
 1

TABLE OF CONTENTS

CHAPTER 1...7
INTRODUCTION

1.1 Background..7
 Trust ...8
 Trust negotiation ..10

1.2 Problem statement..10
1.3 Research methodology...11
1.4 Delimitations of the study..11
1.5 Outline of the dissertation..12

CHAPTER 2...13
INTRODUCTION TO TRUST

2.1 Introduction..13
2.2 Existing applications of trust utilisation ..14
2.3 Definitions of trust ...16
2.4 Trust characteristics ...18
2.5 Trust quantification..19
2.6 Trust processes...21
2.7 Trust relationship ...22
2.8 Application of trust in artificial entities ...23

 Requirements for using trust among artificial entities.................................23
2.9 Conclusion ...23

CHAPTER 3...24
WEB SERVICES AND THE CONCEPT OF TRUST NEGOTIATION IN
COMPOSITE SERVICES

3.1 Introduction..24
3.2 Web Services concepts, architecture and essential specifications26

 3.2.1 Web Services architecture...27
 3.2.2 Essential Web Services specifications ...28

 SOAP ...29
 WSDL ..30
 UDDI..32

 3.2.3 Added specifications of the Web Services framework33
3.3 Composite services and service composition in Web Services framework.34

 3.3.1 Specification of service composition using BPEL4WS.........................35
 3.3.2 Composite services: features and a classification...................................37

3.4 Factors affecting trust establishment and trust negotiation in the composite
service scenario...39

 Context..39
 Complexity..40
 Anonymity ..40
 Dynamic behaviour...40

 3.5 Conclusion ..41

 2

CHAPTER 4...42
TRUST NEGOTIATION CONCEPTS AND AN ANALYSIS OF THE
CURRENT NEGOTIATION SYSTEMS

4.1 Introduction..42
4.2 Evolution of trust negotiation systems...44
4.3 Essential elements of trust negotiation ..48

 Digital credentials ...48
 Policies..49
 Negotiation protocol ...52
 Negotiation strategy ..53

4.4 Trust negotiation system..54
4.5 Introduction and analysis of the current trust negotiation systems..............55
 4.5.1 Current trust negotiation systems..56

4.5.1.1 Trust-X...56
 Trust-X negotiation procedure...57
 Trust-X negotiation procedure for composite services....................58
 Trust-X negotiation architecture ..59

 4.5.1.2 TrustBuilder ...59
 TrustBuilder negotiation procedure………………………………..60
 TrustBuilder negotiation architecture……………………………...60
 4.5.1.3 Trust-Serv ..61

 Trust-Serv negotiation architecture..63
 4.5.1.4 IBM trust establishment (TE) framework..63
 4.5.1.5 PRUNES ..65
 4.5.1.6 RT framework and the framework in [24].......................................65
 4.5.2 An analysis of the current negotiation systems....................................66

4.6 Conclusion ...68

CHAPTER 5...69
A FRAMEWORK FOR TRUST NEGOTIATIONS IN WEB SERVICES

5.1 Introduction..69
5.2 An overview of the WS-Policy specification...71
5.3 Specification of trust requirements and resources in Web Services73
5.4 Possible Extensions to WS-Policy to specify TRtDs and TReDs................74

 Extending vocabularies to accommodate further information resources and
contexts ...74

 To specify trust requirements and resources separately75
 Identifying TRtD and TReD subdocuments ...78

5.5 Overview of WS-Trust specification ...79
5.6 An analysis of WS-Trust in a general trust negotiation process..................82

 Requesting and receiving diverse credentials ..83
 To reference the TRtD for which the credentials are submitted..................84
 To combine a credential request with a credential submission....................85
 To send TRtDs and TReDs in a negotiation ..86
 Multiple credential submissions in a single response message87
 Frequency of credential submission...88
 Error handling ..88

 3

5.7 Conclusion ...89

CHAPTER 6...90
A TRUST NEGOTIATION PROCEDURE FOR COMPOSITE SERVICES

6.1 Introduction..90
6.2 Trust requirements and resources of composite services.............................91
6.3 Reconciling the TRtDs and TReDs of constituent services.........................91
6.4 The presentation of the unified TRtDs and TReDs by the trust-negotiating

nodes ..94
6.5 The association between the services and the trust-negotiating node..........96
6.6 The role and functioning of the trust-negotiation coordinator.....................97
6.7 Trust negotiations of the user entity with a service98

 Trust negotiations with an elementary service...98
 Trust negotiations with a composite service..99

6.8 Handling issues of anonymity, dynamicity, trust context and interlinks in
composite services ...101

 Handling anonymity in a composite service..101
 Handling trust contexts ..101
 Handling complexity in a composite service ...101
 Handling dynamicity in a composite service ...102

6.9 Conclusion ...103

CHAPTER 7...104
CONCLUSIONS AND FURTHER WORK

BIBLIOGRAPHY..107

 4

LIST OF FIGURES AND TABLES

Figure 1-1: A composite application 9

Figure 2-1: An abstract representation of a computation scheme that can be used

for trust quantification 21

Figure 2-2: Trust relationship between two entities 23

Figure 3-1: General Web Services architecture 27

Figure 3-2: Internal architecture of Web services 28

Figure 3-3: General Web Services architecture with framework specifications 29

Figure 3-4: Abstract representation of WSDL specification 30

Figure 3-5: Abstract representation of the Web Services registry 33

Figure 3-6: Specifications of the Web Services framework 34

Figure 3-7: A composite service 34

Figure 3-8: Message sequence diagram for the composite service depicted in

Figure 3-7 36

Figure 3-9: A composite service 38

Figure 4-1: Sequence of credential exchange in a trust negotiation 51

Figure 4-2: Sequence of credential exchange in a trust negotiation when

credentials are sensitive 52

Figure 4-3: Architecture of Trust-X negotiation system 59

Figure 4-4: Architecture of TrustBuilder negotiation system 61

Figure 4-5: A policy described using state machines 61

Figure 4-6: Architecture of Trust-Serv negotiation system 63

Table 4-1: A summary of various trust negotiating systems 68

Figure 5-1: Abstract representation of WS-Policy documents 72

Figure 5-2: Abstract representation of WS-Policy documents with various contexts

and information source vocabularies 75

Figure 5-3: Abstract representation of trust requirements and resources documents

using WS-Policy 76

Figure 5-4: WS-Trust trust model 79

Figure 5-5: Illustration of the focus of the study with respect to the WS-Trust trust

model 83

Figure 6-1: A composite service with two constituent services 92

 5

Figure 6-2: A composite service with five constituent services 95

Figure 6-3: Another composite service with five constituent services 99

 6

ABBREVIATIONS USED

XML Extensible Markup Language

CORBA Common Object Request Broker Architecture

DCOM Distributed Component Object Model

RMI Remote Method Invocation

URI Uniform Resource Identifier

RPC Remote Procedure Call

HTTP Hypertext Transfer Protocol

SMTP Simple Mail Transfer Protocol

 7

CHAPTER 1
INTRODUCTION

1.1 Background

The Internet is a heterogeneous environment that consists of different network

devices, operating systems, network technologies and software systems. The

heterogeneity in such a system is inevitable and cannot be eliminated. It does,

however, pose interoperability issues when software systems are integrated on the

Internet [73].

Web Services propose a framework that allows integration of heterogeneous software

systems on the Internet. The integration is made possible by the standardisation of

interfaces and interactions of software components by means of specifications that are

based on open XML standards and Internet protocols [27][37][70][73]. The

framework also provides a facility to publish the software components as services on

the Internet so that users intending to use the software components can locate and

invoke them over the Internet [36][66]. The core specifications of the framework are

SOAP, WSDL and UDDI [66][45].

The standardisation of interfaces and interactions could enable interoperability among

heterogeneous software components, which will result in different application

scenarios that utilise the software integration. By using the Web Services framework,

organisations or individuals can therefore create and expose software components as

specific services to other organisations. By reducing interoperability issues, this

framework aims to facilitate the creation of applications from the available software

components on the Internet [25]. This would result in building complex applications

by combining multiple software components of different functionalities across

organisational boundaries.

Reusing available components to create new applications is an advantage in terms of

ease of creation, development and operational costs. On the other hand, integrating

components developed by different organisations - and implemented and maintained

in different network domains - will create issues that need to be considered and

studied. Some of the problems arise due to the difference in the non-functional

 8

attributes of the different components such as their reliability, quality, security,

performance, scalability and reusability [27][66][73].

The success of an application developed from different components is based on the

functioning of its constituent components. For example, reliability of such an

application is dependent on the reliability of its constituent components. The

constituent components of the application need not be under the control of the same

organisation or local network domain [70]. This may introduce uncertainties about the

properties and factors that influence the behaviour of such a constituent entity. As the

number of components in an application increases, issues related to for instance

security, reliability, quality and performance of the application get complicated. For

an entity who intends to use such an application, evaluating trustworthiness and

establishing trust with a service in any context (including reliability, security,

scalability, dependability and quality of service) become relevant.

Trust

This dissertation deals with the technical aspects of trust. Trust is a complex concept

and has been studied and presented from different perspectives in the literature

[47][40][2][8][6]. Different perspectives about trust have also led to different

definitions of trust. Many of the studies of trust focus on distributed systems and e-

commerce transactions, with specific emphasis on trust in the context of information

security [47][1][8][40][22][6]. In general, studies of trust examine trust properties,

trust relationships, issues related to trust and practical implications of trust. They also

focus on different processes associated with trust, such as establishing, negotiating,

propagating, specifying, monitoring, managing and revoking trust, and analysing trust

relationships [47][1][8][40][21][22][82]. Different models of trust are available in the

literature [1][2][54][78].

However, trust can be used in any context in the same way as it is used in the context

of security. Thus the possible contexts can include the scalability, reliability, and

dependability, of the entities. The relevance of trust in different contexts can be

illustrated by using the example below.

Consider an application developed by integrating different software entities aimed at

establishing the availability of seats for a bus journey and booking seats at the

 9

cheapest fare. For this example, consider that there are only three bus services

available, namely Bus A, Bus B and Bus C, and each of them has its own

software system to perform booking-related tasks for its own bus service. There is

another software system developed and maintained by another organisation, namely

Combined Bus Service, which interacts with the three bus service software

systems to provide a combined service, which in this case is to establish the

availability of bus seats and find the cheapest fare. Combined Bus Service

interacts with another software entity, developed and maintained by yet another

organisation named Credit Card Transaction, which performs credit card

transactions. This example illustrates the kind of application that will be realised by

using the Web Services framework. The figure below (Figure 1-1) illustrates the

entities and the interaction among these entities for the application.

Figure 1-1: A composite application

Each box in the figure represents software entities and a double-headed arrow

indicates interaction between the linked entities. The user entities are encircled and

they interact with the Combined Bus Service for the application. The user

entities could also be other software entities.

In terms of the software systems, the functioning of the application depends on the

functioning of Bus A, Bus B, Bus C, Credit Card Transaction and

Combined Bus Service. The reliability of the application is therefore based on

the reliability of all the constituents, but the security of the credit card transactions is

based largely on the functioning of the Credit Card Transaction entity.

Thus trust, in the context of reliability, will be based on the properties of all the

entities involved, while security of the credit card transaction will depend largely on

the Credit Card Transaction entity.

 10

Trust negotiation

Trust negotiation can be seen as a process towards establishing trust, which

specifically deals with the exchange of information among the entities that are

intending to establish trust [40]. As discussed before, context of trust influences the

information required, which again affects the entities with which negotiations take

place. Based on the previous example, in the context of reliability, trust negotiation

should be performed with all the entities. However, in the context of secure credit

card transactions the negotiation is performed mainly with the Credit Card

Transaction entity.

A number of current systems utilise trust negotiation to establish trust between

entities. The common application of these systems is to implement access control

procedures [19][44][71][82]. Because these systems are tightly coupled to a specific

application, they do not consider the possibility of generic trust negotiations that can

be used for establishing trust in any context. In most of the systems, negotiations

occur between two entities and they do not consider trust negotiations with multiple

entities in combined application scenarios, such as the application given in Figure 1-1

[44][71][82]. A thorough survey of literature has revealed that only one of the

existing systems provides a negotiation procedure for this scenario [19]. However, the

procedure is abstract without providing details on how to conduct such a negotiation

procedure. Moreover, it does not consider the possible features of applications such as

dynamicity, complexity and anonymity of service entities.

1.2 Problem statement

Evaluating the trustworthiness of a service can influence the interactions with it. One

of the primary goals of the trust establishment process is to evaluate the

trustworthiness of the entity and trust negotiations are performed as a step to achieve

this goal. In order to perform trust negotiations in the Web Services framework,

appropriate framework support is required along with negotiation procedures that

utilise the framework utilities to conduct such a negotiation.

The purpose of this study is to examine the Web Services framework support for

generic trust negotiations and to propose a negotiation procedure that utilises these

 11

framework utilities. The proposed negotiation procedure is aimed at resolving

negotiations in the composite service scenario.

The study includes the following:

• Defining trust and trust negotiations

• Understanding the Web Services framework and the concept of composite

services in the framework

• The aspects of the composite service that affect trust negotiations

• Analyses of existing trust negotiation systems

• Analyses of the relevant Web Services framework standards to incorporate

generic trust negotiations

• A trust negotiation procedure that is suitable within composite service scenario

1.3 Research methodology

A thorough literature review is done to study trust, Web Services framework, trust

negotiations and the available trust negotiation systems. Based on a review of

literature, arguments are constructed to define trust and trust negotiations, and as well

as the implications thereof for composite services created by using the Web Services

framework. A comparative study of existing trust negotiation systems is performed to

identify different negotiation procedures and their limitations when applied in a

composite services scenario. An improved descriptive negotiation procedure for this

scenario is subsequently presented.

1.4 Delimitations of the study

This study has been conducted at a theoretical level and the same therefore applies for

the suggested negotiation procedure. The study does not include a full-fledged

analysis of the implementation of some of the elements that are required for this

procedure, such as attribute-based credentials and negotiation strategy algorithms.

The study also excludes a comprehensive architecture of a generic trust negotiation

system. The features of composite services that affect trust negotiations are limited to

anonymity, dynamicity and complexity.

The analysis of the Web Services framework to support generic negotiations focuses

only on WS-Trust and WS-Policy specifications. The suggested extensions to these

 12

specifications aim to demonstrate the possibility of extensions and are not intended to

be exhaustive. The study excludes vocabularies for digital credentials. The full-scale

specification of trust requirements and resources documents is also beyond the scope

of this study.

The study is based on one notion of trust and trust negotiation, and it excludes the

notion of trust in infrastructure to build applications. It also excludes the details of a

computation scheme for quantifying trust. In this study, the focus of trust negotiation

is on the interaction between the service provider and service requestor. Web services

may or may not be controlled by human entities, but this study has not attempted to

model trust as a human aspect.

1.5 Outline of the dissertation

Chapter 1 is a brief introduction to the research area.

The concept of trust is presented in Chapter 2. A summary of the different definitions,

properties, processes and applications of trust in the literature is also included in the

chapter. Based on the synthesis of the current literature an encompassing trust

definition is presented along with its properties.

In Chapter 3 the Web Services framework is discussed as well as the concept of

composite services and the framework support for these services. The chapter

contains different features of composite services, which should be considered in the

trust negotiation procedure.

Chapter 4 contains an analysis of current trust negotiating systems that is aimed at

examining the suitability of the existing trust negotiation procedures in composite

services.

The Web Services framework support for trust negotiations is evaluated in Chapter 5.

A negotiation procedure for composite services is subsequently presented in Chapter

6.

The conclusions and scope for further research are presented in Chapter 7.

 13

CHAPTER 2
INTRODUCTION TO TRUST

2.1 Introduction

Trust is an essential building block of human society. Although it is in many cases not

explicitly specified in our daily interactions and transactions, we somehow implicitly

seek the basis to trust individuals, organisations and entities, for our day-to-day

transactions. Based on the type and importance of the transaction, which can vary

from one individual to the next, information used to base our trust differs. In human

society, ‘word-of-mouth’ recommendations, former experiences and reliable third

party references, play an important role in a trust or distrust decision. We use this

concept extensively in our day-to-day transactions – often knowingly but, at times,

also unknowingly. If this is true, can trust be a valid concept among artificial

(machine, software-based) entities specifically in an open, distributed environment?

Can trust constitute a decision-making factor for the interactions among artificial

entities? To answer these questions, we need to answer the vital question ‘what is

trust between artificial entities?’

In the computing field, trust is studied and utilised for interactions between human

entities and artificial entities, and between different artificial entities. In general these

studies can be grouped into two categories; one focusing on the trust itself (which

includes defining, generating and propagating trust) and others focusing on the

utilisation of trust in various applications. The application and utilisation of trust is

prominent in the information security domain [1][8][20][21][47][75].

Public key certificate systems are a key example of trust utilisation in the information

security domain. The ultimate purpose of such a system is to facilitate the finding of a

trustworthy copy of a public key. To achieve this, absolute or partial trust is placed on

certain entities and this trust is utilised or propagated among multiple entities

[20][21][75]. As an example in the X.509 certificate system, certificate authorities

(CAs) are used to certify key certificates and entities in the system trust key

certificates that are signed by the trusted CAs [21]. This system works on the basis

that the CAs can be trusted for signing the key certificates. However, how this trust

came to exist or how it is built is not specified in detail.

 14

The different views of trust presented in focused studies have led to different

definitions of trust [1][8][35][39][40][47][80][59]. The objectives of these studies are

to understand, define or generate trust and to explore various processes involved with

trust, such as trust establishment, trust negotiation and trust monitoring. Most of these

studies limit the context of trust to security and hence the importance of trust in

contexts other than security is not examined in depth.

The aim of this chapter is to explore trust in a generic context and the role of trust

negotiation in building trust. Section 2.2 contains a discussion of three existing

applications in which trust is utilised. For each of the applications the trust context

and the trust-building technique are presented. Section 2.3 presents different

perspectives and definitions of trust found in the literature. We investigate different

perspectives with the purpose of identifying the aspects that are relevant for trust in a

generic context and that can be applied among artificial entities. The section

concludes with a definition that encompasses the relevant factors to meet the aforesaid

goal. This trust definition is further investigated in Section 2.4, where various

characteristics of trust derived from the given definition are addressed. Based on these

characteristics, a basic framework for a trust generation technique is presented in

Section 2.5, while Section 2.6 contains a summary of the processes involved with

trust. The latter section includes only the processes associated with the definition,

properties and trust quantification provided in the previous sections. The concept of a

trust relationship is presented in Section 2.7 and the application of generic trust

among artificial entities is discussed in Section 2.8. Some of the requirements of using

trust among artificial entities are also dealt with in this section. A conclusion is

provided in Section 2.9 to round off the chapter.

2.2 Existing applications of trust utilisation

Three applications in which trust is utilised are described next; two of them are from

the security domain and one is based on an online e-commerce transaction.

Firewalls constitute one of the security mechanisms that are used to protect a network

from possible malicious attacks. From an abstract point of view, their operation is

based on a set of filtering policies. These filtering policies are based on the trust levels

assigned to the various logical network segments referred to as zones [75]. As an

 15

example, the network itself that is protected by using the firewall can be assigned a

high trust level; the network of a partnership business unit can be assigned a medium

trust level and all the other networks can be assigned a least trust level. Based on the

assigned trust levels, a firewall can implement a filtering policy which states that data

packets from the high trust zone are transmitted to the low trust zone without any

restrictions, but all the data packets from the low trust zone to the high trust zone will

be monitored and controlled. In this scenario, the trust levels are fixed and they reflect

the possibility of malicious attacks from different zones.

In a distributed system, key certificates can be used to bind the identity of an entity

with its public key (see Section 2.1). However, such a certificate does not ensure any

other characteristic of its owner. For instance, the certificate cannot be used to

determine whether an entity is reliable or not. It is up to the entity or the application

that receives the certificate to make a decision about the suitability of the public key

owner for the intended purposes [21]. In this scenario, key certificates are used to

build trust in the public key of an entity [20][21][75]. Such a key certificate can be

adequate for authentication procedures, but it may not be the only requirement for

authorisation purposes.

In an e-commerce scenario - before a user utilises a service, he/she needs to trust the

service provider to deliver the service as advertised [82][85]. Consider an online

book-purchasing facility, which allows users to buy books and to make the payment

online. The user can make use of different resources to determine the trustworthiness

of the service provider. The user can check the reputation of the service provider,

which can be based on the recommendations of previous users. Another mechanism is

to verify the membership of the service provider with various reputable business

organisations. The service provider also needs to trust the user to make the required

payment. The service provider can request the credit card details of the user and

enquire about the validity of the credit card before the service is granted. Here various

information sources are used to determine the trustworthiness of the entities involved.

In all of these examples trust is used within a certain set of contexts. The trust level

assigned or built therefore reflects trust in these contexts. For example, the public key

certificates intend to answer the question ‘Can the public key be trusted?’ and not

‘Can the owner of the public key be trusted for its reliability?’ The latter question

 16

implies the context of reliability and the former suggests the context of validity of a

public key.

In all three examples, trust is generated in different ways. In the case of a firewall

system, the trust levels are fixed and this way of assigning trust may not work in

another situation such as the e-commerce scenario. In the case of public key

certificates, trust in the public key is the function of trust that an entity places on the

certificate issuers, even though there is no explicit way of presenting how this trust

came to exist. In the e-commerce scenario, users are free to choose any information

source to gather information about the service provider and this information is

evaluated to determine the trustworthiness of the service provider. Comparing these

systems, the trust generation technique used in the firewall system is most rigid and

the one used in the e-commerce scenario is most flexible.

