Technology : building a bridge for ODL students

College of Science (CAES & CSET)
Journal of Visualized Experiments

JoVE, the Journal of Visualized Experiments, is the world’s first peer reviewed scientific video journal.

Why?
- poor reproducibility
- the time and labour intensive nature of learning new experimental techniques

Academic/ Peer reviewed:
- All JoVE articles are indexed in subject-relevant indexing sites, including PubMed/MEDLINE, SciFinder and Scopus
- Publishing in JoVE allows authors to dynamically present their methods, data analyses and results clearly, accurately, and professionally with the guidance of JoVE's professional videographers and editors
- JoVE has published thousands of video articles from top research institutions around the world.
How do I access JoVE?

http://www.unisa.ac.za/library

Click on Find e-resources
Subject Databases: A to Z - A (On-Campus)

<table>
<thead>
<tr>
<th>Database</th>
<th>Categories</th>
<th>Access Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Plus Education (Australia)</td>
<td>education</td>
<td>partly full-text</td>
</tr>
<tr>
<td>ABI/Inform Complete</td>
<td>accounting & auditing</td>
<td>partly full-text</td>
</tr>
<tr>
<td></td>
<td>business & management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>economics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>project management</td>
<td></td>
</tr>
<tr>
<td>ABI/Inform Dateline</td>
<td>accounting & auditing</td>
<td>full-text</td>
</tr>
<tr>
<td></td>
<td>business & management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>economics</td>
<td></td>
</tr>
<tr>
<td>ABI/Inform Global</td>
<td>multi-disciplinary</td>
<td>partly full-text</td>
</tr>
<tr>
<td>ABI/Inform Trade & Industry</td>
<td>accounting & auditing</td>
<td>full-text</td>
</tr>
<tr>
<td></td>
<td>business & management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>economics</td>
<td></td>
</tr>
<tr>
<td>Abstracts in Social Gerontology</td>
<td>psychology</td>
<td>bibliographic</td>
</tr>
<tr>
<td></td>
<td>social work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sociology</td>
<td></td>
</tr>
<tr>
<td>Academic OneFile</td>
<td>multi-disciplinary</td>
<td>partly full-text</td>
</tr>
<tr>
<td>Academic Search Premier</td>
<td>multi-disciplinary</td>
<td>partly full-text</td>
</tr>
<tr>
<td>Access South Africa: local, regional and national SA newspapers</td>
<td>business & management</td>
<td>full-text</td>
</tr>
<tr>
<td></td>
<td>communication science</td>
<td></td>
</tr>
<tr>
<td></td>
<td>history</td>
<td></td>
</tr>
</tbody>
</table>

Click on J to access.
Library

Subject Databases: A to Z - J (On-Campus)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| | JOLIS | >> decision sciences
 | | >> development studies
 | | >> economics
| | Journal Citation Reports | >> multi-disciplinary
| | | full-text
| | JoVE (Journal of Visualized Experiments) | >> agriculture
 | | >> chemistry
 | | >> life sciences
 | | >> physics
| | JSTOR | >> multi-disciplinary
| | | full-text
| | Justis Online Legal Library | >> law
| | | full-text

Click on JoVE
Library

Search for information resources

Notice: The e-resources page is undergoing an upgrade. [Click here](#) for a preview

There are a number of ways to search for information resources:

Electronic Information resources by type

- A - Z list of electronic resources
- Library guide
- Search Resources
- Unisa e-Journal Finder
- e-Books
- Theses & dissertations
- e-Reference sources
- e-Newspapers
- Digital collections
- Research support tools
- Institutional repository
- Resources by subject
- Information resources on trial
- Guidelines for workstation settings (PDF)

Database licencing and access restrictions on all electronic resources, including course material

The following access restrictions apply:

Access (on-campus and remotely) is restricted to currently registered Unisa students & staff only. You will be required to identify yourself with your [Unisa staff login and network password](#) or [Unisa student number and myUnisa password](#) before access will be granted. If permitted by the individual licence agreement, access to non-registered members of the public (walk-in users) may be allowed in terms of Unisa Library Admissions Policy Annexure B.

