (Gorrad, 2001). 

 

The analysis of the interviews was juxtaposed with that of the survey. Both means of data 

were addressing the research question, “What are the students’ expectations of role of 

mathematics in physics?”  Themes were drawn from students‟ discussion during interviews. 

These themes are similar to the categories used in the surveys. Points of emphasis as well as 

recurring comments during the discussion were also noted. 



62 
 

4.6.2 Scripts analysis  

Thirty (30) scripts (10 from each tutorial group) were copied for analysis. Fifteen (15) 

students test scripts, five (5) from each of the tutorial groups M, V and H were purposefully 

selected from the original 30 scripts for more detailed analysis. A comprehensive scan was 

done on each of the five per group for variation in terms of students‟ approach and use of 

mathematics when solving the problems.  

For each of the three questions chosen for analysis, a single script from each group and one 

that offered noticeable variation in students‟ approach to problem solving and the inherent 

use of mathematics for the chosen problems was analyzed.
1
 The selection was based on the 

amount of detail that could be derived from the script as well as the mathematics that was 

used in solving the problem. Variation in approach by the different students was another 

factor guiding the selection criteria.  

The analyzed scripts are from the only 2 tests for the semester when the topic electricity was 

done. Both tests are divided into section A (25 marks) and Section B (75 marks). Section A 

was divided into 5 “short” questions: A1; A2; A3; A4; A5 which accounted for five (5) marks 

each; students had to answer all questions in this section. Section B had 5 “long” questions: 

B1; B2; B3; B4; B5 which carried twenty five (25) marks each; students had to answer 3 of 

the 5 questions in this section. 

Students‟ scripts were analysed through MATHRICITY. The framework applied the GST 

(see section 3.2) to organize the electricity topics. Students‟ mathematical approaches were 

assessed for the mathematical resources (see section 3.4.2.2) that are activated as students 

work on the physics problems. Students‟ awareness and translation between the different 

knowledge domains (Concrete; Model; Symbolic; Abstract) as described through the ESM 

(see section 3.3) was used to evaluate patterns of understanding.  

In addition to the evaluation of students mathematical approaches in solving different 

electricity problems, students‟ use of units, variables and constants also augmented the 

analysis. The focus was on detecting how soon students‟ substitute numbers for variables and 

                                                           
1
Practically, the selection could only be done after the scripts were marked, whether a student got a question 

right or wrong was not a factor for consideration. Therefore the marking that appears on the students scanned 

scripts should be ignored as it did not inform any part of the analysis. 
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constants and at what stages students drop and put back units when they are working on a 

particular mathematical - electricity physics problem (appendix J). This was expected to put 

into context and further clarify students‟ mathematical approaches as well as the type of 

understanding that emerge.  

4.6.3 Integrating all the analyses 

The use of three (3) data sources was so as to give more credence to the findings of the study. 

The different sources complement and corroborate each other. Depth would be achieved 

through triangulating the various data sources (survey, student‟s scripts and interviews). 

These three data sources were considered adequate to provide all the information required to 

answer the research questions. The various sampling sites: different tutorial groups (different 

tutors); different lecture streams (different lecturers); multiple tests (different electricity 

topics and questions); group interviews (multiple views) led to greater breadth. 

What the students wrote in the survey, as well as what they said in the interviews about the 

role that mathematics plays in physics, was corroborated with the emerging trends when 

analysing their mathematical approach to electricity physics problems in tests; correlating 

their affective and the cognitive domains. A consistent and coherent formulation was 

expected to:  

1. Validate MATHRICITY  

2. Offer a plausible explanation on the role of mathematics in students‟ understanding 

of electricity problems in physics.  

4.7 Ethics 

 

The students were told what the purpose of the study is. They were then requested to sign 

consent forms (appendix E) to acknowledge their willingness to participate, and that they 

could withdraw from the study anytime they wish. The students were also informed that their 

names will be concealed from the scripts that may be used in the report. 

The consent form, as well as the proposal was sent to the Unisa Ethics Committee to be 

cleared for use (appendix F). The same sets of documents were also sent to the University of 

Botswana office of Research and Development who subsequently gave permission for the 

research to go ahead (appendix G).  
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4.8 Summary  

 

This study method was anchored on a qualitative framework as described in this chapter. The 

methods of data collection used in this study include: a survey, students scripts and focus 

group interviews. The participants were UB first year physics students. To tease out meaning 

and address the main objectives of the study, data analyses from the different sources was 

integrated. Survey and interviews analysis were combined to address the objective on 

students‟ expectation on the use of mathematics in physics. Analysis of students‟ scripts was 

to address the objectives on the varying mathematical approaches as well as types of 

understanding that students exhibit when solving electricity physics problems. 

Trustworthiness of the instruments used was established by giving them to science education 

and physics lecturers. The use of multiple instruments as well the piloting also ensured 

trustworthiness and validity. The UNISA as well as the UB research review boards gave the 

go - ahead for the study after they were satisfied that ethical and scholarly requirements were 

in place. 

The findings and analysis of the survey and interview responses are discussed in the next 

chapter (5).  
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Chapter 5 Students’ Expectations on the Use of Mathematics in Physics 

  

5.1 Introduction  

 

This chapter established a baseline on students‟ use and understanding of the relationship 

between mathematics and physics. The baseline framed the entire study. A frame, which in 

this context refers to a mental frame, can be a belief, expectation or a mindset existing at a 

particular time that influences students to adopt a particular learning or problem solving 

strategy (Tuminaro, 2004). The baseline addresses the first research question, “What are 

students’ expectations of the role of mathematics in physics?” Two instruments, an 

expectation survey and focus group interviews were used to acquire the baseline data. 

The expectation survey (SERMP) is a pre – frame; where students indicate what they think 

about the use of mathematics in physics in general, basing on their first semester‟s 

experience. The semi - structured focus group interviews is a post -frame; where students are 

expected to reflect on their actual work on the electricity problems in the second semester and 

relate their mathematics experience. Data from the two instruments (SERMP and Interviews) 

will be corroborated to strengthen a particular frame or the resultant sub categories.  

5.2 Students’ response to the SERMP  

 

The SERMP (appendix D) was used to extract students‟ expectations in order to establish 

context for analysis of students‟ use and application of mathematics in the physics topic of 

electricity (see chapter 6). 

Students‟ responses were analysed in two main steps. The first step was to note emergent 

responses (see section 5.3). The second step was to categorise similar items and students‟ 

response frequencies to the items, and further delineate these categories as epistemological 

frames (see section 5.4). Data is presented by means of a frequency distribution of students‟ 

response to the SERMP (see Table 5.1). 
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Table 5.1: Students’ frequency response to SERMP questionnaire (N= 193) 

Item 

no  

Item Disagree 

(%) 

Neutral 

(%) 

Agree 

(%) 
1 I solve mathematical physics problems in order to learn 

physics. 

6.7         23.9      69.3 

2 Problem solving in physics means finding the right equation 

to use. 

6.4     12.8      80.9 

3 I understand the physical meaning of equations used in this 

course. 

14.3    43.9     41.8 

4 A necessary skill in this course is being able to memorize 

all the mathematical equations that I need to know.      

49.2    9.5       41.3  

5 Learning physics is a matter of acquiring knowledge that is 

specifically located in the laws and equations.                

8.8      21.1     70.1      

6 Physics laws relate to what I experience in real life.                             9.3      17.6     73.2 

7 I am able to solve a mathematical physics problem that I 

have never seen before. 

40.4   31.3     28.3 

8 I understand physics equations as relationship among 

variables.          

8.4     32.9     58.6    

9 Solving mathematical physics problems in the physics class 

is the same as doing so in the mathematics class.    

26.5   18.9    54.6 

10 Physical relationships can be explained using mathematics.               6.9     17.7    75.4 

11 The most crucial thing in solving a physics problem is 

finding the right equation to use.   

8.9     7.4     83.7   

12 In solving a physics problem, I sometimes get a correct 

mathematical solution whose meaning I do not understand.                   

23.8    26.4   49.7 

13 I take symbols in physical equations as representing 

numbers. 

19.5   26.8   53.7 

14 The use of mathematics in problem solving makes physics 

easier to   understand.      

9.9     16.7    73.4 

15 Formulae describing physical relationships are “out there” 

to be discovered.       

13.9   28.3   57.8 

16 A mathematical solution to a physics problem must be 

meaningful to me. 

2.6    12.5    84.9 

17 It is necessary for lecturers to explicitly discuss with 

students, how mathematics is used in physics. 

2.6     8.8     88.5 

18 The first thing that I do when solving a physics problem is 

to search  for formulae that relate givens to unknowns      

4.2    4.2    91.1 

19 To be able to use an equation in a problem, I need to know 

what   each term in the equation represents.    

1.5     2.1    96.3 

20 I would prefer to learn physics with no mathematics.                         80.7   8.3     10.9 

21 I learn physics in order to solve problems.                                          10.4   24.5   65.1 

22 I spend a lot of time figuring out the physics derivations in 

the text. 

15.3   32.8   51.9 

23 There can be no physics without mathematics.                                    21.5   8.4    70.2 

24 The main skill to learn out of this course is to solve physics 

Problems.                

10.4   11.9   77.6 

25 I treat equations as representations of reality.                                     12.5   31.3        56.3      

26 I always see symbols as representing physical 14.2   31.6   54.2 
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measurements.           

27 The mathematics that I learned in the mathematics class is 

useful when solving physics problems.  

7.9    11.7    80.3 

28 When I solve most physics problems, I think about the 

concepts that underlie the problem.      

3.2   17.0    79.8 

29  If I do not remember a particular equation needed for a 

problem, in a test there is nothing much I can do.     

47.7  19.7  32.6 

30 There should be more physics problems involving the use 

of mathematics than those where students just explain.            

19.9  21.9  58.1 

 

5.3. Emergent responses from the SERMP 

 

In order to note emergent responses, response frequencies were used to indicate the highest 

response per option and/ or responses of over 85% frequency. Students‟ responses to items 

accruing such frequencies were treated as emergent as students were indicating strong 

sentiments about the items.  

Analysing the response frequencies along each of the three options (agree, neutral, disagree), 

the following items surface as emergent:   

5.3.1 Students agree  

When the items to which students agree were analyzed from the response frequency table, the 

three items ranked highest were: 

• Item 19 - with 96.3% 

To be able to use an equation in a problem, I need to know what each term in the equation 

represents 

• Item18 - with 91.1 % 

The first thing that I do when solving a physics problem is to search for formulae that relate 

givens to unknowns 

• Item 17 - with 88.5 % 

It is necessary for lecturers to explicitly discuss with students, how mathematics is used in 

physics 

 

These are the items that students agree with and feel strongest about. They form part of a 

developing baseline with regards to the role of mathematics in students‟ understanding of 

physics. Closer attention will be given to these three items when students‟ actual use of 

mathematics when solving electricity problems is contextualized. Whether  students know 

what the various “terms” in the problem they will be working on represent; and whether  the 

first thing students do when solving physics problems is  “to search for formulae that relate 

given to unknown”, will be important considerations on which to base the analysis. 
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There is no direct way of validating students‟ response to item 17 since in this study, there is 

no direct observation of what happens in lectures. However in the analysis students express a 

desire for some means that enable them to explicitly understand “how mathematics is used in 

physics”.   

5.3.2 Students are neutral 

As to which items students were neutral, the highest response in this category was for item 3 

with 43.9%: I understand the physical meaning of equations used in this course. This is not 

regarded as a strong response to base students‟ position on an issue.       

However, since for this item, it is the highest response, and it is neutral, a likely conclusion 

could be that students are not sure whether they understand the physical meaning of equations 

used in the course.  

5.3.3 Students disagree  

The highest response in the category of „disagree‟ was for item 20: I would prefer to learn 

physics with no mathematics.  

This response frequency is notably important in the sense that, though indirect, it indicates 

what students consider to be critical in learning physics, mathematics. Students are 

suggesting it may not be possible to learn physics without mathematics. Students‟ use of 

mathematics will therefore be closely monitored to validate this claim. 

5.3.4 Summary of emergent responses 

All the above items are those where students‟ responses along the three options (agree, 

neutral, disagree) were notable. Due consideration was given to these items when students‟ 

work on electricity problems is analysed in the next chapter (6). A categorisation process of 

the SERMP items, with the intention of extracting meaning along epistemological frames 

follows. 

5.4. Students’ Epistemological Frames 

 

Following the presentation of students‟ overall responses to the SERMP as well as the 

emergent responses, similar SERMP items were joined for a more coherent analysis. A 

unilateral theme was derived from the group of similar items, and this was subsequently 
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labeled as a distinctive epistemological frame
2
 (EF) (see sections 5.5 & 5.6). Focus group 

interview excerpts were used to uncover matching modes of thought. Extracts from the 

various interviews (see Appendix H) were combined with the delineated SERMP items with 

synchronous ideas, to corroborate an EF.   

As noted earlier (section 5.2) EF‟s are specific groupings of similar SERMP items. To come 

up with an EF, the answers to the SERMP items were vigilantly read through, repeatedly, to 

try and get an underlying meaning from each. For all the 30 items, two underlying themes 

emerged as encompassing their core message. These themes are what have been referred to as 

epistemological frames (EF) in this study. 

The EF‟s were labeled as: (1) What students think it takes to learn physics (2) What students 

think about the use of mathematics in physics. SERMP items which cumulatively 

encompassed and conveyed the same and bigger idea were assigned to either of these frames.   

From within these frames, a closer analysis led to even further categorizations. These latter 

categories were delineated as codes. The codes are SERMP items within an epistemological 

frame deemed to be closer to each other, conveying an even more specific idea and 

corroborated by interviews with students. Extracts from the transcribed interviews echoing 

similar sentiments to the a priori coded SERMP items were added to the code to validate, or 

refute a claim. The interviews were structured on a reflective premise. Students were urged to 

think about what they do in their use of mathematics when solving physics problems. The 

discussions lead students to openly talk about what influences their approaches, and why. In 

addition, the interviews were focused on students‟ use of mathematics in physics, specifically 

concerning the topic of electricity. Analysis of the interviews combines well with that of the 

responses to SERMP in addressing the first research question, “What are students’ 

expectations of the role of mathematics in physics”. This combination of the two (2) 

instruments lent credence and validity to the frames as the consistency of what students were 

communicating through both inductive (SERMP) and deductive (interviews) approaches was 

established.  

                                                           
2
 Epistemology is defined as a science that is concerned with knowledge acquisition and the act of knowing 

(Piaget, 1972). For students, learning is an epistemological practice. Epistemological frames therefore are what 

guides students to adopt particular learning cultures. These frames are important to unpack in this study, so as to 

put students‟ work when solving electricity problems into relevant context. 
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While the two frames made the two sets within which all the SERMP items could be 

grouped, the codes were the sub-sets within the two main sets. The first EF; what students 

think it takes to learn physics was sub-categorised into the codes: use of equations in learning 

physics, memorization in learning physics and conceptualization in learning physics (see 

section 5.5.1; 5.5.2 & 5.5.3). The second EF; what students think about the use of 

mathematics in physics was further categorised into codes: the meaning of mathematical 

answers and the relationship between mathematics and physics (see section 5.6.1 & 5.6.2).   

Thus, SERMP frequency responses and interview extracts were categorised in the next two 

subsections into epistemological frames (EF) of what students think: it takes to learn physics, 

and about the use of mathematics in physics. 

5.5. Epistemological frame: What students think it takes to learn physics 

 

In forming this EF, selected SERMP items, as well as selected excerpts from the semi- 

structured overarching interviews were used. The three items below are extracted from the 

SERMP and presented to demonstrate how this epistemological frame was composed.   

Item 2: Problem solving in physics means finding the right equation to use. Whatever 

response students give about the meaning of problem solving, the implicit meaning is that, 

they think finding the right equation in problem solving is what it takes for them to learn 

physics. 

Item 5: Learning physics is a matter of acquiring knowledge that is specifically located in the 

laws and equations. This item explicitly implores students to say what “learning physics” 

involves. Students‟ response to the item will be a direct statement about what they think it 

takes for them to learn physics.   

Item 17: It is necessary for lecturers to explicitly discuss with students, how mathematics is 

used in physics. This item has in fact two aspects. One is about what lecturers should do for 

students to learn physics, “explicitly discuss”. The other aspect is about what should be 

discussed, “how mathematics is used in physics”. Both of these combined solicit students‟ 

ideas about what they think it takes to learn physics. 

From the SERMP questionnaire, and by the same reasoning as indicted for these three items 

above, items in Table 5.2 below were selected as being part of the epistemological frame; 

what students think it takes to learn physics.  
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Table 5.2: SERMP items relating to what students think it takes to learn physics 

Item 

no  

Item Disagree 

(%) 

Neutral 

(%) 

Agree 

(%) 
1 I solve mathematical physics problems in order to learn 

physics. 

6.7         23.9      69.3 

2 Problem solving in physics means finding the right equation 

to use. 

6.4     12.8      80.9 

4 A necessary skill in this course is being able to memorize 

all the mathematical equations that I need to know.      

49.2    9.5       41.3  

5 Learning physics is a matter of acquiring knowledge that is 

specifically located in the laws and equations.                

8.8      21.1     70.1      

7 I am able to solve a mathematical physics problem that I 

have never seen before. 

40.4   31.3     28.3 

9 Solving mathematical physics problems in the physics class 

is the same as doing so in the mathematics class.    

26.5   18.9    54.6 

11 The most crucial thing in solving a physics problem is 

finding the right equation to use.   

8.9     7.4     83.7   

17 It is necessary for lecturers to explicitly discuss with 

students, how mathematics is used in physics. 

2.6     8.8     88.5 

18 The first thing that I do when solving a physics problem is 

to search  for formulae that relate givens to unknowns      

4.2    4.2    91.1 

19 To be able to use an equation in a problem, I need to know 

what   each term in the equation represents.    

1.5     2.1    96.3 

21 I learn physics in order to solve problems.                                          10.4   24.5   65.1 

22 I spend a lot of time figuring out the physics derivations in 

the text. 

15.3   32.8   51.9 

24 The main skill to learn out of this course is to solve physics 

Problems.                

10.4   11.9   77.6 

28 When I solve most physics problems, I think about the 

concepts that underlie the problem.      

3.2   17.0    79.8 

29  If I do not remember a particular equation needed for a 

problem, in a test there is nothing much I can do.     

47.7  19.7  32.6 

30 There should be more physics problems involving the use 

of mathematics than those where students just explain.            

19.9  21.9  58.1 
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Based on these SERMP items and interviews, sub - categories were identified as: the use of 

equations in learning physics, memorization in learning physics and conceptualization in 

learning physics.  

5.5.1 Use of equations in learning physics 
One of the requirements to learning physics is the ability to solve problems (Redish, 2005). 

Solving physics problems in most cases involve students‟ use of equations and this can be 

analyzed to infer its impact on learning.  

SERMP items 2, 11 and 19 all include the use of the term “equation”, invoking students to 

indicate through a collective response frequency how they use equations in problem solving. 

In the analysis of the survey, more than 80% of the students agree with each of the three 

items. In this they affirm their perception of the link between equations and problem solving, 

which leads to learning physics. Students‟ positive response to the items indicate 

understanding of a relationship which according to the GST is hierarchical (see section 3.2); 

where in solving physics problems, equations are perceived as fundamental.  

Item 2 explicitly invites students to say what they consider to be the meaning of problem 

solving with regard to equations. Item 11 emphasizes the same point by suggesting that 

finding the right equation is the key thing for students when solving problems. Item 19 refers 

to the fact that students need to understand each term in the equation. In order to understand 

each term students would break the equation into its constituent parts; which could be 

variables, units and constants. Students‟ positive response to the item and its extent can be 

explained through the GST as demonstration of their quest to understand “the properties or 

behavior of the unit in focus as part or function of the system” (see section 3.2). Students are 

saying; it must be clear to them how the individual terms come to be part of the equation 

(structural configuration), or how the terms function in the equation for meaningful learning 

to occur. 

 

The interview extracts below corroborate four students‟ views on the use of equations in 

learning physics.  

 

Student H5: 

H5: Starting even with capacitors... but there is some correlations and not the same as last 

semester. Again first semester, eish it was a bit tougher than now, now as long as you can 

understand how the formula work like it will be easy for somebody to pass, it’s not like last 

semester where even if you knew the equations, you may not be able to integrate it properly. 
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Student H5 states that for him, understanding equations (formula) is all that he needs to do 

well in the course. This still links to the GST explanation of some knowledge being perceived 

hierarchical.  

 

Student M3: 

M3: If you are somebody, you are just coming and being told about Coulomb’s law. It 

quite confuses you the first time. But once you do the calculations and see, you will get it. 

Student M2: 

M2:  Yes it does help, but sometimes ahh, I only use the equation and get the answer and 

say ahh here I don’t understand. I just got the answer. I know how to find… I know how to 

use the equation and find the answer. Not necessarily meaning I understand the concept. 

Student M2 notes that he does use equations to get the answers but points out that this does 

not necessarily mean that he understands the concepts. 

Student M1: 

R:  So if you get a question in electricity and magnetism that you have not seen before, 

can you solve it, or has it ever happened before? 

M1: I just apply the equations. 

(R laughs, M1 laughs too) 

Student M1‟s response is spontaneous, brief and precise. This student did not speak during 

the whole interview (refer to appendix H). For him to give such a spontaneous response could 

be an indication that he did not have to think about the answer. It‟s a “knee jerk reaction”. 

Webster‟s Revised Unabridged Dictionary describes a “knee jerk reaction” as, “an immediate 

unthinking emotional reaction produced by an event or statement to which the reacting 

person is highly sensitive; - in persons with strong feelings on a topic, it may be very 

predictable”.  

M1‟s response is an indication of the strong feeling he has with regards to what he may do 

when presented with a physics question. Also, the use of the word “just” in the statement, as 

opposed to if the student had said, “I apply the equations”, could indicate a casual approach 

in the student‟s attitude.  It is as if the student is saying, I will “just” use equations, even 

though I don‟t know whether they will be helpful. 
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5.5.2 Memorization in learning physics 

Two items in the SERMP questionnaire refers to this sub-category namely item 4 and 7. For 

item 4, 49.2 % of the students disagree with the statement that a necessary skill in this course 

is being able to memorize all the mathematical equations that I need to know.  

For item 7, 40.4 % disagree with the statement I am able to solve a mathematical physics 

problem that I have never seen before. Only 28.3% agree that they can solve a physics 

problem that they have not seen before. The fact that most students (40.4%) need to have 

seen a problem for them to solve it, indicates some tendencies towards memorization.  

The interview extracts below illustrate students‟ views on memorization in learning physics. 

R: When you go for a physics test, how much memorization do you do? 

A lot… a lot (at least 4 voices at the same time)!! 

At least 4 students agree that cramming (memorization) plays a big part in their learning of 

physics. Memorization means storage in the short term memory. Some of the indications that 

information is stored in short term memory is that it is quickly forgotten after engagement 

with the task. This should be dismissed as an ineffective learning approach. 

Student M2 

R: Tell me when you solve this problem; be it in a test or tutorial, can you solve a problem 

that you have not seen before, Slim? 

M2: I need to have seen an example of the exact question. 

Student M6 

M6: Yaa same here…aah its quite difficult to solve because we expect like aah...an 

example of each type so that we know what to do... we know that if it is like this we do this. 

R:  Yes.  

M6:  If you have not seen it’s going to be a bit, a little hard to, unless maybe… it’s your 

good day...you woke up on the good side of the bed (chuckles) or something.  

M6:  Without that no way!! 

R:  Yes!! 

This could suggest that students memorize problem solving steps per individual questions. 

For them, memorization plays a big part in learning physics. This approach to learning is 
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counter to what is proposed through the GST. The GST rather advocates for students “to have 

long-term and integrated understanding of science content” (see section 3.2). 

5.5.3 Conceptualization in learning physics 

Only one item refers to this sub-category. The response to item 28, when I solve most physics 

problems, I think about the concepts that underlie the problem, where 79.8 % of the students 

agree with the item, indicate that students consider conceptualization an important part of 

learning physics.  The interview extract below expands students‟ thinking on this.  

Student M3 

M3: In our tutorial session, eeh…we should review those things. Like what we did from 

Monday up to Friday, not necessarily doing all the questions...we make take one or two from 

the tutorial script and concentrate on the concept that we learned. 

R:  Hmm… 

M3:  Because you find that those answers that are written on the board are…. are 

meaningless   to most of us. So we need only to review what we learnt. 

For student M3, the purpose of tutorials, where students solve problems should be to 

“Concentrate on concepts” because without that, according to the student, the answers are 

“meaningless”. 

 

Student M4  

M4:  From my experience here with tutorials…I don’t know about other classes. From our 

class   is generally the same problem which they just mentioned. Of which I feel that there is 

not much enough explaining of the key concepts. 

R:  Yeeh! 

M4:  Yeeh… they have already mentioned that we are just given the solutions. And there is 

no much explaining of the key concepts, of which is very vital. If you don’t get something 

from the lecture, you are hoping to get it from the tutorials. And with our case that’s not how 

it is. 

Student M4 says that explaining key concepts [by the tutor] is “very vital”. This could be 

interpreted to mean students think that for them to effectively learn physics, it is very vital for 

them to understand key concepts.  
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Student M2 

M2:  Because sometimes I get a question, ok fine, I look for the correct mmm… the right 

formula to use, I use that formula, I check the answer at the back of the book. Ok the answer 

is correct but not necessarily understanding the concept...so I do have a problem sometimes. 

Student M4 

M4:  Yaa, most of them yaa, you feel that the answer is in line with the concept. But 

sometimes yaa you do feel that yaa here I just got the answer but you don’t know what the 

meaning of the answer is. 

The terms “meaning”, “concept” and “understanding” appear as key in these students‟ 

conversations.  Students mention and link these terms to describe what they think is an 

effective learning approach.  

Student H6 

H6: The thing is if you don’t understand the concepts, you will have problems throughout. 

So for that part I think it is very important to understand the concepts. 

 

Students H6 states what she thinks could really be fundamental in learning physics. “… if you 

do not understand the concepts, you will have problems throughout”. The student is arguing 

that conceptualization is a pre- requisite to all other forms of teaching and learning.  

After establishing what students think it takes to learn physics, in general, the next sub – 

section ushers the second and more specific epistemological frame, on; what students think 

about the use of mathematics in physics? 

5.6. Epistemological frame: What Students think about the Use of Mathematics 

in Physics  

 

This subsection crystallizes an epistemological frame where selected SERMP items and 

interview excerpts are interpreted to mean, what students think about the use of mathematics 

in physics. As explained through the GST (see section 3.2), the items could be collated to 

“generally” fit in this category. 

