Introduction

Genome-wide association studies (GWAS) provide a comprehensive and an unbiased assessment of single nucleotide polymorphism (SNPs, herein called genetic variants) associated with an increased risk of developing prostate cancer. These findings are providing valuable clues about the emerging genetic susceptibility landscape of prostate cancer. However, despite considerable progress, GWAS-defined loci, singly or in aggregate, typically explain only a small proportion of the heritable variation, and they do not typically inform the broader context in which the disease genes operate, thereby providing limited insights into the mechanisms driving prostate cancer.

Prostate cancer is a polygenic disease originating from a more complex interplay between constellations of genetic alterations involving both common and rare variations and a broad range of nongenetic factors. These complex arrays of interacting factors affect entire network states and biological pathways that in turn increase or decrease the risk of developing prostate cancer or affect the severity of the disease. Therefore, if we consider only the common genetic variants that are strongly associated with prostate cancer, the common genetic variants and rare variants that jointly have significant risk effects, but individually making a small contribution, will be missed. Most notably, the genes and pathways that likely mediate the actions of SNP-containing genes and pathways may be missed.

One way to account for the missing information from GWAS is by integrating GWAS information with gene expression data to infer the causal association between gene expression and the disease and to identify the network states and biological pathways enriched for genetic variants. We identified gene regulatory networks and biological pathways enriched for genetic variants, including the prostate cancer, IGF-1, JAK2, androgen, and prolactin signaling pathways. The integration of GWAS information with gene expression data provides insights about the broader context in which genetic variants associated with an increased risk of developing prostate cancer operate.

KEYWORDS: GWAS, genetic variants, gene expression, prostate cancer
expression data and biological information. This unified approach has the potential to identify novel genes that are functionally related with genes containing genetic variants associated with an increased risk of developing prostate cancer and to provide insights about the broader context in which genetic variants operate. We have recently demonstrated this approach in breast cancer.5 But to date, the vast amounts of information generated from GWAS have not been leveraged with gene expression data to link GWAS findings to the disease state and to identify molecular networks and biological pathways enriched for genetic variants in prostate cancer.

Over the past decade, considerable efforts and financial resources have been directed at identifying molecular signatures for prostate cancer using transcription profiling.7–10 However, although these primary analyses have made great strides in deciphering the molecular basis of prostate cancer, they have been unsuccessful in determining which genes have causative roles as opposed to being consequences of the prostate cancer state.

The objectives of this study were threefold: (i) to determine whether genes containing genetic variants associated with an increased risk of developing prostate cancer are functionally related and associated with the disease state, (ii) to gain insights about the broader context in which the genetic variants operate by identifying gene regulatory networks and biological pathways enriched for genetic variants, and (iii) to identify novel genes (i.e., genes not identified by GWAS). The rationale being that identification of novel genes could explain the missing variation. Our working hypothesis was that genes containing genetic variants associated with an increased risk of developing prostate cancer are associated with the disease state, and that these genes are functionally related and interact with one another and with novel genes in gene regulatory networks and biological pathways enriched for genetic variants. Throughout this report, we have defined SNPs as genetic variants associated with an increased risk of developing prostate cancer, and used these terms interchangeably.

\textbf{Material and Methods}

Sources of information on genetic variants and associated genes. The GWAS information on prostate cancer, specifically the genetic variants and associated genes used in this study were based on publicly available data obtained from the published reports on GWAS and the website hosting supplementary data on the respective reports. The details about methods of data collection including inclusion and exclusion criteria as well as quality control were based on the guidelines proposed by the Human Genome Epidemiology Network for systematic review of genetic associations11–15 and have been reported elsewhere.2 Here, we provide a brief but detailed description of the data used in this study.

We examined a total of 140 published reports on GWAS. The reports were screened by title, abstract, and full-text review to identify studies that met our eligibility criteria. After screening, 100 studies met our eligibility criteria. The exclusion criteria for the 40 studies included removal of studies with insufficient or incomplete information, reviews, studies reporting only intergenic regions, and studies with very small sample sizes. GWAS were eligible to be included if they met the following criteria: (i) must have been based on a case-control design using unrelated individuals, (ii) publications must have been of full length and published in peer-reviewed journals or online in English before September 2013, (iii) prostate cancer must have been diagnosed by histological examination, (iv) must be based on sample sizes of greater than 500 subjects in the cases controls, (v) the study must have provided sufficient information such that genotype frequencies for both prostate cancer cases and controls could be determined without ambiguity, and (vi) the study must have used recommended statistical methods for assessing evidence of association by taking into account covariates and accounting for population structure.11