The following basic copyright and usage restrictions apply:

- You may make only one print or electronic copy of a full-text article for your own research and study - any further copying or distribution of material is illegal.
- Databases may only be used for personal study, research, and teaching.
- You may not systematically download, print or retain substantial parts or complete issues of any parts of any database or journal title.
- Databases may not be copied, sold or used for commercial gain.
- The use of software, including scripts, agents or robots (such as website crawlers or offline browsers) to systematically download content is prohibited and may result in loss of access to resources for the entire Unisa community.
- You may not remove or alter authors' names, publishers copyright notices or any other means of proprietary identification as they appear in the database or journal.
Unisa Library has a subscription to the Environment Module.
JoVE Environment is dedicated to research methodologies that address environmental concerns and seek to better understand Earth’s ecosystem. Special consideration is given to experimental methodologies that assess society’s impact on the environment, suggest solutions for protecting Earth’s resources, and develop sustainable fuel sources. Moving towards an environmentally conscious planet is a collaborative effort with contributions from both life and physical scientists.

Multimodal Optical Microscopy Methods Reveal Polyp Tissue Morphology and Structure in Caribbean Reef Building Corals

Mayandi Sivaguru, Glenn A. Fried, Carly A. H. Miller, Bruce W. Fouke

1Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 2Department of Geology, University of Illinois at Urbana-Champaign

An integrated suite of imaging techniques has been applied to determine polyp morphology and tissue structure in the Caribbean corals Montastrea annularis and M. faveolata. Fluorescence, serial block face, and two-photon confocal laser scanning microscopy have identified lobate structure, polyp walls, and estimated chromatophore and zooxanthellae densities and distributions.

Published September 5, 2014. Keywords: Environmental Sciences, Serial block face imaging, two-photon fluorescence microscopy, Montastrea annularis, Montastrea faveolata, 3D coral tissue morphology and structure, zooxanthellae, chromatophore, autofluorescence, light harvesting optimization, environmental change
Multimodal Optical Microscopy Methods Reveal Polyp Tissue Morphology and Structure in Caribbean Reef Building Corals

Mayandi Siraguna, Glenn A. Fried, Carly A. H. Miller, Bruce W. Fouke

Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Department of Geology, University of Illinois at Urbana-Champaign.

Summary

An integrated suite of imaging techniques has been applied to determine polyp morphology and tissue structure in Caribbean reef-building corals.
Summary

An integrated suite of imaging techniques has been applied to determine polyp morphology and tissue structure in the Caribbean corals *Montastrea annularis* and *M. faveolata*. Fluorescence, serial block face, and two-photon confocal laser scanning microscopy have identified lobate structure, polyp walls, and estimated chromatophore and zooxanthellae densities and distributions.

Date Published: 9/05/2014, Issue 91; doi: [10.3791/51824](http://dx.doi.org/10.3791/51824)

Keywords: Environmental Sciences, Issue 91, Serial block face imaging, two-photon fluorescence microscopy, *Montastrea annularis*, *Montastrea faveolata*, 3D coral tissue morphology and structure, zooxanthellae, chromatophore, autofluorescence, light harvesting optimization, environmental change

Cite this Article

Abstract

An integrated suite of imaging techniques has been applied to determine the three-dimensional (3D) morphology and cellular structure of polyp tissues comprising the Caribbean reef building corals *Montastrea annularis* and *M. faveolata*. These approaches include fluorescence microscopy (FM), serial block face imaging (SBFI), and two-photon confocal laser scanning microscopy (TPLSM). SBFI provides deep tissue.
Multimodal Optical Microscopy Methods Reveal Polyp Tissue Morphology and Structure in Caribbean Reef Building Corals

Mayandi Sivagaru, Glenn A. Fried, Carly A. H. Miller, Bruce W. Fouke

1Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 2Department of Geology, University of Illinois at Urbana-Champaign, 3Department of Microbiology, University of Illinois at Urbana-Champaign

Summary

An integrated suite of imaging techniques has been applied to determine polyp morphology and tissue structure in Caribbean Reef Building Corals. These techniques include multimodal optical microscopy, which allows for detailed visualization of tissue architecture and cellular organization. The results highlight the complexity and diversity of tissue morphology within polyps, providing insights into the structural basis of coral feeding and growth.
Multimodal Optical Microscopy Methods Reveal Polyp Tissue Morphology and Structure in Caribbean Reef Building Corals