The three items below were extracted from SERMP, and are used to demonstrate how an item 

qualified for this category: 
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Item 10: Physical relationships can be explained using mathematics. Students‟ response to 

this item is an indication of how they think mathematics is used in explaining relationships 

between physical entities. In a way, that mathematics acts as a tool. 

Item 23: There can be no physics without mathematics. Students‟ response to this item 

indicates the extent to which students see the intrinsic nature of mathematics in physics; that 

mathematics is part of physics and the two are inseparable.  

Item 26: I always see symbols as representing physical measurements. Symbols are part of 

equations which are mathematical in nature. If students are able to make a connection 

between them and physical measurements, then this implies how and the extent to which 

students think about the use of symbols (mathematics)in  physics.   

From the SERMP questionnaire, and by the same reasoning as demonstrated for three items 

above, items in table 5.3 below were selected as being part of the epistemological frame: 

What students think about the use of mathematics in physics.  

 

Table 5.3: SERMP items relating to what students think about the use of mathematics 

Item 

no  

Item Disagree 

(%) 

Neutral 

(%) 

Agree 

(%) 
3 I understand the physical meaning of equations used in this 

course. 

14.3    43.9     41.8 

6 Physics laws relate to what I experience in real life.                             9.3      17.6     73.2 

7 I am able to solve a mathematical physics problem that I 

have never seen before. 

40.4   31.3     28.3 

8 I understand physics equations as relationship among 

variables.          

8.4     32.9     58.6    

10 Physical relationships can be explained using mathematics.               6.9     17.7    75.4 

12 In solving a physics problem, I sometimes get a correct 

mathematical solution whose meaning I do not understand.                   

23.8    26.4   49.7 

13 I take symbols in physical equations as representing 

numbers. 

19.5   26.8   53.7 

14 The use of mathematics in problem solving makes physics 

easier to   understand.      

9.9     16.7    73.4 

15 Formulae describing physical relationships are “out there” 

to be discovered.       

13.9   28.3   57.8 

16 A mathematical solution to a physics problem must be 

meaningful to me. 

2.6    12.5    84.9 

20 I would prefer to learn physics with no mathematics.                         80.7   8.3     10.9 

23 There can be no physics without mathematics.                                    21.5   8.4    70.2 

25 I treat equations as representations of reality.                                     12.5   31.3        56.3      

26 I always see symbols as representing physical 

measurements.           

14.2   31.6   54.2 

27 The mathematics that I learned in the mathematics class is 

useful when solving physics problems.  

7.9    11.7    80.3 
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Based on these SERMP item and interviews, sub - categories were identified as; the meaning 

of mathematical answers as well as the relationship between mathematics and physics.  

5.6.1. The meaning of mathematical answers 

Students agree with item 12 with 49.7% that in solving a physics problem, I sometimes get a 

correct mathematical solution whose meaning I do not understand. When nearly half the 

class expresses this observation, one is made to ask the question; why do students solve 

problems in the first place; shouldn‟t a correct solution to a problem indicate that students 

have understood?   

While it is only 14.3% of the students who disagree with Item 3, (I understand the physical 

meaning of equations used in this course), this it still suggests that there are students in the 

course who only focus on the manipulation of variables. This could be because symbols may 

be incomprehensible to them, or that students may have found understanding of equations to 

be an unnecessary inconvenience (Woolnough, 2000). 

The interview extract below further explains students‟ understanding of the meaning of 

answers:  

Student M3 

R: Mmm…..now tell me from your experience of  learning physics both from lectures and    

tutorials, when you solve physics problems, do you get an idea that the act of solving a 

physics problem and getting it correct, does it help you understand the physics concepts and 

principles you are talking about? 

M3: I think actually getting a correct answer boosts your morale towards physics. 

R: Yaa. 

M3: Because it proves that what they said is, the principle what they said about it is right. It   

applies.   

M3 thinks that the use of mathematics in problem solving is done to “prove”. This student 

will use mathematics in problem solving not necessarily to learn but to prove laws, concepts 

and theories. Student M3 brings another aspect to the use of mathematics in solving physics 

problem and getting a correct answer. He says it “boosts your morale towards physics”. This 

could be interpreted to mean that getting a correct answer makes the student 

more confident and even makes them like the course. Further still, when student M3 says 

“But once you do the calculations and see, you will get it”, this could be interpreted to mean 



79 
 

students view mathematical calculations as aiding in their understanding of physics 

(Kuo et al., 2013). 

 

Student M2  

M2: Yes it does help, but sometimes ahh, I only use the equation and get the answer and say 

ahh here I don’t understand. I just got the answer. I know how to find… I know how to use 

the equation and find the answer. Not necessarily meaning I understand the concept. 

R: Mmm. 

M2: Because sometimes I get a question, ok fine, I look for the correct mmm… the right 

formula to use, I use that formula, I check the answer at the back of the book. Ok the answer 

is correct but not necessarily understanding the concept...so I do have a problem sometimes. 

Student M2, Fizo
3
 differs on what solving a physics problem and getting a correct answer, 

sometimes mean to him. His  sentiments about problem solving, the use of equations, what 

answers mean to him and how that leads to understanding are all explicit. He can do the job; 

sometimes does it as well as it should be done, but with no concomitant understanding of 

what he is doing. His description of what he is doing is like of someone engaged with a 

puzzle. 

 

In applying the concept of mapping scientific knowledge as espoused by the GST (section 

3.2), this meaning of mathematical answers portray an obscure and distorted map. Students 

are either contradicting themselves, or contradicting substantiated information from empirical 

studies. While the GST supports the idea of the mathematics that I learned in the 

mathematics class is useful when solving physics problems; as it demonstrates that 

“knowledge that is fragmented across subjects is harmonized”, this is still contradictory to 

literature from empirical studies (Basson, 2002; Redish, 2005).  

5.6.2. Relationship between mathematics and physics  

The 80.7% of students who disagrees with item 20, “I would prefer to learn physics with no 

mathematics”, is a telling statistic. Firstly, this is the only item in the whole questionnaire 

where more than 50 % of the students disagree with a statement. Like all items in the 

questionnaire, item 20 challenges students to state a position that will be used to infer their 

understanding of the role of mathematics in physics. Item 20 however is much straighter. It 

                                                           
3
 Fizo, Fizi are pseudonyms 
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explicitly probes students to say whether they think physics can be learned without 

mathematics.  

An 80.7 % response is a significant degree to leave room for uncertainty, in case one was to 

generalize. For students to dispute that I would prefer to learn physics with no mathematics is 

indicative of their unwavering conviction of a close relation or near oneness between 

mathematics and physics. Uhden et al. (2012) has also demonstrated how at some level in 

problem solving, the distinction between mathematics and physics become blurred. Students‟ 

response to item 23, where 70.2% agree with the statement “There can be no physics without 

mathematics” corroborates both the above statements.  

 

Hewitt (2010) has invested over two decades of work on how and why students should first 

do and appreciate physics with minimal mathematics. He emphasizes conceptual 

understanding as an obligatory precept especially at introductory level. Hewitt notably goes 

by the tagline “comprehension before computation” to buttress his conviction that students 

have to understand physics concepts before they can use mathematics to explore relationships 

amongst them. Hewitt will be intrigued by the above response. 

The interview excerpts below show students discussing what they think about the relationship 

between mathematics and physics. 

Student M3 

R: Alright, now the mathematics does it simplify or makes physics easier, or more difficult. 

M3: Well it makes it easier because mathematical illustrations, they tend to make you 

understand or believe because they are proved. 

R: They are proved. 

M3: Yes, you know in physics there is a lot of proofing and you tend to get it more quickly 

when there is mathematics involved. 

 

Student M1 

M1: Yaa… physics, maths, yaa when you are taught concepts and then you might not get, but 

then when you apply maths then… it makes you believe, then you understand. 

R: Maths makes you believe? 

M1:  It compliments. 
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                         (R laughs) 

 

Student M4 

M4: I feel that maths is simpler than physics. 

R: It’s simpler than physics. 

M4: Yaa of which the problem now is in most of the physics problems, you have to 

understand the physics part of the problem first, before you get to solve with maths. Of which 

I don’t think…… ahh it makes me feel that it doesn’t make any difference, with maths. 

R: It doesn’t make any difference. 

M4: Yaa, because you have to go through the physics first before you go to the maths part of 

it which is the easy part? 

Student H1 

H1: You know sometimes you can get the physics, your physics maybe right but your maths is 

wrong. 

R: Ooh…. so either way. 

H1: Yaa sometimes it’s the physics and then the maths which is wrong. 

Students think that mathematics is not only easier than physics, but it also makes physics 

simpler. They observe that in solving physics problems, there are two distinct aspects; the 

physics aspect, and the mathematics aspect.  

 

Student M2 

R:  Ok…Mr. Fizi, can you learn physics without mathematics? 

M2: Aah I don’t think so. 

R: It’s impossible? 

M2: It’s impossible, it’s very impossible. You need to apply maths in order to understand the 

physics 

Student M5 

M5: I think that it is possible but there is a lot of maths. 

R:  There is a lot of maths.  So you can learn physics without maths? 

M5:  Yes. 
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Student H2 

H2:  Yes  I do but I don’t think it will be as fun or it will be as interesting because answering 

questions, from senior school, answering theory questions proved to be more difficult than 

the mathematical  part because the theory you have to read. Physics you know we don’t 

usually re…ad physics. We just, I don’t re…ad physics, I just find the question and see how 

they relate. 

R: You solve problems. 

H2: Yes, the structured ones I know it can be taught using the structured but, I think, a lot of 

people fail it. Again I think there are other chapters or parts of physics which is impossible to 

teach without the mathematics. 

Student M1 

M1:  Yes, physics you have to apply and that application is...is related somehow to 

mathematics. It links mathematics with physics. 

Fizi (refer to M2) boldly states that one cannot learn physics without mathematics. He 

explains that one needs to apply mathematics in order to learn physics. Tracy (give student 

number) is unsure, and says it‟s because there is a lot of mathematics in physics.  The 

students say mathematics makes them solve problems “quicker”; makes them “believe” and 

that believing leads to understanding.   

Fizi thinks it‟s “impossible” to learn physics without mathematics because “You need to 

apply maths in order to understand the physics”. For this student, physics will be almost 

meaningless without mathematics since one cannot understand physics without mathematics. 

Students in this group indicate a deliberate preference for learning physics that involves the 

use of mathematics. 

 

 

 

 

 



83 
 

 

5.7 Summary  

 

Students‟ expectations were solicited when they had just begun the first semester of the first 

year physics course. Interviews on the other hand were conducted when students were in the 

middle and towards the end of the second semester. With regard to the role of mathematics in 

students‟ understanding of physics, both means of data collection can be summarized as 

being in agreement on that students…  

 are accustomed to solving problems they have seen before 

 use a lot of memorization  

 can get correct answers which they do not understand 

 think that problem solving should make them understand concepts  

 do not believe that physics can be learnt without mathematics  

While they were conducted at different times reflecting varying students experiences, the 

corroboration factor among the two sets of data could be regarded as a measure of reliability 

of students‟ responses. Corroboration strengthens a particular frame and helps put in context 

students‟ actual use of mathematics when solving physics problems in the topic of electricity. 

Having established students expectations; the premise from which students engage with 

physics and the use of mathematics in problem solving, this study then delves into the 

practice, to parse it, and eventually relate students‟ expectations with how they actually 

engage with physics problems. The baseline so established built context that helped put into 

perspective students‟ work when their scripts were analysed by means of the developed 

conceptual framework.  

With the baseline now in place, the analysis of students‟ test scripts is presented in chapter 6 

to address the second and third research questions, namely:  

b. What mathematical approaches do students use when solving electricity problems?  

c. What types of understanding emerge when students use certain mathematical 

approaches to solve electricity problems?  
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Analysis based on these research questions, and expounded through application of 

MATHRICITY should yield which types of mathematical resources are activated, and the 

domains of knowledge that emerge, presumably influenced by the established baseline.  
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Chapter 6 Students’ test scripts  

  

6.1. Introduction  

In the previous chapter (5) a baseline of students‟ expectations on the use of mathematics in 

physics was established. Students indicated some strongly held conceptions about; what it 

takes to learn physics in general, and specifically about the use of mathematics in physics. 

Through the use of the survey and interviews, students indicated that in their learning of 

physics, equations are important and that they also use them even when they may not 

understand the meaning of their actions, and that memorization plays a big part. Students also 

explained why they use mathematics in physics; through the use of words and phrases such 

as, to “prove”, “boost their morale towards physics”, and “simplify”. While they claim that 

mathematics and physics are inseparable, and they overwhelmingly respond to the survey that 

one cannot learn physics without mathematics, in part of their interview discussions, students 

still talk of “the mathematics part” and “the physics part” (see section 5.6.2). This gives a 

contradicting message to their view that mathematics and physics are inseparable.  

 

In this chapter data will be presented and analyzed using the conceptual framework (see 

chapter 3) to answer the second and third research questions: 

2. What mathematical approaches do students use when solving electricity problems?  

3. What types of understanding emerge when students use certain mathematical 

    approaches to solve electricity problems? 

 

In order to answer both these research questions, three sub-questions were developed for each 

of the questions.   

 

Sub questions for research question 2: 

    a) Are there different mathematical approaches when students solve electric circuit 

        problems? 

    b) Are there different mathematical approaches when students solve electric field 

         problems? 

    c) Are there different mathematical approaches when students solve electric force 

        problems? 
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Sub questions for Research question 3: 

a) What types of understanding emerge when students solve electric circuit problems? 

b) What types of understanding emerge when students solve electric field problems? 

c) What types of understanding emerge when students solve electric force problems? 

 

The intentional approach to learning and meaning-making developed in research on learning 

(Hallde´n, Scheja & Haglund, 2008) guided the analysis of the students‟ scripts. The analysis 

based on such an approach focuses on the students‟ activities in terms of intentional action. 

Intentional action is when particular actions can be explained in terms of the motive behind.  

Students‟ use of mathematics in solving electricity problems is viewed in terms of some 

underlying motivation or a desire to achieve a goal. By analyzing how students use 

mathematics in solving electricity problems, with a focus on their approaches, and the 

resultant understanding from the particular learning tasks, one would be able to infer the role 

that mathematics play in their understanding of physics. Whether the role of mathematics is 

any different in the topic of electricity compared to other physics topics in general is an 

important consideration. In particular, the analysis sought to describe students‟ mathematical 

approach in the topic electricity, and how that leads to what type or level of understanding.  

 

The analysis focused on three (3) questions from the two tests on electricity that students 

wrote (see section 4.5.2). Two (2) questions were from test 1(electric force - question 1A1 and 

electric field - question 1B2). The third question, 2B2 from test 2 was on electric circuits. The 

prefixes 1 and 2 were used to distinguish a question chosen from test 1 and 2 respectively, 

whereas letters A and B showed that the questions were from section A or B of the test (see 

section 4.5.2). The subscript showed the question number (1, 2, 3…) in a particular test that is 

being analyzed. The questions were deliberately chosen so that they spread across the 

electricity subtopics; electric force, electric field and electric circuits as established by means 

of the GST in chapter three (see section 3.2).  

For each of the three (3) selected questions, three (3) different students‟ solutions are 

presented. Nine (9) different solutions involving the use of mathematics in the physics topic 

of electricity were analyzed. The students‟ solutions will be referred to as, H2, M3, V1 etc. 

depending on the tutorial group (H, M or V) to which the student belonged, and as indicated 

in their test scripts. The subscripts 1, 2, 3 indicate whether it is the first or second student‟s 

script to be analyzed and presented in that tutorial group. 
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For each student‟s solution; the use of mathematics is mainly analyzed by means of the 

theoretical framework (MATHRICITY) depicting the activated mathematical resources, as 

well as the knowledge domains described through the ESM (See section 3.5). In addition the 

different stages for dropping and using units, substituting numbers for variables, and 

substituting numbers for constants further compounds the analysis. 

6.2 Analysis of students’ work on Electric Force  

 

Electric force is a sub-topic of electricity that was identified by means of the GST as 

distinctively contributing to the first year physics topic of electricity (see section 3.5). 

Question 1A1 (from test 1, section A, question no. 1) involves electric force between two 

point charges placed some distance apart and was chosen for analysis as it was from the 

electric force sub-topic.  

 

Figure 5: Question 1A1   

 

[A model answer from the instructor‟s marking guide is shown on appendix I1] 
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6.2.1 Analysis of Student V1’s work on Q1A1 

 

 

Figure 6: Student V1’s solution to Q1A1   

The student realized that this question requires the use/application of Coulomb‟s law and thus 

writes down the equation that represents this law. The student then substitutes the Coulomb 

constant ke with the numerical value 9 x10
9
 in the second line of the solution. In this step, the 

student also replaced the symbol for distance r used as the common symbol for distance 

between two point charges in the Coulomb‟s law equation in the first step with d. This is 

despite that d is stated in the problem as an absolute value for distance.  

Table 6.1 is a step-by-step portrayal of student V1‟s solution as analysed by using the 

conceptual framework. 
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Table 6.1: A step-by-step description of student V1’ work on Q1A1 

Step Activity  Description of activity  Activated  

mathematical 

resource  

Awareness/ 

translation 

between ESM 

domains  

1             
  Wrote Coulomb‟s law Unidentified 

resource  1 
Abstract domain, 

layer b 

2 
 

  (           )  
  

Substituted numbers for  the  

constant ke, and expressed the 

distance as d (it was 

expressed as r in step 1) 

Interpretive 

devices 

(formal) 

 

 

Symbolic domain, 

layer b 

3  

 

 
 (           )   

 

-Wrote equation for, “so that 

the force between them 

becomes F/3”. 

 

-Constant  ke  is substituted 

and unknown distance 

expressed  as  x 

-Interpretive 

Devices 

(formal) 

 

 

-Interpretive 

 Devices 

(formal) 

-Symbolic domain, 

layer b 

 

 

-Symbolic domain, 

layer b 

4        The numerator from step 2 

disappears 
Interpretive 

devices(formal

) 

Symbolic domain, 

layer b 

5    
 

 
 

The numerator from step 3 

disappears 
Interpretive 

devices 
Symbolic domain, 

layer b 

6  

 
      

Equations on steps 4 and 5 

are added simultaneously  
Interpretive 

devices 

(formal) 

Symbolic domain, 

layer b 

7       Items on equation in step 6 

are cross-multiplied  
Symbolic form  Symbolic domain, 

layer b 

8                         A worded statement is given 

as an answer to the question  
Interpretive 

devices 

(formal) 

Symbolic domain, 

layer b 

 

a) Mathematical Resources activated 

It is unknown, how upon reading the question, the student arrived at Fe = keq1q2/r
2 

in step 1. 

This cannot be explained through activation of known mathematical resources (see section 

3.3.2.2). This step is therefore designated as an unidentified resource 1. It will be discussed 

further at the end of the chapter. 

Student V1substituted r
2
 with d

2 
, and ke with the numerical value 9 x10

9
 from step 1 to step 2. 

Substitution in problem solving is a technique that is applied with a realization that one entity 

can be used in place of another. The activated mathematical resource here is intuitive 

interpretive devices (see section 3.4.2.2).The mathematical technique of substitution can be 

described as activation of intuitive interpretive devices because it is “abstracted from 

everyday reasoning and applied to physics equations” (see section 3.4.2.2). Substitution is 



90 
 

commonly used in everyday reasoning outside physics when there is need for a simpler, 

alternative, or more pragmatic explanation. 

With regard to the equation in step 3; F/3 = 9x10
9
 q1q2/x the student generates the symbol x 

for an unknown quantity which is distance. Generating a new symbol (especially x) for an 

unknown quantity is a standard mathematical procedure and therefore indicates the activation 

of formal interpretive devices. 

While not correctly done, the steps 2 to 4 and steps 3 to 5 for both equations appeared to be 

an attempt at the mathematics of cancellation. Here the symbolic forms (see. section 3.3.2.3) 

type of mathematical resources is activated. The student is looking at the structural form 

(symbol template) of the two equations (    
                

    and    
 

 
 

              

 
  ) and 

notices the similarity in part of their form (numerators). The partial symbol template is  

  
 

     and  
 

 
 

 

 
 . The student cancels the “     ” in both equations and remains with 

numerators of 1.  

Step 6 shows cross-multiplication while step 4 and 5 then shows addition of simultaneous 

equations. Both simultaneous equations and cross-multiplication are standard mathematical 

procedures, thus activates formal interpretive devices. 

Neither intuitive mathematics knowledge nor reasoning primitives type-of-mathematical 

resources were activated anywhere as this student was solving this problem. The student did 

not use any basic everyday mathematics, nor indicate any “abstractions of everyday 

experiences”. 

b) Awareness of ESM domains  

The ability to translate the physical situation by stating Coulomb‟s law in the first line of the 

solution places the student‟s cognition in the abstract domain; a law is being used to “explain 

the physical or concrete aspect” (see section 3.3). This could be that the student converts the 

worded physical description into the physical equation of Coulomb‟s law, or since the student 

is aware of the context, question 1A1 cues in his mind a mental note/image of Coulomb‟s law. 

The student proceeds to operate in the symbolic domain as he: substitutes the value of the 

Coulomb‟s constant, and assigns the unknown distance the symbol x on the equation in step 

3. The subsequent “mathematics of algebra” that leads to the solution from step 4 to line 8 

(though incorrect) is still indicative of a symbolic approach.  
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The model domain (see section 3.3) where diagrams could be used to represent phenomena is 

absent from the student‟s entire work. 

From the solution, the student may have construed the physical meaning (concrete domain) of 

the problem. This would be so if the student had realized that; for the force between two 

Charges to decrease (from F to F/3) the distance should increase (from d to d
2
). However the 

mathematics leading to d
2
 (step 8) does not indicate that. It is incorrect and therefore d

2
 

cannot be  deduced as  physically meaningful, even  to the student.  In addition, the 

phrase “it should be kept  at” (step 8)  rather than “it should move to” also indicates that the 

student may actually be thinking  that the original distance is the same as the final distance. 

There is thus no indication of the concrete domain (see section 3.3). 

 

With respect to the two layers a and b that according to the ESM should constitute each of  

the knowledge domains, student V1 appear to be working in layer b only. Only meaningful  

combinations of  items appear in delineated problem solving steps. No items are presented on 

their own, independent of one another (layer a). 

c) Use of units, variables and constants 

In student V1‟s solution to this problem: 

• No units were used  

• No variables have been substituted 

• Constant (ke) was substituted in the two equations in step 2 and 3 

 

Since only the constant (ke) was used in this solution, there is no order of substitution to be 

discussed with respect to units and variables. 
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6.2.2 Analysis of Student M3 on Q1A1 

 

 

Figure 7: Student M3 solution to Q1A1 

Student M3 realized the question as requiring the use/application of Coulomb‟s law and 

writes it down in the first step. In step 2, the student writes the mathematical expression for 

when the force becomes F/3. At this point, the student incorrectly puts d as the distance 

between the charges. In step 3, the constant ke and the charge q are substituted and F 

disappears inexplicably. Proceeding to calculate for d becomes a futile effort.   

Table 6.2 is a step-by-step portrayal of the application of the conceptual framework to student 

M3‟s solution to the question. 

Table 6.2: A step-by-step description of Student M3’ work on Q1A1 

Step Activity  Description of activity  Activated  

mathematical 

resource  

Awareness/ 

translation 

between ESM 

domains  
1  

           
  

Writes Coulomb‟s law Unidentified 

resource 1 
Abstract domain, 

layer b 

2         
     writes the expression for, “so 

that the force between them 

becomes F/3”, with d as the 

distance between the charges. 

Interpretive 

devices 

(formal) 

Symbolic domain, 

layer b 

3  

 

 
 (      )

(          )
 

    

-the symbol  F on the left side 

of the equation in step  2 

disappears  

- constant ke and the variable q1 

are substituted  

-Interpretive 

devices 

(formal) 

 

-Interpretive   

devices(formal) 

Symbolic domain, 

layer b 

 

Symbolic domain, 

layer b 

 

4  

  

  (     )(         )      

Equation in step 3 is rearranged 

so that d
2
 is alone and on the 

left side 

Interpretive 

devices(formal) 
Symbolic domain, 

layer b 

5  

                

Numbers on the right side of the 

equation in step 4 are computed 
Interpretive 

devices(formal) 
Symbolic domain, 

layer b 
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6                  -The square root  is performed 

on both sides on the equation in 

step 5 

 

- m is given as the units  

-Interpretive 

devices(formal) 

 

 

-Unidentified 

resource 2 

 

-Symbolic domain 

layer b 

 

 

-concrete domain, 

layer b 

 

a) Mathematical Resources activated 

In step 1, the unidentified mathematical resource 1 is activated as this student, like student 

V1 above simply states Coulomb‟s law.  

Once the equation is stated, the student‟s focus is solely on manipulation of the equation and 

involves substitution (step 3), cross multiplication (step 3 to 4) multiplication (step 4 to 5) 

and finding the square root (step 5 to 6). All these steps are standard mathematical procedures 

thus require activation of interpretive devices type of mathematical resources. 

This student, also like V1, has not activated intuitive mathematics knowledge through use of 

any basic everyday mathematics knowledge nor reasoning primitives to indicate any intuitive 

sense of physical mechanism. Symbolic forms, where the structural forms of equations guide 

the student‟s work, are also absent.  

A second unidentified mathematical resource, designated unidentified resource 2, is activated 

in the last step (6) when, from nowhere the student assigns the solution units m (metres).  The 

nature of this mathematical resource will, together with unidentified resource 1 be discussed 

at the end of this chapter. 

b) Awareness of ESM domains 

Stating Coulomb‟s law in step 1 is indication of the abstract domain. The rest of the steps 

from 2 to 6 involving; substitution of the constant and variables; cross multiplication and 

finding  the square root are  an indication of awareness of the  symbolic domain (see section 

3.4).  

Though the solution is incorrect, the use of m for units of distance shows the student‟s 

awareness of the concrete domain (see section 3.3). He understands distance as physical 

quantity that is being determined, and so the solution should have units of distance, metres.  

Awareness of the model domain, where the student could have used diagrams to demonstrate 

relationship between variables (say charges and distance) is absent.  
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Student M3 appears to be working on layer b only, as no independent terms (layer a) were 

presented or considered on their own in any of the steps. 

c) Use of units, variables and constants  

In student M3‟s solution to this problem:  

• Units for distance (m) were used only in the  last step (6
th

)  

• Variable q1was substituted in the 3
rd

step 

• Constant (ke) was substituted in the 3
rd

step 

The order of use or substitution in this solution was; variables and constant first (both 3
rd

step) 

and units last (6
th

 step). 