We manually extracted the information from the studies meeting our eligibility criteria and the accompanying websites containing supplementary data. The extracted information included SNP identification number (SNP-rsID), the SNP P-value indicating the magnitude and strength of association, the gene name to which the identified SNP map, the chromosome position of the gene, the sample sizes for cases and controls used to detect the association, and the study reporting the association. Evidence and credibility of association were assessed using the procedures previously reported.11 This assessment included the amount of evidence as determined by the association of P value, extent of replication, protection from bias, and a composite of strong (P ≤ 10-8), moderate (P = 10-5–10-7), or weak association (P = 10-2–10-4). This search yielded 450 SNPs mapped to 172 genes from a population of over 350,000 cases and over 350,000 controls. In addition, the search identified 300 SNPs mapped to intergenic regions, but these were not included in the final analysis. The SNP (rs-IDs), gene names, and their locations on the chromosomes were verified using the dbSNP database16 and the Human Genome Nomenclature Committee (HGNC) database.17

Sources and characteristics of gene expression data. We used publicly available gene expression data. The data were downloaded from the NCBI Gene Expression Omnibus under accession numbers GSE32448 and GSE17951. Methods regarding experimental design, sample preparations, and data processing have been described by the data originators.18 Briefly, the data included a total of 234 samples (194 prostate cancer patients and 40 cancer-free controls) from the populations of European ancestry. All the data were processed using the Affymetrix platform based on the Human GeneChip U133Plus 2.0, which contains ~54,000 probes, using standard Affymetrix protocols. Expression data (average scaled difference values) were processed and normalized using the Affymetrix Microarray Analysis Software (MAS 5.0). The data were filtered out to remove spiked control genes. A total
of 154 SNP-containing genes were represented on the Chip and used in the analysis. The discrepancy between the number of genes (172) containing SNPs associated with an increased risk of developing prostate cancer and the number of SNP-containing genes represented on the Chip can be explained by two factors, namely, discrepancies in GWAS annotations and lack of representation of some SNP-containing genes on the U133Plus 2.0 Chip.

Data analysis. We performed supervised analysis comparing expression levels of SNP-containing genes between prostate cancer samples and matched cancer-free control samples using a t test. The goal of this analysis was to determine whether genes containing genetic variants associated with an increased risk of developing prostate cancer are associated with the disease state and to identify a molecular signature of SNP-containing genes and novel genes distinguishing the two groups. We performed additional supervised analysis on the whole data sets to identify novel genes (i.e., genes not identified by GWAS) which were highly significantly differentially expressed between cases and controls. Permutation test was applied to reliably estimate the P values. We used a false discovery rate (FDR) to correct for multiple hypothesis testing. Because of small sample sizes, we did not partition the data into test and validation sets, but instead we used an out of sample (leave-one-out) validation procedure to identify genes with predictive power. Supervised analyses were performed using GenePattern and Pomelo II software packages.

To determine whether genes containing SNPs associated with an increased risk of developing prostate cancer are functionally related and have similar patterns of expression profiles with each other and with novel genes, we performed unsupervised analysis using hierarchical clustering. We computed the Pearson correlation coefficients between all possible pairs of significantly differentially expressed genes. Using the Pearson correlation coefficient as the distance measure and the complete linkage method, the genes were subjected to hierarchical clustering using GenePattern. Before clustering, gene expression data were normalized using the median normalization and were standardized and centered. In addition, we performed gene ontology (GO) analysis to gain insights about the molecular functions, biological processes, and cellular components in which the SNP-containing and novel genes are involved. To gain insights about the broader context in which the genes containing genetic variants associated with an increased risk of developing prostate cancer and novel genes operate, we performed network and pathway analyses and visualization using the Ingenuity pathway analysis (IPA) program (http://www.ingenuity.com).

Results

Associating GWAS information with disease state. One of the primary goals of this investigation was to determine whether genes containing SNPs associated with an increased risk of developing prostate cancer are associated with the disease state. We addressed this question by comparing gene expression levels of SNP-containing genes between prostate cancer samples and matched cancer-free control samples. Our working hypothesis was that genes containing SNPs associated with an increased risk of developing prostate cancer are significantly differentially expressed between cancer patients and cancer-free controls. Out of a total of 154 genes containing SNPs associated with an increased risk of developing prostate cancer evaluated, 131 genes were found to be significantly (P < 0.05) differentially expressed between prostate cancer and control samples. Table 1 shows a list of 47 genes containing SNPs with strong associations and SNPs replicated in multiple independent GWAS. A complete list of all the 131 genes containing SNPs associated with an increased risk of developing prostate cancer that were found to be significantly associated with the disease state are presented in Table S1, provided as supplementary data to this report.