2.3 Definitions of trust

One of the common perceptions about trust is that it is subjective. In [59], trust is

defined as a subjective expectation that an agent has about another’s future behaviour

based on the history of their encounters. Diego Gambetta [35] defines trust (or

symmetrically, distrust) as a particular level of subjective probability with which an

agent assesses that another agent or group of agents will perform a particular action.

The subjective perception about trust is most certainly valid in human society, but not

among artificial entities. The subjective perception about trust makes it difficult to

find a common understanding of trust and to identify ways in which trust can be

established among artificial entities. Instead we take an objective-based approach to

understand trust.

The definition in [59] suggests one type of information on which to base trust, namely

previous interactions with an entity. Gambetta’s [35] definition involves assessment

of one entity by another entity to establish trust. Among artificial entities it seems to

be possible to establish trust by assessing information from different sources-

previous interactions being one of them.

In [8], trust is defined as an assessment that a person, organisation or object can be

counted on to perform according to a given set of standards in some domain of action.

In [83] trust is defined as the assessment by which one individual A expects another

 17

individual B to perform (or not to perform) a given action on which its (A’s) welfare

depends, but over which it has limited control. As stated in the previous paragraph,

trust can be based on the assessment of an entity that can be guided by the guidelines

of the entity. It is also worth noting that if there was no benefit or detriment resulting

from an interaction, then trust would not be significant. In the online transaction

scenario presented in Section 2.2, the user may well suffer financial loss if the service

provider does not deliver the ordered books. There is also uncertainty about the

service provider because the user cannot monitor or control any of the transactions

performed by the service provider. Possible harm resulting from the interaction and

the fact that the user has limited control over the service provider highlight the need

for trust.

Trust is also sometimes expressed as a belief among entities in different definitions. In

[80], which presents trust in peer- to-peer network, trust is defined as a peer’s belief in

another peer’s capabilities, honesty and reliability, based on its own experiences. Here

the information source specified for the trust belief is restricted to the interaction

history. In [39], trust is presented as the firm belief in the competence of an entity to

act dependably, securely and reliably within a specified context. In [47], trust is

defined as the belief that a rational entity will resist malicious manipulation. In [40],

trust is defined as a quantified belief by a trustor with respect to the competence,

honesty, security and dependability of a trustee within a specified context. The notion

of belief can encompass uncertainties, which can be the result of the limited control

and the inability to monitor another entity [65]. The advantage of trust as a quantified

value is that it can enable automation and manipulation of trust among artificial

entities. The trust definitions given in [39], [47] and [40] are limiting the contexts to

which trust is applied. As an example, the definition given in [47] is limited to the

security context. This definition would therefore fail when the context of trust is

scalability. All these definitions need to be expanded in such a way that they can be

applied in a generic context.

Based on the discussion in the previous paragraphs, we define Trust as follows:

Trust is a quantified belief by an entity (belief-holding entity) of another entity (target

entity) to have a desired property, based on some set of guidelines, for specific

purposes.

 18

Trust is not more than a belief, when the belief-holding entity has limited control over

the target entity and considering the infeasibilities in knowing all the factors that

influence the behaviour of an entity. This definition does not limit trust to any specific

context as it can be used in reference to any property of an entity. Thus it can be

applied to different contexts, which includes security, scalability, reliability and

quality of service. The quantification of trust (explained further in section 2.5) in any

context is based on some set of guidelines set by the belief-holding entity and there is

a set of ultimate purposes for which trust is established [1]. As an example, in the

online transaction scenario presented in Section 2.1, the user may evaluate the

trustworthiness of the service provider in the context of security, because the user may

have to provide his/her credit card details for financial transactions.

2.4 Trust characteristics

This subsection describes some of the characteristics of trust based on the definition

presented in the previous section. The properties explained here are not intended to be

comprehensive; instead they highlight the properties that are relevant in the

subsequent discussions.

The quantified belief that outlines trust is based on some information about the target

entity [2][47][77]. Different types of information sources are the past interaction

experiences with the target entity; recommendations from other entities; the reputation

of the target entity; system guarantees; system certifications; system specifications,

and assessments made by other entities [1][2][3][38][47][54][83]. The information

gathering is based on the guidelines of the belief-holding entity and the collected

information is then assessed to determine a quantified trust value about the target

entity.

As trust has been defined in relation to an entity’s guidelines, trust cannot be seen as

an inherent property of any entity. Instead it is an observation made by an entity of

another entity [8][65]. As each entity can have its own set of standards, different

belief-holding entities can have different trust beliefs of the same entity, even in the

same context and for the same purpose. Even if two entities are guided by similar

guidelines, the trust value can still be different, based on the differences in the

information that was collected [33].

 19

Trust could be used with reference to any property or behaviour of an entity, which

forms the context. The context within which trust is established depends on the

purpose for which the target entity will be used. The context also determines the type

of information necessary to quantify trust [8][77]. As an example, when the context is

security, the information gathered could infer the extent to which the entity can resist

malicious manipulation. On the other hand, when the context is reliability, the

information gathered could indicate the failure rate and repair time of the entity [47].

Thus, a belief-holding entity can have different trust values towards the same target

entity, based on the different contexts of trust and purpose for which it will be used.

Since information is used as the basis for trust, a change in the information collected

will alter the trust value. For instance, as more experience is gained in interaction with

the target entity or more recommendations are collected about the target entity, the

belief about the entity can change positively or negatively. Thus trust based on

information cannot be static and needs to be updated on an ongoing basis

[2][8][40][65][80].

It is not always necessary for the belief-holding entity and the target entity to interact

directly. The interactions can be mediated through a number of other entities. In such

a scenario, the belief-holding entity may use recommendations of the directly

interacting entities to establish trust with the target entity. Recommendations do not

indicate an implicit transitive property of trust. Instead it is considered as an

information source and it is up to the belief-holding entity to make a decision about

the recommendations provided by other entities.

In summary, trust in a context is based on the information about an entity. Belief-

holding entities are not restricted in choosing their information sources and in

deciding on the significance of information contributed by each source. Moreover,

trust can be dynamic and need not be transitive.

2.5 Trust quantification

The quantification of trust is utilised in various trust models and different trust

computation algorithms are used for the quantification process [1][2][3][8][40]. The

trust computation techniques that quantify trust vary in complexity in terms of the

variables used and therefore in terms of the input parameters required for the

 20

computation. Direct experiences that the belief-holding entity had with the target

entity and/ or recommendations of other entities made about the target entity are two

factors that are included in the majority of trust computation schemes. Based on the

computation scheme, these factors are mapped into different trust values and various

calculations are made available to combine these trust values. The models that use the

quantified values use threshold values (trusted/distrusted) or a range of values (highly

trusted/trusted/distrusted/highly distrusted) to make a trust-based decision. Some trust

computation schemes also include factors like utility, risks, benefits and the role of an

entity in the computation schemes [79][2][78][54].

Based on the discussion of the characteristics of trust in the previous section, an

abstract representation of a computation scheme that can be used for building a

computation algorithm is presented in Figure 2-1 below. Such a computation scheme

makes use of multiple information sources and assigns different weights to different

information sources. These weights will reflect the value that the belief-holding entity

places on each of the different sources. The computation scheme illustrated is not

intended to be an exhaustive list of information sources that can be used to build trust,

as each of the sources can also be sub-categorised into more specific information

sources.

The goal of such a computation scheme is to compute trust in a specific context based

on available information. In order realise such a computation scheme, there should be

techniques to gather the selected information, to appropriately map this information

into values and to perform appropriate calculations on these values to present a trust

value, which should encompass all the relevant information selected in the

computation scheme. As an example, an entity may choose ‘direct experience’ as the

only information source for computing trust. Here it gathers all its previous

interactions with the specific entity, maps each interaction experience to a numeric

value and perform calculations to combine these values to compute a trust value.

Although the computation scheme is not further developed in this dissertation, the

concept is used in Chapter 04. In this dissertation, whenever the term trust value is

mentioned, it refers to the quantified representation of trust which is computed by

using the scheme given in Figure 2-1.

 21

Figure 2-1: An abstract representation of a computation scheme that can be used for trust
quantification

2.6 Trust processes

A trust process refers to any activity involved with the generation and updating of

trust. Trust establishment encapsulates all the activities of establishing trust with an

entity. These could include the specification of information required for trust

computation, as well as the techniques to gather the appropriate information, to verify

the information collected, to utilise the computation scheme for computing the trust

value and, if feasible, for determining the trust relationships (discussed in Section 2.6)

with the target entity.

In general, trust negotiation is a sub-process of trust establishment aimed at gathering

information about the target entity. It focuses specifically on collecting information

from the target entity itself, which is normally guided by a negotiation protocol. The

process of trust negotiation is discussed further in Chapter 04.

Trust Monitoring is the process that performs all activities to update trust once it has

been successfully established. It could include performing various sub-activities of the

trust establishment process to update trust and trust relationships. For example,

information is collected and the trust computation scheme is invoked at regular time

periods to compute updated trust values. The trust negotiation process can also be

included as an activity in the trust monitoring process.

 22

2.7 Trust relationship

A trust relationship exists between two entities when the interaction between them is

influenced by trust. Such a relationship asserts the computed trust value, the context

for which trust is held, the purpose of interaction between the entities and the

conditions or other trust relationships that need to exist before the specified trust

relationship is activated [40]. A trust relationship can be specified as:

TR(Belief holding→Target) [Trust_context, purpose, ConditionSet]

A trust relationship is specified in terms of the trust value for a specific context, the

purpose of establishing trust and the set of conditions that should be satisfied to

activate the relationship. The relationship also identifies the belief-holding entity and

target entity for which the relationship is specified.

The conditions that are explicitly specified may include aspects that are not

considered in the trust computation scheme but that are relevant to the belief-holding

entity to define a specific trust relationship. Some of the factors are risks, cost factors,

and benefit of the interaction. For instance, the condition may specify that the cost of

the interaction should be less than a certain value. The conditions may also specify

other trust relationships that should exist in order to activate this trust relationship.

This is significant when trust between two entities is influenced by the trust with its

mediating entities. Here the trust relationship allows the explicit specification of trust

relationships with such mediating entities.

The trust relationship summarises the trust in a context for a specific purpose. Thus

an entity can have different trust relationships to the same entity in different

interactions. It is important to note that since trust is dynamic, the trust relationship

may also vary with the trust value. The existence of a trust relationship of the belief-

holding entity to the target entity does not guarantee a trust relationship of the target

entity to the belief-holding entity. Thus a trust relationship between entities need not

be bi-directional [39] and every trust relationship is established uniquely. Figure 2-2

given below illustrates two distinct trust relationships between two entities.

 23

Figure 2-2: Trust relationship between two entities

2.8 Application of trust in artificial entities

Trust can be employed as a decision-making factor in the interactions among artificial

entities. For example, it can be used to determine the suitability of an entity for a

specific purpose and to compare different entities for a specific purpose [47][78][83].

Based on the type of information collected on which to base trust, it can be used for

different applications if appropriate models are developed to include trust in various

applications. Examples of such applications are access control mechanisms, to

determine credibility of services and quality of service [47].

Requirements for using trust among artificial entities

The implementation and usage of trust among artificial entities would require a

common vocabulary of trust [8]. Such a vocabulary would help in conveying and

processing trust information among entities clearly and without ambiguity. In

addition to the unified semantics, basic frameworks need to be in place for various

trust processes. These would include protocols to communicate and carry trust-related

information and a wide range of property-based digital credentials to convey

information that is required to build trust among entities [1]. A few examples of such

credentials are those required to convey recommendations, reputation and previous

experiences. When entities are enhanced with trust-reasoning capabilities, additional

systems should be in place to support the entities to establish, update and make

decisions based on trust. These aspects are further developed in Chapter 4, 5 and 6.

2.9 Conclusion

Trust should be used in reference to a context and security is just one context among a

range of other possible contexts. A computation scheme for computing trust should be

flexible enough to allow each entity to choose the preferred information sources and

threshold values. In order to make use of trust in various applications, appropriate

models to include trust and frameworks to support various trust processes should be

made available.

 24

CHAPTER 3
WEB SERVICES AND THE CONCEPT OF TRUST

NEGOTIATION IN COMPOSITE SERVICES

3.1 Introduction

The Internet is a heterogeneous distributed system that is enabled by the co-operation

of various operating systems, network devices, software applications developed by

using different programming languages and network configurations. These elements

that contribute to the heterogeneity have their own capabilities and various application

fields benefit from this heterogeneity [73]. Thus heterogeneity is an inevitable feature

of the Internet system and it cannot be eliminated.

The concept of distributed computing allows the distributed completion of tasks based

on the interaction of software components over a distributed system [37]. The full-

scale implementation of distributed computing over the Internet involves the

interaction and integration of software systems irrespective of their location and

implementation [73]. This takes us to a level where the integration of software

systems is not constrained within a single computer or within a set of computers

limited by organisational boundaries. Instead, software systems can be built by

integrating software components of different implementations from different

computer locations on the Internet. One of the challenges in integrating software

systems in a distributed system like the Internet is interoperability. In order to achieve

interoperability, solutions need to be developed to address issues arising from the

heterogeneity of the system [73].

Some of the available distributed technologies are CORBA, DCOM and RMI [37].

They do, however, have some limitations when applied over the Internet. Moreover,

the difference in their object models and application level communication protocols

result in low interoperability between them. Although some integration solutions were

developed to improve their interoperability, the proposed integration solutions were

proprietary standards. These solutions are also complex and require high

communication costs and overheads [34][37][73].

Web Services propose a framework for the implementation of distributed computing

on the Internet [66]. It aims to tackle the interoperability problems in a heterogeneous

 25

distributed system so as to promote easier interaction among various software

components. To achieve this goal, Web Services propose standardised interfaces and

interaction between software components by using open protocols and standards

[27][37][70][73]. For an existing software application, this will add an additional

layer above the current middleware infrastructures to support the Web Services

framework [5]. This framework supports the concept of discovering services offered

by software components on the Internet. To accomplish this, the availability of

software components is published on the Internet through its directory service. Thus

the users who intend to make use of the service can locate the appropriate application

components from the directory service and invoke them over the Internet [36][66].

By using the framework, the services advertised by the various Web services can be

utilised to create larger applications or services. The constituent services of such an

application, referred to as composite service, may not always be under the control of

the same organisation or network domain [69]. The constituent services can also vary

in their functional and non-functional attributes. Moreover, composite services can

become complex and dynamic due to the possibility of a large number and possible

changes in the constituent services. These aspects of a composite service affect the

process of trust establishment with the service, which will in turn affect the trust

negotiation with a composite service.

The discussion in this chapter commences with the Web Services framework and the

concept of service composition using the framework. Then the concept of trust is

applied in composite services and the factors that need to be considered for trust

establishment with such a service are listed. We also discuss how trust negotiation is

affected by these factors. In Section 3.2, a discussion of Web services is presented.

This contains a definition of Web services, its architecture, essential specifications

and a brief summary of its remaining specifications. The concept of composite service

and a classification of composite services are presented in Section 3.3, as well as the

infrastructure and specifications required to specify and execute the composite

services. The concept of trust in composite services is discussed in Section 3.4, along

with the factors that need to be considered in establishing trust and how these factors

affect the process of trust negotiation with composite services. A conclusion of the

chapter is provided in Section 3.5.

 26

3.2 Web Services concepts, architecture and essential specifications

The World Wide Web Consortium (W3C) defines Web services as [84] :

“a software application identified by a URI (Uniform Resource Identifier), whose
interfaces and bindings are capable of being defined, described, and discovered by
XML (Extensible Markup Language) artifacts. A Web service supports direct
interactions with other software agents using XML-messages exchanged via Internet-
based protocols.”

Based on the above definition, one of the key features of the Web Services framework

is the use of XML artifacts for the interaction, definition, description and discovery of

software applications identified by URIs. XML therefore forms the core data

representation in this framework. The specifications of the framework are based on

open XML standards and Internet protocols [15][27][37][70][73][61][5]. As the

infrastructure of many of the existing networks supports Internet protocols and XML

standards, the deployment of the Web Services framework will greatly utilise the

existing infrastructures. A software application should conform to the specifications

of the framework to qualify as a Web service.

Focusing on software components that conform to this framework, they can be

viewed as modular applications of various implementations residing at various

network domains of the Internet. Each of the applications can provide a specific set of

functionalities, referred to as services, which can be exposed outside the specific

domain of implementation [25][36][66]. This will enable the utilisation of the service

by other applications or services, which facilitates the creation of larger applications.

In the Web Services framework, the heterogeneity is dealt with by the standardisation

of interfaces and interactions using XML standards. The framework specification also

allows the discovery of software components on the Internet. To accomplish this, the

availability of the software components is published on the Internet. Users who would

like to use the application components can locate these components and invoke them

over the Internet [36][66]. The architecture that assists in publishing and locating Web

services is discussed in the Section 3.2.1 below.

It is important to note that the framework supports interoperability through the

standardised interfaces and interaction, which do not necessarily imply complete

interoperability [5]. For example, if an application employs RPC (Remote Procedure

 27

Call) procedures and another application uses a message queuing system, the

framework does not address the complete interoperability and integration of these two

applications. It is left to the application to use compatible applications or to

implement necessary middleware to integrate dissimilar systems. Though it does not

provide a complete solution for such situations, the directory service (discussed in

Section 3.2.1) in the framework can assist in finding suitable applications.

3.2.1 Web Services architecture

Two architectures are discussed in this section: an abstract architecture of the Web

Services framework and an abstract architecture of the software applications

conforming to the framework, i.e. the Web services.

The general Web Services architecture consists of three entities, categorised in terms

of the roles needed to support Web services. These entities are the service provider,

service requestor and the service registry. Figure 3-1 [5][36][66] illustrates these

entities and the interactions between them.

Figure 3-1: General Web Services Architecture

An organisation wishing to supply Web services takes the role of a service provider.

The service provider publishes the services in the service registry so that the

availability of the service is visible to the intended Web service users. In publishing a

Web service it provides the service description in the service registry. The service

description is published in the format of meta data and it includes the details of the

interface, its implementation and network location. Thus, service descriptions should

include sufficient information for a service requestor to access the service

[66][36][56][5]. The service registry is a look-up registry that holds the list of services

published by the service providers. Hence the service registry is the key entity that

facilitates the discovery of services. Once a service is published in the service

registry, the service requestor can search and find specific service descriptions from

the service directory. If the service requestor finds a suitable service in the service

 28

registry, it can use the details contained in the service description to locate and

invoke, and hence to use the Web service offered by the service provider

[66][36][56][5].

Though Web services can have their own internal implementation architectures, in

order to support the interactions and integrations in the Web Services framework they

will all have a common additional tier on their existing infrastructure. This is

abstractedly illustrated in Figure 3-2 below [5]:

 Figure 3-2: Internal architecture of Web services

All the interactions in and out of the Web service occur through the service interface,

which hides the application details of the Web service. The internal implementation of

the application component need not be modified but an additional tier is added into

the infrastructure to add the additional capabilities to work in the Web Services

environment. For example, the XML format of the service invocation that occurs in

the framework may have to be restructured to conform to the application specific

invocation format [5]. This is just one of the functionalities that should be included in

the additional tier. Some other functionalities are discussed later in the chapter.

3.2.2 Essential Web Services specifications

The essential Web Services framework specifications are divided into areas of

communication protocol, service description and service directory [27]. The core

specifications in these areas are Simple Object Access Protocol (SOAP), Web Service

Definition Language (WSDL) and Universal discovery, description and integration

(UDDI) [66][36][27][73][61][5] respectively. The following figure (Figure 3-3)

illustrates the basic framework architecture with these specifications.

 29

 Figure 3-3: General Web Services architecture with framework specifications
SOAP

SOAP is the communication protocol for the exchange of XML-based data between

applications [36][66][61][5]. It relies on existing protocols like HTTP and SMTP as

transport protocols [5][61][66][36][27][28]. SOAP can be viewed in two aspects;

message format and processing model [41].

The message format of SOAP specifies an envelope for transmitting messages. The

SOAP message is an XML document, which contains a parent element envelope

and child elements header and body. The envelope element contains the

encoding details of the message; the body element contains the information for the

recipient; while the header element can contain information related to security and

transaction [28][41][5][61][66][45]. The following code fragment is a simple SOAP

message.

<SOAP:envelope
 <SOAP:header>
 <t:transactionID xmnls:t= “http://id.book.com”>
 5678
 <t:transactionID>
 </SOAP:header>
 <SOAP:body>
 <m:OrderBook xmnls:m= “http://order.book.com”>
 <m:BookName> Database system concepts </m:BookName>
 <m:Author> Silberschatz </m:Author>
 <m:Quantity> 2 </m:Quantity>
 </OrderBook>
 </SOAP:body>
</SOAP:envelope>

The message contains an XML document to order books. As given in the example, the

ordering of the book is specified in the body element, while the header element

contains the transaction id of this order in order to distinctly identify the transaction

by the requestor and service provider.

 30

In the SOAP-processing model a message contains a sender and receiver, and any

number of intermediaries through which the message is routed to the receiver. The

ultimate receiver processes the body of the message. The information for the

intermediary nodes is included in the header and these nodes process the SOAP

message accordingly (which may involve including headers in order to route the

message to the ultimate receiver) [5][41].

In brief, SOAP provides a template for representing XML data, which is then sent by

using the existing transport protocols [28]. Additional specifications are available to

include more capabilities to the SOAP messaging. For example, WS-Security [60] is a

specification to include security aspects such as integrity and confidentiality in the

SOAP message. For a detailed description of SOAP, refer to [42].

WSDL

WSDL is an XML-based specification for providing a description of Web services.

This description includes the data type definition, input/output messages, message

formats, protocol binding, network addresses and the operations supported by the

Web service [27][66][61][5]. A WSDL document is intended to provide sufficient

information required for the interactions with a Web service.