6.2.3 Analysis of Student M5’swork on Q1A1 

 

 

Figure 8: Student M5 solution to Q1A1  

This student realized that the question requires the use of Coulomb‟s law and writes it 

(though incorrectly with the d not squared) in the first step. He then writes let the new 

distance = x for when the force is Fe/3in step 2.  

In step 3 of the solution, student M5 equates the mathematical expressions for the statements; 

so that the force between them becomes F/3 with when the distance between two point 

charges is d. In the next line, the student cancels the constants ke on both sides on the 

equation. The student cancels q1 and q2 in step 5. In step 6, the student performs cross- 

multiplication and proceeds with the mathematics to get the correct answer. 
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Table 6.3 is a step-by-step portrayal of the application of the conceptual framework to student 

M5‟s work. 

Table 6.3: A step-by-step description of student M5’s work on Q1A1 

Step Activity  Description of activity  Activated  

mathematical 

resource  

Awareness/ 

translation 

between ESM 

domains  

1  
            

Writes an  equation similar to 

Coulomb‟s law; with the 

distance d not squared  

Unidentified 

resource 1 

 

Abstract 

domain, layer b 

2 

 

 

   
  

 
                       

               

             

            

 

-writes a statement to explain 

Fe/3 

 

 

- assigns the new distance a 

variable 

-Interpretive 

devices(formal) 

-Interpretive 

devices (formal) 

 

Symbolic 

domain, layer b 

 

 

 

 

 

3  

1/3⌊
      

(  )
⌋          ( 

 ) 

-Writes the expression for Fe 

in step 1 multiplied by 1/3 

(now, with d squared) 

 

- the expression is equated to  

Coulomb‟ law on the right, 

with x as the distance 

-Interpretive 

devices(formal) 

 

-Interpretive 

devices(formal) 

-Symbolic 

domain, layer b 

 

 

 

-Symbolic 

domain, layer b 

4 
 

 

                       
  

 

 

Divides both sides of the 

equation in step 3 by ke 

 

Interpretive 

devices(formal) 

 

Symbolic 

domain, layer b 

5                 
  The ke‟s in step 4 are 

cancelled  
Interpretive 

devices(formal) 
Symbolic 

domain, layer b 

6            The q1 and q2 in step 5 are 

cancelled 
Interpretive 

devices(formal) 
Symbolic 

domain, layer b 

7                          

 
Items in step 6 are cross-

multiplied. 
Symbolic form Symbolic 

domain, layer b 

8   √          -the square root is performed 

on both sides of the equation 

in step 7 

 

-units, metres are given  

-Interpretive 

devices(formal) 

 

-Unidentified 

resource 2 

 

Symbolic 

domain, layer b 

 

-Concrete 

domain, layer b 

 

 

a) Mathematical Resources activated 

The unidentified resource 1 observed in the first step for the two previous a solution is 

activated again in step 1, when this student simply states Coulomb‟s law. 

Equating mathematical expressions (steps 2 and 3); cancellation (steps 4 and 5) and finding 

the square root (step 7 to 8) are all examples of activation of interpretive devices. Cross 
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multiplication (step 6) is an example of activation of the symbolic form type-of- 

mathematical resource.  

Neither intuitive mathematics knowledge nor reasoning primitives were activated as the 

student was solving this problem. 

The assigning of the units metres (step 8) is activation of unidentified mathematical resource 

2, as explained for student M3‟s solution previously.  

b) Awareness of ESM domains  

The student has shown awareness of the abstract, symbolic and concrete domains (see 

section3.4) in their solution. Awareness of the abstract domain is indicated by stating 

Coulomb‟s law. Manipulating variables, constants and the mathematical computations that 

follow are an indication of awareness of the symbolic domain.   

 

The student stating of the units of metres in the last line of his solution, though inappropriate 

in this question, may still be interpreted as indication of awareness of the concrete domain 

(see section 3.3) – where the student indicates awareness that distance is the physical quantity 

that is under consideration, and is measured by metres. 

Awareness of the model domain, where the student could have used diagrams to demonstrate 

relationship between variables (say charges and distance) is absent.  

All the distinct steps for student M5‟s work are in layer b only, since it is relationships 

between items that is presented. 

c) Use of units, variables and constants 

In student M5‟s solution to this problem: 

• Units for distance (m) were used only in the last step ( 8
th

 ) 

• Variables were not substituted (cancelled out) 

• Constant not substituted (cancelled out) 

Only units were substituted in this solution. Variables and constants were not substituted but 

rather both were cancelled out. The constant ke was cancelled in the 5
th

step while the 

variables q1 and q2 were cancelled out in the 6
th

step.  
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6.2.4 Summary of the three students’ work on Q1A1 

All the three students started their solution by stating the Coulomb‟s equation; Fe =keq1q2/r
2
. 

There is no indication as to how they reasoned that Coulomb‟s equation was needed. This 

observation could not be identified with the existing mathematical resources and was 

therefore designated as unidentified mathematical resource1.  

Both students M3 and M5 haphazardly assigned units at the end of their solutions, without 

any trace. This particular step in the two students‟ solutions was also noted as another 

unidentifiable mathematical resource and designated, unidentified mathematical resource 2. 

The activated mathematical resources when students solve this problem are mostly 

interpretive devices, where formal mathematical rules are applied; and seldom symbolic 

forms), where mathematical expressions may be seen through virtual structures of the 

equation (only twice; step 7 for both students V1 and M5). Reasoning primitives and intuitive 

mathematics knowledge resources are not activated in all the three students‟ solution. 

In all the three students‟ solutions, awareness of the abstract, symbolic and concrete 

knowledge domains is prevalent. However the symbolic domain comes out as the most 

favored. The model domain does not appear in any step. If anything, they may have drawn 

diagrams on the question paper. This would still be an indication that they think it is not 

important to show diagrams on the work that is graded.  

What also emerges as the three students solve the same question on electric force between 

point charges is that: 

For Units: 

• Either units are not used at all (V1), or that the two students who used them      

           (M3 and M5) only did so in the last step on their solution. 

 

For Variables: 

• They are substituted in the 1
st
 or 2

nd
 line after stating Coulomb‟s law. 

For Constants: 

• Just like variables, they are substituted in the 1st or 2nd line after introduction  

            of formula, or they are not be substituted at all (student M5). 
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6.3 Analysis of students work on Electric Field question 

 

Electric field is another sub-topic of electricity that was identified by means of the GST as 

distinctively contributing to the first year physics topic of electricity (see section 3.5) 

Question 1B2a (from test 1, section B, question no. 2a) involves calculation of electric field at 

some distance due to two point charges. 

 

 

Figure 9: Question 1B2a    

 

[A model answer from the instructor‟s marking guide is shown on appendix I2] 
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6.3.1 Analysis of student V1’s work on Q1B2a 

 

 

Figure 10: Student V1 solution on Q1B2a  

The student starts by calculating the magnitude of the electric field E1 and E2 separately. The 

student also calculated the distance(r) from the point charges (Q1 and Q2) to the center of the 

equilateral triangle (point E). In this instance; the student realized that r is the same for Q1 
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and Q2 with respect to point E. It is a possibility that the student may have noticed that he 

needs r only after starting on the electric field equation, and then calculates it on the right side 

of the page.  

Table 6.4 below portrays a step-by-step analysis of student V1‟s solution, using the 

conceptual framework. 

 

Table 6.4: A step-by-step description of student V1’s work on Q1B2a 

Step Activity  

 

 

Description of 

activity  
Activated  

mathematical 

resource  

Awareness/ 

translation 

between ESM 

domains  
1 

 

-Draws triangle 

showing the 

electric point 

charges  

 

-Shows electric 

field vectors 

 

-Geometrically 

determines the 

mid-point  between 

the two charges as 

1m 

-Interpretive 

devices(formal) 

 

 

-Interpretive 

devices(formal) 

 

 

-Reasoning 

primitives  

-Model 

domain, layer b 

 

 

-Model 

domain, layer b 

 

 

-Model 

domain, layer b 

2  

         

         

       

                      √  =√  

  √  

 

 
√ 

 
            

            

        

 

-Uses the sums of 

squares rule to get 

the distance from 

one base  of the 

triangle to the other 

corner   

 

 

-Divides the result 

above to get the 

length to point E.  

 

- Assigns the 

solution units of m 

-Interpretive 

devices (formal) 

 

 

-Interpretive 

devices (formal) 

 

 

-intuitive 

mathematics 

resource 

 

-Unidentified 

resource 2 

-Symbolic 

domain, layer b 

 

 

 

 

 

 

-Symbolic 

domain, layer b 

 

 

-Concrete 

domain, layer b 

3            
         

  

               (            ) (    )  

                             

-States the electric 

field equation  

 

-Calculates electric 

field E1 due the 

point charge Q1 

 

-Assigns the 

solution units of 

c/m
2 

-Unidentified 

resource 1 

 

-Interpretive 

devices(formal) 

 

 

-Unidentified 

resource 2 

-Abstract 

domain, layer b 

 

-Symbolic 

domain, layer b 

 

 

-Concrete 

domain, layer b 

4  

         
  

-States the electric 

field equation 

 

-Unidentified 

resource 1 

 

-Abstract 

domain, layer b 
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(           )

(    )    
              

-Calculates electric 

fieldE2 due the 

point charge Q2 

 

- Assigns the 

solution units of 

c/m
2 

-Interpretive 

devices(formal) 

 

 

-Unidentified 

resource 2 

-Symbolic  

domain, layer b 

 

 

-Concrete 

domain, layer b 

5  
                

           

                          

      

 

Calculates the x- 

component of the 

electric field by 

subtracting the x - 

component of  E2 

from the x- 

component of E1 

Interpretive 

devices(formal) 
Symbolic 

domain, layer b 

6  
               

          
 

                         

  (           ) 

                

 

Calculates the y- 

component of the 

electric field by 

adding  the  y-

component of  E2 

to the y- 

component of E1 

Interpretive 

devices(formal) 
Symbolic 

domain, layer b 

7                         √   
    

    = 

√        

Adds the x-

component to the 

y-component to get 

the net electric 

field at point E 

Interpretive 

devices(formal) 
Concrete 

domain, layer b 

 

a) Mathematical Resources activated 

In step 1, student V1 sketches the triangle showing electric point-charges as well as the mid-

point between the electric point charges. This is an application of the mathematics of 

geometry and thus activates interpretive devices. Calculating r (step2); calculating E1(step3); 

calculating E2(step4); calculating the x and y components of  E (step 5and 6); and finally 

calculating the net electric field (step 7) are all further examples of activation of interpretive 

devices, as formal mathematical rules are applied.  

For the student to determine that the mid-point between the two point charges is 1m (step 1) 

involves noticing that two halves equal a whole. What is activated here is a reasoning 

primitive type - of - mathematical resource similar to the whole is equal to the sum of its 

parts.  

The student calculates a single r for the distance from corners Band D to the centre point E in 

step 2. Realizing that r is the same from both corners of the triangle indicates activation of the 
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pairing type - of - intuitive mathematics knowledge. The student immediately grouped the 

two distances “for collective consideration” (see section 3.4.2.2.). 

This student does not indicate anywhere that from the problem statement; Q1 = 5uC and Q2 = 

5uC; they immediately (intuitively) realize that Q1 = Q2. This would have happened through 

activation of intuitive mathematics of pairing, but it is not activated by the student. The 

student proceeds to calculate the electric fields at point E due to Q1 and Q2; E1and E2 

separately (steps 3 and 4). That the student still does not indicate realization at this stage that 

E1 = E2 verifies unavailability of the intuitive mathematics resource of pairing. 

The student does not show realization that, if two objects (point charges Q1and Q2) with the 

same magnitude are placed the same distance away from a point (E), then their effect at that 

point (electric field) should be the same. This would be reasoning primitive comparable to the 

more is more (see section 3.4.2.2). In this case the reasoning primitive would have been same 

is same. 

The student uses formal mathematics to show that Ex = 0 (step5). Failure to realize without 

using mathematics that E1x and E2x are equal is further indicative of failure to activate 

intuitive mathematics knowledge of pairing. Similarly, failure to realize that E1y and E2y are 

equal without the use of formal mathematics indicates that the pairing type - of - intuitive 

mathematics knowledge is not activated.    

Had the pairing intuitive mathematical knowledge resource been activated, the next cognitive 

level would have been to realize without the use of formal mathematics that E1x and E2x are 

“opposing influences exactly cancelling each other out to produce no apparent result” 

(section 3.4.2.2). This would be the reasoning primitive of balancing (section 3.4.2.2). The 

same level of thinking would be applied to indicate E1y and E2y as adding influences which 

produces twice the effect. This would be reasoning primitive which I call doubling. 

b) Awareness of ESM domains  

Sketching of the diagram in step 1 indicates that the student‟s awareness starts on the model 

domain. The student‟s awareness then moves toward the abstract domain when stating the 

electric field equation at the beginning of steps 3 and 4. The rest of the steps that involve 

algebraic manipulation until the end indicate awareness of the symbolic domain. 
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The student‟s use of units (C/m
2
 and m) in the last line of the solutions in the various steps is 

an indication of awareness of the concrete domain. The student is aware that he is dealing 

with physical quantities that should have units. 

This student‟s entire work only shows relationships between different variables, with no 

variable being considered on their own. This is therefore an indication of the awareness 

throughout, of the ESM layer b only. 

c) Use of units, variables and constants 

In student V1‟s solution to this problem; 

• Units C/m
2
 and m were used in the last step of the various parts of the solution  

• Variables q1 and q2 were substituted in the 2
nd

 line immediately after introduction of 

formula 

• Constant ke was substituted in the 2
nd

 line immediately after introduction of formula  

The order of use or substitution in this solution was; variables and constants first (both in the 

2
nd

 line) and units last.  
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6.3.2 Analysis of student M4 on Q1B2a 

 

Figure 11: Student M4 solution to Q1B2a   

 

Student M4 sketches the diagram and even shows vectors at the beginning of his work (faint 

arrow sketches). The student then calculates the distance from the corners of the triangle to 
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the mid-point (r). He must have either worked on the side or mentally recalled the electric 

field equation to realize that he needs r.  He then proceeds to calculate the electric field E1 

and then notices that E1 is the same as E2. The student then resolves the electric field vector 

into its component vectors, and proceeds on to get the question right.  

Table 6.5 shows a step-by-step portrayal of student M4’s solution viewed through the 

conceptual framework.  

 

Table 6.5: A step - by - step description of student M4’s work on Q1B2a 

Step Activity  Description of 

activity  
Activated  

mathematical 

resource  

Awareness/ 

translation 

between ESM 

domains  

1 

 

Draws triangle 

showing the angles 

and designates the 

length to point E, as 

r 

-Interpretive 

devices (formal) 

 

-Intuitive 

  mathematics 

Model domain, 

layer b 

2  

                         

           

           

        

 
 
 

-States part of the 

SOHCAHTOA rule 

  

-Substitute the 

numerical values 

for the  angle  and 

the adjacent side, as 

well as the symbol 

for the hypotenuse 

r 

 

- Calculates r, and 

assigns it the units 

m 

-Interpretive  

devices (formal) 

 

 

-Interpretive 

devices (formal) 

 

 

 

 

 

-Interpretive 

devices (formal) 

Symbolic domain, 

layer b 

3 

 

-Sketches electric 

field vectors at 

point E, due to 

point charges Q1 

and Q2 

Interpretive 

devices(formal) 
Model domain, 

layer b 

4  
 

  
⃗⃗⃗⃗        

  

 
        (       )

(    ) 
 

=               

  
⃗⃗⃗⃗             

  
⃗⃗⃗⃗    

⃗⃗⃗⃗  
 

 

-States the electric 

field equation  

-Calculates the 

electric field at 

point E, due to 

Q1(E1)  

-Assigns it the units 

N/C 

 

 

-Equates E1 to E2 

-Unidentified 

resource 1 

 

-Interpretive 

devices 

 

-Unidentified 

resource 2 

 

-Reasoning 

primitive 

-Abstract domain, 

layer b 

 

-Symbolic 

domain, layer b 

 

-Symbolic 

domain, layer b 

-Concrete domain, 

layer a and b 
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5    
 

              

   ⃗⃗⃗⃗  ⃗                   ° 

              

   ⃗⃗⃗⃗  ⃗Cos                   

              

 

 

Calculates the x- 

component of E1 

and E2 and assigns 

both the units N/C 

 

 

 

 

Interpretive  

devices (formal) 
 

Symbolic domain, 

layer b 

6  
              

  
⃗⃗⃗⃗                       

              

  
⃗⃗⃗⃗                      

              
 

 

Calculates the y- 

component of E1 

and E2 and assigns 

both the units N/C 

 

Interpretive 

devices (formal) 

Symbolic domain, 

layer b 

7  

  
⃗⃗⃗⃗   (                    )   

 (         
          )   
    

  (       )      

-Calculates the 

resultants electric 

field at point E (Er) 

by subtracting the x 

-components and 

adding the y- 

components  

Interpretive 

devices (formal) 

Symbolic domain, 

layer b 

8  

  
⃗⃗⃗⃗  √(           ) 

              

 

Calculates the 

numerical value for 

the resultant 

electric field  

Interpretive 

devices (formal) 

Concrete domain, 

layer b 

9  
            

         (
       

 
) 

      

Calculates the angle 

due the resultant 

electric field, Ø 

Interpretive 

devices (formal) 

Concrete domain, 

layer b 

 

a) Mathematical Resources activated 

Application of the mathematics of geometry in the sketched triangle (step 1); calculating r 

(step2); sketching electric field vectors at point E, due to point charges Q1 and Q2(step3); 

calculating (step4); calculating the x and y components of electric field at point E (step 5and 

6);calculating the resultant electric field ( steps 7 and 8); and  finally calculating the angle due 

the resultant electric field (step 9), are all examples of activation of interpretive devices, as 

formal mathematical rules are applied. 
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In addition to interpretive mathematical resources, the following type of mathematical 

resources is also activated: 

The sketch on the triangle by the student (step 1) indicates that he has realized that the 

distance(r) from both corners B and D to the centre is the same. This is further validated 

when the student calculates a single value for r. Both the above steps indicate activation of 

pairing type-of-intuitive mathematics knowledge. 

The student immediately writes E1 = E2 after calculating E1. This indicates activation of the 

reasoning primitives – same is same – as explained in the analysis of Student V1‟s work on 

Q1B2a above. The student realizes immediately, without the use of formal mathematics that if  

Q1= Q2, then the effect of both charges at some point (E1 and E2) must be the same. 

 

In steps 5 and 6, the student resolves the electric fields E1 and E2 into their x and y 

components. Like student V1 above, the student‟s failure to realize without the use of formal 

mathematics that E1x and E2x are the same, opposite and thus cancel each other out, indicates 

inability to activate reasoning primitives - balancing. Furthermore, failure to realize without 

the use of mathematics that E1y and E2y are the same, and thus should be multiplied twice is 

testament of failure to activate at least two mathematical resources. E1y = E2y would be 

realized through activation of the intuitive mathematics knowledge of pairing – the ability to 

group two objects for collective consideration. That the y component of the electric field on 

point E is a combined effect of E1y and E2y requires activation of the reasoning primitive – 

doubling.  

b) Awareness of ESM domains  

Student M4 started with the awareness of the model domain when drawing the diagram in 

step 1. Sketching of electric field in step 3 is another indication of awareness of the model 

domain. 

The stating of the electric field equation in step 4 is an awareness of the abstract domain.  The 

rest of the steps involving calculating of the electric field; calculating the x and y 

components; calculating the resultant electric field; and the angle due the resultant electric 

field are all indicative of awareness of the symbolic domain.  

The use of units (m and N/C) is an indication of the awareness of the concrete domain 

(section 3.3). 
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The student had not given any item for consideration individually, therefore only the ESM b 

layer is evident in the entire student‟ steps. 

C) Use of units, variables and constants 

In student M4‟s solution to this problem: 

• Units (m, N/C ) are used in last line of  the various parts of  the solution  

• Variables (q, r) are substituted in the 2
nd

 line of  the various parts of  the solution 

• Constant(ke)  is substituted in the 2
nd

 line of  the various parts of  the solution 

 

The order of use or substitution in this solution was variables and constants first (both in the 

2
nd

 line) and units last.   

6.3.3 Analysis of student M5’s work on Q1B2a 

 

Figure 13: Student M5 solution to Q1B2a   
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The student starts by drawing the diagram from which he is able to geometrically determine 

the length to the centre BE. Student M5 realizes immediately that the electric field at the 

centre due to Q1 (E1) is the same as the electric field at the centre due to Q2 (E2). He then 

calculates the resultant electric field at point E due to both point- charges as requested. 

Table 6.6 below gives a step-by step portrayal of the student‟s solution, viewed through the 

conceptual framework. 

Table 6.6: A step-by-step description of student M5’s work on Q1B2a 

Step Activity  Description of 

activity  

Activated  

mathematical 

resource  

Awareness/ 

translation 

between ESM 

domains  

1 

 

Draws triangle 

showing electric field 

vectors E1 and E2 

about the center 

Interpretive 

devices (formal) 
Model domain, 

layer b 

2  
  

                
 

  
 

  

   
 

√
 

 
   

=  √   

-Calculates the length 

from the corner of the 

triangle the center 

B.E 

 

- Assigns units m 

-Interpretive 

devices (formal) 

 

 

-Unidentified 

resource 2 

Symbolic 

domain, layer b 

3       States that electric 

fields at point E due 

Q1 and Q2 are the 

same. 

Reasoning 

primitives 
Concrete 

domain, layer b 

4  

                (     )/(  

√ )              

- States the electric 

field equation 

 

-Calculates electric 

field at E due to 

Q1(E1) 

 

- Assigns units N/C 

-Unidentified 

resource 1 

 

-Interpretive 

devices (formal) 

 

-Unidentified 

resource 2 

Abstract 

domain, layer b 

 

 

Symbolic 

domain, layer b 

5                    Give the numerical 

value for E2 and E1 
-Interpretive 

devices (formal) 
Symbolic 

domain, layer b 
6  

 

                    √     

                 

 

                                
 

 

-Calculates the x- 

company of E1 

 

-Calculates the y- 

company of E1 

 

- Assigns units N/C 

 

-Interpretive 

devices (formal) 

 

-Interpretive 

devices (formal) 

 

-Unidentified 

resource 2 

 

Symbolic 

domain, layer b 
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7  
 

                   

         √    

               

 

                            
             

 
 
 

 

 

 

-Calculates the x- 

company of E2 

 

 

-Calculates the y- 

company of E2 

 

-Assigns units N/C 

 

 

-Interpretive 

devices (formal) 

 

 

 

 

-Unidentified 

resource 2 

 

 

Symbolic 

domain, layer b 

8       (∑  )
   (∑   )

       

 

                   

 

       
 

 
                              

 

 

-Calculates the result 

electric field  

 

 

 

- Assigns units N/C 

-Interpretive 

devices (formal) 

 

 

 

- Unidentified 

resource 2 

Symbolic 

domain, layer b 

 

a) Mathematical Resources activated 

Sketching the triangle showing electric point-charges at the centre (step1);calculating the 

length from the corner of the triangle the center BE(step 2); calculating the net electric field 

through all the steps from 4 to 8 are all examples of activation of interpretive devices, as 

formal mathematical rules are applied. The first part of step 4, stating the electric field 

equation            is however activation of the mathematical resource, unidentified 

resource 1. 

Step 3 is different as the student did not use any apparent formal mathematics to arrive at it. 

The student would have reasoned that if the charges Q1 and Q2 are the same, then their effect 

(electric filed) at a similar distance apart should be the same. The mathematical resource 

activated here is the reasoning primitive same is same. An unidentified mathematical 

resource; unidentified resource 2 is activated when, without any trace, the student assigns 

units in the last line of the various steps.  

Neither intuitive mathematics knowledge nor symbolic forms type of mathematical resources 

are activated.  

b) Awareness ESM Domains  

The student demonstrates awareness of the model domain in step 1 and the concrete domain 

in step 3. The model domain is demonstrated by the use of the diagram to represent (model) 
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the electric field. The concrete domain on the other hand surfaces when the student shows 

understanding of the physical phenomena without the use of mathematics. 

All other steps involving manipulation of mathematical equations show the student‟s 

awareness of the symbolic domain.   

c) Use of variables, constants and Units 

In student M5‟s solution to this problem; 

• Units (m, N/C ) used in last line of  the various steps  of   the solution  

• Variables (q, BE) were substituted in the 2
nd

  line after stating the formula (step 4) 

• Constant(ke)  substituted in the 2
nd

 line after stating the formula (step 4) 

 

 

The order of use or substitution in this solution was; variables and constants first (both in the 

2
nd

 line) and units last.   

6.3.4 Summary of the three students’ (V1, M4, M5) work on Q1B2a 

All the three students had to draw a diagram to show the distance from the point charges Q1 

and Q2 to the mid - point E, as well as to show the electric field vectors E1 and E2. 

One student V1 had to calculate the electric fields E1 and E2 first, to realize that they are the 

same. While student M3 realized that E1 = E2 after the calculating E1, this was not done 

through the use of mathematics. Student M5 did not have to use any formal mathematics to 

realize that E1= E2. 

Interpretive devices and reasoning primitives are the only two (2) mathematical resources 

activated when students solve this problem.  Reasoning primitives have only been activated 

once, in showing that E1= E2. Since the use of formal mathematics is common in all the three 

students work, interpretive devices are the predominantly activated mathematical resource. 

Both Unidentified resource 1 and unidentified resource 2 are activated in all the three 

students‟ solution. 

What also emerges from the three students as they were solving the electric field problem is 

that; 

For units: 

 They were only used in the last line on a step. 

For variables: 

 They were only substituted in the 1
st
 line immediately after introduction of formula. 

For constants: 
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 They were only substituted in the 1
st
 line after introduction of formula 

 

6.4 Analysis of students’ work on Electric Circuit question 

 

Electric circuits  is the third  sub-topic of electricity that was identified by means of the GST 

as distinctively contributing to the first year physics topic of electricity (see section 3.5). 

Question 2B2 (from test 2, section B, question no. 2) is on currents entering and leaving a 

junction.  