Among the significantly differentially expressed SNP-containing genes identified, 29 genes including FGF10, MLPH, ZBTB38, ZNF652, AR, AR15, CCHCR1, FAM84B, FSHR, GGCX, IL16, IRX4, MYEOV, SKIL, BIK, C20orf43, CTBP2, EEFS3C, EPHB1, FOXP4, GPRC6A, HNF1B, ITGA6, JAZF1, KLK3, MSMB, NUDT11, PDLIM5, and TET2 contained SNPs with strong (P < 10−5) associations (Table 1). Another 33 genes including BIK, BMP5, C20orf43, CASP3, CNGB3, CTBP2, EEFS3C, EPHB1, FOXP4, FREM1, GPRC6A, HECR2, HNF1B, ITGA6, JAZF1, KLK15, KLK2, KLK3, LMTK2, LOC729852, MSMB, MSR1, NCOA4, NKK3-1, NNSMCE2, NUDT11, PDLIM5, RFX6, SLC22A3, SLC25A37, TET2, TNFSF10, and TNRC6B contained SNPs replicated in multiple independent studies (Table 1).

Interestingly, the genes containing SNPs with moderate (P ~ 10−2–10−5) to weak (P ~ 10−2–10−4) associations were found to be significantly associated with the disease state (Table S1). This is a significant finding given that relatively few SNPs have P values sufficiently small and/or replicated in multiple independent studies to give conclusive evidence of association. The identification of SNP-containing genes that are significantly differentially expressed between tumor and control samples confirmed our hypothesis that genes containing genetic variants associated with an increased risk of developing prostate cancer are associated with the disease state. A small number (23 genes) of the 154 SNP-containing genes evaluated did not exhibit significant differences in expression levels between tumor and control samples. This could partially be explained by the genetic heterogeneity inherent in GWAS.

The findings from published GWAS reports explain only a small proportion of the heritable variation, raising the question “where is the missing variation?” To partially address this question, we performed additional supervised analysis comparing gene expression levels between prostate cancer patients and cancer-free controls on the whole data set to identify...
Table 1. List of significantly differentially expressed genes containing SNPs with strong associations and SNPs replicated in multiple independent studies.