A WSDL document contains an application-level service description and the specific

protocol-dependent details of the service. The application-level description includes

the information content of the messages exchanged in a service interaction. This

would include the structure of the message, the content of the message and the

operations performed on the data. The protocol-dependent details include the type of

communication protocol, data format specification and network address [27]. An

abstract representation of the WSDL specification is given in Figure 3-4 below [5]:

 Figure 3-4: Abstract representation of WSDL specification

 31

The following example is a partial WSDL document for service named

BookService, according to which the above SOAP message is created:

<message name= “OrderMsg”>
 <part name= “BookName” type= “xs:string”>
 <part name= “Author” type=“xs:string”>
 <part name= “Quantity” type= “xs:integer”/>
</message>

<portType name= “BookOrderPortType”>
 <operation name= “OrderBook”>
 <input message= “OrderMsg”/>
 </operation>
</portType>

<binding name= “BookOrderSOAPBinding” type=
“BookOrderPortType”>
<binding:style=“document”
transport=“http://schemas.xmlsoap.org/soap/http” />
 <operation name= “OrderBook”>
<!—elements to further describe the SOAP message for this
operation- ->
 </operation name>
</binding>

<service name= “BookService”>
 <port name= “BookServicePort” binding=
“BookOrderSOAPBinding”>
 <address: location= http://order.book.com/>
 </port>
</service>

As is illustrated in the example, the message (OrderMsg) is defined by means of the

defined data types. Operations are subsequently defined using a combination of the

messages. In the example, the operation OrderBook consists of one message

OrderMsg. A portType definition includes a combination of operations. All these

elements detail the application-level specifics. The binding element specifies the

protocol bindings. In this example, it is detailed that the SOAP messaging with HTTP

protocol is used. After that a service element is used to detail the address at which

the service is accessible.

In brief, a WSDL document describes the service interface and the address at which

the service is accessible. These documents are included in the service directory as part

of the service descriptions. For a detailed description of WSDL, refer to [26].

 32

UDDI

UDDI is the specification for the Web Services registry facility. The specification

includes the facilities for registering, publishing, updating, modifying and searching

descriptions of Web services [66][36][73][61][5].

A service description is specified by using the XML data structures of the UDDI,

namely businessEntity, businessService, bindingTemplate and

tModel. The businessEntity data structure is used to register the details of the

organisation that provides services. The businessService data is used to convey

the services offered by the organisation. The bindingTemplate data structure

includes the binding details of the services. The tModel data structure is an

abbreviation for technical model, which is used to convey generic information about a

service [5][61].

When a tModel is referenced in a service description, it means that the service

complies with details of the corresponding tModel [5][61]. For example, consider

that there are standard industry-wide interfaces and bindings for electronic book-

ordering services. Then individual software components implementing such a service

can follow this standard description. In this scenario, a tModel for such a description

is registered and identified by a unique key in the UDDI. When a Web service

complies with this tModel, it is referenced using its unique key in the

bindingTemplate data structure of the UDDI registry entry [5][61].

The service registry in the Web Services framework is also modelled as a Web

service, which provides standard interfaces for performing various functions

associated with the registry. It also provides standard SOAP messages to support

registering, publishing, updating, modifying and searching descriptions of Web

services using different APIs. Two of these APIs are UDDI Inquiry and UDDI

Publishers [5][61]. Figure 3-5 below illustrates an abstract representation of the

service registry [5].

 33

 Figure 3-5: Abstract representation of the Web Services registry

In brief, the UDDI specification forms the core specification for the service registry in

the Web Services framework. For a detailed description of UDDI, refer to [12].

3.2.3 Added specifications of the Web Services framework

The core specifications of the framework are SOAP, WSDL and UDDI. Many

specifications were appended to the framework to add greater functionality to the

framework. For instance, the initial version of SOAP specification did not address any

security aspects. To address this issue WS-Security was proposed, which is an

extension of the SOAP specification to address the integrity and confidentiality issues

of SOAP messages [60].

The specifications in the Web Services framework can also be grouped into categories

to address security, messaging, reliable messaging, transactions, business and

management aspects [58]. Figure 3-6 summarises the available specifications

according to this grouping.

 34

 Figure 3-6: Specifications of the Web Services framework

The specifications that are further considered in this study are Business Process

Execution Language for Web Services (BPEL4WS) (discussed in Section 3.3.1) [7],

WS-Trust (discussed in Chapter 5) [6] and WS-Policy (discussed in Chapter 5) [9].

3.3 Composite services and service composition in Web Services framework

The Web service that utilises only one Web service to provide a service is referred to

as an elementary service. On the other hand, the Web service that utilises the

functionalities of two or more Web services to provide a service is referred to as a

composite service [5]. Each of the services in a composite service is referred to as a

constituent service, which in turn can be elementary or composite. The process of

creation, which includes specification and execution, of a composite service is called

service composition [5]. Figure 3-7 illustrates a composite service, which provides the

service of booking bus tickets.

 Figure 3-7: A composite service

In this example, Bus1 and Bus2 are elementary services, which are then utilised by

the composite service Combined Transport. Bus1 and Bus2 Web services

provide booking facilities for the respective bus services. However, Combined

Transport service utilises the functionalities of these two services so that users can

make bookings on either of the buses directly through this service. Here the

 35

combined Transport service is the service requestor, which is also referred to

as a directly interacting entity of the service providers Bus1 and Bus2. In a similar

way, User1 and User2 are service requestors of the Combined Transport

service. User1 and User2 are referred to as indirectly interacting entities of the

Bus1 and Bus2 Web services. Figure 3-7 above is only intended to illustrate the

possible interactions between different entities.

The process of service composition mainly forms part of the internal infrastructure of

the composite service, which is illustrated as the additional layer in Figure 3-2 [5].

Two significant elements of service composition are the specification and the

execution of the composite service based on the specification. The specification of the

service composition includes the constituents of the composite service, the order in

which they are invoked, data exchanged between the constituents, the control logic

and handling exceptions in the application. Such a specification defines how each of

the constituents contributes to the logic of the application that it is realising. The run-

time environment of the composite service uses this specification to execute the

appropriate application logic, which would include invoking appropriate constituents

and handling exceptions [5]. The run-time environment is part of the internal

infrastructure of the Web service and it is the responsibility of each service provider

to support such a system. On the other hand, the Web Services framework supports

the specification of service composition using the BPEL4WS specification [15][76].

3.3.1 Specification of service composition using BPEL4WS

The BPEL4WS specification is used to describe the business process implemented by

a service. In describing the process, it provides the ability to include other Web

services to accomplish the tasks described by the process. It also supports the

description of data exchange between these services, the control logic of the process

and exceptional handling in a process. In this specification, the interactions between

services are described as interactions between the WSDL interfaces [5][61][64][6].

Consider the composite service illustrated in Figure 3-7. The process of

accomplishing a booking enquiry can subsequently be abstractedly represented as

follows (Figure 3-8):

 36

Figure 3-8: Message sequence diagram for the composite service depicted in Figure 3-7

In defining this process (specified using the process element) in BPEL4WS, the

services that are utilised are specified using the partnerLink element. Such an

element is used to define the relationship between two interacting interfaces in the

process [5][61][64][7]. Here user and Combined Transport Service,

Combined Transport service and Bus1, and Combined Transport

Service and Bus2 each form a distinct partnerLink. For each

partnerLink, it defines the role of the participating interfaces from the perspective

of the service that implements the process. For example, in the partnerLink

defined for user and combined Transport Service, user takes the role of

“Requestor” and Combined Transport Service takes the role of the

“Provider”.

The BPEL4WS specifies the order in which the partnerLink is invoked by using

the constructs sequence, switch, pick, while and flow [5][61][64][7]. For

example, in Figure 3-8 Booking_Enquiry_1 will sequentially follow the

Booking_Enquiry invocation. Thus they are specified in the sequence

construct of the process. On the other hand, Booking_Enquiry_1 and

Booking_Enquiry_2 occur in parallel, which is specified in the flow construct.

The invocation of a service is specified using the invoke construct, where it can

specify which operation (as provided in the WSDL description) of the

partnerLink is invoked along with the data (specified in inputVariable) that

is provided to the operation. The receive construct is used to specify the data that

is expected from the operation of the partnerLink.

The above description of the process in BPEL4WS specification uses only a

limited number of constructs. In brief, BPEL4WS specification allows the description

 37

of a process in terms of the WSDL interfaces that participate to perform various tasks

in the process. For a detailed description of BPEL4WS, refer to [7].

3.3.2 Composite services: features and a classification

Service composition enables the creation of services that encompass several other

Web services. The service provided by a composite service involves multiple

interactions between different services according to the predetermined service

specification. Such a service need not reveal the constituent services and the possible

interactions to the service requestors [5]. Thus the interfaces provided by the

composite Web services are capable of abstracting different interactions in a

composite service. The service requestor of the composite service need not be aware

of the constituent services [70] or of the underlying interactions.

Service composition can realise complex and dynamic Web services. Here

complexity refers to the large number of constituent services and the possibility of

multilevelled indirect interactions that can occur within a composite service.

Composite services can also be dynamic considering the possibility of adding,

removing and substituting constituents without necessarily affecting all the

interactions in the service.

Let us consider another composite service that utilises the Combined Transport

Web service as one of its components. This composite service implements an

application to make reservations for a theatre show. According to the theatre

reservation, the service provides appropriate accommodation and travel enquiries.

Figure 3-9 illustrates the possible interactions in such a Web service, where all

constituent services are assumed to be Web services.

 38

 Figure 3-9: A composite service

The example illustrates the complexity of a composite service. There are thirteen

constituent services in the composite service to accomplish the specific application

and the application has multiple layers of interactions. The service requestor utilising

this composite service interacts with only one service namely, the Combined

Accommodation, Transport and Entertainment Web service. This

service acts as an entry point to the whole application and the multilevelled

interactions can be hidden from the user entity. When the user entity interacts with

the Combined Accommodation, Transport and Entertainment Web

service, it triggers a number of other interactions, which cause multiple software

components to be executed, possibly across different network locations and

organisational boundaries [57][70].

Composite services are capable of utilising various services but every service

invocation need not result in the utilisation of all the constituent services. For

example, the Combined Accommodation, Transport and

Entertainment service can provide interfaces to utilise a subset of the services,

for instance, an interface to provide just the entertainment and accommodation

service. Therefore, when a service requestor requests such a service at the composite

service called Combined Accommodation, Transport and

 39

Entertainment service, it will result in utilising only the constituent services,

Combined Transport and Combined Entertainment.

The composite service illustrated in Figure 3-9 can exhibit dynamicity. For example,

the Combined Transport Web service can deploy another credit card service

namely credit card3 for its credit card transactions. Such a replacement may

affect the interaction details of the Combined Transport Web service with this

credit card transaction module. Although this may not affect other interactions in the

service, it could affect the overall non-functional attributes of the service. For

instance, the performance of the service could be different after the modification.

The composite services can be classified into two categories based on the way in

which constituent services are coordinated. They are referred to as mediator and peer-

to-peer structure. In the mediator structure, a mediator is used to coordinate and

provide the overall service. The mediator also has the global knowledge of the

constituent entities and their interfaces. An example of this type is the composite

service illustrated in Figure 3-7. In the peer-to-peer structure there is no single central

service coordinating all the constituents. It also means that constituents have limited

knowledge of other constituents [43]. An example of this type is the composite

service illustrated in Figure 3-9.

3.4 Factors affecting trust establishment and trust negotiation in the composite

service scenario

The features of the composite service described in the previous section cause the trust

establishment to be quite distinct compared from the trust establishment with an

elementary service. This section contains a list of some factors that influence trust

establishment with the composite service.

Context

As mentioned in Chapter 02, the information required to build trust is based on the

context. For example, when the context of trust is the reliability of the service, this

may require some information about the reliability of all the constituent services.

When the context of trust is the security of the credit card transaction performed by a

composite service, this context does not require relevant information regarding all the

 40

entities in a composite service; instead only information pertaining to a set of services

that handle credit card transactions is required. This means that the context influences

the information collected and the number of constituents from which the information

is collected.

Complexity

A complex composite service can make use of any number of constituent services to

realise the ultimate service. When the complexity increases, the number of indirect

interactions and the depth of the levels of interaction may increase. When the

complexity increases based on the context, there will be an increased number of

entities from which the information is collected. In such a case finding out from

which entities the information needs to be collected gets complicated- especially in a

peer-to-peer structure, where constituents have only partial knowledge about other

constituents.

Anonymity

In a composite web service, the identity of constituent services may not be made

known to the user entity. This presents a problem to any user who wants to establish

trust with the service, because information needs to be collected from the constituents

but the user is not aware of the constituents in such a service.

Dynamic behaviour

Dynamic behaviour refers to the fact that constituent services could be added to,

deleted from and substituted in the composite service at any time. When such changes

occur, they can influence the trust values of different entities. Composite services are

capable of changing dynamically in many different ways that could affect the trust

values of different entities without changing much of the interaction details.

As trust negotiation is a process aimed at establishing trust, the negotiation procedure

for a composite service should handle the above factors appropriately. For a specific

context, the trust negotiation procedure should decide about the constituents with

whom the negotiation should be performed and about what should be communicated

to the negotiating entities. In order to decide on the negotiating entities, which can be

a subset of the constituent services based on the trust context and information

 41

collected, there should be techniques to resolve the issues of anonymity and

complexity in a composite service. The dynamicity also influences the frequency at

which trust negotiation needs to be performed with the composite service.

3.5 Conclusion

The Web Services framework aims to provide interoperability by standardising

interfaces and communication between software components. Many standards are

developed in this framework to achieve the set goal. One of the distinct outcomes of

using the framework is the possibility of accomplishing composite services. Although

such services can realise complex applications they cannot be viewed as a single

unified entity due to the fact that their constituents can be of different

implementations from different providers and they can vary in their capabilities. This

makes the trust establishment with the composite service distinct. Depending on the

trust context, the trust relationship with the composite service should encompass the

trust relationships with their constituents. Factors such as complexity, anonymity and

dynamicity should be considered in the trust establishment process, since they

influence the trust negotiation procedure with the composite service.

 42

CHAPTER 4
TRUST NEGOTIATION CONCEPTS AND AN ANALYSIS OF

THE CURRENT NEGOTIATION SYSTEMS

4.1 Introduction

In a trust negotiation, entities disclose or exchange information in a systematic order

to prove their trustworthiness [82][74][67]. This systematic order may vary from one

negotiation to the next based on the participating entities, the trust context for which

the negotiation is performed and the sensitivity of credentials exchanged.

One of the common applications of trust negotiation is to implement access control

procedures [17][71][82]. These trust negotiation systems have a strong basis on

existing security systems such as public key certificates and trust management. Hence

it is possible to present an abstract comparison between public key certificate systems,

trust management systems and trust negotiation systems in terms of their key elements

and the way in which they are utilised in access control procedures.

One of the key elements of a trust negotiation system is digital credentials. Digital

credentials follow the underlying principles of certificates in public key certificate and

trust management systems. When a public key certificate binds a public key to an

entity, a certificate in a trust management system binds a public key to the access

rights of an entity. In a trust negotiation system, the capability of a certificate was

extended to express various attributes of entities using a predetermined vocabulary.

Trust management systems were introduced to realise an access control mechanism

that uses capability-based certificates in a more flexible manner than the public key

certificate framework, which uses identity-based certificates [21][22]. On the other

hand, the trust negotiation concept was introduced to implement an access control

procedure that uses general attribute-based certificates [16].

From the perspective of implementing access control procedures, both trust

management and trust negotiation systems try to resolve the access rights of an entity

by analysing the set of revealed credentials to prove that an entity may obtain access

to a resource. Both these systems use policies and credentials as basic elements but

they differ significantly in the type of credentials used and how the credentials are

exchanged. This difference is discussed later in Section 4.2. Examples of trust

 43

management systems are PolicyMaker, KeyNote, REFREE, Delegation Logic and

simple public key infrastructure/simple distributed security infrastructure

(SPKI/SDSI) [82]. Examples of frameworks that are based on trust negotiation

principles are TrustBuilder, Trust-X, Trust-Serv, PRUNES, IBM Trust Establishment

Framework, RT framework and the framework in [24].

As discussed in Chapter 2, security is just one among many possible trust contexts. In

this study, the trust negotiation is therefore not examined with respect to any specific

security application. Instead, the goal is to generalise the trust negotiation concept so

that it can be used for negotiating trust in any context. Trust negotiation can indeed be

used to establish access control mechanisms in a similar way that it can be used for

other applications, for example to compare various services.

A trust negotiation is based on certain guidelines of the participating entities that

possess attribute-based credentials to describe them. The essential elements of such a

negotiation, as will be discussed in Section 4.3, are digital credentials, policies and

negotiation protocol and strategy. Digital credentials are employed to state

information about an entity in terms of its attributes and characteristics that are

digitally signed by third parties [16][82]. Thus these credentials function as templates

for communicating various aspects about entities in a negotiation. The role of policies

is to guide a negotiation in terms of the credentials required from the participating

entities, the evaluation schemes for various credentials, the disclosure policies for

revealing one’s own credentials and the setting of threshold values for the trust

computation scheme. The negotiation strategy defines the order of credential

exchanges in such a way that a trust negotiation can be theoretically achieved [82].

Such strategies are significant in cases where credentials are sensitive and protected

by disclosure policies. The role of the negotiation protocol is to define the semantics

and ordering of messaging required for a trust negotiation.

When analysing the current negotiation systems in terms of these essential elements,

many of them focus on a subset of these elements. For example, PRUNES provides a

certain negotiation strategy [85]. On the other hand, Trust-X provides support for

policies, credentials and negotiation strategies [19]. In addition to support for essential

elements, a number of the existing trust negotiation systems provide system

 44

architecture [17][72][82], which describes the structure and implementation of the

trust negotiation system.

Most of the existing negotiation systems focus on the trust negotiation between two

entities and do not consider the composite service scenario where there is more than

one independent service. The only two systems that take this into consideration are

Trust-Serv and Trust-X. Trust-Serv simply identifies the requirement to unify policies

of constituent services into the policy of the composite service [71]. On the other

hand, Trust-X provides an abstract procedure for negotiating with the composite

service [19].

The aim of this chapter is to discuss the concept of trust negotiation in detail, as well

as to analyse the existing trust negotiation systems. This analysis is based on their

support for essential elements of generic trust negotiation and for trust negotiation

procedure in composite services. A brief summary of the evolution of trust

negotiation systems is provided in Section 4.2. This discussion is aimed at providing a

background to public key certificates and trust management systems, and at pointing

out some commonalities and differences among these and trust negotiation systems.

The concept of trust negotiation and its essential elements are next discussed in

Section 4.3. In Section 4.4, the essential functionalities that should be supported by

trust negotiation systems are summarised. The existing trust negotiation systems are

introduced in Section 4.5, followed by an analysis to examine their support for the

essential elements of general trust negotiation. The analysis also contains a discussion

on how these systems support negotiations in a composite service scenario. The

chapter is rounded off by a conclusion in Section 4.7.

4.2 Evolution of trust negotiation systems

In access control procedures, public key certificates can be used to identify the public

key of an entity. The access rights of that public key are then determined by the

application that receives the certificates [21].

Trust management systems were introduced to extend the ability of certificates to

directly convey the access rights of a public key instead of binding the public key to

an identity [21]. The goal of this extension is to implement more flexible access

 45

control and authorisation systems. Application of these systems occurs in large

distributed systems, where it is not feasible to be familiar with all the entities and to

determine their access rights in advance [22]. Instead the systems rely on certificates

issued by authorities that are capable of authorising an entity for a specific action.

Here the credential issuer has some preexisting relationship with the credential owner.

An example of such a relationship is that they belong to the same security domain.

The key difference between public key certificate systems and trust management

systems is the way in which the access permissions are determined for a specific

public key. Using a public key framework, an entity determines that the public key

indeed belongs to an identity and, by using a predetermined access control list, the

access rights of a key are determined [22]. In a trust management framework, access

rights are directly mapped to a public key based on the certificates of an entity. From

the perspective of access control procedures, public key systems are suitable in a

system where the number of entities is relatively small and the access rights can be

previously determined beforehand. On the other hand, trust management systems are

suitable in a large decentralised system with several security domains, where it is not

realistic to determine the access rights of all the entities prior to an actual service or

resource request [22].

Two of the essential elements of a trust management system are policies and

credentials. The policies in a trust management system specify the actions permitted

by certain public keys and/or delegate this task to trusted third parties. Such a system

uses credentials to express the authorisation of a key to a task. It can also contain the

delegation of this task to a trusted third party. Thus, in a trust management system,

when requesting for a resource r, the system examines whether the set of credentials

C prove that the request R complies with the policy P [22]. Consider a simplified

example:

An entity A has a security policy that delegates the task of giving access to Resource
R1 to a trusted third party T1. Requestor B, requesting for the resource R1, has to
obtain a credential from the third party T1. When requesting for the credential at T1,
B receives a credential C1, which delegates the task of authorising access to R1 to
another trusted third party T2. Assume that the third party T2 issues a credential, say
C2, which authorises B to gain access to the resource R1. Now, B can submit
credentials C1 and C2 to A for obtaining resource R1.

 46

In the above example, A evaluates C1 and C2 with its policy in order to find an

appropriate chain of credentials to grant B access to R1.

The functionalities of a trust management system are centered on the specification and

interpretation of policies and credentials [22]. A number of systems exist that utilise

the principles of trust management, where some provide full implementations of a

trust management system and others provide partial support, such as policy and

credential language. As mentioned earlier, examples of systems that are based on the

trust management principles are PolicyMaker, KeyNote, simple public key

infrastructure/simple distributed security infrastructure (SPKI/SDSI), REFREE and

Delegation logic [82].