 

 
Figure 14: Question 2B2     

 

[A model answer from the instructor‟s marking guide is shown on appendix I3] 

 

6.4.1 Analysis of Student M6 on Q2B2 

 

 

Figure 15: Student M6 solution to Q2B2   

The student starts by writing an equation where the three different currents are added to get a 

zero. The two currents I1and I2are denoted as negative, while I3 is assigned a positive sign. In 
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the second step, the student applies a correct Kirchhoff‟s law at junction C (the correct 

answer). 

Table 6.7 is the step-by-step portrayal of the application of the conceptual framework to 

student M6‟s solution. 

 

Table 6.7: A step-by-step description of student M6’s work on Q2B2 

Step Activity  Description of activity  Activated  

mathematical 

resource  

Awareness/ 

translation 

between ESM 

domains  
1  

                

 

Equates the sum of the  three 

current (with  I1 and I2 negative ) 

to a  zero  

Interpretive 

devices (intuitive) 
Symbolic 

domain, layer b 

2                Expresses I3 in terms of I1 and I2 Interpretive 

devices (formal) 
Symbolic 

domain, layer b 

 

a) Mathematical Resources activated 

In the equation that the student writes in the first step, intuitive interpretive devices are 

activated in assigning negative signs to currents I1 and I2 to show a reverse direction to the 

one shown in the diagram. This is a very common mathematical resource in physics used to 

show opposite direction. Rearranging the variables from step 1 to step 2 involves activation 

of formal interpretive devices.  

No intuitive mathematics knowledge, reasoning primitives, nor any symbolic forms is 

indicated by the student in the two lines used to get the question right. 

b) Awareness of ESM domains  

Despite the question being presented in the model domain (diagram), the student by-passes 

that and engages in the symbolic domain to write a mathematical equation expressing the 

relationships between the three currents, in the first step. The student then uses this 

mathematical equation to arrive at the correct expression for Kirchhoff‟s current law at 

junction C, which is still the symbolic domain, in step 2.  

Since both the steps involve relationships between the three currents in the circuit, only the 

ESM layer b is evident in this solution.  

 



114 
 

c) Use of units, variables and constants 

In student M6‟s solution to this problem, this was observed: 

• No units used 

• No variables substituted 

• No constant substituted 

 

Since no units, variables nor constant were used or substituted in this solution, there is no 

order of use or substitution to be discussed. 

6.4.2 Analysis of Student H1’s work on Q2B2 

 

 

Figure 16: Student H1 solution to Q2B2   

Student H1 starts by writing a general equation with an incorrect expression for Kirchhoff‟s 

1
st
 rule. Current (Ic) is erroneously used in place of potential difference (ΔV) around a closed 

loop (2
nd

 rule). In the second step the student correctly writes Kirchhoff‟ rule at junction C. 

Student H1 continues to step  3 where she works in reverse and attempts to present the 

equation in step 2 in a similar manner to the one in step 1. 

Table 6.8 portrays the application of the conceptual framework to student H1‟s solution, in 

steps.     

 

Table 6.8: A step-by-step description of Student H1’ work on Q2B2 

Step Activity  Description of activity  Activated  

mathematical 

resource  

Awareness/ 

translation 

between ESM 

domains  
1 ∑     Gives mistaken expression 

for Kirchhoff‟s 1
st
current 

rule 

Unidentified 

resource 3 
Abstract, layer b 

 

2              Equates I3 to the sum of I1 

and I2 
Reasoning 

primitives 
Model, layer a and 

b 
3                       Subtracts I1and I2 from I3 

to get zero 
Interpretive 

devices (formal) 
Symbolic, layer b 
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a) Mathematical Resources activated 

An unidentifiable mathematical resource is activated when the student, upon reading the 

question writes the equation in step 1. This resource is similar to the ones described in 

previous solutions (see section 6.2 and 6.3) and therefore designated unidentified resource 1. 

In step 2 the student notice from the diagram the relation that; current I3 breaks into I1 and I2 

and writes is mathematically as I3= I1+ I2. Step 2 could not be immediately derived from step 

1, which is an incorrect mathematical expression of the Kirchhoff‟s rule around a closed loop. 

Step 2 thus involves activation of reasoning primitives that I shall call sum of parts is whole. 

Sum of parts is whole is an intuitive sense of physical mechanism (reasoning primitive) with 

the abstract notion that a whole can be divided into its individual parts. The same reasoning 

could be used for a river breaking into two streams, to say the water in the two streams is the 

same as the water in the river, for example. Even though the student is not aware that step 2 is 

the correct solution, the equation was motivated by a sense of physical mechanism; where 

students use a form of intuitive knowledge about physical phenomena and processes 

(Tuminaro, 2004; p. 45). 

 

Formal interpretive devices are used in the rearrangement of variables from step 2 to step 3. 

Neither intuitive mathematics knowledge resources nor do symbolic forms appear to be 

activated in this student‟s solution. 

 

 

 

b) Awareness of ESM domains  

Despite the question being presented in the model domain, student H1 starts on the abstract 

domain by writing the incorrect Kirchhoff‟s rule. The student awareness of the model domain 

helps him to come up with the expression I3 = I1 +I2 in step 2. While step 2 could be 

interpreted as indication of the model domain - demonstrating understanding of the 

relationship of the three currents from the diagram, it also could appear accidental. Step 3 

indicates awareness of the symbolic domain, and is further proof of the accidental nature of 

step 2 as the student appears to be working in reverse.  

Step 1 gives a mistaken mathematical expression for current around a loop. It is therefore 

ESM layer b since an expression is a relation, or a comparison. Since step 2 is not motivated 
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by step 1, it can only be due to the awareness of first; the currents I3, I2 and I1 as separate 

entities (ESM layer a) and then their combined relation (ESM layer b). Step 3 is an awareness 

of ESM layer b resulting from step 2. 

C) Use of units, variables and constants 

In student H1’s solution to this problem, the following was observed; 

• No units are used 

• No variables are substituted 

• No constant are substituted 

 

Since no units, variables or constant were used or substituted in this solution, there is no order 

of use or substitution to be discussed.  

6.4.3 Analysis of student H2’s work on Q2B2 

 
Figure 17: Student H2 solution to Q2B2   

 

Student H2 writes the expression for Kirchhoff‟s law at junction C, at once. Application of 

the conceptual framework to the student‟s solution is tabulated in table 6.9 below. 

 

Table 6.9: A step-by-step description of Student H2’s work on Q2B2 

Step Activity  Description of activity  Activated  

mathematical 

resource  

Awareness/ 

translation 

between ESM 

domains  
1              Writes an abbreviation for 

Kirchhoff‟s current law 

and continues to write an 

expression for Kirchhoff‟s 

current law at junction C 

 

 

 

Reasoning 

primitive  

 

 

 

Model, 

 layer a and b 
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a) Mathematical Resources activated 

Reasoning primitives sum of parts is whole are the type of mathematical resources activated 

here. The student visually observes that one (1) thing led to two (2) other things (the whole as 

the sum of individual parts) and simply writes the equation.  

 No intuitive mathematics knowledge resources, symbolic forms nor interpretive devices are 

activated in this student‟s solution.  

b) Awareness of ESM domains  

This student could also be said to have immediately discerned the relationship of the currents 

from the diagram (model domain), thus understanding the physical meaning of the solution 

that he puts forward. The student may have looked at the diagram (model domain) and 

notices a physical situation where one entity (I3) breaks into two other entities (I1 and I2) at 

junction C.  

This single step indicates awareness of the model domain in both layers a and b. Since the 

summation of the two currents I1 and I2, and their equating to current I3 are not motivated by 

any prior written equation, it is reasonable  to suggest that the student noticed the currents as 

separate entities first (layer a), and then constructed a mathematical expression that shows 

their relationship (layer b). 

C) Use of units, variables and constants 

In student H2‟s solution to this problem, the following was observed: 

• No units used 

• No variables were substituted 

• No constants were substituted 

 

Since no units, variables or constant were used or substituted in this solution, there is no order 

of use or substitution to be discussed.  

6.4.4 Summary of the three students’ (M6, H1, H2) work on Q2B2 

Solutions from the first two students (M6 and H1) show students trying to get to the answer 

by starting from some known or general equation. In both cases students state an incorrect 

equation. These students appear to be motivated by “working towards” a solution. While their 

first steps do not necessarily help them, they end up getting the correct answer in subsequent 

steps. Student H2 on the other hand did a visual inspection to arrive at his single step 

solution. 
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While the activation of reasoning primitives alone proved sufficient to lead to the correct 

answer, interpretive devices are the commonly activated mathematical resource. 

The first two students missed the opportunity to immediately translate from the model 

domain to the concrete domain looking at the way the currents are represented in the diagram. 

They had to traverse the symbolic domain even when it proved unnecessary.  

The answer to this question is correctly expressed without the use or substitution of units and 

constants. Only variables are used. 

6.5 Chapter Summary  

 

Various mathematical approaches emerged as the students were solving the electricity 

questions. While interpretive devices where students used formal mathematical procedures 

appeared to be the most common approach in all the three questions, there was variation in 

the way the students started their solutions to the questions.     

Students started the electric force question (Q1A1) the same way - by stating Coulomb‟s law. 

A different set of students also all started the electric field question (Q1B2a) the same - by 

drawing a diagram that depicts electric field vectors. For the third question on electric current 

in a circuit (Q2B2), the students started the question in three different ways. The first one 

started with an incorrect Kirchhoff‟s rule. The second one started with a correct Kirchhoff‟s 

rule which they were not aware of its correctness. The third student answered the question 

correctly by stating at once, Kirchhoff‟s rule at junction C.   

All the domains of knowledge (concrete, model, abstract, symbolic) appear in a sporadic 

manner as students are answering the questions. The symbolic domain, where students 

indicate awareness of “symbolic ways of representing a problem” is the most predominant 

domain.  

Two of the students‟ various approaches in solving the electricity questions could not be 

identified with mathematical resources as described in section 3.4.2.2. These were designated 

unidentified resource 1 and unidentified resource 2. Table 6.10 presents a summary of 

students‟ solutions along the three electricity subunits indicating the resultant mathematical 

resources activated, and the ESM domains.  
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Table 6.10: Summary of application of MATHRICITY on students’ solutions 

Sub unit   Student  Mathematical 

resource activated  

ESM domain  

Electric force  V1 -Unidentified resource  1 

-Symbolic form 

-Interpretive  

 devices(formal) 

-Abstract domain, 

  layer b 

-Symbolic domain, layer 

  b 

M3 -Unidentified resource 1 

-Interpretive  

 devices(formal) 

 

-Unidentified resource 2 

-Abstract domain,   

  layer b 

-Symbolic domain, layer 

  b 

-Concrete domain, layer b 

M5 -Unidentified resource 1 

 

-Interpretive  

 devices(formal) 

 

-Symbolic form 

-Unidentified resource 2 

-Abstract domain, layer b 

-Symbolic domain, layer 

  b 

-Concrete domain, layer b 

 

Electric field  V1 -Interpretive   

 devices(formal) 

 

-Reasoning primitives 

 -Intuitive mathematics 

   resource 

 

-Unidentified resource 2 

-Unidentified resource 1 

-Model domain, layer b 

-Symbolic domain, layer 

  b 

-Concrete domain, layer b 

-Abstract domain, layer b 

 

M4 -Interpretive  

 devices(formal) 

 

-Intuitive mathematics 

-Unidentified resource 1 

-Unidentified resource 2 

-Reasoning primitives 

-Model domain, layer b 

-Symbolic domain, layer 

-Abstract domain, layer b 

 

-Concrete domain, layer a 

  and b 

M5 -Interpretive   

 devices(formal) 

 

-Unidentified resource 1 

-Unidentified resource 2 

-Reasoning primitives 

-Model domain, layer b 

-Symbolic domain, layer 

  b 

-Concrete domain, layer b 

-Abstract domain, layer b 

Electric circuit  M6 -Interpretive devices  

(intuitive) 

-Interpretive devices  

(formal) 

-Symbolic domain, layer 

  b 

-Symbolic domain, layer 

 b 

H1 -Unidentified resource 3 -Abstract domain, layer b 
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-Reasoning primitives 

-Interpretive devices 

(formal) 

-Model domain, layer a 

  and b 

 

-Symbolic, layer b 

H2 -Reasoning primitives  -Model domain, 

  layer a and b 
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Chapter 7 Summary of Study and Findings  

 

7.1. Study summary  

 

The use of mathematics in physics must be understood for the role its serves.  In students‟ 

learning of physics, it is even more important that students understand why they use 

mathematics the way they do. Do students‟ use mathematics so that mathematics helps them 

understand the physics, or is students‟ “efficient” use of mathematics when solving physics 

problems simply an indication of their understanding of the subject - mathematics? Is 

students‟ use of mathematics in physics much like solving a puzzle? More so, does students‟ 

use of mathematics in the physics topic of electricity bring out any unique approaches or 

notable types of understanding? 

A comprehensive coverage of the relevant literature indicated that students‟ effective use of 

mathematics in physics is still a contentious issue (see sections 2.1; 2.2; 2.3; 2.4 & 2.5). 

There are those researchers who reckon that students do badly in physics because students do 

not have requisite mathematical preparedness (Ayene et al., 2012). Others argue that even if 

students did have the required level of mathematics, the issue of transfer of knowledge across 

different domains is really the problem (Basson, 2002; Redish, 2005). Researchers have 

described how mathematics and physics are ontologically different types of knowledge, 

which also require different epistemological energies (Pettersson & Scheja, 2008). These 

differences include descriptions of knowledge as procedural as opposed to conceptual, or 

objective as opposed to subjective. Inevitably, these varying and at times conflicting 

descriptions also affect the way students perceive mathematics in physics. 

Salaam (2007) and Quale (2011) both maintain that students‟ perceptions with regard to their 

understanding of the purpose of problem solving are polarized. This, they say results from 

their view of physics as objective knowledge, and mathematics as subjective knowledge. 

Physics is viewed as representing real physical objects, while mathematics relates to human 

imagination. Quale (2011) recommends for some kind of middle ground between the 

positions of realism (physics) and relativism (mathematics), since he says even “so called” 

objective objects are perceived by the human mind. 
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Two other dichotomous views on mathematics - in - physics that emerged from literature are 

with regards to the way physics should be taught. One school of thought is the conceptual 

approach which proposes that concepts be taught before mathematical computation (Hewitt, 

2010). The other school of thought argues that mathematics is fundamental to understanding 

physics and therefore mathematical skills must be taught before or concurrently with physics 

content (Mulhall & Gunstone, 2008). 

The above cited literature and similar ones discussed in detail in the introductory chapters 

dwelt largely on the use on mathematics in physics in general, or on the topic of mechanics. 

This one-dimensional approach in particular is what led the current study to carve out the 

investigation in a different dimension - the physics topic of electricity. The role of 

mathematics in students‟ understanding of physics, regardless of the level of instruction or 

the extent of use, appeared invaluable. However, there was scarcity of literature with regards 

to students‟ use of mathematics in the physics topic of electricity and how that may be 

influenced by their expectations. The preceding background led the current study to be 

formulated on the basis of the following three research questions: 

a. What are students‟ expectations of the role of mathematics in physics? 

b. What mathematical approaches do students use when solving electricity problems?  

c. What types of understanding emerge when students use certain mathematical 

    approaches to solve electricity problems? 

 

To answer these research questions, a qualitative study was designed. The study made use of 

a survey, focus group interviews and student scripts. Data from the survey and interviews was 

used to address the first research question while students‟ scripts were analyzed to address the 

next two research questions. 

 

A three-tier conceptual framework (MATRHICITY) was presented in chapter three (3). The 

first part of MATHRICITY was to identify and constitute important first year physics, 

electricity topics. The topics were constituted as guided by the General Systems Theory 

(GST) to be; electric force, electric field and electric circuits (see section 3.5). 

 

The second part of MATHRICITY was informed largely by prior work on cognitive 

approaches in understanding students‟ use of mathematics in physics. The development of 
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these cognitive approaches could be traced to the phenomenological primitives (di Sessa, 

1993); through symbolic forms (Sherin, 1996; 2001) up to mathematical resources 

(Tuminaro, 2004). These three approaches are largely informed by each other. The last one - 

mathematical resources - was specifically chosen as it emerged from a study that claimed to 

have “synthesized previous studies on students‟ use of mathematics in physics” (see section 

2.7.4.2) and also “purports to have developed a vocabulary and grammar as useful tools for 

understanding the nature and origin of students‟ mathematical thinking in physics” (see 

section 2.7.4.2).The mathematical resources constitute intuitive mathematics resources, 

reasoning primitives, symbolic forms and interpretive devices. 

 

The third component of MATHRICITY was the Extended Semantic Model (ESM). It is a 

framework developed by Greeno (1989) and could be used to describe distinct areas of focus 

when solving physics problems, which are called knowledge domains. The ESM advocates 

for idealized problem solving that incorporates four domains of knowledge. These four are 

the concrete, model, abstract and symbolic domains. The ESM was used in this study to 

delineate patterns of understanding from students‟ mathematical approaches in electricity 

questions. 

 

Students‟ use of units, variables and constants was an additional dimension of analysis. This 

perspective was to validate students‟ mathematical approaches towards the electricity 

questions. It was as well, also expected to indicate any understanding that would result from 

student engagement with the questions.  

 

Students expectations, their use of mathematics in physics, the understanding that result from 

their use of mathematics, together with analysis of their use of units, variables and constants 

composite, were thus collectively used to thrash out the role of mathematics in students‟ 

understanding of the physics topic of electricity. 

7.2 Discussion of findings  

 

Students‟ overall responses to the survey and interviews were grouped into two main 

categories of what they think it takes to learn physics and what they think about the use of 

mathematics in physics. In these groupings, interview excerpts were used to corroborate 

emergent views.  
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How students actually use mathematics was explored through application of, mainly 

MATHRICITY. 

7.2.1 What they think it takes to learn physics   

The data analysis of students‟ responses to the survey could be curtailed into a map of 

students‟ expectations on physics. The terrain of the map depicts a non-uniform and wobbly 

field where students‟ expectations are: uncertain, incoherent with expert knowledge, and even 

contradicts evidence from empirical studies in some instances. 

Students were adamant about the role of mathematics in physics from the onset, when 80.7% 

of them disagreed with a survey item (20); I would prefer to learn physics with no 

mathematics. Students‟ responses are consistent with what obtains in literature when 91% 

agree that, the first thing that I do when solving a physics problem is to search for formulae 

that relate givens to unknowns. Mulhall and Gunstone (2008), Redish (2005), and Van 

Heuvelen (1991) have all pointed to this and also demonstrated how it is an ineffective 

approach to learning (see section 2.5.2). 

When 96.3% of the students agreed with the survey item (19); To be able to use an equation 

in a problem, I need to know what each term in the equation represents; this was contrary to 

existing literature (Dawkins et al., 2008; Redish, 2005).  Dawkins et al. observes that in fact 

“students are asked to apply these basic mathematics operations in physics with minimal 

consideration given to whether students know what they represent” (see section 2.5.2).  

 

In addition to the above observed contrasts between students‟ responses and literature, one 

(1) emergent view was on students‟ perception on the use of equations in learning physics. 

83.7% of the students agree with survey item (11) that stated, the most crucial thing in 

solving a physics problem is finding the right equation to use. When probed about a similar 

issue one student commented, “…now as long as you can understand how the formula work 

like it will be easy for somebody to pass” (see section 5. 5.1). 

Students also indicated an inclination towards memorization in their learning of physics. 

During the interviews when students were asked about the extent of memorization that they 

do, four students responded at once, “a lot” (see section 5.5.2). 

Students also generally felt conceptualization was a very important aspect of their learning of  

physics. One student said during the interviews, “the thing is if you don’t understand the  
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concepts, you will have problems throughout. So for that part I think it is very important to  

understand the concepts” (see section 5.5.3.). This was in agreement with students‟ response 

to a survey item (28), where 79.8% agreed that when I solve most physics problems, I think 

about the concepts that underlie the problem. 

 

One thing that the students demonstrated when their scripts were analysed in the electric 

force question is simply that they recall Coulomb‟s law. An alternative but similar question 

probing introductory students‟ conceptual understanding of physics would have been; 

Explain what happens to two electric point charges placed a distance d apart if the force 

between them is reduced by a third? Here a student who understands Coulomb‟s law will 

demonstrate understanding that if electric force is reduced, its effect is reduced as well. The 

suggested question, as Hewitt (2010) has observed will make first year students understand 

the physics “before they go in to computation”. Evidently, introductory students hardly 

encounter these type of questions even at high school as stated by one student (S2) in the 

interviews when she said, “… from senior school, answering theory questions proved to be 

more difficult than the mathematical part because the theory you have to read. Physics you 

know we don’t usually re…ad physics. We just, I don’t re…ad physics, I just find the question 

and see how they relate” (see section 5.6.2). The “re…ad” in this text suggests that the 

student wants to differentiate reading normal text from re…ading and interpreting mostly 

formulae or mathematical notation. 

7.2.2 What students think about the use of mathematics in physics 

Students‟ expectations on the use of mathematics in physics also came to the fore. Students 

expressed their views in two broad areas; the meaning of mathematical answers (section 

5.6.1) as well as the relationship between mathematics and physics (section 5.6.2).   

In the survey, students' views were not convincing. Only about half (49.7%) of the students 

agreed with the item (12) in solving a physics problem, I sometimes get a correct 

mathematical solution whose meaning I do not understand. The interviews however 

precipitated with this comment, “Because sometimes I get a question, ok fine, I look for the 

correct mmm… the right formula to use, I use that formula, I check the answer at the back of 

the book. Ok the answer is correct but not necessarily understanding the concept...so I do 

have a problem sometimes” (see section 5.6.1). This statement could be interpreted to mean, 

the student can get a correct answer even though they may not understand the physics.  
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When probed on the relationship between mathematics and physics, students‟ views were 

unambiguous.  Students disagree (80.7%) with the survey item (20) that states I would prefer 

to learn physics with no mathematics. Students agreed (70.2%) with the survey item (23) 

there can be no physics without mathematics. The following interview excerpt substantiates 

students‟ thinking: 

R:  Ok…Mr. Fizi, can you learn physics without mathematics? 

S2: Aah I don’t think so. 

R: It’s impossible? 

S2: It’s impossible, it’s very impossible. You need to apply maths in order to 

            understand the physics. 

 

The student here says it is “very impossible” to learn physics without mathematics. „Very 

impossible‟ expresses strong feelings and could be interpreted that he implies that physics 

and mathematics are one.  

Generally, in students‟ conversations during interviews the words understand, formula, 

mathematics, concepts, apply, and the phrases, understand concepts, understand formula, 

concept behind, and key concept, recur with noticeable regularity. These words and phrases 

depict students‟ mindsets when engaged with physics tasks. They are the contours through 

which physics is mapped in students‟ minds. 

7.2.3 How students used mathematics in the physics topic of electricity 

Analysis of students‟ test scripts through MATHRICITY shows students‟ varying 

mathematical approaches in terms of the mathematical resources activated (see sections 6.2; 

6.3 & 6.4). Some approaches, especially those inclined to pure mathematical manipulation 

were more prevalent. With regards to the domains of knowledge that emerged, the symbolic 

domain where students dwell on symbolic ways of representing a problem or through the 

mathematics of algebra, was predominant (see sections 6.2, 6.3 & 6.4). Analysis of students‟ 

use of units, variables and constants also brought out a discernible pattern. 

7.2.3.1 Activated Mathematical Resources 

According to literature, Intuitive mathematical resources, Reasoning primitives, Symbolic 

Forms and Interpretive Devices were the mathematical resources that are activated when 

students solve physics problems (see section 3.4.2.2). Two more mathematical resources, 

unidentified resources 1 and unidentified resources 2 emerged in this study as students‟ 



127 
 

work was analysed for the use of mathematics when solving electricity problems (see 

sections 6.2, 6.3 & 6.4). 

Unidentified resources 1 - Retrieval cues 

Unidentified resources 1 are mathematical resources activated at the beginning of problem 

solving, just after students complete reading a physics question. Students appear to be 

automated to start with a formula. This first step is very important as it signifies what the 

student immediately makes out of the question that they read. Problem solving however does 

not start with the equation already there. In all the solutions where they emerged, unidentified 

resources 1 appeared at the beginning of the problem solving exercise.  

These were activated in six (6) different students‟ solutions as students wrote down both 

Coulomb‟s law and the electric field equation as the first step in their problem solving (see 

section 6.2 & 6.3). The two questions (electric force and electric field) cued in students mind, 

the respective equations, and students were able to retrieve those and write them down. 

Since the mathematical resource literature (see section 3.4.2.2) only describes resources that 

are activated once the equation is stated, I notice this as an omission of the first step from 

which other resources can be meaningfully evaluated. I therefore designate this step Retrieval 

Cues. When students read a question, and the first thing they do is to write an equation, it is 

because the question “cued” in students‟ mind to “retrieve” that particular equation. 

Numerous studies (Reif & Heller, 1982; Heller et al., 1992) have observed and described this 

step as part of the problem solving process. None have treated it explicitly, and in isolation. 

Step 1 was noted and described in this study as consequent of activation of retrieval cues. 

 
Intuitive mathematical resources  

Intuitive mathematical resources are basic every day mathematics activated without the use of 

formal mathematical rules or operations (see section 3.4.2.2). Intuitive mathematical 

resources were activated in solving the electric field question (Q1B2a) when students (V1 and 

M4) noticed that the distance from Q1 and Q2 to the pointe E (r) is the same (see section 6.3). 

This type of mathematical resource was not activated when students were solving both the 

electric force question (Q1A1) and the electric circuits question Q2B2).  

The electric field question in particular and how students approach it brings out some notable 

observations with regard to activation of intuitive mathematical knowledge resource. Once it 

was stated in the problem that Q1 = 5 µC, and Q2 = 5 µC; then intuitively (without the use of 
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any formal mathematics) students should notice Q1 and Q2 to be the same; that Q1= Q2 can be 

discerned through activation of the pairing type-of-intuitive mathematics knowledge 

resources (see section 3.4.2.2). Similarly, that r1 = r2 can be discerned by the same mode of 

thought. Once it was stated in the problem that the triangle is equilateral and that E is at the 

centre, then intuitively, it should follow that the distance from the two corners of the triangle 

B and D, being r1 and r2 must be the same. This still demonstrates activation of the pairing 

type-of- intuitive mathematics knowledge resources. 

 

When resolving the electric field vectors in their components; that both the x and y - 

component of E1 are the same in magnitude as that of E2 would be realized through activation 

of the intuitive mathematics resource of pairing. 

Reasoning primitives  

These mathematical resources deals with common sense reasoning about physical events and 

processes that involve generalizations of classes of objects and influences (see section 

3.4.2.2). When solving the electric force question (Q1A1) the reasoning primitives were not 

activated at all.  