Mayandi Sivaguru1, Glenn A. Fried2, Carly A. H. Miller2,3, Bruce W. Fouke1,2,3

1Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 2Department of Geology, University of Illinois at Urbana-Champaign, 3Department of Microbiology, University of Illinois at Urbana-Champaign

Multimodal Optical Microscopy Methods Reveal Polyp Tissue Morphology and Structure in Caribbean Reef Building Corals

Mayandi Sivaguru1, Glenn Fried2, Carly Miller2,3, and Bruce Fouke1,2,3

1Institute for Genomic Biology, 2Department of Geology, 3Department of Microbiology, University of Illinois at Urbana-Champaign

Summary

An integrated suite of imaging techniques has been applied to determine polyp morphology and tissue structure in Caribbean reef-building corals. These techniques include confocal microscopy, light sheet microscopy, and multiphoton microscopy. The analysis reveals detailed insights into the cellular architecture and tissue organization, providing a comprehensive understanding of polyp morphogenesis and tissue differentiation in these complex marine organisms.
Multimodal Optical Microscopy Methods Reveal Polyp Tissue Morphology and Structure in Caribbean Reef Building Corals

Maynard Dugan1, Greer A. Fried2, Carly A. H. Miller2, Bruce W. Fouke1,2,3
1Department of Geology, University of Illinois at Urbana-Champaign
2Department of Microbiology, University of Illinois at Urbana-Champaign
3Department of Geology, University of Illinois at Urbana-Champaign

Correspondence to: Maynard Dugan at dugan5@illinois.edu, Bruce W. Fouke at fouke@illinois.edu

URL: http://jove.com/video/51624

Keywords: environmental science, issue 91, confocal laser imaging, epifluorescence microscopy, fluorescence microscopy, electron microscopy, 3D coral tissue morphology and structure, zoanthidophora, chromophores, autofluorescence, light harvesting, optimization, environmental change

Abstract

An integrated suite of imaging techniques has been applied to determine the three-dimensional (3D) morphology and cellular structure of polyp tissue comprising the Caribbean Reef building coral Montastraea annularis and M. cavernosa. These approaches include Raman microscopy (RM), serial block face imaging (SBFI), and confocal and two-photon laser scanning microscopy (TPLM). RM provides deep tissue imaging and reveals tissues and the tissue surface structure and 3D visualization to tissues of depths of more than 2.5 mm. Complementary TPLM and SBFI provide ultra-high-resolution images of the cellular structure. Results: First, identically dispersed polyps tissue morphology is determined on the order of micrometers to millimeters and 2) created the first surface images of the 3D distribution and tissue density of chromophores and chlorophyll-like phase contrast images. Additional results: All of these approaches allow for the visualization of cellular structures and the examination of their histological and ultrastructural features. These results indicate that M. cavernosa and M. annularis corals are similar in their tissue composition and structure, suggesting that these corals are suitable for use in future studies on the effects of environmental stressors on coral tissue morphology and structure.

Protocol

STEP 1: Preparation of Full Block Face Imaging of Coral Tissue

1. Prefiltration Wax

 a. Mix 30 ml of DDW and 30 ml of 50% ethanol.
 b. Filter 30 ml of the mixture through a 0.22 mm syringe filter.
 c. Add 0.5 ml of microwave paraffin (100%) and mix well.