For demonstration purposes, the PolicyMaker language is chosen to briefly discuss

policy and credential structure in trust management systems. In this language, policies

and credentials are expressed as assertions. The general structure of an assertion is as

follows:
Source ASSERTS AuthorityStruct WHERE Filter

The Source field of an assertion contains the public key of a third party when it is a

credential, or the keyword policy to represent a policy. The AuthorityStruct

field contains the public keys for which the assertion is applied. The Filter field

represents a predicate that should be satisfied for the requested action, to make the

assertion valid [39][21].

Consider a simple policy in PolicyMaker that states that the public key 0xfabc0001

is allowed to authorise entities to access Resource R.
policy ASSERTS 0xabcf0001 WHERE predicate= “Expression 1”

A credential that expresses a valid authorisation of the public key 0xfffa1111 to

access Resource R is:
0xabcf0001 ASSERTS 0xfffa1111 WHERE predicate= “Expression 2”

Expression 1 and 2 specified as predicates are explicit conditions that should be

satisfied in order to activate the assertions.

 47

Based on the above policy and credential, by presenting the following query to the

PolicyMaker interpreter, 0xfffa1111 REQUESTS R should return true if

Expression 1 and Expression 2 of the above policy and credential are satisfied [39].

In trust negotiation systems, certificates describe various characteristics of an entity.

These certificates are referred to as general purpose digital credentials, which conform

to accepted vocabularies to describe attributes of an entity. The following XML code

fragment represents such a credential [55].

<credential type="formal" name="ISO9000">
<business uri="..."/>
<authority uri="..."/>
<!--Elements to further describe the entity or credential-->
<issue date="2002-12-31"/>
<expiry date="2004-01-31"/>
<valid/>
</credential>

Trust negotiation systems realise a more flexible access control procedure than those

realised by trust management systems. Therefore, instead of making access control

decisions based on identity or capability, the negotiation systems uses attributes of an

entity to determine access rights [81]. The attributes are stated in credentials and

entities use these credentials to describe their attributes.

When comparing public key frameworks, trust management systems and trust

negotiation systems, all these systems employ credentials. However, the content of the

credentials vary in each system. The public key framework uses credentials to convey

a trustworthy copy of an entity’s public key. The trust management systems use

credentials to communicate the access rights of a public key while trust negotiation

systems use credentials to communicate attributes of an entity.

When comparing policy structures, trust management systems bind public keys

directly to access rights or delegate this task to a third party. This delegation logic is a

key aspect in the policies of these systems. In the case of policy structures (discussed

further in section 4.3) used in a trust negotiation system, it expresses access rights in

terms of the attributes of an entity. Even though third parties are used to issue general

purpose credentials, the task of authorising an entity is not delegated to a third party.

In trust management systems, the set of credentials is used to examine whether an

 48

entity has access to a resource. On the other hand, in trust negotiation systems the

credentials are used to examine whether an entity has the desired attributes and access

rights can then be determined later based on the attributes of the entity.

For establishing trust in a general perspective, negotiation systems are more suitable

than trust management systems and public key frameworks. This is because trust

management systems and public key frameworks implement concrete security

applications, while trust negotiation systems can be used for trust negotiations in any

context. This obviously makes trust negotiation systems suitable for implementing

diverse applications.

4.3 Essential elements of trust negotiation

Digital credentials

In trust negotiations, the attributes of entities are presented and conveyed by means of

general purpose digital credentials [81][16]. These credentials describe the attributes

of the credential owner using a predetermined vocabulary. The following code

fragment represents a possible credential.

<credential type="formal" category="Certificate">
<issuer uri="..."/>
<QualityOfService>
<!--Elements to further describe Quality of the service-->
</QualityOfService>
<issue date="2002-12-31"/>
<expiry date="2004-01-31"/>
<valid/>
</credential>

The credentials are issued and digitally signed by authorised third parties [82][16].

For example, a credential that states an entity to be a valid credit card processing

authority can only be valid when it is issued and signed by a globally accepted

credential authority. On the other hand, a globally accepted credential authority need

not sign recommendations in the form of a credential about an entity. It can be signed

by the entity that issued such a credential, as long as the participating entity in the

negotiation can resolve the credential signature.

 49

Policies

Based on each entity’s guidelines, referred to as policies, and the trust computation

scheme, a certain number of credentials are required from the participating entities in

a negotiation. These credentials are then evaluated by the entity or by third parties to

determine a trust value in a specific context. The evaluation scheme and the threshold

value for trusting the entity are also based on the policies of the negotiating entity. For

instance, consider the policies of an entity, referred to as A, participating in a trust

negotiation.

Policy1: TrustNegotiation[(Credential1, Credential2,

Credential3), ParticipatingEntity]
Policy2: TrustComputation [(Credential1, Credential2,

Credential3)] > (ThresholdValue=N)

Policy1 states that in the trust negotiation, credential 1, 2 and 3 should be

obtained from the participating entity. According to Policy 2, these credentials

should be given as parameters to the trust computation scheme (see Section 2.5,

Chapter 2). It also specifies that the computed trust value should be greater than the

threshold value in order to consider it for an application or for further evaluation. The

policies given above are partial descriptions of certain aspects of trust negotiation and

they do not follow any policy language.

On the other hand - digital credentials may have sensitive information that cannot be

revealed unconditionally to other entities. These credentials are therefore protected by

disclosure policies, which outline the conditions under which a credential can be

revealed [16][19]. The conditions involved can be specified in terms of the credentials

of the participating entity that must be revealed or collected at a specific state of

negotiation [16]. The conditions can further state the attribute values of the credentials

revealed so far, or even a threshold trust value based on the evaluation of the

credentials revealed so far by the participating entity. Consider that the entity A has a

set of credentials named Credential 1, Credential 2, Credential 3,

Credential 4 and Credential 5. Consider that Credentials 2, 4 and 5

contain some sensitive information and they are protected by disclosure policies.

Policy3: REVEAL:Credential2 [(Credential1),

ParticipatingEntity]

 50

Policy4: REVEAL:Credential4 [((Credential1, Credential2),
ParticpatingEntity)& (Credential1<attribute1= “..”>]

Policy5: REVEAL:Credential5[<Credential1, Credential2>,
ParticipatingEntity) &
(TrustComputation[Credential1, Credential2] >
Threshold)]

Policy 3 states that in order to reveal Credential 2 of A, the participating

entity should reveal Credential 1. Policy 4 states that in order to reveal

Credential 4, the participating entity should reveal Credentials 1 and 2.

This policy places an additional restriction on credential 1, which states that the

given attribute should match a specific value. Hence it is not sufficient to just reveal

two credentials but they should also satisfy the attribute constraint to get access to

Credential 4. In contrast, Policy 5 states that to reveal Credential 5, the

trust value resulting from the evaluation of Credentials 1 and 2 should be

greater than the threshold value.

In a negotiation, parts of the policies will be communicated to the participating entity.

For instance, based on policy 1, Credentials 1, 2 and 3 will be requested

from the participating entity. It is not necessary that the policy be sent as it is; it can

be modified to convey only the essential aspects. Thus, if the participating entity

requests for Credential 4 of entity A, it may not reveal the complete disclosure

policy, Policy 5. This is because Policy 5 states the credentials required from

the participating entity along with the evaluation of the credentials. The entity may

not want to reveal how these credentials are evaluated. Hence revealing a complete

policy is dependent on the strategic decision of the respective participating entity.

In a trust negotiation, the credentials that are required from the participating entity for

the establishment of trust are referred to as trust requirements. Likewise, the

credentials that an entity possesses, which can be used by the participating entity to

evaluate its trustworthiness, are referred to as trust resources. According to the policy

descriptions (Policy 1 and 2) of the entity A, Credentials 1, 2 and 3 are trust

requirements and Credentials 1, 2, 3, 4 and 5 are trust resources.

When policies contain sensitive information and it is essential to reveal them in full

then entities may set restrictions on revealing such policies [68]. In the same way as

digital credentials are protected by disclosure policies, policies can also be protected

 51

by disclosure policies. These disclosure policies may state the credentials revealed so

far, as well as the attributes and evaluation outcomes of the credentials, to reveal a

confidential policy.

It is important to note that trust negotiation is a procedure aimed at evaluating

trustworthiness. Therefore, revealing all the credentials need not guarantee trust

establishment and these credentials need to be further evaluated by the participating

entities to define trust relationships.

When credentials have disclosure policies attached to them, negotiations are intricate.

This is because every time a credential is requested, the disclosure policies need to be

satisfied before it can be revealed to the participating entity [17][82][85]. Consider an

example where two entities, namely A and B, are involved in a trust negotiation. It is

assumed that A and B have a set of credentials to describe their attributes.
A← {Credential1, Credential2, Credential3, Credential4,

Credential5}
B← {Credential1, Credential2, Credential3}

The policies of A for the negotiation are Policy 1 and Policy 2 given above.

The policy of B is stated as follows:
Policy1: TrustNegotiation[(Credential5), ParticipatingEntity]

The policy states that Credential 5 is required from the participating entity.

Consider the scenario where the credentials of both the entities are not protected by

any disclosure policies. When B is initiating the negotiation, a possible negotiation

sequence can be represented as follows:

Figure 4-1: Sequence of credential exchange in a trust negotiation

Consider the same negotiation when the credentials are protected by disclosure

policies. The disclosure policies of A are Policies 3, 4 and 5 given above. Let

Credential 3 of B be protected by the following policy:

 52

Policy 2: REVEAL:Credential3 [(Credential1),
ParticipatingEntity]

A possible negotiation sequence can be represented as follows:

Figure 4-2: Sequence of credential exchange in a trust negotiation when credentials are
sensitive

Comparing Figures 4-1 and 4-2, it is evident that when credentials are protected by

disclosure policies, the negotiation may not be straightforward and it might entail

more credential exchanges [85]. Since these representations of negotiations are meant

to demonstrate only the sequence of credential exchanges other aspects related to trust

establishment, such as the credential evaluation, have been omitted from the diagram.

Negotiation protocol

Besides digital credentials and policies, another significant element of trust

negotiation is the negotiation protocol. A negotiation protocol should enable a

common understanding of negotiation among participating entities [31]. To achieve

this, such a protocol should define the semantics along with the structure and ordering

of negotiation messages. The protocol should be able to provide negotiation

constructs for all the possible requirements of a negotiation, which includes

requesting for a credential, revealing a credential, reporting a successful negotiation,

revealing multiple credentials and revealing a complete policy. For example, based on

Figures 4-1 and 4-2, the negotiation protocol defines the message semantics for

Request and Reveal along with the content of these messages. It can also state the

respective response messages of each message. A response to a Request message

 53

can therefore be a Reveal, Request, Error, or Request and Reveal

message.

Negotiation strategy

The aim of a negotiation strategy is to suggest a possible credential disclosure

sequence that may result in a successful negotiation. The strategy is important

because there is no significance in exchanging credentials if the negotiation is not

theoretically achievable. The credential sequence is determined by evaluating policies

of the participating parties [17][82][85]. Consider for instance the requirements of two

entities participating in a negotiation as illustrated below.

Entity A:
Credentials of A:
A← {Credential1, Credential2, Credential3}
Disclosure policies of A:
REVEAL: Credential2[(Credential3), ParticipatingEntity]
REVEAL: Credential3[(Credential1), ParticipatingEntity]

Consider that A requires Credential1, Credential2 and Credential3
from the participating entity in a trust negotiation.
TrustNegotiation[(Credential1, Credential2, Credential3),
ParticipatingEntity]

Entity B:
Credentials of B:
B← {Credential1, Credential2, Credential3}
Disclosure policies of B:
REVEAL:Credential1[(Credential3), ParticipatingEntity]

Assuming that A starts the negotiation, it will request for Credentials 1, 2 and 3

of B. B can reveal Credential 2 and 3 but not 1, because it has a disclosure

policy attached to it. According to B’s policy in order to reveal Credential 1, A

should reveal Credential 3. Hence B will request for Credential 3 of A but

A’s policy states that Credential 3 cannot be revealed without receiving

Credential 1 of B. This creates a deadlock and negotiation cannot be carried out

successfully, assuming that there are no alternative policies. As the example

demonstrates, there is no significance in exchanging credentials if there is no feasible

credential disclosure sequence.

 54

When there is more than one possible credential disclosure sequence based on the

entity’s preferences, the strategy should be able to put forward the sequence with

minimal credential disclosure, so as to avoid unnecessary disclosures

[16][17][82][85]. A credential disclosure sequence presents a possible way of

conducting a negotiation and not a successful trust relationship.

4.4 Trust negotiation system

A trust negotiation system is an abstract component that performs all aspects of trust

negotiation in a trust system. This section contains a discussion of the main

components and functionalities of a trust negotiation system in terms of the essential

elements of the trust negotiation.

Policies constitute the core element of any trust negotiation. In [17][19], the collection

of disclosure policies is referred to as a policy base. We generalise the term policy

base, to refer to the collection of policies of an entity and it forms an abstract

component of the trust negotiation system. In a trust negotiation, only certain aspects

of a policy are revealed to the participating entity. For instance, only trust

requirements are communicated to the participating entity and not the evaluation

scheme for the requested credentials. It is also possible that the policies are specified

by using a policy language that may not be in an interoperable format for

communicating with the participating entities. Thus, it might require converting

policies or even parts of policies into an accepted interoperable format [16] before

they are communicated to the negotiating party. This can be achieved by using a

translation system in the trust negotiation system.

The policies of a trust negotiation seldom remain the same for the entire life period of

a service. The change can occur in respect of any aspect, including the credentials

required, the evaluation schemes used and even the threshold trust values used. This

means that the trust negotiation system should be able to support the process of

updating policies and mechanisms to handle existing negotiations that are running

when the policies are updated. This functionality of a trust negotiation system is

referred to as policy management [71][72].

The management of credentials is another functionality of a trust negotiation system

[82]. Whenever credentials are submitted by the participating entity, these credentials

 55

have to be verified for validity. This process includes, among many aspects, verifying

whether the credential indeed belongs to the negotiating party and verifying that it has

not been revoked [16][17][82]. This component can be referred to as a credential

verifier. In some instances certain credentials may not be revealed by the negotiating

party; it might be collected from a third party. For example, the recommendation

credentials or certification credentials have to be collected from a credential

repository [16][72], and then the credential collection becomes another functionality

of the trust negotiation system.

Ideally every negotiation should be followed using a negotiation strategy, which

forms the basis for a credential disclosure sequence. The component of the trust

negotiation system that is responsible for analysing and presenting a feasible strategy

is referred to as the negotiation strategy module [82]. If a feasible strategy can be

theoretically put forward and accepted by the entities in the negotiation, then the

strategy module should steer a negotiation in terms of the credential requests among

the participants.

In order to increase the efficiency of negotiations, trust negotiations systems can

cache the negotiation strategy and the credentials revealed in a negotiation, so that

these can be reused in similar negotiations or in a negotiation with the same

participating entity for another context. In a similar way the trust negotiation systems

can support the functionality of caching successful trust negotiations so that it can be

reused in similar negotiations [16][17][19].

Among the existing trust negotiation systems, Trust-X, TrustBuilder and Trust-Serv

provide trust negotiation system architectures. However, these architectures differ

from each other in terms of their components, functionalities and abstract layout of

these components. A brief summary of the various architectures is presented in

Section 4.5.

4.5 Introduction and analysis of the current trust negotiation systems

The aim of this section is to introduce and analyse existing trust negotiation systems.

These systems are viewed in three aspects: its support for the essential elements of

negotiation; the trust negotiation system architecture; and the systematic procedure for

performing negotiations using the essential elements and the system architecture.

 56

Afterwards an analysis is presented to show the extent to which each system supports

generic trust negotiations in a composite service scenario.

4.5.1 Current trust negotiation systems

The frameworks that are included in the section are Trust-X, TrustBuilder, Trust-Serv,

IBM Trust Establishment (TE) Framework, PRUNES, RT Framework and the

framework in [24]. Although these systems have their basis in the trust negotiation

principles not all of them have a system architecture.

4.5.1.1 Trust-X

Trust-X is an XML-based framework for trust negotiations to support the process of

iterative disclosure of credentials to establish trust. The purpose of trust negotiations

in this framework is to implement access control procedures in order to establish trust

between entities even when they do not have prior knowledge of each other. The

framework works in a system where every entity can independently initiate and direct

a negotiation. For this purpose, each entity is equipped with its own trust negotiation

system and manages its own credentials and disclosure policies. This framework

provides support for negotiating strategies, and the specification of policies and

credentials [17][19].

Trust-X introduced an XML-based language named X-TNL for specifying both

credentials and policies. A credential in Trust-X is referred to as Trust-X certificate,

where credentials are grouped into different types and each type is defined as a

distinct DTD (document type definition). Thus, a valid credential is an XML instance

of the specific DTD. By means of unique credential types, each credential is uniquely

defined to convey the same semantics among the entities [17][19][18]. The following

example illustrates the XML encoding of a Trust-X credential that represents a digital

library card [19].

<Library1 credID=’1234’, SENS=’ NORMAL’>
<Issuer HREF=’http://www.DigitalLibrary.com’
Title=DigitalLibrary_Repository>
<name>...</name>
<address>..</address>
<card-number code=345/>
<e_mail>..</e_mail>
<position>...</position>

 57

</Library1>

The disclosure policies are also encoded in XML, which are specified as policy rules.

The policy rules are expressed in terms of the credentials received from the

participating entity and the constraints on the credentials to reveal a credential or

grant access to a service. The rules also support specification of disclosure policies for

policies, in the form of preconditions to restrict disclosure of sensitive policies [18].

The following XML fragment shows a simple policy using X-TNL.

<PolicySpec>
<properties>
<certificate targetCertType=Library1>
<certCond> /…/ [position = professor]</certCond>
</certificate>
</properties>
<resource target=”Online_Collections”/>
<type value=’SERVICE’/>
</PolicySpec>

This policy states that in order to access the Online_collections service, the

requestor should provide credential Library1. This credential will be examined to

check if the position element contains the value professor in order to give

access to the service.

Trust-X also supports negotiation strategies. Therefore, before credentials are

exchanged in a negotiation, a possible credential sequence is determined. Such a

credential sequence is determined in the policy evaluation phase, which is explained

later in the ‘Trust-X negotiation procedure’ section. The exchange of credentials in a

negotiation is based on the credential sequence accepted by the participating entities

[17][19].

Trust-X negotiation procedure

A Trust-X negotiation is carried out between two entities that are described by a set of

credentials. A negotiation is carried out in different phases namely an introductory

phase, a policy evaluation phase and a credential exchange phase [17][19].

The introductory phase comprises of exchanging credentials that are specified in the

introductory policies. It is not necessary to have an introductory phase, but if

introductory policies are specified, then it is mandatory for the entities to satisfy these

 58

policies to set off a trust negotiation. The aim of this phase is to ensure that the

participating entities have mandatory attributes to access the service or resource. After

the successful completion of the introductory phase, the negotiation proceeds to the

policy evaluation phase. In this phase, the participating entity will disclose the

disclosure policies for the requested resource. The receiving entity will evaluate these

policies to examine whether the credentials specified in the policy are available. If so,

a response message is sent with disclosure policies that specify the credentials

required from the participating entity to satisfy the earlier request. If the credentials

are not available, then the participating entity reveals an alternative policy, if any. The

aim of this phase is to determine a possible credential disclosure sequence for the

negotiation. The third phase is the credential exchange phase, where credentials are

exchanged based on the credential sequence determined in the policy evaluation phase

[17][19].

If the negotiation was successful, then the negotiating parties issue trust tickets to

each other. These tickets are XML documents to describe a successful negotiation,

and they are presented in future negotiations to speed up the negotiation either by

skipping one or two phases in the negotiation or even the complete negotiation [19].

Trust-X negotiation procedure for composite services

One of the features of Trust-X is the trust negotiation procedure for composite

resources. When a resource R consists of n number of resources (each being

elementary or composite), a successful negotiation with R represents successful

negotiation with all n of its constituent resources [19].

In this procedure, when a composite resource is requested, the negotiation starts with

the root element. The introductory and policy evaluation phases are executed with the

root element and, if feasible, a possible credential sequence is determined. If a

possible credential sequence can be determined with the root resource, the requestor

performs the introductory and policy evaluation phase with the next resource in the

composite resource R. Thus, if credential sequences can be determined for each

resource, then a credential exchange phase is executed with each resource in the

composite resource R according to the determined credential sequence [19].

 59

Trust-X negotiation architecture

The proposed architecture for the Trust-X negotiation system is illustrated in Figure

4-3 below [17][19]:

Figure 4-3: Architecture of Trust-X negotiation system

The main components of the architecture are the policy base, X-Profile, Tree

Manager, Compliance checker and Sequence prediction module. The policy base

represents the disclosure policies of an entity, whereas X-Profile represents its set of

credentials. The tasks of the compliance checker is to check if the credentials in the

X-Profile satisfy the policy of the participating entity in the policy evaluation phase

and to formulate a response message based on the participating entity’s request and

credential verification. The role of the Tree Manager is to maintain the credential

sequence determined in the policy evaluation phase and to guide the credential

exchange phase according to the predetermined credential sequence. This architecture

has a sequence prediction module, which aims to predict credential sequences by

caching the credential sequences, for example, from previous negotiations [17][19].

4.5.1.2 TrustBuilder

TrustBuilder is a trust negotiation system for implementing access control mechanism

for applications on the Internet. The aim of the system is to allow two previously

unknown entities to establish trust by the iterative disclosure of credentials. This

framework utilises the existing credential frameworks and policy languages. For

example, X.509v3 attribute certificates and signed XML statements are used as

 60

credentials and policies are specified using TPL (see Section 4.5.1.4) [82]. The

contribution of this system is its support for negotiation protocol and strategies.