Reasoning primitives were activated but only once as two students (M4 and M5) were 

solving the electric field question (Q1B2a) (see section 6.3). This was when the students  

would have reasoned that “if two similar objects are placed the same distance away from a 

point, then their effect at that point must be the same”, thus the E1 = E2 ( step 4 for M4 and 

step 3 for M5). This is reasoning primitive comparable to the more is more as noted by 

Tuminaro (see section3.4.2.2). In this case the reasoning primitive is same is same. 

Still with electric field question reasoning primitives would have been activated had students 

noticed that E1x and E2x are “two opposing influences exactly cancelling each other out to 

produce no apparent result” (see section 3.4.2.2). This is the balancing type of reasoning 

primitive - the abstract notion that two opposing influences exactly cancel each other out to 

produce no apparent result (see section 3.4.2.2). Students would then assign Ex a zero (0) 

without the use of any formal mathematics.  

Students would have also noticed that the y - components of E1 and E2 (E1y and E2y) are equal 

influences adding to get twice the amount of one (Ey). One would then simply “double” 

whatever value they get for the y-component of either E1 or E2 to get their combined electric 
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fields at point E (Ey). There is no need to calculate the y-component of electric field due to 

the second point-charge.  If activated, this is a reasoning primitive I will call doubling. 

When working on the electric circuits question (Q2B2) two students (M6 and H1) tried to 

employ interpretive devices in order to explain Kirchhoff‟s law at a junction (see section 6.4). 

This is despite the fact that the diagram linking the three currents (I1, I2 and I3) visually 

shows how they relate, which is what the third student (H2) immediately realized. Reasoning 

primitives were however activated as two of the three students (H1 and H2) reasoned  that 

when a physical entity divides into two ( in this case current) then,  the whole is equal to the 

sum of its parts (I3 = I1 + 12). An elementary school pupil, who is asked to demonstrate how 

the currents relate and not necessarily using Kirchhoff‟s law, will get this question right by 

following the obvious diagram!! Analysis of this type of question then becomes very crucial 

as it demonstrates how introductory university students forsake very basic but useful skills 

for more complicated approaches. 

Symbolic Forms  

Symbolic forms are the type of mathematical resources whose activation is enhanced by the 

structural and conceptual forms of a physics equation (see section 3.3.2.3). 

Symbolic forms were activated only once for two students (V1 and M5) as they were solving 

the electric force question (Q1A1). This occurred when students noticed the similarity in the 

structural form of an equation and perform “cross-multiplication” (see section 6.2). Symbolic 

forms were not activated as students were solving both the electric field (Q1B2a) and the 

electric circuits (Q2B2) questions.  

With regard to the electric circuit question, all three students represented Kirchhoff‟s rule at 

junction C as I3 = I2 + I1 and none as I2 = I3 – I1 or I1 = I3 – I2. While the mathematics for the 

three expressions maybe slightly different, the physics is the same. Students operate on rigid 

symbolic templates (Sherin, 2001, 2006). This is an indication of a fixated cognition, limited 

understanding or could even be described as dogmatic behavior as students may be writing it 

exactly the way they were taught. They are using the symbolic template  (     ) . 

None is observed to use       . One student (M6) is actually observed stating in a 

later step the solution which is expressed in the symbolic template as template (     ) 

results from the symbolic template (       ) (see section 6.3).   

 



130 
 

For students to be observed to want to make a “direct” translation from words to a symbolic 

(mathematical) equation, or from the semantic to the syntactic, points to an unhealthy 

dogmatic engagement. Sierpinska (1994) explains this to say semantic (meaning-based) 

reasoning methods are sometimes used when constructing proofs in order to identify and 

make sense of the mathematical properties and relationships they describe. 

 
Interpretive Devices  

These mathematical resources primarily refer to formal mathematical procedures used in 

interpreting physics equations (see section 3.4.2.2). 

When solving the electric force question (Q1A1) all the three students (V1, M4, M5) dwelt 

on the interpretive devices type-of-mathematical resources (see section 6.2). As they were 

solving the electric field question (Q1B2a) a different set of three (3) students also showed 

inclination towards interpretive devices (see section 6.3). When solving the electric circuit 

(Q1B2) question interpretive devices were activated for two (2) out of the three (3) students 

(M6 and H1) (see section 6.4).  Interpretive devices were activated in a majority of the 

problem solving steps for all the students. 

In the third student‟s (H2) solution (section 6.4), interpretive devices were not activated at 

all. This was the first time that interpretive devices were not activated in the entire analyses 

of the three questions by three different sets of students. Incidentally student H2 got the 

question correct.  

Unidentified resources 2 - Sense of instructional correctness  

Unidentified Resource 2 is activated when students perform a mathematical activity (in this 

case assigning of units) simply because they know that it is the correct thing to use (see 

section 6.5). For all the students who used units, they did so only at the end of the solution. 

This activity, or problem solving step is evidently not preceded by anything that it could be 

linked to. It just appears, “from nowhere”. 

This last step, what the students do at the end of their problem solving is very important as 

this is more or less a conclusion. The students finish off their problem solving by saying in 

conclusion, “so and so” metres or “so and so” Coulombs. When the students do so after 

several steps ( in some cases 6), and for a quantity like electric field which is not very 

common,  it is not apparent how the students would have known what units to use. The step 
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has also been observed in prior studies (Maloney, 1994; Dawkins et al., 2008), but none have 

given it in-depth investigation with regards to how it surfaces. In this study, this last step is 

described as activation of the mathematical resource Unidentified Resource 2 - sense of 

instructional correctness. I reason that students only put units because they know that it is the 

“correct thing to do”.  A “sense of instructional correctness” is activated in cases like these. 

Students use units m for the distance between point charges; and C/m
2
 for electric field all 

appeared in the last step of problem solving, without any trace (see section 6.3).  

7.2.3.2 Awareness of Knowledge Domains  

The Extended Semantic Model (ESM) was used to portray knowledge which students are 

aware of as they solve physics problems (see section 3.3).  These domains depict students‟ 

nature of understanding.  

Concrete Domain 

Awareness of the concrete domain means students being able to deduce the physical meaning 

from the physics problem they are solving. When solving the electric force question 

awareness of this domain was exhibited only once, when two students (M3 and M5) wrote 

units at the end of their solutions (see section 6.2). Several steps in students solutions to the 

electric field question also show units being given at the end (see section 6.3.). In the electric 

circuit question (Kirchhoff‟s 1
st
 rule), students‟ awareness of this domain did not surface as 

no units were used by any student (see section 6.4).  

 Model Domain  

Students‟ awareness of the model domain involves the use or interpretation of diagrams in 

part of their solution. In solving the electric force question, the model domain was absent in 

all the three students solutions. A different set of students however, all demonstrated 

awareness of the model domain when solving the electric field (Q1B2a) question. All the three 

students did draw a diagram from which they were able to calculate the distance from the 

point charges (Q1 and Q2) to the midpoint (E); and calculate the angles, as well the electric 

field vectors at a point (E).  It must be noted that the question for electric field was already 

presented as a diagram. With regard to electric circuit question, which was also presented as a 

diagram, it was precisely a result of students‟ awareness of the model domain that the last 

student (H2) solved the question without the use of any formal mathematics and with relative 

ease (see section 6.4.3). 
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Abstract Domain  

Awareness of the abstract domain involves students‟ use of concepts, laws and principles that 

explain the physical or concrete aspect.  With regard to the electric force question it surfaced 

only once for each of the three students as they stated the Coulomb‟s equation Fe = keq1q2/r
2 

(see section 6.2.). Awareness of this domain was demonstrated again by a different set of 

three students as they stated the electric field equation E = keq2/r
2 

at some step during their 

problem solving (see section 6.3). In the electric circuit question, only one student (M6) 

indicated awareness of the abstract domain by stating “an incorrect Kirchhoff‟s rule” (see 

section 6.4.). 

Symbolic Domain 

Students‟ awareness of the symbolic domain - use of symbols to represent a problem mostly 

through the mathematics of algebra - is the predominant knowledge domain. Awareness of 

this domain appears for eight of the nine students‟ solutions in all the three different 

electricity questions. In the electric force question (section 6.2) students dwelt on the use and 

manipulation of the symbols in the Coulomb‟s law to try a get a solution. Likewise, in the 

electric field question (section 6.3) students dwelt on the use and manipulation of symbols 

from the electric field equation. Awareness of the three symbols (I1, I2 and I3) also guided two 

of the three students‟ problem solving steps in the electric circuit question (see section 6.4). 

Since a majority of the students in all the problems used symbols, it could be a reasonable 

conclusion that problem solving in physics involves primarily, awareness of symbols and 

their mathematical use (Gaigher et al., 2007).  

ESM Layers a and b 

The layers a or b refer to the awareness of an entity in its own right (layer a) or as existing in 

relation to others (layer b). In all the students‟ solutions to the electric force and electric field 

questions, there is only awareness of layer b. Awareness of layer a is in only in two steps of 

two solutions to the electric circuit question (for student M6 and H2). This can be explained 

that students are mostly aware of relations between entities but show little awareness of the 

entities themselves, where the entities may be physics concepts and the relations are mostly 

relationships between the concepts which are expressed mathematically. Students‟ smallest 

unit of thought is mostly relations (equations) and not independent physics concepts as may 

be expected.  
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7.2.3.3 Use of Units, Variables and Constants  

Students did use units when solving both the electric force and electric field questions. In all 

the cases where they are used, units appeared at the end. Students engage in shortcut habits 

such as dropping of units to clear the problem solving field and put them back when the field 

is less crowded. The use of units at the end of a solution could also be as, “just the right thing 

to do”. The effect of this on students‟ conceptual growth and understanding, though not 

determined in this study, remains doubtful. 

 

Students are observed to substitute variables and constants at earlier stages during problem 

solving (see section 6.2 & 6.3). Students could be doing substitution with the hope that it may 

“clear the bush” for the next stage in their solving of a problem and towards a solution.  

 

The electric circuits question (Q2B2) and students work on it usher a different perspective to 

the role of mathematics in students‟ understanding of physics. In all the students‟ solutions to 

the question neither units, variables, nor constants are used. Students‟ only used symbols (see 

section 6.4).   

Students‟ use of units, variables and constants, seems to be guided by pragmatism. Students 

believe in, and may always follow the sentiments they have expressed in response to the 

questionnaire; as long as they have proved useful, even if it could be for a short term, and as 

long as they may not be aware of better alternatives. While their sentiments may be 

temporarily fruitful, they are neither intelligible nor plausible.   

7.2.4 Updated MATHRICITY   

With the emerging of two (2) more mathematical resources from the analysis of electricity 

questions, the theoretical framework designed in chapter 3 (see section 3.5) had to change to 

encompass the two new resources. These resources are also unique from the prior stated 

resources in the sense that they are “position sensitive”. Retrieval Cues only appear at the 

beginning of the problem solving process while sense of instructional correctness appears at 

the end. Thus the new theoretical framework for describing the role of mathematics is 

students‟ understanding of electricity problems in physics will appear as figure 18 in the 

following page. 
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This version of MATHRICITY differs from the one developed in section 3.5 in that it has the 

two new mathematical resources – Retrieval Cues and Sense of instructional Correctness, 

which emerged through analysis of students solving electricity problems.  

7.3 Conclusion 

 

The conceptual framework developed and used in this study pulls together two descriptive 

theories; mathematical resources (Tuminaro 2004) and Extended Semantic Model (Greeno 

Figure 18: MATHRICITY (UPDATED VERSION) 
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1989), framed within the GST guided electricity sub-topics; electric force, electric field and 

electric circuits. 

 

Establishing a baseline on students‟ understanding on the use of mathematics in physics - 

which was a response to the first research question - provides valuable information about 

students‟ expectations towards their learning. Physics education research and other 

educational research areas are replete with studies on students‟ expectations and how they 

influence their learning. Jones (2010) when investigating students‟ application of 

mathematics to physics and engineering affirms that students‟ beliefs play a key role in the 

framing of a context, like the role of mathematics in their understanding of physics.  

7.3.1 Students Expectations  

Students‟ expectations at the beginning of the course during the first semester seemed not 

coherent with regard to the use of mathematics in physics. Students think that mathematics is 

used in problem solving so as to learn physics. Students still think that learning physics 

involves solving mathematical problems. This according to the GST indicates lack of 

“connection” in students‟ cognition, when the cause also becomes the effect. It is circular 

reasoning. 

 

With abundant literature on students‟ formula-centred approach to problem solving or 

recursive plug and chug, and how ineffective the approach is in students learning of physics, 

results from the survey indicate that UB physics 1 students think that problem solving in 

physics means finding the right equation to use. 

 

Still in response to the first research question, students‟ expectations on the role of 

mathematics in physics were further corroborated by interviews. There was a general 

agreement between interviews and the survey responses that students think that in learning 

physics: equations are very important; memorization is a common practice; conceptualization 

is very important and that mathematical answers could be meaningless.  

When probed further on this issue from interviews students stuck to their conviction, with 

one student saying, “Again I think there are other chapters or parts of physics which is 

impossible to teach [learn] without the mathematics” (see section 5.6.2.). This is still 

consistent with a majority (70.2 %) of students echoing in item 23 of the questionnaire that 

there can be no physics without mathematics. Students think that they learn physics by 
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solving problems; and in so doing they do not differentiate between the mathematical skills 

and operations required to solve the physics problems, and the physics concepts (see sections 

5.6.2); since to them mathematics and physics are inseparable (one). In this case students just 

see the system and no unit at all; contrary to the GST‟s recommending, “Identify the system 

of which the unit in focus is a part” (see section 3.2). 

7.3.2 Mathematical Approaches  

Students‟ mathematical approaches in solving electricity problems - a response to the second 

research question - appear varied. When analysed by means of the mathematical resources 

activated, students‟ mathematical approaches indicate activation of; of retrieval cues, intuitive 

mathematical knowledge resources, reasoning primitives, symbolic forms, interpretive 

devices and sense of instructional correctness.  

Retrieval cues appear to be the mathematical resources “of choice” among all the students. 

Students are evidenced to at the earliest opportunity, state an equation that they associate with 

the type of question they are solving. This appears to be done even when the equation does 

not appear to help the problem solving process.  

Students overwhelmingly activate formal mathematical rules (interpretive devices) in solving 

most of the questions analysed. Once a needed equation is stated, students were seen to dwell 

on formal mathematics until the end of the question. Students‟ expectations with regards to 

the use of mathematics in physics, where 80% of them disagreed with item 20 of the 

questionnaire I would prefer to learn physics with no mathematics is consistent with what 

they actually do as they solve problems as reflected from their scripts. In most of the analysed   

scripts, students dwell on mathematical manipulation whether it is the best approach or not.  

The sense of instructional correctness, where students use units - mostly without trace - at the 

end of their problem solving is one of the three (3) (including the two stated above) most 

commonly activated mathematical resource when students solve the electricity questions. 

Students generally discard units as soon as they start problem solving, only to put them back 

at the end. It is evident that students view units as an extra load in problem solving. Thus it 

may be argued that students perceive units as; obscuring their working on the problem; 

populating the variables and symbols that they have to work with; but necessary to put in the 

solution so that one gets the question right. Students simply assign units at the end (mostly 

correct) without an indication of where the units come from. In one instant a student assigned 

units even when they were not needed.  
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Other mathematical resources appeared to be activated only sparsely. Intuitive mathematical 

resources, where students activate basic or everyday mathematics were activated only once in 

the electric field question when students realized that; the part of some distance divided by 

two is equal to half that distance. Symbolic forms type-of-mathematical resources were also 

only activated once in the electric force question when students applied an automated 

mathematical procedure - cross multiplication - that involves recognition of similarities in the 

structure of mathematical equation. Reasoning primitives were also rarely activated, in just 

two (2) instances in the entire analyses. In one instance they were activated when students 

had to reason that the electric field at some point is the same when two point - charges are 

equidistant from a point (E). In the other instance it was in the electric circuit problem; when 

one student reasoned that the sum of two current leaving a junction must be equal to the 

single current entering a junction. 

From this study, it is a valid conclusion that focusing on the mathematics takes away the 

reasoning and the intuition, some of it very basic, from the students. Students go straight for 

the mathematical formalism which gives them correct answers; but devoid of basic 

understanding and reason. This reasoning and use of intuition would in most cases have left 

the student much more conceptually enriched about the physics involved than is the case 

where students dwell on mathematical formalism. Again, it is what every day problems 

involve. Making use of the extra mathematical formalism which has been evidently dismissed 

as necessary only indicates failure to activate both intuitive mathematical resources and 

reasoning primitives. 

It remains an empirical question why intuitive mathematics and reasoning primitives, which 

involve use of basic mathematics and every day experiences, are overlooked in preference to 

interpretive devices, which requires activation of mathematical formalism? This same 

question was asked by Koichu (2010), “Why students at times miss mathematically simpler 

ideas in preference for more involving formal mathematical problem solving endeavors?” 

(see section 2.4.2).  

7.3.3 Types of understanding  

With regard to the third research question, students‟ emerging types of understanding as they 

were solving the electricity problems were indicated by students‟ awareness of the different 

knowledge domains. While students‟ awareness and translation across all the four domains of 

knowledge (concrete, abstract, model, symbolic) came to the fore, awareness of some 
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domains occurred more regularly and at specific problem solving steps than others. On 

analysis of students‟ work through the ESM, their focus appears to be concentrated on the 

abstract and symbolic domains, but mostly the symbolic domains. Though there are traces of 

the concrete domain, where students were expected to demonstrate whether meaning has 

been attained, this has appeared only superficially.   

 

Awareness of the abstract domain appeared mostly at the beginning of students‟ problem 

solving, where students would simply write down an electricity equation. The symbolic 

domain in particular, where students indicated awareness of symbolic ways of representing 

the problem, mainly through algebra, was the most common. Students dwelt on the awareness 

of this domain during the numerous algebraic steps evidenced during their problem solving; 

for eight (8) out of the nine (9) different solutions analyzed. 

Awareness of the model domain, where students would use diagrams to represent or solve a 

problem occurred with the questions on electric field and electric circuits. Students used a 

diagram already presented in the problem to further determine electric field vectors or the 

relationship between currents at a junction. Awareness of the concrete domain was indicated 

mainly when students used units to indicate that there is some physical meaning in the 

physics problem they are solving. This occurred mostly at the end of solutions when students 

were solving the electric force and electric field questions.  

From the variation of approaches presented in the students‟ work, it could be a valid claim to 

suggest that, since the different subtopics of electricity require different epistemological 

energies, specifically with the use of mathematics, then a student could understand and do 

well in one subtopic than another. The Kirchhoff‟ rules approach used in solving electric 

circuit problems is one peculiarity about the topic of electricity. Problems involving electric 

circuits are mostly presented using diagrams. The analysis of this type of problems is unique. 

The ensuing logic could be extrapolated to other physics topics and subtopics 

Students‟ habit of immediately searching for formulae/equations when faced with a physics 

problem garnered the greatest congruence among the three means of data collection (surveys, 

scripts and interviews). In all of students‟ work portrayed from their scripts, the first step is to 

state a formulae/equation. Students had from the onset agreed (91.1%) with the survey item 

(18) the first thing that I do when solving a physics problem is to search for formulae that 

relate givens to unknowns, and maintained that during the interviews, “I just apply the 
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equations” (see section 5.5.1.). This is also in agreement with literature (Redish, 2004; Van 

Heuvelen, 1991). 

 

That a student can get a physics question mathematically correct and fail where there is need 

to demonstrate understanding of the physics, points to discordance between the two. Thus 

while mathematical aptitude is necessary for students‟ understanding of physics and studies 

have over-elaborated its use, without an extensive analysis, its actual effect could be 

deceiving. Even in the physics topic of electricity, mathematics emerges as a handy tool, but 

also as an impediment that at times gives students a false sense of meaningful engagement 

with physics tasks. Students‟ understanding of the physical meaning of their mathematical 

manipulation is directly related to the role that mathematics plays in their understanding of 

physics. While the topic of electricity was identified from other physics topics as a 

knowledge gap as well as for expediency; results have indicated that students‟ use of 

mathematics vary according to the various subtopics. This finding has only been 

demonstrated in this study.  

 

The more the number of knowledge domains traversed, the more likely will a meaningful 

learning experience be achieved. Working in one domain alone, even if it is the concrete 

domain, may give an impression that a student understands physics while in fact they just 

“landed” there by accident. When students operate in the symbolic domain, where the focus 

in on mathematics, it still cannot be claimed that they understand the mathematics either, 

least the physics. In some cases they are just following heuristics. Tuminaro (2004) says that 

students‟ mathematical difficulties in physics may not be with mathematics itself, “it lies in 

translation of their conceptual understanding into physics equations and expressions” (p. 67). 

According to Tuminaro students experience challenges both in “mapping mathematics to 

meaning” (p.67) and “mapping meaning to mathematics” (p. 62). 

 

Analysis of the problem solving through the ESM shows a conspicuous scarcity towards 

meaning, understanding and by extension, learning. While 69 % of students believe that they 

solve mathematical physics problems in order to learn physics (item 1 of the survey), looking 

at students‟ actual work on the scripts through the ESM shows that the concrete domain, 

which demonstrates that physical meaning is obtained, is rare. One student (M2) declares 

during interviews “…. but sometimes yaa you do feel that yaa here I just got the answer but 

you don’t know what the meaning of the answer is” (see section 5.6.2). Students‟ 

expectations, what they actually do and eventually say basing on their problem solving 
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experience is in disagreement. The actual practice does not meet expectations. What students 

actually do satisfies the “problem solving as an end upon itself” observation made Maloney, 

1994). The mathematics hoodwinks students solving physics problems to focus on itself (the 

mathematics). While students may know how to solve physics problems, it is evident from 

the analysis of the scripts that students do not know why, as demonstrated by their 

empirically meaningless solutions. 

This study was modeled in a similar to what Hammeyer (2007) refers to as “specific subject-

based features of the text”. Research needs to dwell on what problem solving strategies and 

learning approaches are applicable and suited for specific physics topics. The generalization 

where physics is understood and approached as one topic could be delusional. As 

demonstrated by the noticeable difference in the electricity subtopics; electric circuits, 

electric field and electric forces; different topics in physics may have to be approached 

differently for effective teaching and learning. The subsequent use and application of 

mathematics in physics emerges to be different as evidenced by the activated mathematical 

resources; intuitive mathematical reasoning; reasoning primitive, symbolic forms and 

interpretive devices. Even as this observation is drawn from the topic of electricity only, the 

number of mathematical permutations in the various physics topics and subtopics should be 

numerously overwhelming. As Tuminaro (2004) observed, even students do show varying 

mathematical abilities in physics problem solving. This evidently complicates the matrix of 

students- mathematics-physics-use-understanding even more. It is specifically this matrix that 

pedagogical content knowledge (PCK) is trying to address (Gess – Newsome & Lederman, 

2001). 

 

Because the number of students in this study is small, the aim was not to make statistically 

significant claims about mathematical approaches or types of understanding. Instead, the data 

has been used to bolster arguments that; the use of mathematics in the physics topic of 

electricity offers students a variety of outcomes across the varied electricity subtopics, with 

an inclination towards mathematical formalism, and within an awareness of the symbolic 

domain of knowledge. Instruction that overly engages students in mathematics questions in a 

physics context, rather than physics questions in a mathematics context exacerbates this 

challenge, robbing students of meaningful engagement; for while the mathematics is 

definitely in the physics, the physics is not in the mathematics.  
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In conclusion, the framework that has evolved with the foregoing analysis describes the role 

of mathematics in students‟ understanding of physics as multivariate. The logic of the 

argument emerging is that students think mathematics is key to learning physics; students do 

use and dwell on the mathematics when solving electricity physics problems, even when it is 

not the best approach; and that what emerges as students‟ understanding is still the 

mathematics of manipulating symbols (symbolic domain). The central claim is that as 

students solve electricity problems, basic mathematics (intuitive mathematical resources and 

reasoning primitives) is overlooked in preference to  extended mathematical formalism 

(interpretive devices). This result in a predominance of an awareness of the symbolic domain;  

where the focus is on symbolic ways of representing a problem through the mathematics of 

algebra, rather than  an awareness of the concrete domain, where the focus would be on 

developing  intuition that helps students make physical meaning from the physics problems 

they are solving. 

7.4 Limitations of the study  

 

That this study did not provide a quantitative analysis of students‟ response to the SERMP is 

is a significant limitation. This was a limitation as a quantitative approach would have 

provided a more extensive analysis. Analysing interview data with qualitative analysis 

software such as Nvivo, rather than by visual inspection would also have led to more 

trustworthy results. The choice of the brief electric circuit question that could be answered in 

one or two steps by the students emerged as another was limiting factor.  A much more 

extended question would have provided more mathematical approaches and the types of 

understanding as useful data.  

Finally, and notwithstanding the suggestions above it follows that in this study the first two 

objectives; Determine first year students’ expectations of the role of mathematics in physics 

and Determine what mathematical approach first year students use when solving electricity 

problems have been comprehensively addressed, but less so with the third objective; 

Determine types of understanding that emerge when students solve electricity problems. The 

particular type of understanding has not been shown to result in different levels of 

understanding of the underlying physics concepts. This is identified as a limitation of the 

study and suggested for further research. 
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7. 5 Implications and further studies 

 

This study has implications in so far as curriculum development, textbook writing and 

instruction that involve the use of mathematics for introductory physics courses. The use and 

application of mathematics in physics during instruction, textbook writing and curriculum 

development requires not a general, but a tactical and in some cases topic - specific approach.  

Whether the different physics topics calls for different epistemological and mathematical 

approaches needs further investigation.  A unique use and application of mathematics in each 

physics topic, or subtopic may need to be considered, to anchor curriculum development, text 

book writing, or instruction.  

While most introductory text books start with introducing measurement as a central topic in 

physics, and expand by related concepts such as use of units and dimensional analysis; the 

use of mathematics, and especially the various mathematical resources explained in this 

study, the conditions under which they may be activated, is another important chapter that 

should be added at the beginning. This approach should also be extended to instruction. 

When students learn through this approach, the debate will no longer be about "conceptual" 

or "mathematical" but rather about which mathematical resource to activate, and when. 