2. Embedding Wax

 a. Place 7.2 ml of CTEA wax in a glass block, and mix well with 0.3 ml of 50% ethanol.
 b. Add 0.3 ml of 50% ethanol and mix well.
 c. Add 1.5 ml of 50% ethanol and mix well.
 d. Add 1.5 ml of 50% ethanol and mix well.
 e. Add 0.5 ml of 50% ethanol and mix well.
 f. Place the glass block with a 0.1 ml dropper on the Corals.
 g. Place the glass block with a 0.1 ml dropper on the Corals.
 h. Place the glass block with a 0.1 ml dropper on the Corals.
 i. Place the glass block with a 0.1 ml dropper on the Corals.
 j. Place the glass block with a 0.1 ml dropper on the Corals.
 k. Place the glass block with a 0.1 ml dropper on the Corals.
 l. Place the glass block with a 0.1 ml dropper on the Corals.
 m. Place the glass block with a 0.1 ml dropper on the Corals.
 n. Place the glass block with a 0.1 ml dropper on the Corals.
 o. Place the glass block with a 0.1 ml dropper on the Corals.
 p. Place the glass block with a 0.1 ml dropper on the Corals.
 q. Place the glass block with a 0.1 ml dropper on the Corals.
 r. Place the glass block with a 0.1 ml dropper on the Corals.
 s. Place the glass block with a 0.1 ml dropper on the Corals.
 t. Place the glass block with a 0.1 ml dropper on the Corals.
 u. Place the glass block with a 0.1 ml dropper on the Corals.
 v. Place the glass block with a 0.1 ml dropper on the Corals.
 w. Place the glass block with a 0.1 ml dropper on the Corals.
 x. Place the glass block with a 0.1 ml dropper on the Corals.
 y. Place the glass block with a 0.1 ml dropper on the Corals.
 z. Place the glass block with a 0.1 ml dropper on the Corals.

3. Embedding Coral Tissues for Full Block Face Imaging

 a. Wash the coral polyps with the appropriate buffer solution.
 b. Wash the coral polyps with the appropriate buffer solution.
 c. Wash the coral polyps with the appropriate buffer solution.
 d. Wash the coral polyps with the appropriate buffer solution.
 e. Wash the coral polyps with the appropriate buffer solution.
 f. Wash the coral polyps with the appropriate buffer solution.
 g. Wash the coral polyps with the appropriate buffer solution.
 h. Wash the coral polyps with the appropriate buffer solution.
 i. Wash the coral polyps with the appropriate buffer solution.
 j. Wash the coral polyps with the appropriate buffer solution.
 k. Wash the coral polyps with the appropriate buffer solution.
 l. Wash the coral polyps with the appropriate buffer solution.
 m. Wash the coral polyps with the appropriate buffer solution.
 n. Wash the coral polyps with the appropriate buffer solution.
 o. Wash the coral polyps with the appropriate buffer solution.
 p. Wash the coral polyps with the appropriate buffer solution.
 q. Wash the coral polyps with the appropriate buffer solution.
 r. Wash the coral polyps with the appropriate buffer solution.
 s. Wash the coral polyps with the appropriate buffer solution.
 t. Wash the coral polyps with the appropriate buffer solution.
 u. Wash the coral polyps with the appropriate buffer solution.
 v. Wash the coral polyps with the appropriate buffer solution.
 w. Wash the coral polyps with the appropriate buffer solution.
 x. Wash the coral polyps with the appropriate buffer solution.
 y. Wash the coral polyps with the appropriate buffer solution.
 z. Wash the coral polyps with the appropriate buffer solution.
Multimodal Optical Microscopy Methods Reveal Polyp Tissue Morphology and Structure in Caribbean Reef Building Corals

Mayandi Sivaguru, Glenn A. Fried, Carly A. H. Miller, Bruce W. Fouke

1Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 2Department of Geology, University of Illinois at Urbana-Champaign

Summary

An integrated suite of imaging techniques has been applied to determine polyp morphology and tissue structures for several Caribbean coral species. These techniques include confocal microscopy, Raman spectroscopy, and second-order nonlinear microscopy. The results provide new insights into the cellular and subcellular organization of coral tissues, which can aid in understanding their physiology and ecology.
Materials

Multimodal Optical Microscopy Methods Reveal Polyp Tissue Morphology and Structure In Caribbean Reef Building Corals

Mayand Sivaguru¹, Glenn A. Fiedel, Carly A. H. Miller², Bruce W. Fouke³

¹Institute for Genomic Biology, University of Illinois at Urbana-Champaign
²Department of Geology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign
³Department of Microbiology, University of Illinois at Urbana-Champaign

Correspondence to: Mayand Sivaguru at sivaguru@illinois.edu, Bruce W. Fouke at fouke@illinois.edu