The negotiation protocol aims to define message ordering for trust negotiation. The

following statements illustrate an abstract structure of a message defined in the

protocol [82].

TrustBuilder_next_message(m,R){
Let M be the message sequence so far
Let L be this party’s local resources and policies
m’=Local_strategy(M,L,R)
Send m’ to the other party
TrustBuilder_check_for_termination(m’,R)
}

The above message structure is used to formulate a message to a participating entity.

The content of such a message is based on the sequence of messages exchanged

between the entities so far, its local resources (credentials) and policies. In this

system, the exchange of credentials is based on the predetermined credential sequence

using the negotiating strategy. When there is more than one possible sequence the

implementation allows the entities to choose among different sequences based on its

preference for a negotiation. For example, the entity can choose a sequence with less

credential exchange [82].

TrustBuilder negotiation procedure

In this negotiation model, the negotiation is carried out by a different component

referred to as a security agent for each participating entity[82]. Appropriate policies

for the requested resource, service or credential are exchanged between the security

agents in order to obtain successful credential sequences. Based on a sequence,

credentials are exchanged to get access to a resource, service or credential [74].

TrustBuilder negotiation architecture

Figure 4-4 below [16] represents the architecture for the TrustBuilder system. The

core components of this system are the compliance checker, the negotiation strategy

module and the credential verification module. The compliance checker verifies that

the credentials revealed by the participating entity satisfy a policy and that they also

satisfy the participating entity’s policies to determine the credential sequence for a

 61

negotiation. The negotiation strategy module is used to steer a negotiation, based on

the predetermined credential sequence. The credential verifier verifies the credentials

revealed by the participating entities [82].

 Figure 4-4: Architecture of TrustBuilder negotiation system
4.5.1.3 Trust-Serv

Trust-Serv is a trust negotiation framework proposed for Web Services. This

framework also views trust negotiation as a mechanism for implementing access

control procedures. The trust negotiation is presented as a better approach to

traditional access control mechanism in the Web Services environment due its

dynamic nature and the large number of requesting entities. This framework presents

a model for specifying policies and for the lifecycle management of policies [71][72].

The lifecycle management of policies in a trust negotiation context is not discussed in

other frameworks.

In the Trust-Serv framework, the policies are modelled using state machines, where

states represent the protected resource and the transitions between these states

represent the credentials required to access the resources. The policies describe the

resources that can be revealed at a certain point of negotiation. These resources can be

protected services, resources or even the sensitive credentials of the negotiation entity

[72]. The following state diagram illustrates a policy that is described by using state

machines.

 Figure 4-5: A policy described using state machines

 62

According to the state diagram, Credential 1 and Service 1 can be accessed

without any credential submissions. In order to access Service 2, the participating

entity has to reveal Credential 1 and the attribute value of the credential should

match the one specified in the transition. If the participating entity reveals

Credential 2, then access to Service 3 and Credential 4 is granted. If

the participating entity has already reached the state marked B, revealing

Credential 3 will allow access to Services 4 and 5.

The second aspect of the framework is its support for the management of policies. For

this, it provides strategies for updating policies and migrating ongoing negotiations to

the updated policies. The three suggested ways of migration are concurrent to

completion, migration to new policy and abort. In the concurrent to completion

strategy, all the current negotiations are completed according to the existing policy

and the updated policies are used only in the new negotiations. In the migration to

new policy, all the existing negotiations are moved into the new policy. In doing so,

certain credentials exchanged will not be valid any more and in some cases the

existing negotiations have to restart from the beginning. In the abort strategy, all the

negotiations are cancelled and new negotiations are started with the updated policy

[71][72].

Trust-Serv also uses attribute-based credentials but does not provide a credential

specification. Instead, it uses the existing credential structures such as SAML,

X.509v3 and SPKI [72]. The Trust-Serv framework uses SOAP as the negotiation

protocol but it does not provide any details of the negotiation message structure.

Moreover, it does not put into perspective the extent to which the standards provided

by the Web Services framework can be used for trust negotiations.

In terms of composite services, it is pointed out that there are problems in formulating

policies for such services. One of the problems is formulating policies for a composite

service, which should encompass policies of the constituent service. Another problem

is validating a policy when a requestor reveals a credential to the composite service,

which entails the process of ensuring that the policies of all the constituent services

are satisfied before a service is granted [71].

 63

Trust-Serv negotiation architecture

The Trust-Serv system provides a system architecture, which is depicted in Figure 4-6

given below [72]:

 Figure 4-6: Architecture of Trust-Serv negotiation system

The system components are the negotiation modeler, control tables, negotiation

controller, credential collector and verifier. The negotiation modeler is a tool to assist

policy developers to specify and modify policies using state diagrams. These policies

are converted into XML format, and they are collectively referred to as control tables.

The component credential verifier performs the verification of the submitted

credentials of the requestor. Unlike other negotiation systems, this architecture

includes a credential collector component, which collects credentials of the

participating entities in case the credentials are not managed by the participating

entities. The negotiation controller controls the negotiation, receives messages from

the requestor, requests for credentials and gives access rights based on the control

tables. In this architecture, the credential collector and verifier may be independent

Web services [72].

4.5.1.4 IBM trust establishment (TE) framework

The application of this proposed framework is to support role-based access control

procedures by using attribute-based certificates specifically in an e-commerce

environment [44][39].

One of the aspects of this framework is an XML-based policy language named Trust

Policy Language (TPL). In this language, a policy is formulated by defining different

groups of members. To be considered as a group member, requesting entities should

submit certificates and the policy could state the conditions under which the

certificates are valid. Such conditions include specific attribute values in the

 64

certificate and inclusion of external functions to evaluate the revealed certificates.

Thus, when a user submits certificates, they are evaluated according to the policies

and the requesting entity is classified into a group. Based on the group, access rights

are given [44][16]. The following is a simple policy specified using TPL.

<POLICY>
<GROUP NAME=”Group1”>
<RULE>
<INCLUSION ID= “EmpIDCert”, TYPE= “EmployeeID”, FROM=
“EducationInstitution”/>
</RULE>
</GROUP>

<GROUP NAME=”Group2”>
<RULE>
<INCLUSION ID= “EmpIDCert”, TYPE= “EmployeeID”, FROM=
“FinancialInstitution”/>
<FUNCTION>
<AND><EQ>
<FIELD Position=”MANAGEMENT”/><FIELD Institution= “BANK-A”/>
</EQ>
</AND>
</FUNCTION>
</INCLUSION>
</RULE>
</GROUP>

</POLICY>

According to this policy there are two possible groups namely Group1 and Group2.

If the requesting entity submits an EmployeeID credential from an Education

Institution, it will be grouped into Group 1. However, to become a Group2

member, the EmployeeID certificate should be issued from a financial institution

and the fields Position and Institution in this certificate should match to

management and Bank-A respectively.

In TPL, a policy specifies the conditions under which the entity can be grouped into

specific groups and the mapping of groups into access rights is done separately [39].

The TE framework does not provide a credential specification, but it uses the existing

credential frameworks such as the X.509v3 attribute framework. This framework also

lacks support for negotiation protocol or strategy. Moreover, TPL does not make

provision for handling sensitive credentials or policies [16].

 65

4.5.1.5 PRUNES

PRUNES provide an algorithm for implementing a negotiation strategy, which

provides a credential sequence whenever feasible with minimum credential

disclosures. This algorithm takes into account the disclosure policies of credentials

and policies when it determines the credential sequence [85].

4.5.1.6 RT framework and the framework in [24]

The RT framework is a logic-based system that provides a set of languages that can

be used for specifying policies and credentials for implementing role-based access

control procedures. This framework has combined the concepts of role-based access

control systems and trust management systems. The concept of roles is taken from the

role-based access control system where the roles of an entity are determined by using

its attributes. These roles are then mapped into access rights. The concept of

credentials is taken from trust management systems. In this framework credentials are

used to certify the attributes of an entity. The system also delegates the authority of

certifying attributes to other entities. When an entity submits a set of credentials, the

RT system, based on its policies, evaluates the credentials to infer the attributes and

determines the roles of an entity [51][52]. A simple example, based on [52], is given

below.

An entity, say A, grants service S1 to entities that are preferred customers of its parent

organisation P and IEEE members. This policy can be logically stated as follows:

A.S1 ← P. PreferredCustomer ∩ IEEE.Member (1)

However, to be a preferred customer of the parent organisation P, the customer should

possess an Excellent Customer certificate, which is issued to outstanding customers.

This policy is represented as:

P.PreferredCustomer ← P.ExcellentCustomerCertificate (2)

For a requesting entity B to access the Service S1, it should have credentials that

convey the following:

IEEE.Member ← B (3)
P.ExcellentCustomerCertificate ← B (4)

The service entity A will grant S1 to B based on its policy (1) and P’s policy (2), and

by evaluating credentials 3 and 4.

 66

The framework in [24] provides support for implementing access control for service

access and for limiting information disclosure on the Web, using the principles of

trust negotiation. This is achieved by using attribute-based credentials and policies

that specify the access rights in terms of these credentials, and that disclose policies

and credentials. The contribution of the paper is that it provides a logic-based

language to reason about policies and credentials for service access and information

disclosure [24].

4.5.2 An analysis of the current negotiation systems

The current trust negotiation frameworks are summarised in Section 4.5.1. The

common aspect of these systems is that trust negotiation is mainly used to implement

access control procedures by using attribute-based credentials.

From the generic trust negotiation point of view, as discussed in Sections 4.1 and 4.3,

the role of credentials is to represent information about the entities. The concept of

attribute-based credentials used in the existing trust negotiation systems is appropriate

for the credentials in generic trust negotiations. All of the discussed systems employ

attribute-based credentials, where some of them provide their own credential

specification, for example Trust-X, and the others reuse the existing credential

frameworks, for example TrustBuilder.

In order to fully realise general purpose negotiations, more vocabularies for

credentials and trust contexts are required. Some examples are vocabularies to convey

Quality of Service, Reliability of services and new credential types (such as the

recommendation credential) to convey the recommendation of an entity about another

entity.

The role of the policies in generic trust negotiation is to guide a negotiation in terms

of credentials required from the negotiating entity limit the disclosure of own

credentials and policies and set preferences in computation schemes and threshold

values. Hence policies should form the ultimate authority in a trust negotiation

system. As the existing trust negotiation systems use trust negotiation to implement

access control, they limit the capability of the policies to express only what is required

from the negotiating entity and the disclosure policies for sensitive credentials and

policies. These systems do not use the concept of computing trust based on the

 67

credentials. Therefore they lack the flexibility to include the utilisation of external

functions, not just to validate a credential or attributes in a credential, but also to

include a computation scheme, which can consider, if required, factors such as risks,

cost factors and benefits to provide an all-inclusive trust value. The policies in a

general purpose trust negotiation should be able to express the invocation of functions

to perform such evaluations. Among the existing trust negotiation systems, the TPL of

the IBM TE framework provides for the facility to include functions to be utilised in a

trust negotiation [44].

A realistic aspect of a trust negotiation system is the possibility of limiting the

disclosure of sensitive policies and credentials. Most of the trust negotiation systems,

except IBM TE and Trust-Serv, include the notion of sensitive credentials and

policies. When credentials and policies are sensitive, the need for a negotiation

strategy to predetermine the credential sequence becomes necessary. This concept is

also addressed in existing frameworks like Trust-X, PRUNES and TrustBuilder. The

negotiation protocol is furthermore an essential element of trust negotiation and the

only system that addresses this in an abstract way is the TrustBuilder.

In terms of the trust negotiation system architecture, the three systems that provide

concrete structures are Trust-X, TrustBuilder and Trust-Serv. All these systems use

policies to guide the process of negotiation, but only Trust-Serv has taken into

account the process of managing policies. The systems that support negotiation

strategy modules are Trust-X and TrustBuilder. On the other hand, caching of trust

sequences in order to increase efficiencies of negotiations is included only in Trust-X.

All these three systems support credential verification functionality but only Trust-

Serv supports credential collection.

The lacking feature in all of these systems is an in-depth negotiation procedure that

can be used in a composite service scenario. The only two systems that consider such

a scenario to a certain extent are Trust-Serv and Trust-X. Trust-X provides an abstract

trust negotiation procedure for a composite service scenario, but leaves out the details

like policy composition, the coordination of negotiations with different elementary

services and how the dynamic nature could affect the negotiations. On the other hand,

in [71], it is pointed out that policy composition in composite services should be

based on the policies of its elementary services.

 68

Table 4-1 below presents a summary of the existing trust negotiation systems in terms

of their support for essential elements of negotiation, trust negotiation system

architecture and negotiation procedure for composite services.

Table 4-1: A summary of various trust negotiation systems

4.6 Conclusion

Trust negotiation can be viewed in a general perspective without binding it to an

application. Even though the existing negotiation systems are mainly used for access

control implementation, they can be reused extensively to implement generic trust

negotiations. However, these systems do not provide adequate techniques or

procedures for trust negotiations in composite service scenario. This suggests that

there is a need for negotiation procedures that work in a composite service scenario,

but which can also be applied for elementary services.

 69

CHAPTER 5
A FRAMEWORK FOR TRUST NEGOTIATIONS IN WEB

SERVICES

5.1 Introduction

As discussed in Chapter 4, a framework for trust negotiations in Web Services is

based on three facets: its support for essential elements of negotiation (digital

credentials, policies, negotiation protocol and negotiation strategy); negotiation

system architectures, and negotiation procedures that are suitable for elementary and

composite services. Some of these facets should be incorporated within the

framework and remaining by Web services itself.

Among the essential elements of trust negotiation, digital credentials and negotiation

protocol should be common to all Web services to facilitate trust negotiations. Thus

support for these two elements should be included in the Web Services framework.

With regard to specifying policies, Web services may deploy different policy

languages, but the aspects of the policies that are exposed to the negotiating parties,

e.g. trust requirements and resources, should adhere to an accepted specification. The

implementations to support negotiation strategy and negotiation system architecture

can be Web service specific. Likewise, the trust negotiation procedure can also be

service specific, but it should facilitate the use of the framework support for

negotiations.

In the Web Services framework, WS-Policy [9] is the policy specification standard

and WS-Trust [6] is the specification that closely fits the description of a negotiation

protocol. However, the Web Services framework does not have a digital credential

framework specification.

The Web Services Policy (WS-Policy) framework is an XML-based specification,

which provides the syntax to specify the policies of the Web services. In brief, the

policies are intended to specify two main aspects of a Web service: the service

requirements and the capabilities of the service provider. The service requirements

include the requisites that the intended service user must provide to utilise the service.

For example, the service requestor can state that the service provider must be able to

provide an X.509 certificate. The second aspect of WS-Policy is to state service

 70

capabilities, which refer to the properties or capabilities that emerge from the

configuration of the service. An example of service capability is the various facets of

the service to express the quality of the service provided. The set of encryption

algorithms supported by the service can also be considered as a capability [9].

As part of the service requirements specified in the service policy, the service

provider can state the credential issuers that it trusts to issue credentials. The intended

service user can therefore request and receive credentials from the specified

credential issuer. The WS-Trust framework specifies the syntax to support this

process of requesting and receiving credentials by using SOAP messages [6].

As discussed in Chapter 4, a trust negotiation policy specification should be able to

specify trust requirements and resources among various other aspects of negotiation.

The ability of WS-Policy to specify service requirements and capabilities suggests its

suitability for specifying, mostly, trust requirements and resources.

The elements in the WS-Policy specification emphasise the specification of security-

related policies of a Web service. The WS-Trust specification also focuses on the

exchange of security-related credentials between the credential requestor and issuers.

However, to support generic trust negotiations, policies should be flexible enough to

incorporate any trust context. Likewise, negotiation protocol should be able to

support the exchange of any digital credentials, including security credentials

between the service provider and requestor. With appropriate extensions, WS-Policy

and WS-Trust can be utilised in generic trust negotiations. A number of the possible

extensions are discussed later on in this chapter.

The aim of Chapter 5 is to analyse the Web Services framework for its ability to

support generic trust negotiations. In Section 5.2, an overview of WS-Policy is

presented. Several requirements for specifying trust requirements and resources in

Web Services are discussed in Section 5.3, along with an analysis to examine the

extent to which WS-Policy satisfies these requirements. Based on this analysis, a

number of possible extensions to WS-Policy to specify trust requirements and

resources are discussed in Section 5.4. An overview of WS-Trust is presented in

Section 5.5, while Section 5.6 contains a few illustrations of how WS-Trust

 71

specification can be used as a negotiation protocol. The chapter is concluded in

Section 5.7.

5.2 An overview of the WS-Policy specification

The Web Services Policy (WS-Policy) is the XML-based policy specification of the

Web Services framework. This specification provides the base constructs to specify

policies in terms of the requirements and capabilities of the services. The discussion

below is taken largely from [9].

The WS-Policy specification defines a policy to convey conditions concerning

interaction between two Web service endpoints. These conditions guide service

requestors to choose suitable services. A policy of a Web service is represented as a

collection of policy alternatives where each policy alternative refers to a collection of

policy assertions. An assertion is used to express a distinct unit of requirement or

capability of a service. The WS-Policy provides constructs to group these assertions

to outline policies of the Web services.

A policy assertion contains domain-specific conditions or information, where domain

can be seen as analogous to a context. The vocabulary and semantics of assertions of

each domain (or context) are defined in separate domain specifications, referred to as

domain vocabularies.

The following (Policy 1) illustrates how a policy document is specified:

1 <wsp:policy>
2 <wsp:ExactlyOne>
3 <wsse:SecurityToken>

4 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>
5 </wsse:SecurityToken>
6 <wsse:SecurityToken>

7 <wsse:TokenType>wsse:X509v3</wsse:TokenType>
8 </wsse:SecurityToken>
9 </wsp:ExactlyOne>
10 </wsp:policy>

Policy 1 states that either a Kerberos ticket or X.509 certificate is required. Though

the purpose of this requirement is not specified in the policy document, it can be

assumed that these are some requirements for authentication, based on the contents of

 72

requirements or the way in which the policy is attached to the WSDL elements of the

service, for example, using WS-PolicyAttachment specification [10].

The above policy is expressed as two distinct policy assertions, given in lines 3-5

and lines 6-8. The grouping of these policy assertions are specified by using the

element <wsp:ExactlyOne>, which states that only one of the given assertions

need to be satisfied. The policy assertions used in this policy are based on the WS-

SecurityPolicy vocabulary [29].

In WS-Policy, a policy document is specified by using the XML element policy

and all the policy assertions are contained as subelements of the policy element.

When multiple policy assertions are provided, policy operators defined in WS-Policy

can be used to facilitate groupings of policy assertions into policy alternatives. These

policy operators are <wsp:All> and <wsp:ExactlyOne>. The former specifies

that all the policy assertions and/or policy alternatives grouped in this element must

be satisfied, while the latter (<wsp:ExactlyOne>) specifies that exactly one of the

policy assertions and/or policy alternatives must be satisfied. The elements

<wsp:All>, <wsp:ExactlyOne> and <wsp:Policy> can be nested within the

elements <wsp:All> and <wsp:ExaclyOne>.

In general, the domain vocabularies are identified using distinct namespaces. The

WS-Policy specification assists the grouping of assertions of different domain

specifications uniformly to outline policies. Figure 5-1 below illustrates the concept.

 Figure 5-1: Abstract representation of WS-Policy documents

Referring to Policy 1 (page 71), the domain of the policy assertions is security and the

vocabulary for the assertions is specified in the XML vocabulary named WS-

 73

SecurityPolicy specification, which is identified by the namespace http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd. The namespace

is referred to by the prefix wsse [29]. In general, WS-SecurityPolicy specifies

assertions for different facets of security, which includes integrity and confidentiality

aspects. For further information on WS-SecurityPolicy, refer to [29].

5.3 Specification of trust requirements and resources in Web Services

In order to specify and present trust requirements and resources in a trust negotiation

specifically in Web Services, we introduce the concept of a trust requirements

document and a trust resources document.

The description of the trust requirements and resources of a service is referred to as a

trust requirements document and a trust resources document respectively. A trust

requirements document (TRtD) is a document that describes the partial or complete

trust requirements that a Web service require from the negotiating entity in the trust

negotiation. A trust resources document (TReD) is a document that describes the

partial or complete trust resources of a Web service, which can be revealed to the

negotiating entity in a trust negotiation, if required. A TReD should also be able to

specify the trust requirements or reference to a TRtD for those trust resources that are

protected by disclosure policies. The TRtDs and TReDs are revealed to the

negotiating entities to convey the trust requirements and resources needed in a trust

negotiation.

In general, these documents specify trust requirements and resources in terms of the

respective credentials. Thus, it should specify aspects such as the details of the

credentials, the frequency of credential submissions and address of credential

submission or request. The details of the credentials include the content, accepted

credential issuers and format. The frequency of credential submission indicates how

often credentials are to be revealed to the participating entities. This may range from

a once-off submission to submissions at every service request. The frequency may

also correspond to the frequency at which trust relationships are updated. Specifying

the address of the credential submission and request gives the flexibility to include

third parties for credential evaluation and retrieval. In summary, these documents not

only represent trust requirements and resources, but also a complete description of

 74

how the respective credentials should be presented and the necessary details to submit

these credentials.

In Web Services, TRtDs and TReDs should be specified on the basis of an accepted

XML vocabulary. Once they have been specified they should be revealed to the

negotiating party either by publishing it through UDDI or sending the documents to

the negotiating parties during negotiations. It is also possible that when the number of

trust requirements and resources is large, they are specified in subdocuments and, in

this case, some of them are published in the UDDI and the rest are exchanged during

negotiations.