When students are observed to use formal mathematics to arrive at solutions which can be 

obtained with very basic, everyday mathematics, the problem may be with how students 

understand the role of mathematics in physics. Future studies need to focus more on the use 

of basic mathematical resources such as intuitive mathematics knowledge and reasoning 

primitives, and the extent of their applicability. Students need to be able to use these 

resources where there is need, and only proceed to formal mathematical operations where the 

“basics” cannot be used, or do not apply. It also surfaces that mathematical resources 

involving basic, every day, or intuitive approaches, do inculcate conceptual understanding of 

physics. While it may not be immediately apparent with the use of more detailed formal 

mathematics, I argue that conceptual understanding of physics is more likely to occur if 

students have first learned meaningful application of basic, every day, intuitive mathematical 

resources.  

The above observation could actually be broader, and noticeable even in other physics 

aspects other than use of mathematics. Students are inclined to look for formal, textbook 

definitions even for seemingly simple questions. This could be a result of a bigger culture of 
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science being perceived as objective knowledge or as “facts” and as being different from 

everyday experiences, which is partly perpetuated through pedagogy.  

Task design is another challenge that exacerbates the problem of excessive mathematical 

formalism. In tests, students write and use the detailed mathematics being guided by the 

amount of marks allocated per question. In some of these cases, less number of mathematical 

steps that involve the use of “basic mathematics” may actually lead to the correct answer.  

MATHRICITY could be further refined and developed into a computer model. This model 

should be validated with much larger data. The utility of the model should be in entering 

student mathematical approaches in the electricity subtopics as input data, and noting 

resultant activated mathematical resources as well as knowledge domains, as output data.  If 

it works well, similar models to MATHRICITY should be applicable to other physics topics. 

In this manner we would be able address students‟ effective use of mathematics in physics. 

The IUPAP need to look at symbols as used in physics and other sciences to come up with a 

nomenclature that is more consistent and one that will minimize the tendency towards surface 

learning approaches such as excessive use of much mathematical formalism by students 

especially at introductory level.  

Symbols for most physical quantities are commonly assigned by the first letter of the 

alphabet. In some cases this does not happen, and students are left to figure this out all by 

themselves.  Students may use the subscript e in Fe   for the electric force; others just use a 

plain F. In teaching the topic of mechanics where the force law is commonly introduced, no 

subscript is used except where specific forces such as centripetal and frictional force are dealt 

with. While the present data does not suggest that; it may be argued from experience that 

students can hardly relate the Coulomb‟s law to Newton‟s second law. It could be a source of 

confusion for some students, as textbooks (and probably instruction hardly show (except in 

working examples) the relationship between the Fe in [Fe = ke q1q2/r
2
] and the F in [F = Ma]. 

Attaining this vital connection may call for a paradigm shift on the manner in which physics 

content is presented in introductory textbooks, and subsequently taught. Instead, or in 

addition to having different types of forces taught in the separate topics of mechanics, 

electricity, modern physics; an alternative approach could be to have Force as a topic, and a 

central one for that matter, presented as a whole with the different types of forces (frictional, 

tensional, centripetal, gravitational, electric, magnetic etc.) constituted in the topic (Chabay & 

Sherwood, 2005). This approach may give a more logical, coherent and comprehensive 
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content. It may only be done for the concept of force because of its central nature to the 

discipline of physics or it may extend to other concepts where it appears practical.  

 

Another source of students‟ confusion is to assign symbols small letters where as in some 

cases capital letters are used (r or R for radius and d or D for distance). Since there is no 

explanation for this; all symbols should either be capital or small letters, differentiated by the 

second or third letter where the preceding ones are the same. Criteria, on which quantity is 

assigned the first letter only, should also be developed. In solving the electric field question 

(section 6.3) for example, student V1 (section 6.3.1) assigns electric charge capital Q whereas 

student M4 (section 6.3.2) assigns electric charge small letter q. 

 

In physics different symbols are sometimes used to represent the same physical quantities. 

For example symbols; S, d, r may all be used to represent the quantity distance in different 

contexts. In the case of the topic electricity, the symbol r is commonly used for distance 

between point charges in Coulomb‟s law, while d is the distance between dielectric charged 

plates. It is hardly explained in text books, or during instruction for that matter why what 

letter was chosen for which context. The confusion that this brings for students is 

demonstrated during analysis of students‟ scripts; where the symbols r and d are used 

interchangeably, and unintelligibly.  A comparable observation by Tuminaro (2004) showed 

a student interpreting the R in the equation [PV = nRT] to represent radius (p. 88)! All these 

chaos, inconsistencies and disjunctions are left to the student to make sense of. Inevitably 

students resort to memorization as a practical approach.  Students even end up confusing ad 

hoc symbols for specific values with general symbols that make conventional equations as 

reflected from student M3‟ s working on the electric force question, step 2 ( section 6.2.2). 

 

The observed physics knowledge disorganization as presented to students at introductory 

level suggests that knowledge structural issues may be the major concern here. While the 

focus of this study was not on the organization of physics knowledge, it succinctly comes out 

as inevitable. It is therefore conceivable that the way in which mathematical physics 

knowledge (formulae encompassing units, variables and constants) are structured is what 

encourages students to use mathematics as they do and as demonstrated broadly in this study. 

What if we are looking at student understanding of a branch of knowledge, rather than 

starting with the ontology of the knowledge domain and then the cognitive resources it 

activates? Thus studies on the role of mathematics in physics (Feynman, 1992) were on the 

right path to excavate this field, only that they fell short by not expanding on how that affects 
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students understanding of physics; hence this study. At times studies focus on some methods 

of instruction and lament that they encourage rote learning for example; other studies will 

focus on students understanding of content. The crux could be, the particular knowledge is 

best learnt by rote or through mathematical formalism. Studies that would step out of the 

paradigm (Kuhn, 1962) and focus on why physics instruction and students learning of physics 

have shown the touted inefficiencies, including a significantly automated inclination towards 

mathematical formalism could illuminate this jinx. 

 

It is an inconsistent expectation that physics education research frequently decry lack of or no 

show of conceptual understanding by students, when few text book type - of - questions such 

those analysed  in this study  ever request for it. By giving mathematical solutions that mostly 

are noticeably without concomitant conceptual understanding, students are complying with 

what is required of them. Maybe the focus of research on students‟ use and understanding of 

mathematics in physics should in fact change from students but rather to the nature of the task 

or type of questions asked of them. While different students solve similar physics questions 

differently, different questions also bring about different approaches to problem solving in 

physics. I could not agree more with Hameyer (2007) who observes that, though there are a 

lot of studies on strategies students use to make sense of knowledge, the quality of text 

(clarity, design, specific subject-based features of the text, degree of inclusion and 

explicitness, language use, logical structure, quantity of concepts used etc.) is a very 

important area worth giving more attention to.  

 

Knowing why one is engaged in a particular activity is vital. Students‟ challenges bedeviling 

introductory physics teaching and learning such as; motivation, attrition and lack of reality-

link result could be a result of widely observed pedagogical deficiencies. These pedagogical 

deficiencies include: formula-centred approach, misconceptions, rote learning, disconnected 

knowledge and lack of conceptual understanding. A more effective way of addressing this 

could be if students know precisely, why they have to engage in certain activities like the use 

of mathematics in physics for problem solving; and when  the problem solving they do in the 

physics class enables them to solve similar and more complex problems in real life. It is a 

plausible hypothesis that - if students are unable to see the mathematics imbedded in physics 

for what it is - this study has confirmed what Sherin (2001) found elsewhere that students 

lack a robust and coherent grasp of physics concepts.  
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Appendix A: MPEX 

 

Student Expectations in University Physics: 

The Maryland Physics Expectations Survey 

 
Here are 34 statements which may or may not describe your beliefs about this course. You are asked to rate 

each statement by circling a number between 1 and 5 where the numbers mean the following: 

 

1: Strongly Disagree 2: Disagree 3: Neutral 4: Agree 5: Strongly Agree 

 

Answer the questions by circling the number that best expresses your feeling. Work quickly. Don't 

overelaborate 

the meaning of each statement. They are meant to be taken as straightforward and simple. If you 

don't understand a statement, leave it blank. If you understand, but have no strong opinion, 

1 All I need to do to understand most of the basic ideas in this course is just read the text, work 

most of the problems, and/or pay close attention in class. 
                               

1 2 3 4 5 

2 All I learn from a derivation or proof of a formula is that the formula obtained is 

valid and that it is OK to use it in problems. 
1 2 3 4 5 

3 I go over my class notes carefully to prepare for tests in this course. 1 2 3 4 5 

4 "Problem solving" in physics basically means matching problems with facts or 

equations and then substituting values to get a number. 
1 2 3 4 5 

5 Learning physics made me change some of my ideas about how the physical world 

works. 
1 2 3 4 5 

6 I spend a lot of time figuring out and understanding at least some of the derivations 

or proofs given either in class or in the text. 
1 2 3 4 5 

7 I read the text in detail and work through many of the examples given there. 1 2 3 4 5 

8 In this course, I do not expect to understand equations in an intuitive sense; they 

must just be taken as givens. 
1 2 3 4 5 

9 The best way for me to learn physics is by solving many problems rather than by 

carefully analyzing a few in detail. 
1 2 3 4 5 

10 Physical laws have little relation to what I experience in the real world. 1 2 3 4 5 

11 A good understanding of physics is necessary for me to achieve my career goals. A 

good grade in this course is not enough. 
1 2 3 4 5 

12 Knowledge in physics consists of many pieces of information each of which applies 

primarily to a specific situation. 
1 2 3 4 5 

13 My grade in this course is primarily determined by how familiar I am with the 

material. Insight or creativity has little to do with it. 
1 2 3 4 5 

14 Learning physics is a matter of acquiring knowledge that is specifically located in 

the laws, principles, and equations given in class and/or in the textbook. 
1 2 3 4 5 

15 In doing a physics problem, if my calculation gives a result that differs significantly 1 2 3 4 5 
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from what I expect, I'd have to trust the calculation. 

16 The derivations or proofs of equations in class or in the text has little to do with 

solving problems or with the skills I need to succeed in this course. 
1 2 3 4 5 

17 Only very few specially qualified people are capable of really understanding 

physics. 
1 2 3 4 5 

18 To understand physics, I sometimes think about my personal experiences and relate 

them to the topic being analyzed. 
1 2 3 4 5 

19 The most crucial thing in solving a physics problem is finding the right equation to 

use. 
1 2 3 4 5 

20 If I don't remember a particular equation needed for a problem in an exam there's 

nothing much I can do (legally!) to come up with it. 
1 2 3 4 5 

21 If I came up with two different approaches to a problem and they gave different 

answers, I would not worry about it; I would just choose the answer that seemed 

most reasonable. (Assume the answer is not in the back of the book.) 

1 2 3 4 5 

22 Physics is related to the real world and it sometimes helps to think about the 

connection, but it is rarely essential for what I have to do in this course. 
1 2 3 4 5 

23 The main skill I get out of this course is learning how to solve physics problems. 1 2 3 4 5 

24 The results of an exam don't give me any useful guidance to improve my 

understanding of the course material. All the learning associated with an exam is in 

the studying I do before it takes place. 

1 2 3 4 5 

25 Learning physics helps me understand situations in my everyday life. 1 2 3 4 5 

26 When I solve most exam or homework problems, I explicitly think about the 

concepts that underlie the problem. 
1 2 3 4 5 

27 "Understanding" physics basically means being able to recall something you've read 

or been shown. 
1 2 3 4 5 

28 Spending a lot of time (half an hour or more) working on a problem is a waste of 

time. If I don't make progress quickly, I'd be better off asking someone who knows 

more than I do. 

1 2 3 4 5 

29 A significant problem in this course is being able to memorize all the information I 

need to know. 
1 2 3 4 5 

30 The main skill I get out of this course is to learn how to reason logically about the 

physical world. 
1 2 3 4 5 

31 I use the mistakes I make on homework and on exam problems as clues to what I 

need to do to understand the material better. 
1 2 3 4 5 

32 To be able to use an equation in a problem (particularly in a problem that I haven't 

seen before), I need to know more than what each term in the equation represents. 
1 2 3 4 5 

33 It is possible to pass this course (get a "C" or better) without understanding physics 

very well. 
1 2 3 4 5 

34 Learning physics requires that I substantially rethink, restructure, and reorganize the 1 2 3 4 5 
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information that I am given in class and/or in the text. 

  1 2 3 4 5 

 

MPEX Version 4.0, ©U. of Maryland PERG, 1997 

 

Maintained by University of Maryland PERG 

Comments and questions may be directed to E. F. Redish 

Last modified March 2, 2001 
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Appendix B: VASS 

 

 VASS - P 204  

Thank you for taking this survey that is part of a battery of instruments designed by Prof. Ibrahim 

A. Halloun in collaboration with a number of researchers in Lebanon and abroad. Each 

instrument is intended to identify factors that affect student understanding of particular aspects of 

science and that need to be accounted for in the design of instructional material.  

For any information, please visit Prof. Halloun‟ s website: www.inco.com.lb/halloun.  

All data are confidential. Your identity will not be disclosed to any party. 

 

1. By comparison to the rest of the class, I consider myself:  
(a) weak in physics.  

(b) excellent in physics.  

 

2. What I actually learn in my current physics course is:  
(a) good for my course exams.  

(b) helpful in my everyday life.  

 

3. My exam performance in my current physics course actually reflects how well I can:  

(a) recall course materials the way they are presented in class.  

(b) apply course materials in situations not discussed in class.  

 

4. To do well in my current physics course, I actually need to go through the textbook or course 
materials and:  

(a) find the important information and memorize it the way it is presented.  

(b) reconstruct the material in my own way so that I can make sense of it.  

The following twenty-three questions (5-27) are about physicists and their ways of doing physics. 

They are not about your physics courses. Please answer all these questions so as to reflect what 

you think physics is about as a science and this irrespective of how things are actually being done 
in your current courses.  

 

5. Physics and chemistry are:  

(a) related to each other by common principles.  

(b) are separate and independent of each other.  

 

6. When faced with a natural event that occurs for the first time in a given place, physicists:  

(a) check whether this is a recurrence of a familiar event that took place elsewhere.  

(b) look for aspects that distinguish this particular event from all other events.  

 

7. Once they come up with new information, physicists:  

(a) check whether it fits with the rest of their knowledge in physics.  

(b) ascertain its merits independently of their knowledge in physics.  
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8. When they investigate a particular object in the natural world, physicists:  

(a) look for all possible features that might be attributed to the object under investigation.  

(b) concentrate on particular features that they consider relevant to the purpose of study.  

 

9. In order to decide whether two different objects may behave the same way in the natural world, 

physicists check whether the two objects:  

(a) are similar in all respects.  

(b) are subject to similar conditions.  

 

10. Physicists say that electrons and protons exist in an atom because:  

(a) they have seen these particles in their actual form with some instruments.  

(b) they have made observations that may be attributed to such particles. 

11. Physicists say that the earth and the moon attract one another because:  

(a) they have been able to detect and measure their mutual attraction with some 

instruments.  

(b) the moon’s revolution around the earth can be explained in terms of such attraction.  

 

12. When they investigate a particular event in the natural world, physicists decide what 
data they need to collect:  

(a) based on what they already know in physics.  

(b) after observing the event in all possible details.  

 

13. In order to decide whether two natural events can be investigated the same way, 
physicists first look whether the two events:  

(a) involve similar objects.  

(b) occur in accordance with the same physics principles.  

 

14. Physicists working in one branch of physics, like mechanics or thermodynamics, 

investigate the natural world in ways that may be followed in:  

(a) other branches of physics.  

(b) other scientific disciplines, like chemistry or biology.  

 

15. In order to figure out how things actually work in the natural world, physicists:  

(a) survey aspects of this world that may be detected directly by our senses or through 

some instruments.  

(b) imagine how things could possibly exist in ways that may not be humanly possible to 

detect.  

 

16. Physicists’ findings about the natural world are:  

(a) dependent on current scientific knowledge.  

(b) accidental, depending on physicists’ luck.  

 

17. When investigating a particular event in the natural world, physicists follow:  
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(a) one particular method that they consider most appropriate for the event under study.  

(b) a variety of methods to see if they may come up with the same conclusion every 

time. 

  

18. The same natural event may be investigated from different perspectives in 
accordance with:  

(a) different principles coming from different branches in physics.  

(b) different principles coming from different scientific disciplines.  

 

19. Physicists use mathematics:  

(a) to express their knowledge in meaningful ways.  

(b) to get numerical answers to physics problems.  

 

20. Scientific concepts of mass and electric charge are:  

(a) inherent in the nature of physical objects and independent of how humans think.  

(b) invented by physicists to represent properties that physical objects might possess. 

21. Scientific concepts of force and energy are:  

(a) inherent in the nature of physical objects and independent of how humans think.  

(b) invented by physicists to represent properties that physical objects might possess.  

 

22. Two different scientific concepts may correspond to the same physical object:  

(a) in different respects.  

(b) in the same respects.  

 

23. Newton’s laws of motion (like his second law often expressed in the form F = ma) 

apply to physical objects that may be located:  

(a) anywhere in the universe.  

(b) in specific places of the universe.  

 

24. Physicists’ current ideas about particles that make up the atom apply to physical 

objects that may be located:  

(a) anywhere in the universe.  

(b) in specific places of the universe.  

 

25. A bit of information is considered scientific from physicists’ perspective:  

(a) when it has well-established merits regarding the natural world.  

(b) when it is offered by a group of trustworthy physicists.  

 

26. Ideas about the natural world that nowadays physicists have accepted and 

successfully used for a long time:  

(a) may eventually be modified in some respects.  
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(b) will continue to be accepted in their present form in the future.  

 

27. Physicists accept an idea about the natural world when the idea portrays this world:  

(a) exactly the way it is.  

(b) by approximation.  

 

The following twelve questions (28-39) are about your physics courses. Please let your 

answers to all these questions reflect what you actually do in these courses, and how you 

actually feel about them.  

 

28. Studying physics is for me:  

(a) an enjoyable experience.  

(b) a frustrating experience.  

 

29. Learning physics requires:  

(a) a serious effort.  

(b) a special talent.  

 

30. When I experience a difficulty while studying physics:  

(a) I seek help, or give up trying.  

(b) I try to figure it out on my own. 

31. I go over the main body of a physics chapter:  
(a) before the chapter is covered in class.  

(b) after the chapter is covered in class.  

 

32. I attempt to solve homework problems:  

(a) before they are solved in class.  

(b) after they are solved in class.  

 

33. For me, discussing materials in my physics course with my classmates:  

(a) is a waste of time.  

(b) helps developing my reasoning skills.  

 

34. For me, solving a physics problem more than one way:  

(a) is a waste of time.  

(b) helps developing my reasoning skills.  

 

35. The first thing I do when solving a physics problem is:  

(a) represent the situation with sketches and drawings.  

(b) search for formulas that relate givens to unknowns.  
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36. After I have answered all questions in a homework physics problem:  

(a) I stop working on the problem.  

(b) I check my answers and the way I obtained them.  

 

37. After the teacher solves a physics problem for which I got a wrong solution:  

(a) I discard my solution and learn the one presented by the teacher.  

(b) I try to figure out how the teacher’s solution differs from mine.  

 

38. After I succeed in solving a particular physics problem:  

(a) I figure out under what conditions I can apply the same method to another problem.  

(b) I memorize the method I followed in case I need it for solving a similar exam problem.  

 

39. In order to solve a physics problem, I need to:  

(a) have seen the solution to a similar problem before.  

(b) know how to apply general problem solving techniques.  

 

The following ten questions (40-49) are about the way you would like things to be done 

in your physics courses. Please let your answers to these questions reflect your own 

preferences or aspirations, irrespective of how things are actually being done in these 

courses.  

 

40. I think that, when adequately presented, physics courses can be helpful to me:  

(a) in my everyday life.  

(b) if I were to become a physicist. 

 

41. I would like my physics course to allow me relate physics:  

(a) to the way I think about certain things in the natural world.  

(b) to other sciences and their ways of dealing with the natural world.  

 

42. I would like materials in my physics course to be covered in a way to help me:  

(a) do well on physics exams.  

(b) develop my reasoning skills.  

 

43. I would like to study physics in order to satisfy:  

(a) my own interests.  

(b) what certain people expect of me.  

 

44. I would like my understanding of physics courses to depend on:  

(a) how much effort I put into studying.  
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(b) how well the teacher explains things in class.  

 

45. I would like to learn about topics discussed in my physics course:  

(a) from my physics textbook.  

(b) from other sources.  

 

46. In my physics course, I would like to:  

(a) learn how physicists go about investigating the natural world.  

(b) acquire information about certain objects and events in the natural world.  

 

47. I would like my performance on physics exams to reflect how well I can:  

(a) recall course materials the way they are presented in class.  

(b) apply course materials in situations not discussed in class.  

 

48. For any question asked in class, I would like my physics teacher to:  

(a) provide the correct answer.  

(b) show how we may get the answer.  

 

49. When studying physics in a textbook or in course materials, I would like to:  

(a) find the important information and memorize it the way it is presented.  

(b) reconstruct the material in my own way so that I can make sense of it.  

 

50. I answered the questions in this survey:  

(a) to the best of my ability.  

(b) without thinking seriously about them. 
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Appendix C: EBAPS 

 

Part 1 

DIRECTIONS:  For each of the following items, please read the statement, and indicate (on 

the scantron answer sheet) the answer that describes how strongly you agree or disagree. 

A: Strongly disagree     B: Somewhat disagree     C: Neutral     D: Somewhat agree     E: Strongly agree 

 

1. Tamara just read something in her science textbook that seems to disagree with her own 

experiences.  But to learn science well, Tamara shouldn’t think about her own experiences; she 

should just focus on what the book says. 

 

2. When it comes to understanding physics or chemistry, remembering facts isn’t very important. 

 

3. Obviously, computer simulations can predict the behavior of physical objects like comets.  But 

simulations can also help scientists estimate things involving the behavior of people, such as 

how many people will buy new television sets next year. 

 

4. When it comes to science, most students either learn things quickly, or not at all. 

 

5. If someone is having trouble in physics or chemistry class, studying in a better way can make a 

big difference. 

 

6. When it comes to controversial topics such as which foods cause cancer, there’s no way for 

scientists to evaluate which scientific studies are the best.  Everything’s up in the air! 

 

7. A teacher once said, “I don’t really understand something until I teach it.”  But actually, 

teaching doesn’t help a teacher understand the material better; it just reminds her of how much 

she already knows. 

 

8. Scientists should spend almost all their time gathering information. Worrying about theories 

can’t really help us understand anything. 

 

9. Someone who doesn’t have high natural ability can still learn the material well even in a hard chemistry 

or physics class. 

 

10. Often, a scientific principle or theory just doesn’t make sense.  In those cases, you have to accept 

it and move on, because not everything in science is supposed to make sense. 

 

11. When handing in a physics or chemistry test, you can generally have a sense of how well you 

did even before talking about it with other students.  

 

12. When learning science, people can understand the material better if they relate it to their own 

ideas.  

 

13. If physics and chemistry teachers gave really clear lectures, with plenty of real-life examples and 

sample problems, then most good students could learn those subjects without doing lots of 
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sample questions and practice problems on their own. 

 

14. Understanding science is really important for people who design rockets, but not important for 

politicians. 

 

15. When solving problems, the key thing is knowing the methods for addressing each particular 

type of question.  Understanding the “big ideas” might be helpful for specially-written 

problems, but not for most regular problems. 

 

16. Given enough time, almost everybody could learn to think more scientifically, if they really 

wanted to. 

 

17. To understand chemistry and physics, the formulas (equations) are really the main thing; the 

other material is mostly to help you decide which equations to use in which situations. 

 

Part 2 

DIRECTIONS:  Multiple choice.  On the answer sheet, fill in the answer that best fits your 

view. 

  

18. If someone is trying to learn physics, is the following a good kind of question to think about? 

 

 Two students want to break a rope.  Is it better for them to (1) grab opposite ends of the rope and pull (like 

in tug-of-war), or (2) tie one end of the rope to a wall and both pull on the other end together? 

 

(a) Yes, definitely.  It’s one of the best kinds of questions to study. 

(b) Yes, to some extent. But other kinds of questions are equally good. 

(c) Yes, a little.  This kind of question is helpful, but other kinds of questions are more helpful. 

(d) Not really.  This kind of question isn’t that great for learning the main ideas. 

(e) No, definitely not.  This kind of question isn’t helpful at all. 

 

19.  Scientists are having trouble predicting and explaining the behavior of thunder storms.  This 

could be because thunder storms behave according to a very complicated or hard-to-apply set 

of rules.  Or, that could be because some thunder storms don’t behave consistently according to 

any set of rules, no matter how complicated and complete that set of rules is. 

 In general, why do scientists sometimes have trouble explaining things?  Please read all 

options before choosing one. 

 

(a) Although things behave in accordance with rules, those rules are often complicated, hard 

to apply, or not fully known. 

(b) Some things just don’t behave according to a consistent set of rules. 

(c) Usually it’s because the rules are complicated, hard to apply, or unknown; but sometimes 

it’s because the thing doesn’t follow rules. 

(d) About half the time, it’s because the rules are complicated, hard to apply, or unknown; and 

half the time, it’s because the thing doesn’t follow rules. 

(e) Usually it’s because the thing doesn’t follow rules; but sometimes it’s because the rules are 



166 
 

complicated, hard to apply, or unknown. 

 

20. In physics and chemistry, how do the most important formulas relate to the most important 

concepts?  Please read all choices before picking one. 

 

(a) The major formulas summarize the main concepts; they’re not really separate from the 

concepts.  In addition, those formulas are helpful for solving problems. 

(b) The major formulas are kind of “separate” from the main concepts, since concepts are 

ideas, not equations.  Formulas are better characterized as problem-solving tools, without 

much conceptual meaning. 

(c) Mostly (a), but a little (b). 

(d) About half (a) and half (b). 

(e) Mostly (b), but a little (a). 

 

 

21. To be successful at most things in life... 

 

(a) Hard work is much more important than inborn natural ability. 

(b) Hard work is a little more important than natural ability. 

(c) Natural ability and hard work are equally important. 

(d) Natural ability is a little more important than hard work. 

(e) Natural ability is much more important than hard work. 

 

22. To be successful at science... 

 

(a) Hard work is much more important than inborn natural ability. 

(b) Hard work is a little more important than natural ability. 

(c) Natural ability and hard work are equally important. 

(d) Natural ability is a little more important than hard work. 

(e) Natural ability is much more important than hard work. 

 

23. Of the following test formats, which is best for measuring how well students understand the 

material in physics and chemistry? Please read each choice before picking one. 

 

(a) A large collection of short-answer or multiple choice questions, each of which covers one 

specific fact or concept. 

(b) A small number of longer questions and problems, each of which covers several facts and 

concepts. 