D0i: 10.3791/5824

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Catalog Number</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coral Tissue Skeleton</td>
<td>None</td>
<td>None</td>
<td>2.5 cm Biology from natural habitat</td>
</tr>
<tr>
<td>Ash Punch Coring Device</td>
<td>C.S. Osborne and Company</td>
<td>No. 160</td>
<td>For Coral biopsy collection</td>
</tr>
<tr>
<td>Paraformaldehyde</td>
<td>Electron Microscopy Sciences</td>
<td>RT 15700</td>
<td>16% Pre-diluted</td>
</tr>
<tr>
<td>Histoclear/Isoleucin II</td>
<td>Electron Microscopy Sciences</td>
<td>RT 6111-64</td>
<td>Non-Toxic alternate to Xylene</td>
</tr>
<tr>
<td>Xylene and Ethanol</td>
<td>Fisher Scientific</td>
<td>Fisher Scientific</td>
<td>Dehydration</td>
</tr>
<tr>
<td>Paraffin Wax</td>
<td>Richard Allen Scientific</td>
<td>Type H REF 5335</td>
<td>Infiltration solution</td>
</tr>
<tr>
<td>Vgpar</td>
<td>The Candle Maker</td>
<td>None</td>
<td>Component of red wax</td>
</tr>
<tr>
<td>Glycerin</td>
<td>The Candle Maker</td>
<td>None</td>
<td>Component of Red Wax</td>
</tr>
<tr>
<td>Sudan IV</td>
<td>Fisher Chemical</td>
<td>D667-25</td>
<td>Red Wax-Opaque background</td>
</tr>
<tr>
<td>Wheat Germ Agglutinin WGA</td>
<td>Lfa Technologies</td>
<td>W32466</td>
<td>For labeling Coral Nucleus</td>
</tr>
<tr>
<td>Procion Gold</td>
<td>Lfa Technologies</td>
<td>P36955</td>
<td>Anti-fade mounting media</td>
</tr>
<tr>
<td>Flurot Ethanol</td>
<td>World Precision Instruments</td>
<td>FD-35-100</td>
<td>For two-photon imaging</td>
</tr>
<tr>
<td>XY Motor, Driver and Controll</td>
<td>Lin Engineering</td>
<td>211-13-01-RD, R325, R256-RO</td>
<td>XY Translational Movement</td>
</tr>
<tr>
<td>Hot Plate</td>
<td>Corning</td>
<td>DC-220</td>
<td>Melting all wax</td>
</tr>
<tr>
<td>Convection Oven</td>
<td>Yamato</td>
<td>DX-600</td>
<td>Infiltration and Embedding</td>
</tr>
<tr>
<td>Tissue Processor</td>
<td>Lela</td>
<td>ASP 300</td>
<td>Dehydration, Infiltration</td>
</tr>
<tr>
<td>Microtome</td>
<td>Lela</td>
<td>RM2055</td>
<td>Disposable knives</td>
</tr>
<tr>
<td>Stereo Microscope</td>
<td>Carl Zeiss</td>
<td>Sterolunum V 12</td>
<td>1.5x (30 mm WD) Objective</td>
</tr>
<tr>
<td>Fluorescence Microscope with ApoTome</td>
<td>Carl Zeiss</td>
<td>Axiovert M 200, ApoTome I System</td>
<td>Imaging thin section of a polyp: Z-stackwise</td>
</tr>
<tr>
<td>Axioskam camera</td>
<td>Carl Zeiss</td>
<td>MRm</td>
<td>Monochrome camera 1383x1040 pixels</td>
</tr>
<tr>
<td>Axiovision Software</td>
<td>Carl Zeiss</td>
<td>Version 4.6</td>
<td>Image acquisition program</td>
</tr>
<tr>
<td>Two-Photon Laser</td>
<td>Spectraphysics</td>
<td>Maitai eHP, pulsed laser (70 fs)</td>
<td>With DeepSee module</td>
</tr>
<tr>
<td>Laser Scanning Microscope</td>
<td>Carl Zeiss</td>
<td>LSM 710 with Spectral Detector</td>
<td>34 channel PMT detection</td>
</tr>
<tr>
<td>Zen Software</td>
<td>Carl Zeiss</td>
<td>2010 or above</td>
<td>for two-photon and spectral image acquisition</td>
</tr>
<tr>
<td>Imaris Suite Software</td>
<td>Biplane, Inc.</td>
<td>Version 7.0 or above</td>
<td>3D Volume, Isosurface Rendering, Visualization</td>
</tr>
</tbody>
</table>