When comparing the features of WS-Policy and the requirements of TRtD and TReD

specifications, it is evident that WS-Policy has certain limitations with respect to the

requirements. These requirements can be met with appropriate extensions to WS-

Policy. In the discussion below we illustrate a few extensions in this direction. One of

the key goals of the extension is to incorporate various trust contexts in WS-Policy to

specify TRtDs and TReDs. The suggested extensions are by no means complete, but

they aim to illustrate the possibility of increasing the capability of WS-Policy for

specifying TRtDs and TReDs.

The specification of the full structure of the TRtD and TReD is beyond the scope of

this dissertation. We do however show how some of the aspects can be specified.

5.4 Possible Extensions to WS-Policy to specify TRtDs and TReDs

Extending vocabularies to accommodate further information resources and contexts

To support generic trust negotiations it is necessary to have vocabularies for different

contexts and information sources, which are specified using formal and/or informal

credentials. The formal credentials are those credentials that are globally recognised

and signed by authorities that are trusted to do so. ISO certification is an example of

such a credential. On the other hand, informal credentials are those that need not be

globally recognised. Examples of such credentials are those issued by a service to

state its service guarantee or recommendations of another service.

 75

One way of including various contexts and information sources in policies is

illustrated in Figure 5-2. Here vocabularies for various information sources are

defined in separate vocabularies and they are reused in specific context vocabularies.

Figure 5-2: Abstract representation of WS-Policy documents with various contexts and
information source vocabularies.

An example of this concept is to define a vocabulary for specifying recommendations,

which will consist of a collection of credential formats to detail various forms of

recommendations. This vocabulary can then be used in any context vocabulary to

specify recommendations in the specific context, e.g. reliability. The details of such

vocabularies are not considered in this dissertation but it is assumed that they can be

made available.

Figure 5-2 closely relates to the aspects depicted in Figure 2-1 (Chapter 2). Each

information source in Figure 2-1 has a specific vocabulary as depicted in Figure 5-2.

By using this technique, credentials representing various information can be included

in the TRtDs and TReDs.

To specify trust requirements and resources separately

When vocabularies for various contexts are available, certain credentials can become

part of both trust requirements and resources of a Web service. In generic trust

negotiations, it is vital to identify TRtDs and TReDs distinctly. One possible way of

realising this is by using WS-Policy is illustrated in the Figure 5-3. The goal of this

concept is to distinctly identify assertions as trust requirements or resources of a

service.

 76

Figure 5-3: Abstract representation of trust requirements and resources documents using WS-
Policy

In general, an assertion can be identified as a trust requirement or resource in two

different ways. One technique is based on the content or semantics of the assertion. In

this technique, if the assertion can be of both requirement and resource, then they are

distinguished either by distinct assertion names or by the content of the assertion. The

second technique is to create a single assertion and to identify it as a requirement or

resource in the policy construct. Between these techniques, the second one allows the

specification of trust requirements and resources more explicitly in the TRtD and

TReD specification.

The WS-Policy specification uses the first technique to distinguish service

requirements and capabilities. Thus, the distinction of service requirement and

capability is made at the assertion level and not at the policy construct level. Consider

a simplified version of a policy (Policy 2) that states Kerberosv5TGT as a security

token.

<wsp:Policy>
<wsse:SecurityToken>
<wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>
</wsse:SecurityToken>
</wsp:Policy>

In this policy, <wsse:SecurityToken> is an assertion to specify a security

token, which is either required from the requestor or provided by the service in a

response message. However, the content of the <wsse:TokenType> element

identifies this assertion as a requirement.

To identify a policy explicitly as a trust requirement or resource in WS-Policy, an

optional attribute named Type can be added to the element <wsp:policy>. This

 77

requires an amendment of the current version of the specification. The attribute

/wsp:policy/@Type can be of type xs.string, which can be assigned values

such as “Requirement” or “Resource” to identify policies as requirements or

resources respectively. These two values need not be the only values for this attribute

and more values can be identified and added. The inclusion of such an attribute to a

policy is illustrated below:

<wsp:Policy wsp:Type= “wsp:Requirement”>
<wsp:All>
<!--Assertion 1-->
<!--Assertion 2-->
</wsp:All>
</wsp:Policy>

The absence of the Type attribute indicates that the semantics of the assertion should

determine whether it is a requirement or resource. It is important for the semantics of

the assertion not to contradict the Type attribute. For example, in the above policy,

when the Type value is set to Requirement, the semantics of assertions 1 and 2

should not refer to them as resources in their domain vocabulary.

As illustrated in the above policy, when the Type attribute is specified for the root

policy element, the policy document can be readily acknowledged as a TRtD or

TReD by processing the content of this attribute.

As the recursive looping of <wsp:Policy> element is allowed in itself, each

assertion can also be identified distinctly as a requirement or resource in a policy

document. Consider the example below:

<wsp: Policy>
<wsp:All>
<wsp:Policy wsp:Type= “Requirement”>
<!--assertion 1-->
</wsp:Policy>
<wsp:Policy wsp:Type= “Resource”>
<!--assertion 2-->
</wsp:Policy>
</wsp: All>
</wsp: Policy>

This policy document contains two assertions, where one dictates a trust requirement

and the other a trust resource. This structuring allows the inclusion of requirements

and resources in a single document with the ability to identify them distinctly.

 78

Identifying TRtD and TReD subdocuments

When trust requirements and resources are specified as a sequence of TRtDs and

TReDs, each document in the sequence is referred as a subdocument. When TRtDs

and TReDs are specified as subdocuments, it is necessary to identify each uniquely, as

well as to indicate whether a given document is a subdocument, if so required.

In WS-Policy each policy can be uniquely identified by using xml:base and

wsu:ID attributes of the <wsp:Policy> element. Given below is Policy 3, which

uses these elements.

<wsp:Policy xml:base= http://creditservice.com/policies
wsu:Id= “TRtD1”>
<wsp:All>
<!-- Assertion 1-->
<!-- Assertion 2-->
</wsp:All>
</wsp:Policy>

The above policy is identified by the URI http://creditservice/policies#TRtD1.

Consider another service policy, Policy 4, specified as a separate document and

identified by the URI http://creditservice.com/policies#TRtD2.
<wsp:Policy xml:base= http://creditservice.com/policies
wsu:Id= “TRtD2”>
<wsp:All>
<!-- Assertion 3-->
<!-- Assertion 4-->
</wsp:All>
</wsp:Policy>

Consider an example where the TRtD of a service consists of the above two TRtDs

namely TRtD1 (Policy 3) and TRtD2 (Policy 4). Among these documents consider that

TRtD1 is revealed in the UDDI while TRtD2 is revealed later on in the negotiation. A

negotiating entity that accesses TRtD1 should be informed that the list of the trust

requirements might not end with TRtD1 and further trust requirements may be

revealed by the service later in the negotiation.

Adding a Boolean attribute /wsp:policy/@Sequence could serve the purpose

of indicating a document as a part of sequence of documents. When given the value

true, it indicates that the given document is part of a sequence of documents, which

 79

means further documents can be expected. When given the value false, it indicates

that it is the sole TRtD or TReD document. Based on this discussion, the above

TRtDs can be modified to indicate that they are part of a sequence of documents:

<wsp:Policy xml:base= http://creditservice.com/policies
wsu:Id= “TRtD1” wsp:Sequence=true >
<wsp:All>
<!-- Assertion 1-->
<!-- Assertion 2-->
</wsp:All>
</wsp:Policy>

<wsp:Policy xml:base= http://creditservice.com/policies
wsu:Id= “TRtD2” wsp:Sequence=true >
<wsp:All>
<!-- Assertion 3-->
<!-- Assertion 4-->
</wsp:All>
</wsp:Policy>

5.5 Overview of WS-Trust specification

The Web Services Trust (WS-Trust) is an XML-based specification for facilitating the

establishment of trust in the Web Service trust model. In this model, a service provider

has a set of requirements that need to be satisfied by the requestor in order to utilise

the service. These requirements are stated in the policy (using WS-Policy) document

of the service provider. Based on them, the service requestor may exchange

credentials with the provider to prove that they satisfy the requirements. As part of

stating the requirements, the service provider can also state which credential issuers it

trusts to issue credentials. The service requestor can therefore request a credential at

the specified issuer and the credential issuer can issue the requested credentials. In

this trust model, the credential issuer is assumed to be a Web service and it may, in

turn, have its own set of requirements to issue credentials to the service requestor.

Figure 5-4 below illustrates an abstract representation of this trust model. The

discussion in this section is taken largely from [6].

Figure 5-4: WS-Trust trust model

 80

In the trust model the request for credentials at the credential issuer can be of different

types. The four request types considered in the trust model are issue, validate, renew

and cancel - with obvious meanings. Based on the service provider’s trust

implementation system, certain requests can be made directly to the credential issuer.

For instance, when the service requestor submits a specific credential, the service

provider can request the credential issuer to validate it. The credential issuer may

respond directly to the service provider. It is also possible for the credential issuer to

request other credential issuers to validate the credential on behalf of the service

provider. In this trust model, trust is established between the service provider and

requestor through an exchange of credentials issued by trusted issuers(s).

The WS-Trust specification provides constructs for credential requests and responses

for the request types mentioned above. As part of the process of establishing trust, a

number of credential requests and responses may occur between the service requestor

and provider. As discussed above, there can also be credential requests and responses

between the service provider and credential issuer, and between service requestor and

credential issuer. Thus, in general, WS-Trust can be summarised as a specification

that provides constructs for credential requests and responses that can be incorporated

in the SOAP messages as a step towards establishing trust within Web services.

In WS-Trust, the wst:RequestSecurityToken> element is used to specify the

request of credentials and a response to this request is specified in the element

<wst:RequestSecurityTokenResponse>. Irrespective of the type of request

or response, these elements are used as root elements, and the details of the request or

response are then specified in the respective child elements. Given below is a simple

credential request using WS-Trust, which is incorporated into the SOAP message

structure.

<S11:Envelope>
<S11:Header> </S11:Header>
<S11:Body>
<wst:RequestSecurityToken>
<wst:TokenType>
http://example.org/mySpecialToken
</wst:TokenType>
<wst:RequestType>
http://schemas.xmlsoap.org/ws/2005/02/trust/issue
</wst:RequestType>
</wst:RequestSecurityToken>

 81

</S11:Body>
</S11:Envelope>

In this example, the prefixes S11 and wst refer to the SOAP and WS-Trust

specification namespaces http://schemas.xmlsoap.org/soap/envelope and

http://schemas.xmlsoap.org/ws/2005/02/trust.

As shown in the above example, <wst:TokenType> is used to specify the type of

credential requested. Examples of credential types in the security context are X.509

certificate, Kerberos ticket, any standard security credentials and service-defined

credentials. The element <wst:RequestType> is used to specify the request type

of the message. As explained before, there are different types of requests and in this

example the request is to issue a token of type that is specified by the URI

http://example.org/mySpecialToken. A possible response to this request can be

represented by using the following SOAP message.

<S11:Envelope>
<S11:Header> </S11:Header>
<S11:Body>
<wst:RequestSecurityTokenResponse>
<wst:TokenType>
http://example.org/mySpecialToken
</wst:TokenType>
<wst:RequestedSecurityToken>
<xyz:Token id=” “>
<xyz:issuer> </xyz:issuer>
.
.
</xyz:Token>
</wst:RequestedSecurityToken>
</wst:RequestSecurityTokenResponse>
</S11:Body>
</S11:Envelope>

As illustrated in the example, the response is specified in the

<wst:RequestSecurityTokenResponse> element, while its child element

<wst:TokenType> specifies the type of the credential returned. The requested

credential is returned in the element <wst:RequestedSecurityToken>, where

it can either include the credential itself or a reference to an URI where the credential

can be obtained. In this example a fictitious partial XML credential is included just to

demonstrate how this can be done.

 82

The above examples illustrate only the basic constructs required for a request

credential and response message. The WS-Trust provides constructs for specifying

more detailed requests and responses. For example, the specification provides

constructs to support more than one credential request in a single SOAP envelope. It

is also able to specify the lifetimes of the credentials. In an issue request, the service

requestor may use these constructs to specify the desired lifetime of the credential.

Some of these specialised elements are discussed further in the analysis of the

specification.

In WS-Trust, credentials represent and convey security aspects and the purpose of

credential exchange between the requestor and the provider is almost exclusively

stated as to secure the communication among them. The WS-Trust specification

extends WS-Security [60] to support the issuance and distribution of security

credentials to establish trust for various security purposes (e.g. authentication,

securing the confidentiality of SOAP messages). As was discussed before, there are

other trust contexts that should also be included in generic trust negotiation. In the

following section, the extension and usage of WS-Trust to a generic trust negotiation

is discussed.

5.6 An analysis of WS-Trust in a general trust negotiation process

With respect to Figure 5-4, the focus of this dissertation is on the trust negotiation

between the service provider and the requestor. The process of the requestor

requesting for credentials from the credential issuer and how the service provider

came to trust the credential issuer does not constitute the focus of this study. In order

to successfully carry out trust negotiation, these aspects are necessary, but to focus on

the exchange of credentials between the service provider and requestor, it is assumed

that these aspects are already in place or can be made available. In Figure 5-5 below,

the section identified by the ellipse illustrates the focus of general trust negotiation

and hence WS-Trust specification is examined to use in this negotiation.

 83

Figure 5-5: Illustration of the focus of this study with respect to the WS-Trust trust model

In general, a generic trust negotiation centers on the exchange of the TRtDs, TReDs

and digital credentials. Below are a few illustrations of WS-Trust in generic trust

negotiation. These illustrations are not intended to be complete, but to demonstrate the

possibility of using WS-Trust in such a negotiation.

Requesting and receiving diverse credentials

In WS-Trust, the <wst:RequestSecurityToken> element is used to specify

the credential request. The credential and request types are specified in its child

elements <wst:TokenType> and <wst:RequestType> respectively [6]. The

<wst:TokenType> element can refer to credentials of any XML vocabulary,

which provides the flexibility to include any predefined credential in the request

message. If vocabularies are defined as explained in Section 5.4, then they can be

referred to in the credential request messages. The <wst:RequestType> element

is used to specify the type of credential request. In addition to the request types (issue,

validate, renew and cancel) specified in WS-Trust, more request types can be added to

the vocabulary, if required [6]. For the credential exchange in a trust negotiation, one

of the possible request types is to reveal the credential to the negotiating entity. This

kind of request and its corresponding response do not precisely fit into the request

types detailed in the WS-Trust specification, which suggests a need to add such

request types to support generic trust negotiation.

The <wst:RequestSecurityTokenResponse> element is used to specify

the response to a credential request. The <wst:RequestedSecurityToken>

element, which is its child element, can contain the credential itself if it is an XML-

based credential or a reference to the credential in terms of where it can be accessed

[6]. For instance, if the credential is not in XML format, then it can be sent as an

 84

attachment to the SOAP message [11]. A reference to the credential is then included

in the <wst:RequestedSecurityToken> element of the response message.

To reference the TRtD for which the credentials are submitted

When each TRtD has been uniquely identified, the negotiating party should be able

to include a reference to the TRtD for which the credentials are submitted in the

credential submission message.

In WS-Trust specification an attribute named Context is defined, which is used to

correlate requests and responses. This attribute is defined for both

<RequestSecurityToken> and <ResponseSecurityTokenRequest>

elements [6]. When credentials are revealed in trust negotiation, this element can be

used to reference the TRtD that requests specific credentials.

The example given below contains a TRtD that is identified by the URI

http://creditservice/policies#TRtD1.

<wsp:Policy wsp:Type= “Requirement” xml:base=
http://creditservice.com/policies wsu:Id= “TRtD1”>
<wsp:All>
<!-- Assertion 1-->
<!-- Assertion 2-->
</wsp:All>
</wsp:Policy>

Based on this policy - if the negotiating entity is providing credentials as specified in

Assertion 1 and 2 of the policy, the policy identification URI can be included

in the Context attribute of the response message. The following XML fragment

illustrates a possible response message.

<S11:Envelope>
<S11:Header> </S11:Header>
<S11:Body>
<wst:RequestSecurityTokenResponse Context=”
http://creditservice/policies#TRtD1”>
<wst:TokenType>…</wst:TokenType>
<wst:RequestedSecurityToken>…</wst:RequestedSecurityToken>
</wst:RequestSecurityTokenResponse>
</S11:Body>
</S11:Envelope>

 85

The semantics of this message is that the credential or the reference to the credential

included in the message is based on the trust requirements specified in TRtD, which is

identified by the content of the Context attribute.

To combine a credential request with a credential submission

In trust negotiation, a negotiating entity may request for credentials of the service

provider as stated in its TReD, along with its submission of credentials to the service

provider. Using WS-Trust this can be achieved by combining the

<RequestSecurityToken> and <ResponseSecurityTokenRequest>

elements in the SOAP message [6].

Consider a TRtD and a TReD:

<wsp:Policy wsp:Type= “Requirement” xml:base=
http://creditservice.com/policies wsu:Id= “TRtD1”>
<wsp:All>
<!-- Assertion 1-->
</wsp:All>
</wsp:Policy>

<wsp:Policy wsp:Type= “Resource” xml:base=
http://creditservice.com/policies wsu:Id= “TReD1”>
<wsp:All>
<!-- Assertion 1-->
</wsp:All>
</wsp:Policy>

Based on these documents, a service requestor can submit the credential specified in

the Assertion 1 of TRtD and request for the credential in the TReD. The

following fragment of a SOAP message illustrates how this can be achieved in a

single SOAP message structure.

<S11:Envelope>
<S11:Header> </S11:Header>
<S11:Body>
<wst:RequestSecurityTokenResponse Context=”
http://creditservice/policies#TRtD1”>
<wst:TokenType>…</wst:TokenType>
<wst:RequestedSecurityToken>…</wst:RequestedSecurityToken>
</wst:RequestSecurityTokenResponse>

<wst:RequestSecurityToken Context= ”
http://creditservice/policies#TReD1”>
<wst:TokenType>…</wst:TokenType>
<wst:RequestType>..</wst:RequestType>
</wst:RequestSecurityToken>

 86

</S11:Body>
</S11:Envelope>

The semantics of this message is that it contains the credential that is specified in the

TRtD along with the request for the credential that is specified in the TReD, which is

identified by the URI http://creditservice/policies#TReD1.

To send TRtDs and TReDs in a negotiation

Provision should be made to exchange TRtDs and TReDs in trust negotiation.

The WS-Trust specification defines mechanisms to attach policies in the

<RequestSecurityToken> element. In this specification, the aim of attaching a

policy in a credential request is to refer to a specific policy that indicates the desired

features of the requested credential. For example, the following partial SOAP

message illustrates how this is achieved [6].

<S11:Envelope>
<S11:Header> </S11:Header>
<S11:Body>
<wst:RequestSecurityToken>
<wst:TokenType>
http://example.org/mySpecialToken
</wst:TokenType>
<wst:RequestType>
http://schemas.xmlsoap.org/ws/2005/02/trust/issue
</wst:RequestType>
<wsp:Policy>
<!—Assertion 1 -->
</wsp:Policy>
</wst:RequestSecurityToken>
</S11:Body>
</S11:Envelope>

This message requests a token of type http://example.org/mySpecialToken,

where the desired settings for the requested token is provided in the policy. This

technique is significant when a credential can be issued with different settings. Hence

the service providers can specify these settings in their policies so that the service

requestors can refer to the specific policies when requesting for a credential at the

credential issuer.

In the generic trust negotiation process, the service provider may send TRtDs to the

service requestor. Here policies outline the credentials that need to be provided by the

 87

service requestor. This can be achieved by including policies using <wsp:Policy>

element in the SOAP Body. The SOAP message given below illustrates how this can

be achieved.

<S11:Envelope>
<S11:Header> </S11:Header>
<S11:Body>
<wsp:Policy wsp:Type= “Requirement” xml:base=
http://creditservice.com/policies wsu:Id= “TRtD1”>
<wsp:All>
<!-- Assertion 1-->
<!—Assertion 2-->
</wsp:All>
</wsp:Policy>
</S11:Body>
</S11:Envelope>

This message expresses a policy, which summarises the trust requirements that needs

to be satisfied by the requestor. The trust requirements are specified in the assertions

and the policy is uniquely identified by the URI

http://creditservice.com/policies#TRtD1. This URI can be included

in the Context attribute of the <wst:ResponseSecurityTokenRequest>

element in the corresponding response message.

Multiple credential submissions in a single response message

When a TRtD states the submission of more than one credential the service requestor

should be able to provide the collection of credentials or credential references in the

response message. In WS-Trust specification, the element

<wst:RequestSecurityTokenResponseCollection> is used to group

different credentials into a single response. This element contains more than one

<wst:RequestSecurityTokenResponse> child element, each containing a

credential or credential reference. The following partial SOAP message illustrates the

structure of the <wst:RequestSecurityTokenResponseCollection>

element [6].

<S11:Envelope>
<S11:Header> </S11:Header>
<S11:Body>
<wst:RequestSecurityTokenResponseCollection>

<wst:RequestSecurityTokenResponse>
<wst:TokenType>…</wst:TokenType>

 88

<wst:RequestedSecurityToken>…</wst:RequestedSecurityToken>
</wst:RequestSecurityTokenResponse>

<wst:RequestSecurityTokenResponse>
<wst:TokenType>…</wst:TokenType>
<wst:RequestedSecurityToken>…</wst:RequestedSecurityToken>
</wst:RequestSecurityTokenResponse>
...
<wst:RequestSecurityTokenResponseCollection>

</S11:Body>
</S11:Envelope>

Frequency of credential submission

The credentials may have validity time frames, which might drive repeated credential

exchanges between negotiating entities. Based on the trust implementation system and

the type of credentials exchanged, this resubmission may trigger a renewal of trust

relationships.