(c) Compromise between (a) and (b), but leaning more towards (a). 

(d) Compromise between (a) and (b), favoring both equally. 

(e) Compromise between (a) and (b), but leaning more towards (b). 

 

 

Part 3 
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DIRECTIONS:  In each of the following items, you will read a short discussion between two 

students who disagree about some issue.  Then you’ll indicate whether you agree with one 

student or the other 

 

24. 

Brandon:   A good science textbook should show how the material in one chapter relates to the 

material in other chapters.  It shouldn’t treat each topic as a separate “unit,” because they’re 

not really separate. 

Jamal: But most of the time, each chapter is about a different topic, and those different topics don’t 

always have much to do with each other.  The textbook should keep everything separate, 

instead of blending it all together. 

 

With whom do you agree?  Read all the choices before circling one. 

(a) I agree almost entirely with Brandon. 

(b) Although I agree more with Brandon, I think Jamal makes some good points. 

(c) I agree (or disagree) equally with Jamal and Brandon. 

(d) Although I agree more with Jamal, I think Brandon makes some good points. 

(e) I agree almost entirely with Jamal. 

 

25. 

Anna: I just read about Kay Kinoshita, the physicist. She sounds naturally brilliant. 

Emily: Maybe she is. But when it comes to being good at science, hard work is more important 

than “natural ability.” I bet Dr. Kinoshita does well because she has worked really hard. 

Anna:   Well, maybe she did. But let’s face it, some people are just smarter at science than other 

people. Without natural ability, hard work won’t get you anywhere in science! 

 

(a) I agree almost entirely with Anna. 

(b) Although I agree more with Anna, I think Emily  makes some good points. 

(c) I agree (or disagree) equally with Anna and Emily. 

(d) Although I agree more with Emily, I think Anna makes some good points. 

(e) I agree almost entirely with Emily. 

 

26. 

Justin:  When I’m learning science concepts for a test, I like to put things in my own words, so that 

they make sense to me. 

Dave: But putting things in your own words doesn't help you learn. The textbook was written by 

people who know science really well. You should learn things the way the textbook 

presents them. 

 

(a) I agree almost entirely with Justin. 

(b) Although I agree more with Justin, I think Dave makes some good points. 

(c) I agree (or disagree) equally with Justin and Dave. 

(d) Although I agree more with Dave, I think Justin makes some good points. 

(e) I agree almost entirely with Dave. 
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27. 

Julia:   I like the way science explains things I see in the real world. 

Carla:  I know that’s what we’re “supposed” to think, and it’s true for many things.  But let’s face 

it, the science that explains things we do in lab at school can’t really explain earthquakes, for 

instance.  Scientific laws work well in some situations but not in most situations. 

Julia: I still think science applies to almost all real-world experiences. If we can’t figure out how, 

it’s because the stuff is very complicated, or because we don’t know enough science yet. 

 

(a) I agree almost entirely with Julia. 

(b) I agree more with Julia, but I think Carla makes some good points. 

(c) I agree (or disagree) equally with Carla and Julia. 

(d) I agree more with Carla, but I think Julia makes some good points. 

(e) I agree almost entirely with Carla. 
 

 

28. 

Leticia:   Some scientists think the dinosaurs died out because of volcanic eruptions, and others think 

they died out because an asteroid hit the Earth. Why can’t the scientists agree? 

Nisha: Maybe the evidence supports both theories. There’s often more than one way to interpret 

the facts. So we have to figure out what the facts mean. 

Leticia: I’m not so sure.  In stuff like personal relationships or poetry, things can be ambiguous. But 

in science, the facts speak for themselves. 

 

(a) I agree almost entirely with Leticia. 

(b) I agree more with Leticia, but I think Nisha makes some good points. 

(c) I agree (or disagree) equally with Nisha and Leticia. 

(d) I agree more with Nisha, but I think Leticia makes some good points. 

(e) I agree almost entirely with Nisha. 

 

29. 

Jose: In my opinion, science is a little like fashion; something that’s “in” one year can be “out” the 

next.  Scientists regularly change their theories back and forth. 

Miguel:  I have a different opinion. Once experiments have been done and a theory has been made to 

explain those experiments, the matter is pretty much settled.  There’s little room for 

argument. 

 

(a) I agree almost entirely with Jose. 

(b) Although I agree more with Jose, I think Miguel makes some good points. 

(c) I agree (or disagree) equally with Miguel and Jose. 

(d) Although I agree more with Miguel, I think Jose makes some good points. 

(e) I agree almost entirely with Miguel. 

 

 

30. 
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Jessica and Mia are working on a homework assignment together... 

 
Jessica:   O.K., we just got problem #1. I think we should go on to problem #2. 

Mia: No, wait. I think we should try to figure out why the thing takes so long to reach the 

ground. 

Jessica: Mia, we know it’s the right answer from the back of the book, so what are you worried 

about?  If we didn’t understand it, we wouldn’t have gotten the right answer. 

Mia: No, I think it’s possible to get the right answer without really understanding what it means. 

 

(a) I agree almost entirely with Jessica. 

(b) I agree more with Jessica, but I think Mia makes some good points. 

(c) I agree (or disagree) equally with Mia and Jessica. 

(d) I agree more with Mia, but I think Jessica makes some good points. 

(e) I agree almost entirely with Mia. 
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Appendix D: SERMP  

 

Student Expectation of The Role of Mathematics in Physics 

Course Code:                                                         Group  

Date:  

Below are 30 statements which may describe your understanding of the Role of Mathematics 

in 

 Physics. You are requested to state your position regarding each statement by circling a 

number  

From 1 to 5 where the numbers mean the following: 

        1: Strongly Disagree   2: Disagree   3: Neutral   4: Agree    5: Strongly Agree 

 Your Participation is voluntary  

 Your responses will be anonymous 

Item 

no 

Item   

 

1 

 

I solve mathematical physics problems in order to learn physics. 

1 2 3 4 5 

2 Problem solving in physics means finding the right equation to 

use. 

1 2 3 4 5 

3 I understand the physical meaning of equations used in this 

course. 

1 2 3 4 5 

4 A necessary skill in this course is being able to memorize all the 

mathematical equations that I need to know. 

1 2 3 4 5 

5 Learning physics is a matter of acquiring knowledge that is 

specifically located in the laws and equations. 

1 2 3 4 5 

 

6 

 

Physics laws relate to what I experience in real life. 

1 2 3 4 5 

7 I am able to solve a mathematical physics problem that I have 

never seen before. 

1 2 3 4 5 

8 I understand physics equations as relationship among variables. 1 2 3 4 5 

9 Solving mathematical physics problems in the physics class is 

the same as doing so in the mathematics class 

1 2 3 4 5 
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10 

 

Physical relationships can be explained using mathematics.  

1 2 3 4 5 

11 The most crucial thing in solving a physics problem is finding 

the right equation to use. 

1 2 3 4 5 

12 In solving a physics problem, I sometimes get a correct 

mathematical solution whose meaning I do not understand. 

1 2 3 4 5 

13 I take symbols in physical equations as representing numbers.  1 2 3 4 5 

14 The use of mathematics in problem solving makes physics easier 

to understand. 

1 2 3 4 5 

15 Formulae describing physical relationship are “out there” to be 

discovered. 

1 2 3 4 5 

16 A mathematical solution to a physics problem must be 

meaningful to me. 

1 2 3 4 5 

17 It is necessary for lecturers to explicitly discuss with students, 

how mathematics is used in physics. 

1 2 3 4 5 

18 The first thing that I do when solving a physics problem is to 

search for formulae that relate givens to unknowns. 

1 2 3 4 5 

19 To be able to use an equation in a problem, I need to know what 

each term in the equation represents. 

1 2 3 4 5 

20 I would prefer to learn physics with no mathematics.  1 2 3 4 5 

21 I learn physics in order to solve problems. 1 2 3 4 5 

22 I spend a lot of time figuring out the physics derivations in the 

text. 

1 2 3 4 5 

23 There can be no physics without mathematics.   1 2 3 4 5 

24 The main skill to learn out of this course is to solve physics 

problems.  

1 2 3 4 5 

25 I treat equations as representations of reality.  1 2 3 4 5 

26 I always see symbols as representing physical measurements  1 2 3 4 5 

27 The mathematics that I learned in the mathematics class is useful 

when solving  physics problems 

1 2 3 4 5 
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28 When I solve most physics problems, I think about the concepts 

that underlie the problem.  

1 2 3 4 5 

29 If I do not remember a particular equation needed for a problem 

in a test, there is nothing much I can do. 

1 2 3 4 5 

30 There should be more physics problem involving the use of 

mathematics than those where students just explain.  

1 2 3 4 5 
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Appendix E: CONSENT FORM 

 

 

UNIVERSITY OF SOUTH AFRICA 
 

RESEARCH CONSENT FORM  
 
 
Researcher: Reuben D. Koontse 
                       Tel: (267) 365 5712 
                       Cell:  (267) 72 90 77 90 
                       Private Bag 011 Gaborone, Botswana 
 
Supervisor: Jeanne Kriek (Prof) 
                      Tel: (0027) 012 429 8405 
                       PO Box 392, Unisa 0003 
                      Pretoria, South Africa  

 
 

This is to verify that I ……………………………………………………… consent to voluntarily 
participate in a study  
that involves the role that mathematics plays in students understanding of physics. 
 
I understand that: 
 

 Participation is voluntary 

 My responses will be treated confidentially 

 I may withdraw from the research anytime without any negative consequences to my 
self 

 Anonymity is insured 

 Copies of my test, assignment and tutorial scripts may be used in the study 

 I may be interviewed in the study 
 

 

 

 

 

Signed:                                                                                            Date: 
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Appendix F: UNISA Ethics Clearance 

 

 

 

INSTITUTE FOR SCIENCE AND TECHNOLOGY EDUCATION 
 

                                                                                                                                  31 January, 2011 
Attention: Prof M Slabbert 
 Chairperson, URERC 
 

REPORT OF ETHICAL CLEARANCE APPLICATIONS SUBMITTED TO THE ETHICS SUB-
COMMITTEE OF THE INSTITUTE FOR SCIENCE AND TECHNOLOGY EDUCATION (ISTE) 

 
                       OCTOBER – DECEMBER 2010 THROUGH TO JANUARY 2011 
 

     APPLICANT      DEPT./COURSE             TITLE APPROVED/REJECTED 

Mr Tesfaye Demissie Chemistry Education 
Ph.D 

Effects of Pedagogy-
Based Technology on 
Students Chemistry 
Performance in 
Ethiopia 

Approved 

Mr. Marumure, G. P. Chemistry Education 
M.Sc. 

Problems and 
Prospects of 
Teaching Chemical 
Equilibrium at the 
FET Band 

Approved 

Mr. Nhlanhla 
Lupahla  

Mathematics Edu. 
M.Sc 

An Investigation into 
the Algebriac 
Problem solving 
Skills of Grade 12 
Learners in Oshana 
Education Region 

Finally approved 
after resubmission. 

Mr. Bekele Gashe D. Physics Education 
Ph.D 

Diognosis of 
Students` Alternative 
Conceptions and 
Conceptual Change 
through Cognitive 
Perturbation and 
simulation in 
Undergraduate 
Electricity & 
Magnetism in 
Ethiopia 

Approved 

Mr. Sam Kaheru Physics Education Exploring the Use of Approved 
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Ph.D Simulations in the 
Acquisition of 
Science Process Skills 
in High School 
Physical Sciences 

Mrs. Love Kotoka Chemistry Education 
M.Sc 

Effects of Computer 
Simulations on the 
Teaching of pH-
values to Grade 11 
Physical Science 
Learners 

Approved 

Mr. Achillefs 
Kapartzianis 

Physics Education 
M.Sc 

Designing 
Conceptual Change 
Activities for 
Improving the 
Physics Curriculum: 
The Cyprus Paradigm  

Approved 

Mr. Reuben Koontse Physics Education 
Ph.D 

The Role of 
Mathematics in 
Students 
Understanding of 
Physics 

Approved  

Mr. Ogbonnaya, U.I. Mathematics 
Education – Ph.D 
 

Link between 
Mathematics 
Teachers` Subject 
Matter Knowledge 
and their Teaching 
Effectiveness 

Approved 

Mengesha, A. E. Physics Education 
Ph.D 

Learning Quantum 
Mechanics at 
University Level: 
Investigation of 
Student Depicting of 
the Key Concepts of 
Introductory 
Quantum Mechanics 

Approved with the 
hope of slightly 
adjusting the title  

 
CEOchonogor 
Dr. C.E Ochonogor 
Rep./Chair: Ethics Sub-Committee, ISTE. 
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Appendix G: University of Botswana Research Permission letter  
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Appendix H: Interviews  

1st Interview Sessions 

Group H 

A discussion with group H about students general physics experience heralded the following 

excerpt: 

 R:  Fizi, so let’s hear, what’s your side of the story, how are you liking the physics 

course? 

H3:  The lab side they have touched that, but it general….the tutorial is interesting. 

R:  They are interesting? 

H3: Yaa. It’s because all those things are maths related. 

R: They are what? 

H3:  They are maths related. 

R: Oh…they are mathematics related. 

H3:  Yaa. 

R: Ok, so and you like mathematics? 

H3:  And I love mathematics. 

R:  So… it means… in the, in the lectures most of the time you do lot of mathematics. 

H3:  A lot. 

R:  Alright, and in the tutorials? 

H3: And in the tutorials. 

 

H5:   Ya, but with lectures, it’s ok, right now it’s not the same as last semester. Last semester 

from mechanics, then optics. But right now if you know potential difference you will 

still see it and apply it as you progress. 

R:  Eeh... 

H5: Starting even with capacitors... but there is some correlations and not the same as last 

semester. Again first semester, eish it was a bit tougher than now, now as long as you 

can understand how the formula work like it will be easy for somebody to pass, it’s 

not like last semester where even If you knew the equations , you may not be able to 

integrate it properly. 
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R:  Ok, I have not heard Katy’s story… 

H6:  Like they said lectures are fine. 

R:  Mmm. 

H6: The thing is if you don’t understand the concepts, you will have problems throughout. 

So for that part I think it is very important to understand the concepts. 

 

R: Aha, I see. Alright let’s talk about the tutorials; we have not talked about the tutorials. 

What’s the story there, what’s the story there? What do you like most about the 

tutorials? And what don’t you like? 

H4: Writing answers on the board, I don’t like that. 

R: You don’t like that. What would you like? 

H4: Just coming and explaining that we do that using this concept, that’s what we want. 

R: Isn’t the answers all that you want? 

No…!! (Three voices) 

H3: We want the idea of how to solve the problem. 

R: You want the idea? 

H3: Yaa. 

R: And you don’t get the idea? 

H3: We are…., but not in… like a more efficient way. Because you know, a question like 

that will not appear the same way in a test. You have to know that if it is this way, we 

have to tackle it this way. 

 

R: Alright, ok. Yes sir, you are quiet what have you got to say?  

H2:  Aah, I can only say what I don’t like about the tutorials. 

R: Ok, what did you say about Tutorials? 

H2: Tutorials, just the handouts, yaa, just handing out the papers. 

R: Yaa. 

H2:  I would prefer if we did every question. 

R: If you did every question? 

H2:  Yaa showing the thinking behind what every question actually wants. 
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R: Aha. 

H2: Instead of just giving the, the paper, we are not sure where this thing actually comes 

from, or exactly what’s going on? 

 

R: Mmm. Let me ask you, when you do a tutorial question,  you do it up to the end and 

then you get a correct answer, do you always understand the principles underlying 

that question, are you always in a situation to understand the principle underlying a 

question if you got it right? 

                                                 [Students keep quiet] 

R: That much is a given isn’t it, is it? Or you don’t get the question? 

H3:  I didn’t get the question. 

R: Yaa, if you solve a question, say a mathematical question and you get it correct in 

terms of the solution that you are looking for, umm, do you always at the same time 

understand the whole principle underlying that question or do you come upon a 

situation where you can solve a question correctly, mathematically and you do not 

necessarily understand the question. 

H3: I think with this course it’s kinda different because we are kind of relating different ... 

yes with physics it has its own concept like the theory part. 

R:  Aha.  

H4:  But then there is also the mathematical side. But then before you move to the 

mathematical side you should know the theory part as well. 

R:  Yes? 

H4: The principles, understand everything ... because what really matters is the concept 

behind everything. 

R:  You think that’s what matters.  

H4:  That’s what matters. 

R:  So do you always get the concept? 

H4:  Because with mathematics we have calculators, we can always get answers right, but 

then what really matters is the principle. 

R:  Ok. 

H4:  Yes. 

R:  But do you always get the principle? 

H4:   I always, most of the time I get the principle. 
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R:  Alright... mmm. Aha, Any you have been quiet, what are you thinking? 

H6:   For me, I sometimes… I can get an answer without knowing how. 

R:  Mam? 

H6: Sometimes I get an answer without knowing how. It happens quite often. 

R:  Without knowing how you got it? 

H6:  Yes, sometimes without understanding I just do it and hei… with God’s luck I get it. 

R: Mmm...Ok, I think we have exhausted today’s session. That’s it. So we will stop here 

for 

             today. 

 

Group M 

The first tutorial - group M students‟ interview was also along the same lines as that of group 

 H. Students were allowed to share their general physics experience in as broadly as possible. 

After about 1/3 of the way through the interview, it came to this: 

 

 R: Ok somebody else, what can you tell us, Mr. Fizi? 

M2: I have a problem with the tutorials. 

R: Problem, because Hmm... 

M2:  Because he comes with answers, he doesn’t explain to us. He just writes the answers 

on the board and then he goes away, that’s all. He just comes with answers and he 

pastes them on the board. And we don’t understand how to… if you didn’t do the 

tutorial it becomes a problem because you don’t understand anything…you just see 

figures, numbers, equations, just puts them down and goes away. 

R:  Hmm...Ok… what would you prefer to be done Mr. Fizi? 

M2: I would prefer not necessarily lecturing as such, but maybe explaining key concepts 

because I think a tutorial is a time where you kind of… where you explain your 

problems to your tutor, you share problems because that’s the only time where you 

are free, not like lectures, the lecturers have to meet their… have to push the syllabus 

and stuff like that, so I think a little bit of explaining the problems, not just pasting 

them on the board. 

 

S3:  You see the tutorial is placed very nicely at the end of the week, on Friday afternoon 

after all lectures. But, but the problem is that...you know there are many rules and 

theorems in physics. So if we are taught that from Monday to Friday… 
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R:  Hmm… 

S3: In our tutorial session, eeh…we should review those things. Like what we did from 

Monday up to Friday, not necessarily doing all the questions...we make take one or 

two from the tutorial script and concentrate on the concept that we learned. 

R:  Hmm… 

S3:  Because you find that those answers that are written on the board are…. are 

meaningless to most of us. So we need only to review what we learnt. 

R:  So you want to concentrate on the principles and concepts on the tutorials. 

S3:  Yes. 

R:  Just to discuss that. 

S3: Yes. 

R:  And not solve problems? 

S3:  No... Problems… not all problems in the tutorial. 

R:  Not all the problems. 

S3: Yes... 

R: So you are actually talking about a completely different structure to tutorials. You 

would prefer where… 

(Student S1  interrupts)  

S1:       To understand the concepts.  

S3: To understand the concepts. 

R:  The concepts are explained so that you can... 

S3: Yes because again the tutorial answers are always posted on WebCt
4
. 

R: Ooh… (The researcher was not aware of this) 

S3:  So if you need answers you can refer from WebCt. 

R:  So what is the difference between those answers that you get from WebCt? 

S1: There is no difference (the girl interrupts). 

R:  And the tutorials? 

                                                           
4
 Webct is the University e- learning site where teaching materials are placed for students to access.  
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S2:  They are the same. 

S3:  Well, they are the same, because the questions are the same. 

S1:  So like Fizi was saying, the tutor should come explain key concepts, make us 

understand. 

R:  Hmm… 

S1: Because we are going to find answers on WebCt. 

R: Hmm Twizer…what’s your story. What do you like most about tutorials Mr. Twizer 

S4:  From my experience here with tutorials…I don’t know about other classes from our 

class   is generally the same problem which they just mentioned. Of which I feel that 

there is no much enough explaining of the key concepts. 

R:  Yeeh! 

S4:  Yeeh… they have already mentioned that we are just given the solutions. And there is 

no much explaining of the key concepts, of which is very vital. If you don’t get 

something from the lecture, you are hoping to get it from the tutorials. And with our 

case that’s not how it is. 

R:  Mmm…..now tell me from your experience of  learning physics both from lectures and 

tutorials, when you solve physics problems, do you get an idea that the act of solving 

a physics problem and getting it correct, does it help you understand the physics 

concepts and principles you are talking about?  

M3: I think actually getting a correct answer boosts your morale towards physics. 

R:  Yaa. 

M3: Because it proves that what they said is, the principle what they said about it is right. 

It   applies.   

R:  What they said? 

M3: Like, if you take for example Coulomb’s law. 

R: Yaa. 

M3: If you are somebody, you are just coming and being told about Coulomb’s law. It 

quite confuses you the first time. But once you do the calculations and see, you will 

get it. 

R:  Alright, good….Fizo, does it help? 

M2:  Yes it does help, but sometimes ahh, I only use the equation and get the answer and 

say ahh here I don’t understand. I just got the answer. I know how to find… I know 
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how to use the equation and find the answer. Not necessarily meaning I understand 

the concept. 

R:  Mmm. 

M2:  Because sometimes I get a question, ok fine, I look for the correct mmm… the right 

formula to use, I use that formula, I check the answer at the back of the book. Ok the 

answer is correct but not necessarily understanding the concept...so I do have a 

problem sometimes. 

R: Your experience Mr. Roly? 

M4:  Yaa, most of them yaa, you feel that the answer is in line with the concept. But 

sometimes yaa you do feel that yaa here I just got the answer but you don’t know what 

the meaning of the answer is. 

R: Mmm. 

M4:  Like sometimes you get a negative answer sometimes you get a positive one. You 

don’t really understand what the meaning of those answers is? 

R:  Ely, can you solve a problem that you have never seen before? 

(Ely giggles)  

R:  Well like in the same field, like right now you are doing electricity and magnetism, 

right? 

M1: Yes… 

R:  So if you get a question in electricity and magnetism that you have not seen before, 

can you solve it, or has it ever happened before? 

M1: I just apply the equations. 

(R laughs, Ely laughs too) 

M1: I look at a question, look at what I am given in the question… yes look at what I am 

given… this and this… and try to relate it to an equation that I know. 

 

R: So if you get a question in electricity and magnetism that you have not seen before, can 

you solve it, or has it ever happened before? 

M1: I just apply the equations [blindly]. 

R:  Ok…Mr. Fizi, can you learn physics without mathematics? 

S2: Aah I don’t think so. 



184 
 

R: It’s impossible? 

S2: It’s impossible, it’s very impossible. You need to apply maths in order to understand 

the physics. 

R:  Tracy, do you share the same sentiments? 

S5: I think that it is possible but there is a lot of maths. 

R:  There is a lot of maths.  So you can learn physics without maths? 

S5: Yes. 

(R tries to explain some electricity and magnetism concept without maths. All 

students laugh and R laughs as well). 

R:  So, when you solve problem, a physics problem, for you to get it correctly what do 

you think is the most important thing to do? 

S1: Read the question thoroughly, understand it. As they have been saying write down 

what you are given, and write down what you are looking for, that’s basically it. 

R:  Yes. 

S1:  Yes. 

S2:  Looking for the correct formula. 

R:        But how do you know it’s the correct formula.  

S2: Obviously you have to understand. 

R:  You have to understand. 

S2: Yes. .  

R:  Alright, now the mathematics does it simplify or makes physics easier, or more 

difficult. 

S3: Well it makes it easier because mathematical illustrations they tend to make you 

understand or believe because they are proved.  

R:  They are proved. 

S3: Yes, you know in physics there is a lot of proofing and you tend to get it more quickly 

when there is mathematics involved. 

R: Yes, what’s your take? 

S1: Yaa… physics, maths, yaa when you are taught concepts and then you might not get, 

but then when you apply maths then… it makes you believe, then you understand. 
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R: Maths makes you believe? 

S1:  It complements. 

                         (R laughs) 

R:  What do you say Mr. Twizer. 

S4: I feel that maths is simpler than physics. 

R:  It’s simpler than physics. 

S4:  Yaa of which the problem now is in most of the physics problems, you have to 

understand the physics part of the problem first, before you get to solve with maths. 

Of which I don’t think…… ahh it makes me feel that it doesn’t make any difference, 

with maths. 

R: It doesn’t make any difference. 

S4: Yaa, because you have to go through the physics first before you go to the maths part 

of it which is the easy part? 

R:  The mathematical part is the easy part. 

S4: Yaa. 

S1: You know sometimes you can get the physics, your physics maybe right but your 

maths is wrong. 

R:  Ooh…. so either way. 

S1: Yaa sometimes it’s the physics and then the maths which is wrong. 

R: Ok guys, I think our time is up...you have been very helpful. I got a lot of information 

from our discussion. So we can stop here. Thanks. 

(R switches off the audio recorders and students prepare to leave for their next lesson) 

Second interview sessions  

Two (2) weeks after the first interview, students have written the first test of the semester, 

Group H meet again with the researcher in the library seminar room. As the interviews 

progressed, the discussion was narrowed to students‟ work in tutorials and tests specifically 

in the topic of electricity, where students used a lot of mathematics in solving physics 

problems.  

Group H 

R: What I want us to talk about today, ok you did you tutorial test two weeks ago and 

your test this week, no, right? 
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S1: Yes the test was this week. 

R: So how were they? 

S1: The test, I did not manage to finish. 

R: Didn’t manage to finish. 

S1:  Yes. 

S2:  Aah I think eeh the test was, I don’t know whether they set properly or not, it was like 

everything in there I have never seen a question like it ever, everything was different. 

It was so different, like everything, everything was hard. From section A to section 

like every section. 

R: Is it? 

S2: Especially B1, I spent like 45 minutes trying to figure out stuff and then eish… 

R:  You are shaking your head, is it because… 

S3: It’s so true. 

R:   It’s so true. 

 Yaa, yaa (at least three voices) 

R:  Is different from what, the tutorial and what you get from lectures or what? 

S3: Ok the questions we could hear (the student here was speaking in vernacular, and the 

word for hear and understand can sometimes be used interchangeably) what they were 

saying but then…how they were constructed and what they wanted did not make sense 

…;because there was this question where they said we have a charge being placed 

such that we have an equilibrium system, but then the thing is the charge is placed 

between negative and positive charge, and when you put the particular charge being 

positive, it does not make sense because you are not going to have an equilibrium 

system. You can only put it on the other side. So if a question is like that, you don’t 

know how to tackle it. Break the rules or…. just do it. 

R: Yes… hmmm Mr. …, how was the test, or tutorials test? 

S4: But the test things aah, we don’t know whether we have been taught or what. 

(Others laugh…) 

S4:  Because tutorials and test are…  

R: Tell me when you solve this problem; be it in a test or tutorial, can you solve a 

problem that you have not seen before, Slim? 

S1: In Physics? 



187 
 

R:  Yes in physics...can you solve a problem that you have not seen before? 

S1:  Umm…. It depends. 

R: Yes…On what? 

S1:  Umm… it depends on the structure, how that question is. 

R: Umm, Pat. 

S2:  Umm… I don’t know. Honestly I can’t. 

R:  You can’t? 

S2: I need to have seen an example of the exact question. 

R:  Exact question. 

S2: Yes, I need to have seen an example of it, or so that I apply it... but generally no. 

S5: Yaa. 

S6: Yaa same here…aah its quite difficult to solve because we expect like aah...an 

example of each type so that we know what to do... we know that if it is like this we do 

this. 

R:  Yes. 

S6:  If you have not seen it’s going a bit a little hard to, unless maybe… it’s your good 

day...you woke up on the good side of the bed (chuckles) or something.  

S2:  Without that no way!! 

R:  Yes!! 

Students (S2, S5, S6) refute that they can solve a question that they have not seen before. 

Only student S1 says she may solve a physics question that she has never seen before. She 

however says “It depends”.   

R:  Yes… Mr. Tony, when you solve a physics problem be it a tutorial, test, or just 

studying where do you normally star, what is the first thing that you do. 

S7:  The problem is that the questions that we do in tutorials, they are completely different 

from the ones in the test. 

R: Yes…Brie, what’s the starting point. 

S3: I usually start reading what the question wants. Usually… maybe…say it wants force, 

so I try to put down all the equations that I know, for force. But after seeing that test I 

don’t think that is useful because I tried using this other equation, it refused, tried this 

one it refused,, there was nothing to do then … eeh but it  wasn’t really  bad,  but eeh 
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some of the things were just too new. Because in class we do things that we 

understand honestly, but in the test, it’s always a shock. 

(Some of them laugh) 

S2: It’s a shock!! 

R:  It’s a shock? 

S2:  Yes, sometimes. And even when I get a test paper I never look through it. 

R:  You never look through it. 

S2: Yes at the beginning I just ,because I  don’t want to  think of a question that I saw,  

later on, at the beginning  and I am not able to focus on the other ones, so  I just 

tackle one question , next question… 

R: When you go for a physics test, how much memorization do you do? 

A lot… a lot (at least 4 voices at the same time)!! 

 

S1: Cramming!! I remember I walked in the test and I literally crammed a working of one  

question. 

(Some laugh, Glody shakes her head vehemently)  

R:  Glody, is that what you do, Glody? 

S6:   Aah, I don’t do that. 

R:  You don’t do that. 

S6: Honestly I don’t cram. I don’t wanna lie, I don’t cram. 

R: Ok. 

S6: The thing is I make sure that when I get the first formula, the basic one, the main one. 

I go along and link it with all the others that I know. 

R:  So you get the formula? 

S6: I get the main formula and link it with the other ones that I know. 

R: Formula you mean mathematical formula? 

S6: Mathematical formula maybe force equal to mass over acceleration, then I link it with 

others that I know. 

R:  Yes. 
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S6:  And also with that one, usually we are also given values written like this. The ones 

that we are supposed to know and use them in calculation, sometimes I just take the 

value that is given there with the units and try to derive a formula from that. 

R: Yaa. 

S6:  So that’s how I tackle everything. 

R:  So, Wada can you learn physics without mathematics. Do you think physics can be 

taught without mathematics? 

S2:  Yes  I do but I don’t think it will be as fun or it will be as interesting because 

answering questions, from senior school, answering theory questions proved to be 

more difficult than the mathematical  part because the theory you have to read. 

Physics you know we don’t usually re…ad physics. We just, I don’t re…ad physics, I 

just find the question and see how they relate. 

R: You solve problems. 

S2:  Yes, the structured ones I know it can be taught using the structured but, I think, a lot 

of people fail it. Again I think there are other chapters or parts of physics which is 

impossible to teach without the mathematics. 

R:  Ok, Slim do you think mathematics simplifies or makes physics more difficult. 

S1:  I think it simplifies it. 

R:  Ok. 

S1:  Yes, physics you have to apply and that application is...is related somehow to 

mathematics. It links mathematics with physics. 

R:  Ok, you have class at 12 is it? 

S1: Sure. 

R: Ok its 5 minutes to 12 so, I don’t want to waste your time. So thanks a lot guys. Hope 

you benefiting something from this. I am benefiting a lot. I am sure the department 

will benefit a lot as well. 

 

Group M 

Only three students came to the interview this time. Although the original number for 

interview groups was ten, from the previous interview these three students appeared to be 

among the most enthusiastic and with the benefit of hindsight proved to be quite open-
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minded, free and informative. R had come with snippets of paper showing the formula F = ke 

q1q2/r
2
. He gave them to participants and started like this: 

R: So guys. now please know that… eeh I’m not interested in whether you get this wrong or 

right ok, neither is this a contest. I just want you to give me an understanding of how you see 

things ok, your understanding.  

S1: Ok 

R: Now this particular thing I’m giving you appeared quite frequently in the last few weeks 

even in your test…so, this particular thing that im giving you in the first place, Mr. Lety what 

would you say, what is this? 

S1: Yaa I would say this is the … mmm…Coulomb’s law. 

R: It’s Coulomb’s law? 

S1: Yes sir. 

R:  Ok, Bookie, what is that you have in front of you? 

S2: This...yaa… it’s the force between two electric point…. two electric point  charges. 

R:   It’s the force between two electric point charges… 

S2: Mmm. 

R: Ok…  Mmm. So Mr. Lety you wanted to say something… 

S1: Something about this … this equation  

R: Yes, about that...it’s an equation right? 

S1: Yes…  

R: Ok. 

S1: So about this, I would rather …. yaa it contains a constant. 

R: Hmm.. 

S1:  The constant is …..Something eight point nine nine something, but we use nine point 

zero 

       times ten to the power nine. 

R:  Hmm… 

S1: So and two charges which act on one another at a certain distance which is r. 

R: Ok. 
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S1: Basically it is force, due eeh force between those charges, those point charges that are 

there.  

R: Ok. 

S1:  So it was derived by some… some scientists named Coulomb. 

R: Ok, Bookie if we you asked to… somebody say describe this, this equation in words, what 

      would you say? Just do describe what it’s all about. 

S2:  (She giggles)…it’s …. 

R:  Yes… 

S2: In words, describing what I see… 

R:  Yes… 

S2: You multiply the charges, then you divide it by the square of the distance between them, 

times the constant… 

R: Yes. 

S2:  It gives you the force between two point charges. 

R: Yaa…Ok ...Mr. Fizi ...what is that in front of you? 

S3: The electronic force … the equation for electronic force, electric force. 

R:  Electric Force… Ok. (R giggles) so if somebody was to ask you, describe that equation in 

words, what would you say? 

S3:  Mmm…in words. q1 and q2 are different charges, and the r represents the distance 

between the charges, that is squared.  And Ke is a constant, and I know its value is nine times 

ten to power nine if I’m not mistaken. 

R:  Alright...  

S3:  And the force is in Newton. 
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Appendix I: Instructor Solutions to Test Questions  

 

Appendix I1: Instructor solution to question 1A1 
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Appendix I2: Instructor solution to question 1B2a  
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Appendix I3: Instructor solution to question 2B2a  
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Appendix J: Students Use of Units, Variables and Constants  

 

Appendix J1 Section A questions  

Student Questions  – Section A 

A1 A2  A3 A4  A5 

V1  No units used 

 Variables not 
substituted 

 Constant(ke) 
substituted the 1

st
line  

immediately after 
introduction of 
formula 

 No units used 

 Variables not 
substituted 

 Constants not  
substituted 
 

 

 Unit of distance(m) used 
in the last line, solution ( 
8

th
 ) 

 Variables (q1, q2 ) 
substituted in 3

rd
 line  

 Constant (ke) cancelled 
before being substituted 

 Unit of potential 
difference (V) used in 
the last line (5

th
) 

 Variables (m, Vi, q) 
substituted in 
penultimate line (4

th
 ) 

 Question requires no 
constants 

 Unit of capacitance (F) 
used in 8

th
 line. Unit of 

distance (m) used in 
last line ( 12

th
 ) 

 Variables (U,V) 
substituted in 6

th
 line. 

 Constant Eo substituted 
in 12th  line  

V2  No units used 

 Variables not 
substituted 

 Constants never 
substituted 

 

 Units of Force 
(N) used in 3

rd
 

line 

 Variables (m,a) 
substituted in 1

st
  

line  immediately 
after introduction 
of formula (Fe = 
ma) 

 Constant ( ke) 
substituted 
immediately 
after the 
introduction of 

 Units of distance 
(m)used in last line ( 
12

th
) 

 Variables (q1, q2) 
substituted in 8

th
 line. 

 Constant (ke) 
cancelled before being 

substituted 

 Unit of energy (J) used 
in last line of first 
equation (6

th
). Unit of 

potential difference V 
used in last line of 
second equation (4

th
) 

 Variables (Vf and Vi) 
Substituted in 5

th
 line of 

first equation. Variables 

∆U  and qo substituted 

in 2
nd

 line of second 

equation 

 Question requires no 

 Not done  
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formula  constants 

V3  No units used 

 Variables not 
substituted 

 Constants never 
substituted 

 

 

 Units of force 
(N)stated in first 
line  

 Variables (me 
and g) 
substituted in 
the 1

st
 line 

immediately 
after introduction 
of formula. 
Variables ( q1, 
q2) were 
substituted in 2

nd
 

line immediately 
after introduction 
of formula 

 Constant (ke) 
substituted three 
lines after 
introduction of 
formula  

 No  units used 

 Variables (q1, q2 ) 
substituted in 6

th
 line 

after introduction of 
formula(penultimate) 

 Constants (Ke) never 
substituted, cancelled in 
2

nd
 line after introduction 

of formula. 

 No units used 

 No variables 
substituted 

 Question requires no 
constants 

 Units of Capacitance ( 
F) used in last line.  
Units of area (m

2
) used 

in last line. 

 Variables (U, V,C,d) 
substituted in 2

nd
 line 

after introduction of 
formulae. 

 Constants(K, Eo) 
substituted in 2

nd
 line 

after introduction of 
formula(penultimate) 

V4   No  units used 

 Variables not 
substituted 

 Constants not  
substituted 

 

 Not done   Units for charge (µC) 
used in first line  

 variables(q1, q2)  
substituted in the 2

nd
   

line after introduction of 
formula  

 Constant (ke) substituted 
in the 2

nd
 line after 

introduction of formula  

 Not done   No units used 

 Variable (q) 
substituted in 1

st
  line 

immediately after 
introduction of formula 

 No constants used 

V5  No single units used 

 Variables not 
substituted 

 Constants not 
substituted 

 

 Units of force(N) 
used in the 1

st
  

line immediately 
after introduction 
of formula 

 Variable (F) 
substituted in 1

st
 

 Units of distance (m), 
used in last line ( 11

th
 ) 

 Variables (q1, q2) 
substituted in 3

rd
 line 

after introduction of 
formula 

 Constant(ke) cancelled 

 Units of potential 
difference ( V) used in 
last line (8

th
) 

 Variables ( m, vi, q) 
substituted in 5

th
 line 

after introduction of 
formula  

 No units used 

 Variables (U,V) 
substituted in 2

nd
  line 

after introduction of 
formula 

 Constants (K, Eo) not 
substituted ( question 
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line,( q1, q2 ) in 
3

rd
 
 
line after 

introduction of 
formula . 

 Constant (Ke) 
substituted in 3

rd
  

line after 
introduction of 
formula  

in 3
rd

 equation , the first 
time they were 
introduced 

 Question requires no 
constants 

not completed) 

M1  Units for distance(m) 
used in last line of 
solution 

 Variables (F, q1,q2) 
substituted in 2

nd
  line 

after introduction of 
formula 

 Constant (Ke) 
substituted in 2

nd
  line 

after introduction of  
formula 

 Units of g (m/s
2
) 

used in the 
penultimate line 

 Variables (F,q) 
substituted in 
the 3

rd
 line after 

introduction of 
formula 

 Constant (Ke) 
substituted in 3

rd
   

line after 
introduction of  
formula 

 Units for distance(m) 
used in last line of 
solution 

 Variables (q1,q2) 
substituted in 2

nd
  line 

after introduction of 
formula 

 Constant (ke) not 
substituted( cancelled 
out) 

 Not done  
 

 Units of potential 
difference ( V) used in 
last line  

 Variables (F, d) 
substituted in 1

st
   line 

after introduction of 
formula 

 Constants (K,E0) not 
substituted 

M2  Units for distance  
(m) used in last line 
of solution 

 Variables (F, q1,q2) 
substituted in 1

st
   

line immediately after 
introduction of 
formula 

 Constant (Ke) 
substituted in 1

st
  line 

after introduction of  
formula 

 Units for 

distance(m) 

used in last line 

of solution 

 Variables (F, 
q1,q2) 
substituted in 1

st
   

line immediately 
after 
introduction of 
formula 

 Constant (Ke) 
substituted in 1

st
  

line after 
introduction of  
formula 

 Units for distance(m) 
used in last line of 
solution 

 Variables ( q1,q2) 
substituted in 5

th
    line 

after introduction of 
formula 

 Constant (ke) not 
substituted(cancelled 
out in 1

st
 line after 

introduction of formula) 

 Units of potential 
difference (V) used in 
line of solution 

 Variables ( me,q,vi) 
substituted in 5

th
    line 

after introduction of 
formula 

 No constant used in 
solution 

 Units (C,F, m
2
)used in 

last line of each 
solution 

 Variables (∆v,d,q,u ,A) 
substituted in 1

st
   line 

after introduction of 
formulae 

 Constants 
(k,E0)substituted in 2

nd
 

line after introduction of 
formula 
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M3  Units for distance(m) 
used in last line of 
solution 

 No Variables 
substituted 

 Constant (me, a) 
substituted in 1

st
  line 

immediately after 
introduction of  
formula 

 Units for 

distance(m) 

used in last line 

of solution 

 Variables (F, 
q1,q2) 
substituted in 1

st
   

line immediately 
after 
introduction of 
formula 

 Constant (Ke) 
substituted in 1

st
  

line immediately 
after 
introduction of  
formula 

  Not done  Units of energy(J) used 
in last line of solution 

 Variables (q,v) 
substituted in 1

st
   line 

immediately after 
introduction of formula 

 No constant used  

 Units for distance(m) 
used in last line of 
solution 

 Variables (c,d) 
substituted in 2

nd
    line 

after introduction of 
formula 

 Constants (k,E0) 
substituted in 2

nd
    line 

after introduction of 
formula 

M4  No units used 

 No variables 
substituted 

 No constants 
substituted  

 Units of force 
(N) used 4 lines 
before the last 
line. Units for 
distance(m) 
used in last line 
of solution 

 Variables (F, 
q1,q2) 
substituted in 4

th
    

line after 
introduction of 
formula 

 Constant (Ke) 
substituted in 4

th
 

t
  line after 
introduction of  
formula 

 Units of charge (µC) 
used in 4

th
 line after 

introduction of formula, 
seven lines before last 
line 

 Variables (q1,q2) 
substituted in 4

th
    line 

after introduction of 
formula 

 Constant (ke) not 
substituted(cancelled 
out in 1

st
 line after 

introduction of formula) 

 Units for potential 

difference(v) only used 

in last line of solution 

 Variables (m,vi, q) 
substituted in 6

th
    line 

after introduction of 
formula 

 No Constant used 

 Units (C,m
2
) used in 

last line of each 
solution 

  Variables (u,v) 
substituted in 1

st
    line 

immediately after 
introduction of formula. 
Variables (C,d,E0) 
substituted in 4

th
 line 

after introduction of 
formula 

 Constant (E0) 
substituted in 4

th
  line 

after introduction of  
formula 

M5  Units for distance(m) 
only used in last line 
of solution 

 Units ( Nm
2
c

2
, 

kg,m/s
2
) used in 

1
st
 line 

 Units for distance(m) 
used in last line of 
solution 

 Units for energy (j) 

used in 6
th
 line after 

 Units for area(m
2
) used 

in last line of solution 

 Variables (d,u,r) 
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 Variables not 
substituted(cancelled 
out) 

 Constant not 
substituted(cancelled 
out)  

immediately  
after 
introduction of 
formula, 2 lines 
before the last 
line 

 Variables (F, 
q1,q2) 
substituted in 1

st
   

line immediately 
after 
introduction of 
formula 

 Constant (Ke) 
substituted in 1

st
  

line immediately 
after 
introduction of  
formula 

 Variables (q1,q2) 
substituted in 6

th
    line 

after introduction of 
formula 

 Constant (ke) not 
substituted(cancelled 
out immediately at  
introduction of formula) 

introduction of formula, 

three lines before last 

line. Units of potential 

difference (V) used in 

last line. 

 Variables (m,vi, vf) 
substituted in 1

st
       

line after introduction of 
formula 

 No constant used 

substituted in the 1
st
 

line immediately    after 
introduction of formula 

 Constants 
(k,E0)substituted in 1

st
 

line immediately after 
introduction of formula  
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Appendix J2: Section B questions  

Student  Questions – Section B  

B1 B2 B3 B4 B5 

V1  Units(N) used in 
the last line of 
each solution for  
all the questions  

 Variables (q1,q2, 
r2) substituted in 
the 2

nd
 line 

following 
introduction of the 
formula 

 Constants (Ke) 
substituted in the 
2

nd
 line following 

introduction of the 
formula 

 Units (N/c) used 
in the last line of 
each solution 

 Variables (q1,q2, 
q3, r) substituted 
in the 1

st
  line 

immediately 
following the 
introduction of the 
formula 

 Constant(ke) 
substituted in the 
1

st
 line 

immediately 
following the 
introduction of the 
formula 

 Not done   Units (F, C, J, V/m, 
µF) only used in the 
last line of each 
solution 

 Variables (A, d, C, V, 

E, Ceq) substituted in 

the 1
st
 line 

immediately following 

introduction of 

formula. 

 Constant(E0) 
substituted in the 1

st
 

line immediately 
following the 
introduction of the 
formula 

 Not 
done 

V2  Units ( C)only 
used with final 
answer 

 Variables (q1, q2) 
substituted in the 
3

rd
 line following 

introduction of 
formula. Variable( 
r )substituted in 
the 2

nd
 line 

following 
introduction of 
formula   

 Constant (ke) 
substituted in the 
3

rd
 line following 

 Units  ( N/C) only 
used in last line 
of solution 

 Variables (q, r) 
substituted in the 
1

st
 line 

immediately 
following 
introduction of 
formula. 

 Constant (ke) 
substituted  1

st
  

line immediately 
following 
introduction of 
formula 

 Not done   Units (F, C, J,) used 
in the last line of each 
solution 

 Variables (A, d, C, 

∆V,Q,) substituted in 

the 1
st
  line 

immediately following 

introduction of 

formula. 

 Variables (A, d, C, 

∆V,Q,) substituted in 

the 1
st
    line 

immediately following 

introduction of 

 Not done 
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introduction of 
formula. 

  formula. 

 

V3  No units used 

 Variables (q1 and 
q2) not 
substituted. 
Variable r 
substituted into 
the 1

st
 line after 

introduction of 
formula. 

 Constant (K) 
substituted in the 
3

rd
 line following 

introduction of 
formula 

 No units used 

 No variables 
substituted 

 No constant 
substituted 

 

 Not done   Units (F, C, J,q) used 
in the last line of each 
solution 

 Variables (A, d, C, 

∆V,Q,q) substituted 

in the 1
st
 t line 

immediately following 

introduction of 

formula. 

 Variables (A, d, C, 

∆V,Q) substituted in 

the 1
st
  line 

immediately following 

introduction of 

formula. 

 

 Not done 

V4  Units (µC) only 
used in the last 
line of the  
solution 

  Variables  (q1 
, q2) not 
substituted 

 Constant (ke) 
substituted in 
3

rd
 line 

following 
introduction of 
formula 

 No units used 

 No variables 
substituted 

 No constant 
substituted 

 No units used 
 

 Variables (Q, r, q, ∆E) 

substituted in the 1
st
  

line immediately 

following introduction of 

formulae. 

 Constant (k) 
substituted in the 1

st
  

line immediately 
following introduction of 
formula 

 Not done   Not done 

V5 1. Units of force 
(N) used in last 
line of each 
solution 

 Variables (q1, q2, 

 Units (C/m2) 
used in the last 
line of   each 
solution 

 Variables (q1, q2, 

 No units used 

 Variables (u, q) 

substituted in the 1
st
 

line immediately 

 Not done   Not done 
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r)  substituted in 
the 1

st
  line 

immediately 
following 
introduction of 
formula 
 

 Constant (ke ) 
substituted in 
the 1

st
 line 

immediately 
following 
introduction of 
formula 

r2)  substituted in 
the 1

st
 line 

immediately 
following 
introduction of 
formula 
 

 Constant (ke ) 
substituted in the 
1

st
  line 

immediately 
following 
introduction of 
formula 

following introduction of 

formulae. 

 Constant (ke ) 
substituted in the 1

st
  

line immediately 
following introduction of 
formula 

M1  Units (N/m) used 
in the penultimate 
line  

 Variables (q, r) 
substituted in the 
1

st
  line 

immediately 
following the 
introduction of the 
formula 

 Constant(ke)  
substituted in the 
1

st
 line 

immediately 
following the 
introduction of the 
formula 

 Units ( m, N, 
N/C) used in the 
1

st
 line of solution  
 

 Variables ( q, r) 

substituted in the 

1
st
  line 

immediately 

following the 

introduction of the 

formula 

 Constant(ke)  
substituted in the 
1

st
 line 

immediately 
following the 
introduction of 
the formula  

 

 Not done   Units ( F,C, KJ, N/M 
used in last line of 
solution  

 Variables ( A, d, C, 

∆V, q, r) substituted 

in the 1
st
  line 

immediately following 

the introduction of 

formulae 

 Constant(E0, ke )  
substituted in the 1

st
 

line immediately 
following the 
introduction of the 
formula  

 Not done  

M2  Units (C ) used in 
last line of  the 
solution  

 Variables (q1,q2,r) 

 Units (N/m ) used 
in last line of  the 
solution  

 Variables (q, r) 

 Not done   Units ( F,C, J, V/M, µ 
F) used in last line of 
the solution  

 Variables ( A, d, C, 

 Not done 
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substituted in the 
1

st
  line 

immediately 
following the 
introduction of 
formula  

 Constant(ke)  
substituted in the 
1

st
 line 

immediately 
following the 
introduction of the 
formula 

substituted in the 
1

st
  line 

immediately 
following the 
introduction of 
formula 

 Constant(ke)  
substituted in the 
1

st
 line 

immediately 
following the 

introduction of 

the formula 

∆V, Q, r) substituted 

in the 1
st
 t line 

immediately following 

the introduction of 

formulae 

 Constant(E0, )  
substituted in the 1

st
 

line immediately 
following the 
introduction of the 
formula  

M3  Not units used 

 Variables (q1,q2,r) 
substituted in the 
1

st
  line 

immediately 
following the 
introduction of 
formula  

 Constant(ke)  
substituted in the 
1

st
 line 

immediately 
following the 
introduction of the 
formula 

 Not units used 

 Variables (q, r) 
substituted in the 
1

st
 line 

immediately 
following the 
introduction of 
formula 

 Constant( ke )  
substituted in the 
1

st
 line 

immediately 
following the 

introduction of 

the formula 

 

 Not done   Units (C, J ) used in 
line of the solution  

 Variables ( A, d, C, V, 

q, r) substituted in the 

1
st
  line immediately 

following the 

introduction of 

formulae 

 Constant(E0, ke )  
substituted in the 1

st
 

line immediately 
following the 
introduction of the 
formula  

 Not done  

M4  Not done   Units (m, N/c ) 

used in last line 

of  the solution  

 Variables (q, r) 
substituted in the 
1

st
 line 

immediately 
following the 

 Units (v ) used in last 

line of  the solution  

 Variables ( Q, L 
)substituted in the 1

st
  

line immediately 
following the 
introduction of the 
formula 

 Units (pF, nC, J, V/m, 

µ F,V) used in line of 

the solution  

 Variables ( A, d, C, 

V,Q, Ceq) substituted 

in the 1
st
  line 

immediately following 

 Not done 
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introduction of 
formula 

 Constant(ke)  
substituted in the 
1

st
 line 

immediately 
following the 

introduction of 

the formula 

 

 Constant(ke)  
substituted in the 1

st
 

line immediately 
following the 
introduction of the 
formula  

 

the introduction of 

formulae 

 Constant(E0)  
substituted in the 1

st
 

line immediately 
following the 
introduction of the 
formula  

M5  Not done   Units (m, N/c ) 

used in last line 

of  the solution  

 Variables (q, r) 
substituted in the 
1

st
  line 

immediately 
following the 
introduction of 
formula 

 Constant(ke)  
substituted in the 
1

st
 line 

immediately 
following the 

introduction of 

the formula 

 

 Units ( V,J) used in last 
line of solution  

 Variables ( Q, L 
)substituted in the 1

st
  

line immediately 
following the 
introduction of the 
formula 

 Constant(ke)  
substituted in the 1

st
 

line immediately 
following the 
introduction of the 
formula  

 

 Units (F, nC, J, V/m, 

µF,C,V) used in line 

of the solution  

 Variables ( A, d, C, V, 

Q, Ceq) substituted in 

the 1
st
 line 

immediately following 

the introduction of 

formulae 

 Constant(E0, )  
substituted in the 1

st
 

line immediately 
following the 
introduction of the 
formula  

 Not done  
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Appendix K: Students’ Solutions to Questions  

 

APPENDIX K1:  Student V2 on question 1A1 
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APPENDIX K2:  Student M1 on Question 1A1 
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APPENDIX K3:  Student V3 on question 1B2a  
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APPENDIX K4:  Student V4 on question 1B2a   
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APPENDIX K4:  Student V4 on question 1B2a (cont.) 
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APPENDIX K4:  Student V4 on question 1B2a (cont.) 

 

 

 

 