In WS-Trust specification, <wst:Lifetime> is the construct that is used to specify

a time period. This element has two subelements named <wsu:Created> and

<wsu: Expires>, which are defined in the utility schema of Web Services. The

element <wst:Lifetime> can be used in both credential request and response.

When used in <wst:RequestSecurityToken>, it indicates the validity time

period requested by the requestor to the credential issuer and when used in

<wst:ResponseSecurityTokenRequest>, it indicates the validity of the

credential issued by the issuer. It is not necessary for the lifetime requested to be the

same as the lifetime of the issued credential [6].

In trust negotiations, the validity of the credentials exchanged will be determined by

the lifetime specified in the credential itself, if any. If the lifetime is not specified by

the credential then it should be possible to validate the lifetime of the credential at the

appropriate credential issuer.

Error handling

Errors may occur during the process of negotiating trust, and there should be

techniques to handle these errors appropriately. The errors can be due to incorrect

credentials, credential formats, unknown credentials and invalid credentials. As part

 89

of the error-handling technique, the service provider and requestor may inform each

other about the errors that occurred.

The WS-Trust defines certain fault codes that can be included in the SOAP messages

to specify errors. Two examples of such fault codes are wst:InvalidRequest

and wst:RenewNeeded, which refer to an invalid request and a renewed credential

request respectively [6] . In addition to these error messages, elements can be added to

convey details of the errors and, if possible, ways of recovering from the error. In trust

negotiation, it is also required to inform the negotiating party about the result of

negotiation, whether success or failure of negotiation and the implications of the

negotiation success or failure.

5.7 Conclusion

In the Web Services framework WS-Trust and WS-Policy closely match the

requirements of a negotiation protocol and those for the specification of trust

requirements and resources respectively. These specifications mainly concern the

specification and exchange of security credentials. In order to utilise them in generic

trust negotiations, several extensions are suggested. These extensions are not

exhaustive, but they demonstrate how the specifications can be generalised.

 90

CHAPTER 6
A TRUST NEGOTIATION PROCEDURE FOR COMPOSITE

SERVICES

6.1 Introduction

A trust negotiation procedure for composite services should deal with two viewpoints

- the unified outlook of the service and the non-unified view - because of the possible

distinct trust negotiations with its constituents. A possible way to handle this is to

reconcile the trust requirements and resources of the constituents with those of the

composite service, so as to provide a unified outlook to trust requirements and

resources of the composite service. These trust requirements and resources can then

be utilised in negotiations with the service.

The trust requirements and resources of a composite service should encompass each

of its constituents’ trust requirements and resources. This can be done by reconciling

the TRtDs and TReDs of the constituents into those of the composite service. When a

unified TRtD and TReD is available, then the composite service should have a

mechanism to present and manage these documents by a set of services referred to as

trust-negotiating nodes. By including and coordinating these nodes, a composite

service can provide a unified approach towards trust negotiation with its users.

The aim of this chapter is to develop a negotiation procedure that works in composite

Web services by utilising trust requirements and resources of composite services. In

Section 6.2, the trust requirements and resources of composite services are discussed.

Two techniques for reconciling the TRtDs and TReDs of the constituents with those

of a composite service are discussed in Section 6.3. Section 6.4 deals with the

presentation of the reconciled TRtDs and TReDs by the trust-negotiating nodes, and

Section 6.5 with the association between the services and the trust-negotiating nodes.

The coordination of the trust-negotiating nodes by the trust-negotiation coordinator is

discussed in Section 6.6, while Section 6.7 describes how a user entity can carry out

trust negotiations with an elementary and composite service by using the trust

negotiating-nodes and trust-negotiation coordinator. The extent to which this

negotiation procedure handles trust context, anonymity, dynamicity and complexity is

discussed in Section 6.8. The chapter is concluded in Section 6.9.

 91

6.2 Trust requirements and resources of composite services

A constituent service can have trust requirements for directly and indirectly

interacting entities. These requirements can be the same, with or without some

overlap, or there may not be any trust requirements for the indirectly interacting

entity. The trust requirements of a composite service should include the trust

requirements of the constituents for indirectly interacting entities, except for the

constituent that interacts directly with the user. The TRtD of the composite service

should therefore contain the trust requirements of the constituent services as

explained above.

On the other hand, the complete trust resources of each constituent should be

integrated or unified with the trust resources of the composite service and the TReD

of the composite service should contain the trust resources of its constituent services.

If the trust resources are sensitive, then certain trust requirements can be attached to

these resources in such a way that the trust resources are revealed only when the

attached trust requirements are satisfied. When specifying the trust resources of a

composite service, these attached trust requirements should also be included.

6.3 Reconciling the TRtDs and TReDs of constituent services

In general, the TRtDs and TReDs of the constituent services can be integrated in two

different ways. In the first form or technique of unification, the documents are unified

as a sequence of subdocuments with no modification in the content and structuring of

the individual TRtD and TReD of the constituent services. The second technique

involves an analysis and combination of the contents of the TReD and TRtD of each

constituent to create a unified TRtD and TReD, which may contain a sequence of

subdocuments.

The first technique is the simplest, but may not be the best way of specifying trust

requirements and resources of a composite service. Some requirements may be

redundant and the same trust requirement may be specified in all the TRtDs. The

second technique may avoid redundancy by analysing the documents of the

constituents. For example, if all the documents specify the same trust requirement,

then the TRtD of the composite service can specify this requirement only once. The

 92

effort required to implement the second technique is obviously greater than to

implement the first technique.

Unification Technique 1

In this technique the TRtD and TReD of the composite service consist of a sequence

of subdocuments where each document represents the TRtD or TReD of a constituent

service. For example, the TRtD of the composite service given in Figure 6-1 will

consist of two TRtDs where these documents are TRtD1 (for a directly interacting

entity) and TRtD2 (for an indirectly interacting entity). Likewise, the TReD of the

composite service is also presented as two sub-TReDs.

 Figure 6-1: A composite service with two constituent services

Consider the following WS-Policy documents, which represent the TRtD1 and

TRtD2.
<wsp:Policy wsp:Type= “Requirement” xml:base=
http://service1.com/policies wsu:Id= “TRtD1”>
<wsp:All>
<!-- Assertion 1-->
<!-- Assertion 2-->
<!-- Assertion 3-->
</wsp:All>
</wsp:Policy>

<wsp:Policy wsp:Type= “Requirement” xml:base=
http://service2.com/policies wsu:Id= “TRtD2”>
<!-- Assertion 1-->
</wsp:Policy>

Using the above technique, the Web service WS-1 can generate the TRtD for the

composite service as given below.

<wsp:Policy wsp:Type= “Requirement” xml:base=
http://service1.com/policies wsu:Id= “TRtD1” wsp:Sequence=true>
<wsp:All>
<!-- Assertion 1-->
<!-- Assertion 2-->
<!-- Assertion 3-->

 93

</wsp:All>
</wsp:Policy>

<wsp:Policy wsp:Type= “Requirement” xml:base=
http://service2.com/policies wsu:Id= “TRtD2” wsp:Sequence=true>
<!-- Assertion 1-->
</wsp:Policy>

Here the policies identified by the URI http://service1.com/policies/#TRtD1 and

http://service2.com/policies/#TRtD2 will be presented to the user entity as a sequence

of TRtDs. These TRtDs are described as a constituent in a sequence of documents by

setting the XML element wsp:sequence (refer to Chapter 5) to true; thus

indicating that further TRtDs can be expected in the trust negotiation.

Unification Technique 2

In the second unification technique, the integration of TRtDs is based on the content

of assertion to specify each trust requirement and resource. This means the assertions

are analysed to create a unified TRtD and TReD. Even in this form of unification the

resultant TRtD and TReD can be a sequence of documents, where the sequencing can

be based on criteria such as the context or sensitivity, of credentials specified as using

assertions, rather than on the elementary service to which the document belongs.

Consider the example where the policies identified by http://service1.com/policies/#

TRtD1 and http://service1.com/policies/# TRtD2 are merged using this technique.

Given below is a policy document that illustrates such a unified document.

<wsp:Policy wsp:Type= “Requirement”>
<wsp:All>

<wsp:Policy xml:base= http://service1.com/polcies wsu:Id=
“TRtD1”>
<wsp:All>
<!-- Assertion 1-->
<!-- Assertion 2-->
<!-- Assertion 3-->
</wsp:All>

</wsp:Policy>
<wsp:Policy xml:base= http://service2.com/polcies wsu:Id=
“TRtD2”>
<!-- Assertion 1-->
</wsp:Policy>

 94

<wsp:All>
</wsp:Policy>

The XML fragment specifies two distinct policies in a single document. The

specification of the WS-Policy element <wsp: All>, states that both the policies

need to be satisfied.

Both these unification techniques are useful as demonstrated in the following sections.

6.4 The presentation of the unified TRtDs and TReDs by the trust-negotiating
nodes

Once the TRtDs and TReDs are reconciled, a subset of the constituents can present

these documents to the user. The services are known as trust-negotiating nodes. For

instance, in the composite service illustrated in Figure 6-1, if the service WS-2

allows the integration of its TRtD (for an indirectly interacting entity) with that of

WS-1, then the unified TRtD can be presented by the service WS-1. Here WS-1

becomes the trust-negotiating node. The service WS-2 may not be involved in

presenting its trust requirements or resources, but it can still be responsible for other

activities of trust establishment. For example, it can still be responsible for evaluating

the credentials submitted by the user entity stated in the trust requirements.

It is possible that not all the constituents allow unification of their trust requirements

and resources documents with those of other services, when they are utilised in a

composite service. One of the reasons may be the partial delegation of the negotiation

process to the other services. In this case, these constituent services will become

independent trust-negotiating nodes. A trust-negotiating node can therefore be

responsible for presenting TRtDs and TReDs of itself or on behalf of a set of services.

It emerges from this discussion that, in a composite service, there can be a number of

trust-negotiating nodes, which are determined by the following criteria:

Form 1:

In this form, the documents are not reconciled and every constituent is responsible for

negotiating trust with the user entity individually. Hence each of the constituent

services will act as a trust-negotiating node.

 95

Form 2:

The subset of constituents in the composite service collaborates to create a unified

TRtD and TReD for the specific subset. Thus, only a subset of the constituents in the

composite service constitutes trust-negotiating nodes.

Form 3:

This form is a type of Form 2 above, where the TRtDs and TReDs of all the

constituent services are reconciled into one, which is managed by the root element

(constituent that interacts directly with the user) in the composite service. Here there

is only one trust-negotiating node for the composite service.

When there is more than one trust-negotiating node (Forms 1 and 2), the root element

of the composite service takes the role of coordinator in order to coordinate the trust-

negotiating nodes. Each of the forms represents a scenario possible in a composite

service, as will be demonstrated below.

Consider the following composite service (Figure 6-2) to demonstrate the above-

discussed forms:

 Figure 6-2: A composite service with five constituent services

The figure illustrates a composite service, where the service offered by the composite

service is the combination of services offered by Web services WS-1, WS-2, WS-3,

WS-4 and WS-5.

Using form 1, WS-1, WS-2, WS-3, WS-4and WS-5 are trust-negotiating nodes,

which means that every node will present its own TRtD and TReD, and they negotiate

directly with the user entity. In form 2 a subset of the constituent services becomes

trust-negotiating nodes. For example, consider WS-4 as the negotiating node for WS-

4 and WS-5. In the same way WS-1 is the negotiating node for WS-1, WS-2 and

 96

WS-3. Thus there are the two negotiating nodes namely WS-1 and WS-4 in the

composite service. In the above two forms WS-1 becomes the trust-negotiation

coordinator. Using form 3 the service WS-1 becomes the sole trust-negotiating node.

Here WS-1 will be responsible for presenting the reconciled TRtD and TReD of the

complete composite service.

6.5 The association between the services and the trust-negotiating node

The reconciliation of trust requirements and resources documents allows the partial

delegation of the negotiation process to the other services. However, for example, a

constituent service entity can still be responsible for evaluating credentials submitted

by the user entity even if it is not a trust-negotiating node. This is based on the extent

to which a service entity delegates its trust negotiation aspects to the trust-negotiating

node.

Consider the composite service in Figure 6-2, where WS-4 is a trust-negotiating node

for WS-5. Here WS-4 has a unified TRtD and TReD consisting of the TRtD and

TReD of WS-4 and WS-5. Based on the trust relationship between these two services,

the service WS-5 can delegate more aspects of negotiation to WS-4. For example, to

handle credential submissions by the user entity in response to a requirement stated in

the TRtD of WS-5, the service WS-4 can perform any of the following:

• It can receive the credential on behalf of WS-5 and forward it to WS-5.

• It can specify in the reconciled TRtD that the credential needs to be submitted

directly to WS-5.

• It can receive and evaluate the credential on behalf of WS-5 to determine its

trustworthiness. In this case, the service WS-4 has to use the policies of WS-5 to

evaluate trustworthiness. In this case, WS-5 is delegating all its tasks of trust

negotiation to WS-4.

• It can receive and evaluate the credential for WS-5 and can subsequently

provide a recommendation regarding the trustworthiness of the credential to the

service WS-5.

These cases are not exhaustive, but they summarise some of the obvious options.

 97

Likewise, to facilitate the access of trust resources of WS-5, WS-4 can perform any

of the following:

• Forward the trust resource request to WS-5 and WS-5 provides the resource to

WS-4. Then the user entity receives the resource from WS-4.

• Forward the trust resource request to WS-5 and WS-5 provides it to the user

entity directly.

• Request the user entity to make the trust resource request directly to WS-5 and

receive the trust resource directly from WS-5.

Here it is assumed that when a request is made for a sensitive trust resource the trust-

negotiating node has presented its attached TRtD.

6.6 The role and functioning of the trust-negotiation coordinator

The trust-negotiation coordinator bases its coordination activities on the list of trust-

negotiating nodes in the composite service.

When the user entity initiates a negotiation, the coordinator selects the first trust-

negotiating node in the composite service. It forwards the relevant information to the

user entity so that it can initiate a trust negotiation with the trust-negotiating node. If

the negotiation is successful, then the negotiation node can provide a token that

represents the status of the negotiation. The user entity presents this token to the trust-

negotiation coordinator. The coordinator analyses the token and if it represents a

successful negotiation with the trust-negotiating node, it reveals the second

negotiating node. This process is carried out until the negotiation is complete with all

the negotiating nodes, or until the negotiation fails - either because the user was

unable to create a feasible trust relationship or because the negotiating node could not

make a trust relationship with the user entity. The following step-by-step procedure

summarises the tasks that a trust-negotiation coordinator fulfils in trust negotiation.

Step 1: Initiates trust negotiation.

Step 2: Obtains the trust-negotiation node list.

Step 3: Reveals the trust-negotiating node to the user entity.

 98

Step 4: Waits for a response from the user entity regarding the trust

negotiation with the negotiating node. The wait will lapse after a

predetermined time period if a response is not obtained in the time

interval.

Step 5: Analyses the token provided by the negotiating node to the user entity

in the response message. If the token informs a failure in negotiation,

the negotiation ends. If the token informs a success in negotiation, then

trust-negotiation coordinator proceeds to step 6.

Step 6: Analyses the user’s intention to continue the trust negotiation. If

true, repeats steps 3-6 for each trust-negotiation node or else the

negotiation ends.

6.7 Trust negotiations of the user entity with a service

In this section, the unified negotiation structure discussed in the previous section is

used to examine how the user entity can negotiate with a service.

Trust negotiations with an elementary service

In order to establish trust with the service, a user can request the credentials that are

listed as trust resources in the TReD of the service.

The following procedure illustrates how a user entity negotiates trust with an

elementary service. The negotiation procedure is carried out with the assumption that

the user entity has determined the context(s) for establishing trust, the information

required to compute trust and the resources from which the information can be

gathered (as discussed in Chapter 2).

Step 1: Select the trust resources required from the service TReD.

Step 2: Request the trust resources.

Step 3: Based on the requested trust resources, satisfy the TRtDs to obtain the

trust resources.

Step 4: Obtain the trust resources.

In order to use a negotiation strategy, the user and service can first exchange

appropriate policies regarding trust resources and requirements. This is then followed

by the exchange of credentials that represent trust resources and requirements.

 99

Trust negotiations with a composite service

One of the challenges in this scenario is to determine the services from which the

information needs to be collected for a specific context and also the trust-negotiating

nodes that are negotiating on behalf of these services.

Consider the composite service illustrated in Figure 6-3 below:

 Figure 6-3: A composite service with five constituent services

The service offered by WS-1 is a combination of the services offered by WS-1, WS-

2, WS-3, WS-4 and WS-5. Consider that WS-1 and WS-4 are trust-negotiating nodes

for the service (as depicted using thick boxes), where WS-4 negotiates for WS-4 and

WS-5, and WS-1 negotiates for WS-1, WS-2 and WS-3.

In order to carry out a negotiation, the user has to determine the services from which

the information needs to be collected. Based on the trust context, information can be

collected from a subset of the services or from all the services. The first step for the

user entity is to determine the services from which the trust resources have to be

collected. The second step is to further resolve the trust-negotiating nodes of the

respective services. For example, if the information needs to be collected from WS-5,

then the user has to negotiate with the negotiating node WS-4.

One way to determine the respective services and their trust-negotiating nodes is to

find some information about the structure of the service. This can be achieved only if

the service reveals its structure to the user entities. Such a structure can summarise the

following information:

• The contributing services in the composite service.

• The general structure of the composite service, which shows the directly

interacting and indirectly interacting entities of every service.

 100

• The role of each service.

• The general invocation and data flow between these services.

• The list of trust-negotiating nodes.

• The trust-negotiation coordinator of the service.

The description can incorporate some of the aspects specified in the BPEL4WS (See

Chapter 3) specification of the composite service, along with aspects such as the trust-

negotiating nodes and coordinator. When and how this service structure is revealed to

the user entity may vary from one service to another. In one form, the complete

service structure may be published in the UDDI. In another form, some information

regarding the service structure is published in the UDDI and the complete service

structure is revealed only when it is explicitly requested by the user entity. The

decision to choose one of these forms can be based on the size and complexity of the

composite service, as this will influence the size of the service description document.

Moreover, not all user entities require all the details of a service structure.

The following procedure illustrates how a user entity negotiates trust with a composite

service. The negotiation procedure is carried out with the assumption that the user

entity has determined the context(s) for establishing trust, the information required to

compute trust and the services from which the information can be gathered (as

discussed in Chapter 2).

Step 1: Select the trust resources required from the TReD.

Step 2: Request for the trust resources.

Step 3: Satisfy the TRtDs to obtain the requested trust resources.

Step 4: Obtain trust resources.

Repeat steps 1 to 4 for all the trust-negotiating nodes that negotiate on behalf of the

services from which trust resources need to be gathered.

This procedure is similar to that of negotiating with an elementary service, with the

exception that the procedure may be repeated, based on the relevant number of trust-

negotiating nodes.

In order to use a negotiation strategy, the user and trust-negotiating node can first

exchange appropriate policies regarding trust resources and requirements. This is then

 101

followed by the exchange of credentials that represent trust resources and

requirements.

6.8 Handling issues of anonymity, dynamicity, trust context and interlinks in

composite services

In this section the previously discussed trust negotiation process is analysed to

examine how it deals with the issues of anonymity, dynamicity, trust context and

complexity of a composite service (see Chapter 3). This discussion focuses on how

the negotiation procedure helps the user entity to handle these issues when

establishing trust relationships with the service.

Handling anonymity in a composite service

Certain aspects of the service structure are made available to the user entity in the

trust negotiation procedure. This service structure describes the service in terms of the

constituent services, their roles and the trust-negotiating nodes, along with other

service aspects. When the service structure is made available to the user entity, then

the abstract structure of the service becomes transparent to the user entity.

Handling trust contexts

In the negotiation procedure, the trust contexts are managed through the use of

uniquely defined vocabularies for various contexts and the associated credentials. The

request by a user entity for a credential is based on the trust resources outlined in the

TReD of the service. These trust resources are structured as policy documents, where

resources are specified as assertions. The semantics of an assertion is based on the

predefined vocabularies.

Handling complexity in a composite service

The service structure provided to the user entity contains the invocation and data flow

among the constituent services. By analysing the structure of the service, as well as

the flow of data among different services, the user entity can determine the possible

interlinks and restrict its trust relationship with the service accordingly. In this

negotiation structure the responsibility for analysing possible effects of complexity is

therefore transferred to the user entity.

 102

Handling dynamicity in a composite service

The changes in a composite service can be grouped mainly into two categories: one

dictates changes in TReDs and TRtDs, and other dictates changes in the overall

service structure. For example, change in certifications or change in service

guarantees may result in modified trust resources, which may result in changes in the

respective TReDs. On the other hand, replacing constituent services with other

services or adding new services will result in a modified service structure and the

unified TRtD and TReD.

If changes occur in the trust resources, then the user entity must be able to access the

modified trust resource either by requesting the resource at every service request or at

regular time intervals. Another option is for the service to send the modified trust

resource to its user entities. To accomplish this with every trust resource listed in the

TReD, the service can list the preferred options to convey the frequency of obtaining

the trust resource where the options include the various alternatives indicated above.

The user entity may choose one of the alternatives and renew the trust relationships

with the service, based on the frequency of acquisition of the trust resources.

If the changes occur in the service constituents, they trigger change in the service

structure and in the unified TRtDs and TReDs. Such changes may result in the

renewal and re-establishment of trust relationships between services in the composite

service. Moreover, they can also result in the re-establishment of trust relationships of

user entities with the service. To handle such a change, the services themselves must

initially renew or re-establish trust relationships with the new services - along with a

reshuffling of the TRtDs, TReDs, service trust-negotiating nodes, even the trust-

negotiation coordinator and the service structure. Once this has been achieved, the

user entities of the composite service are informed about the change in the service

structure and given access to the new service structure. This will allow them to re-

establish the trust relationships with the service by using the new structure.

To accomplish the suggested methods to handle dynamicity, further extensions to

WS-Policy and WS-Trust specifications are required.

 103

6.9 Conclusion

One possible trust negotiation procedure for composite services, which utilises the

unified TRtDs and TReDs of the composite service, was presented in this chapter.

The procedure suggests one way of handling the issues of anonymity, complexity,

trust contexts and dynamicity.

 104

CHAPTER 7
CONCLUSIONS AND FURTHER WORK

The aim of this study was to analyse the Web Services framework for generic trust

negotiations and to suggest a generic trust negotiation procedure that applies to

composite services. To achieve this goal, we commenced with the concept of trust and

then progressed to the concept of trust negotiation.

The core concept dealt with in this dissertation is trust, for which a solid perspective is

presented in Chapter 2. Trust is more than security; it is a generic concept that can be

applied in various contexts. Security is just one context among other possible

contexts. However, trust is an important concept in various security applications and

hence the literature concentrates on it.

In Chapter 2 an abstract trust establishment technique is presented, which has the

potential to be used in different contexts and applications (refer to Figure 2-1). This

technique presupposes some computation scheme that represents trust as a quantified

value based on information about an entity. In the trust establishment process, trust

negotiation is deployed to obtain information about an entity.

As stated in Chapter 4, the concept of trust negotiation is not novel. It is used widely

as an access control mechanism in different systems. However, in the trust negotiation

process any trust context can be considered. This makes it possible to view trust

negotiation from a general perspective without necessarily binding it to a specific

application area.

Although the existing trust negotiation systems are utilised for a specific application,

they have various aspects that can be generalised to create a generic trust negotiation

system. From the analyses of the existing trust negotiation systems, the essential

elements of trust negotiation are presented as digital credentials, policies, negotiation

strategy and negotiation protocol. The extent of support for these elements varies in

the existing systems. The negotiation procedure utilised in existing systems mainly

focuses on the negotiation between two entities, which is not adequate when applied

in the composite services created by using the Web Services framework. Trust-X

 105

provides an abstract negotiation procedure for negotiating with composite services,

but gives no details about how to carry out such a negotiation.

In order to support generic trust negotiations in Web services, the framework should

support certain elements of negotiation such as digital credentials, negotiation

protocol and aspects of the policies that will be communicated in a negotiation (see

the discussion in Chapter 5). At this stage, digital credentials are least supported in the

Web Services framework, whereas policies and negotiation protocol are partially

supported in the form of WS-Policy and WS-Trust specifications.

The goals of WS-Policy specification closely match the specification requirements of

trust resources and requirements in trust negotiation. However, WS-Policy can be

extended to add various aspects to give a complete description of trust requirements

and resources. Several of these aspects are pointed out in Chapter 5, along with the

possible extensions to WS-Policy.

WS-Trust provides various message structures that can be included in SOAP

messages, to support credential exchanges between a service provider, requestor and

credential issuer. These message structures can be largely reused for the generic trust

negotiation, which primarily occurs between the service provider and the requestor.

Additional features have to be included in the WS-Trust in order to use it as a

comprehensive negotiation protocol. Several of these aspects are highlighted in

Chapter 5.

A trust negotiation procedure suitable for composite services is subsequently

presented in Chapter 6. This procedure helps to provide a unified approach towards

distinct trust negotiations with constituents, if required. This procedure is one possible

way of negotiating with composite services and the details of carrying out such a

negotiation are also presented.

The suggested negotiation procedure presents one way of handling issues of

anonymity, complexity, dynamicity and trust contexts in trust negotiations with

composite services. Suggestions are put forward in handling the issue of dynamicity

although it requires additional extensions to WS-Policy and WS-Trust specifications.

 106

In brief, this study has met the objectives of analysing the Web Services framework to

support generic trust negotiations and providing a negotiation procedure for carrying

out negotiations in composite services.

Further Work

A major phase of work to be done in the future includes providing necessary

implementations for the specified negotiation procedure in the Web Services

framework, along with an analysis of the complexity and communication effort for

this procedure, based on the complexity of the composite service. In order to achieve

this, the following aspects should receive attention:

 The possibility of incorporating a digital credential framework for Web Services,

which handles issuance, distribution and maintenance of digital credentials. The

credentials should be capable of conveying information in any trust context.

 A specification that is an extension of WS-Policy to include all the requirements

of a complete trust negotiation language. This specification should also be able to

support the complete specification of trust requirements and resources documents.

 A specification that is an extension of WS-Trust, which is a comprehensive trust

negotiation protocol for generic trust negotiation.

 Building a trust negotiation system that can be utilised by Web services and that

provides all the necessary support for trust negotiations. The feasibility of

deploying this system as an independent Web service should also be examined.

 The additional features required for deploying generic trust negotiations in the

Web Services framework (e.g. describing tModels for describing negotiations

that can be included in the UDDI).

 The specification and presentation of service structures as discussed in Section 6.7

of Chapter 6.

 Vocabularies for various trust contexts and information sources.

 The complete specification of TRtDs and TReDs.

 The implementation of a trust computation scheme based on the concepts given in

Section 2.5 of Chapter 2.

 107

BIBLIOGRAPHY

[1] Abdul-Rahman A. and Hailes S. (1997). A Distributed Trust Model.

Proceedings of the 1997 Workshop on new Security Paradigms. ACM. pp. 48-
60.

[2] Abdul-Rahman A. and Hailes S. (2000). Supporting Trust in Virtual

Communities. Proceedings of the 33rd Hawaii International Conference on
System Sciences. Volume 6. IEEE.

[3] Aberer K. and Despotovic Z. (2001). Managing Trust in a Peer-2-Peer

Information System. Proceedings of the Tenth International Conference on
Information and Knowledge Management(CIKM’01). ACM. pp. 310-317

[4] Adams C. and Boeyen S. (2002). UDDI and WSDL Extensions for Web

Services: A Security Framework. Proceedings of 2002 ACM Workshop on XML
Security. ACM. pp. 30-35.

[5] Alonso G., et al. (2003). Web Services Concepts, Architectures and

Applications. Springer-Verlag.

[6] Anderson S., et al. (2005). Web Services Trust Language (WS-Trust). Online.

68 pages. http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-
trust.pdf. Accessed on 6th May 2005.

[7] Andrews T., et al. (2003). Business Process Execution Language for Web

Services Version 1.1. Online. 136 pages. http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/. Accessed on19th
September 2005.

[8] Au R., Looi M. and Ashley P. (2001). Automated Cross-organizational Trust

Establishment on Extranet. Proceedings of the IEEE Workshop on Information
Technology for Virtual Enterprises. IEEE.

[9] Bajaj S., et al. (2004). WS-Policy. Online. 17 pages.

ftp://www6.software.ibm.com/software/developer/library/ws-policy.pdf.
Accessed on18th May 2005.

[10] Bajaj S., et al. (2004). WS-PolicyAttachment. Online.

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-policyattachment.asp. Accessed on 10th October 2005.

[11] Barton J.J., et al. (2000) SOAP Messages With Attachments. Online.

http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211. Accessed on
6th May 2005.

[12] Bellwood T., et al. (2004). UDDI Version 3.0.2. Online.

http://uddi.org/pubs/uddi_v3.htm. Accessed on19th September 2005.

 108

[13] Benatallah B., et al. (2002). Overview of Some Patterns for Architecting and
Managing Composite Web Services. ACM SIGecom Exchanges. Volume 3(3)
pp. 9-16.

[14] Benatallah B., et al. (2002). Declarative Composition and Peer-to-Peer

provisioning of Dynamic Web Services. Proceedings of the 18th International
Conference on Data Engineering (ICDE’02). IEEE.

[15] Bentallah B., et al. (2004). Abstracting and enforcing web service protocols.

International Journal of Cooperative Information Systems. Volume 13(4). pp.
413-440.

[16] Bertino E., Ferrari E. and Squicciarini A. (2004). Trust Negotiations: Concepts,

Systems, and Languages. Web Engineering. IEEE. Volume 6(4) pp.27-34.

[17] Bertino E., Ferrari E. and Squicciarini A. (2003). Trust-X: A Peer-to-Peer

Framework for Trust Establishment. Transactions on Knowledge and Data
Engineering. IEEE. Volume 16 (7). pp. 827-842.

[18] Bertino E., Ferrari E. and Squicciarini A. (2003) X-TNL: An XML based

Language for Trust Negotiations. Proceedings of the. 4th International
Workshop on Policies for Distributed Systems and Networks. IEEE. pp. 81-84.

[19] Bertino E., Ferrari E. and Squicciarini A. (2003) Trust-X: An XML Framework

for Trust Negotiations. Proceedings of the Communications and Multimedia
Security (CMS 2003). Lecture Notes in Computer Science 2828. Springer-
Verlag. pp.146-157.

[20] Beth T., Borcherding M. & Klein B. (1994). Valuation of trust in open

networks. Proceedings of the European Symposium on Research in Computer
Security (ESORICS). Lecture Notes in Computer Science 875. Springer-Verlag.
pp.3-18.

[21] Blaze M., Feigenbaum J. and Lacy J. (1996). Decentralized Trust Management.

Proceedings of the 1996 IEEE Symposium on Security and Privacy (SP’96).
IEEE. pp. 164-173.

[22] Blaze M., Feigenbaum J., Ioannidis J. and Keromytis A.D.(1999). The Role of

Trust Management in Distributed Systems Security. Secure Internet
Programming: Issues in Distributed and Mobile Object Systems. Lecture Notes
in Computer Science State-of-the-Art series. Springer-Verlag pp. 185 – 210.

[23] Blaze M., et al. (1999). The Keynote Trust Management Systems, Version 2,

Internet Engineering Task Force RFC 2704. Online.
www.ietf.org/rfc/rfc2693.txt. Accessed on 12th October 2005

[24] Bonatti P. and Samarati P. (2000). Regulating Access and Information Release

on the Web. Proceedings of the 7th ACM conference on Computer and
communications security (CCS ’00). ACM. pp. 134-143.

 109

[25] Bosworth A. (2001). Developing Web Services. Proceedings of the 17th
International Conference on Data Engineering (ICDE ’01). IEEE.

[26] Christensen E., et al. (2001). Web Services Description Language (WSDL) 1.1.

Online. http://www.w3.org/TR/wsdl. Accessed on19th September 2005.

[27] Curbera F., et al. (2002). Unraveling the Web Services Web: An introduction to

SOAP, WSDL, and UDDI. IEEE Internet computing. Volume 6(2). pp. 86-93.

[28] Damiani E., Vimercati S.D.C.D. and Samarati P. (2002). Towards Securing

XML Web Services. Proceedings of the 2002 ACM workshop on XML security.
ACM. pp 90-96.

[29] Della-Libera G., et al. (2002). WS-SecurityPolicy. Online. http://www-

106.ibm.com/developerworks/webservices/library/ws-secpol/. Accessed on18th
of May 2005.

[30] Dr Holland C.P. and Prof. Geoff Lockett A. (1998). Business Trust and the

Formation of Virtual Organizations. Proceedings of the 31st Annual Hawaii
International Conference on System Sciences. Volume 6. IEEE.

[31] Elfatatry A. and Layzell P. (2002). Software As a Service: A Negotiation

Perspective. Proceedings of the 26th Annual International Computer Software
and Applications Conference (COMPSAC’02). IEEE.

[32] Ellison C., et al. (1999). SPKI Certificate theory, IETF RFC 2693. Online

www.ietf.org/rfc/rfc2693.txt. Accessed on 12th October 2005.

[33] Essin D.J. (1997). Patterns of Trust and Policy. Proceedings of the 1997

workshop on New security paradigms. ACM. pp.38-47.

[34] Galli D.L. (2000). Distributed Operating Systems. Prentice Hall.

[35] Gambetta D. (2000). Can we Trust Trust? Trust: Making and Breaking

Cooperative Relations, University of Oxford.

[36] Gardner T.(2001). An introduction to web services. Ariadne Issue 29. Online. 4

pages. http://www.ariadne.ac.uk/issue29/gardner/intro.html. Accessed on 27th
February 2003.

[37] Gergic J., et al. (2002). An approach to lightweight deployment of web services.

Proceedings of the 14th International conference on Software engineering and
knowledge engineering (SEKE ’02).ACM. pp. 635-640.

[38] Grandison T. and Sloman M. (2003). Trust Management Tools for Internet

Applications. Trust Management 2003. Lecture Notes in Computer Science
2692. Springer-Verlag. pp. 91-107.

[39] Grandison T. and Sloman M. (2000). A survey of Trust in Internet Applications.

IEEE Communications Surveys and Tutorials. Volume 4(4). Online. 15 pages.

 110

Available at http://www.comsoc.org/pubs/surveys. Accessed on 12th October
2005.

[40] Grandison T. and Sloman M. (2001). SULTAN-A Language for Trust

Specification and Analysis. Proceedings of the 8th Annual Workshop HP
OpenView University Association (HP-OVUA). pp.1-9.

[41] Gudgin M. (2004). Secure, Reliable, Transacted; Innovation in Web Services

Architecture. Proceedings of the 2004 ACM SIGMOD International conference
on Management of data. ACM. pp. 879 - 880.

[42] Gudgin M., et al. (2003). SOAP Version 1.2 Part 1: Messaging Framework.

Online. http://www.w3.org/TR/soap12-part1/. Accessed on 19th September
2005.

[43] Hull R. and Su J. (2004). Tools for Design of Composite Web Services.

Proceedings of the 2004 ACM SIGMOD International conference on
Management of data. ACM. pp. 958 - 961.

[44] IBM Trust Establishment. Online.

http://www.alphaworks.ibm.com/tech/trustestablishment. Accessed on 12th
October 2005.

[45] Jepsen T. (2001). SOAP Cleans up Interoperability Problems on the Web. IT

Pro. Volume 3(1). IEEE. pp. 52-55.

[46] Jones S., Wilikens M., Morris P. and Masera M. (2000). Trust Requirements in

E-Business. Communications of the ACM. Volume 43(12). pp.81-87

[47] Josang A. (1996). The right type of trust for distributed systems. Proceedings of

the 1996 workshop on New security paradigms. ACM. pp. 119-131.

[48] Kalcklosch R. and Herrmann K. (2003). Statistical Trustability (Conceptual

Work). Trust Management 2003. Lecture Notes in Computer Science 2692.
Springer-Verlag. pp. 271-274.

[49] Kinateder M. and Rothermel K. (2003). Architecture and Algorithms for a

Distributed Reputation System. Trust Management 2003. Lecture Notes
Computer Science 2692. Springer-Verlag. pp.1-6.

[50] Li N., Grosof B.N. and Feigenbaum J. (2000). A practically implementable and

Tractable Delegation Logic. Proceedings of 2000 IEEE symposium on Security
and Privacy. IEEE.

[51] Li N. and Mitchell J.C. (2003). RT: A Role-based Trust-Management

Framework. Proceedings of the 3rd DARPA Information survivability
Conference and Exposition (DISCEX III), IEEE.

 111

[52] Li N., Mitchell J.C. and Winsborough W.H. (2002). Design of a role-based
Trust Management Framework. Proceedings of 2002 IEEE symposium on
Security and Privacy. IEEE.

[53] Lehti I. and Nikander P. (1998). Certifying Trust. Proceedings of the First

International Workshop on Practice and Theory in Public Key Cryptography.
Lecture Notes Computer Science 1431. Springer- Verlag. pp. 83-98.

[54] Manchala D. W. (1998). Trust Metrics, Models and Protocols for Electronic

Commerce Transactions. Proceedings of the18th International Conference on
Distributed Computing Systems. IEEE.

[55] Mes A. D. and Rongen E. (2003). Web service Credentials. IBM Systems

Journal. Volume 42(3).

[56] McGregor C. and Kumaran S. (2002). Business Process Monitoring using Web

Services in B2B e-Commerce. Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS’02).IEEE.

[57] Mihic M. (2004). Building Dynamic Application Networks with Web Services.

Proceedings of the 2004 ACM SIGMOD International conference on
Management of data. ACM. pp. 878-878.

[58] MSDN. Web Services Specifications Index Page. Online.

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/wsspecsover.asp. Accessed on 19th September 2005.

[59] Mui L., Mohtashemi M. & Halberstadt A. (2002). A computational Model of

Trust and Reputation. Proceedings of the 35th Hawaii International Conference
on System Sciences. IEEE.

[60] Nadalin A., et al. (2004). Web Services Security: SOAP Message Security 1.0

(WS-Security 2004). Online. 56 pages. http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf.
Accessed on 6th May 2005.

[61] NewComer E. (2002). Understanding Web Services XML, WSDL, SOAP and

UDDI. Addison Wesley.

[62] Papazoglou P.M. and Yang L. (2002). Design Methodology for Web Services

and Business Processes. Proceedings of the Third International Workshop on
Technologies for E-Services. Lecture Notes in Computer Science 2444.
Springer-Verlag. pp. 54-64.

[63] Patrick A.S. (2002). Building Trustworthy Software Agents. IEEE Internet

Computing. Volume 6(6). pp. 46-53.

[64] Peltz C. (2003). Web Services Orchestration and Choreography. Computer.

IEEE. Volume 36(10). pp. 46-52.

 112

[65] Pirzada A.A. and McDonald C. (2004). Establishing Trust In Pure Ad-hoc
Networks. Proceedings of the 27th conference on Australasian computer
science. ACM. pp. 47-54.

[66] Roy J. and Ramanujan A.(2001). Understanding Web services. IT Professional.

Volume 3(6). IEEE. pp.69-73.

[67] Seamons K.E., et al. (2003). Trust Negotiation in Dynamic coalitions.

Proceedings of the DARPA Information survivability Conference and Exposition
(DISCEX ‘03). IEEE.

[68] Seamons K.E. et al. (2002). Requirements for Policy Languages for Trust

Negotiation. Proceedings of the Third International Workshop on Policies for
Distributed Systems and Networks (POLICY’02). IEEE.

[69] Schimkat R.D., Nusser G. and Buhler D. (2000). Scalability and Interoperability

in Service- Centric Architectures for the Web. Proceedings of the 11th
International Workshop on Database and Expert Systems Applications
(DEXA’00). IEEE.

[70] Shirky C. (2002). Web Services and Context Horizons. Computer. Volume

35(9). IEEE. pp. 98-100.

[71] Skogsurd H., Bentallah B and Casati F. (2004) Trust-Serv: Model-Driven

Lifecycle Management of Trust Negotiation Policies for Web Services.
Proceedings of the 13th International conference on World Wide Web. ACM. pp.
53- 62.

[72] Skogsurd H., Bentallah B and Casati F. (2003) Model-Driven Trust Negotiation

for Web Services. IEEE Internet Computing. Volume 7(6). pp. 45- 52.

[73] Stal M. (2002). Web Services: BEYOND COMPONENT-BASED

COMPUTING. Communications of the ACM. Volume 45(10). pp. 71-76.

[74] Smith B., Seamons K.E. & Jones M. D. (2004). Responding to policies at

Runtime in TrustBuilder. Proceedings of the fifth IEEE International Workshop
on Policies for Distributed Systems and Networks (POLICY’04). IEEE.

[75] Swarup V. & Fabrega J.T. (1999). Trust: Benefits, Models, and Mechanisms.

Secure Internet Programming, Security Issues for Mobile and Distributed
Objects. Lecture Notes in Computer Science 1603, Springer-Verlag. pp. 3-18.

[76] Tai S., Khalaf R. and Mikalsen T. (2004). Composition of Coordinated Web

Services. Middleware 2004. Lecture Notes in Computer Science 3231. Springer-
Verlag. pp. 294-310.

[77] Tan H.K. and Moreau L. (2001). Trust Relationships in a Mobile Agent System.

Proceedings of the 5th International Conference on Mobile Agents. Lecture
Notes in Computer Science 2240. Springer-Verlag. pp.15-30.

 113

[78] Tan Y. and Thoen W. (2000). Formal Aspects of a Generic Model of Trust for
Electronic Commerce. Proceedings of the 33rd Hawaii International Conference
on System Sciences. Volume 6. IEEE.

[79] Varadharajan V. and Lin C. (2003). Modelling and Evaluating Trust

Relationships in Mobile Agents Based Systems. Proceedings of the
International Conference on Applied Cryptography and Network Security ACNS
(2003). Lecture Notes in Computer Science 2846. Springer-Verlag. pp. 176-190.

[80] Wang Y and Vassileva J. (2003). Trust and reputation Model in Peer-to-Peer

Networks. Proceedings of the Third International conference on Peer-to-peer
Computing . IEEE.

[81] Winsborough W.H., Seamons K.E. and Jones V.E. Automated Trust

Negotiation. (2000). Technical Report: TR-2000-05. North Carolina State
University at Raleigh.

[82] Winslett M., et al. (2002). Negotiating Trust on the Web. IEEE Internet

Computing. Volume 6(6). pp. 30-37.

[83] Witkowski M. and Pitt J. (2000). Objective Trust-based Agents: Trust and

Trustworthiness in a Multiagent Trading society. Proceedings of the Fourth
International Conference on MultiAgent Systems (ICMAS). IEEE.

[84] W3C. Web Services Architecture Requirements. (2004). Online.

http://www.w3.org/TR/wsa-reqs/. Accessed on 19th September 2005.

[85] Yu T., Ma X. and Winslett M. (2000). PRUNES: An efficient and complete

Strategy for Automated Trust Negotiation over the Internet. Proceedings of the
7th ACM conference on Computer and communications security. ACM. pp.210-
219.

	CONTENTS
	ABBREVIATIONS
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	BIBLIOGRAPHY