<table>
<thead>
<tr>
<th>GENE SYMBOL</th>
<th>CHROMOSOME POSITION</th>
<th>SNP GWAS P VALUE</th>
<th>GENE EXPRESSION P VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIK</td>
<td>22q13.31</td>
<td>(1.30 \times 10^{-12} - 3.01 \times 10^{-3})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>BMP5</td>
<td>6p12.1</td>
<td>(3.0 \times 10^{-2} - 4.0 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>C2ORF43</td>
<td>2p24.1</td>
<td>(7.5 \times 10^{-8} - 1.0 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>CASP3</td>
<td>4q34</td>
<td>(4.0 \times 10^{-2} - 4.0 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>CNGB3</td>
<td>8q21.3</td>
<td>(2.79 \times 10^{-2} - 1.0 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>CTBP2</td>
<td>10q26.13</td>
<td>(2.7 \times 10^{-4} - 3.0 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>EEFSEC</td>
<td>3q21.3</td>
<td>(2.3 \times 10^{-4} - 3.30 \times 10^{-3})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>EHB1</td>
<td>2p15</td>
<td>(7.7 \times 10^{-6} - 4.0 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>FGF10</td>
<td>5p13-p12</td>
<td>(4.0 \times 10^{-8})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>FOXP4</td>
<td>6p21.1</td>
<td>(7.6 \times 10^{-6} - 2.0 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>FREM1</td>
<td>9p22.3</td>
<td>(2.0 \times 10^{-3} - 2.0 \times 10^{-3})</td>
<td>(3.9 \times 10^{-2})</td>
</tr>
<tr>
<td>GPRC6A</td>
<td>6q22.31</td>
<td>(1.6 \times 10^{-12} - 2.0 \times 10^{-3})</td>
<td>(2.0 \times 10^{-2})</td>
</tr>
<tr>
<td>HERC2</td>
<td>15q13</td>
<td>(5.20 \times 10^{-5} - 4.0 \times 10^{-3})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>HNF1B</td>
<td>17q12</td>
<td>(1.13 \times 10^{-25} - 1.0 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>ITGA6</td>
<td>2q31.1</td>
<td>(9 \times 10^{-3} - 2.0 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>JAZF1</td>
<td>7p15.2-p15.1</td>
<td>(7.05 \times 10^{-14} - 4 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>KLK15</td>
<td>19q13.4</td>
<td>(2.7 \times 10^{-4} - 1.0 \times 10^{-2})</td>
<td>(1.8 \times 10^{-4})</td>
</tr>
<tr>
<td>KLK2</td>
<td>19q13.33</td>
<td>(9.0 \times 10^{-3} - 4.0 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>KLK3</td>
<td>19q13.41</td>
<td>(1.6 \times 10^{-24} - 3 \times 10^{-10})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>LMTK2</td>
<td>7q22.1</td>
<td>(1.1 \times 10^{-6} - 2 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>LOC729852</td>
<td>7p21.3</td>
<td>(8.0 \times 10^{-3} - 1.0 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>MLPH</td>
<td>2q37.2</td>
<td>(4.0 \times 10^{-8})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>MSMB</td>
<td>10q11.2</td>
<td>(8.7 \times 10^{-25} - 1.0 \times 10^{-2})</td>
<td>(3.0 \times 10^{-5})</td>
</tr>
<tr>
<td>MSR1</td>
<td>8p22</td>
<td>(9.0 \times 10^{-3} - 2.0 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>NCOA4</td>
<td>10q11.2</td>
<td>(5.6 \times 10^{-3} - 7.0 \times 10^{-3})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>NKKX3–1</td>
<td>8p21.2</td>
<td>(5.52 \times 10^{-7} - 7.0 \times 10^{-3})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>NSMCE2</td>
<td>8q24.13</td>
<td>(5.0 \times 10^{-4} - 4.0 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>NUDT11</td>
<td>Xp11.22-p11.1</td>
<td>(1.0 \times 10^{-47} - 4.0 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>PDLIM5</td>
<td>4q22</td>
<td>(4.2 \times 10^{-15} - 7.30 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>RFX6</td>
<td>6q22.31</td>
<td>(3.1 \times 10^{-4} - 4.43 \times 10^{-5})</td>
<td>(2.0 \times 10^{-4})</td>
</tr>
<tr>
<td>SLC22A3</td>
<td>6q25.3</td>
<td>(9.3 \times 10^{-7} - 2.0 \times 10^{-3})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>SLC25A37</td>
<td>8p21.2</td>
<td>(3.0 \times 10^{-2} - 2.64 \times 10^{-1})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>TET2</td>
<td>4q24</td>
<td>(6.74 \times 10^{-10} - 1.2 \times 10^{-2})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>TNFSF10</td>
<td>3q26</td>
<td>(7.34 \times 10^{-5} - 2.0 \times 10^{-3})</td>
<td>(9.9 \times 10^{-4})</td>
</tr>
<tr>
<td>TNRC6B</td>
<td>22q13</td>
<td>(5 \times 10^{-7} - 1.22 \times 10^{-3})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>ZBTB38</td>
<td>3q23</td>
<td>(2.0 \times 10^{-6})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>ZNF552</td>
<td>17q21.32</td>
<td>(3.4 \times 10^{-13})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>AR</td>
<td>Xq12</td>
<td>(1.0 \times 10^{-5})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>ARL15</td>
<td>5p15.2</td>
<td>(5.4 \times 10^{-19})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>CCHCR1</td>
<td>6p21.3</td>
<td>(3.2 \times 10^{-4})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>FAM84B</td>
<td>8q24.21</td>
<td>(4.0 \times 10^{-10})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>FSHR</td>
<td>2p21-p16</td>
<td>(5.0 \times 10^{-4})</td>
<td>(8.0 \times 10^{-4})</td>
</tr>
<tr>
<td>GGCX</td>
<td>2p12</td>
<td>(3.0 \times 10^{-15})</td>
<td>(8.0 \times 10^{-4})</td>
</tr>
<tr>
<td>IL16</td>
<td>15q26.3</td>
<td>(9.8 \times 10^{-8})</td>
<td>(6.4 \times 10^{-2})</td>
</tr>
<tr>
<td>IRX4</td>
<td>5p15.33</td>
<td>(3.9 \times 10^{-18})</td>
<td>(6.4 \times 10^{-2})</td>
</tr>
<tr>
<td>MYEOV</td>
<td>11q13.2</td>
<td>(8.30 \times 10^{-10})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
<tr>
<td>SKIL</td>
<td>3q26</td>
<td>(7.0 \times 10^{-22})</td>
<td>(5.0 \times 10^{-6})</td>
</tr>
</tbody>
</table>
significantly differentially expressed novel genes (ie, genes not reported in GWAS) between tumor and control samples. Because of the large number of genes analyzed, we used a very stringent threshold to select the differentially expressed genes. After correcting for multiple hypothesis testing, we identified 200 highly significantly \((P < 10^{-6}, \text{FDR} = 0) \) differentially expressed novel genes. The 200 genes and their estimates of \(P \) values are presented in Table S2 provided as supplementary data to this report.

Co-expression and functional analysis. To determine whether the SNP-containing and novel genes are involved in the same molecular functions, biological processes, and cellular components, we performed GO analysis. We hypothesized that the genes containing genetic variants associated with an increased risk of developing prostate cancer are functionally related with one another and with novel genes. The rationale is that the presence of SNPs in genes of similar biological functions and involved in the same biological processes and cellular components gives a degree of confidence that the associations are potentially genuine even if none of the genetic variants is individually highly significant. The results of GO analysis for genes containing SNPs associated with an increased risk of developing prostate cancer and novel genes are provided in Table S3 provided as supplementary data to this report. GO analysis revealed that the genes containing SNPs associated with an increased risk of developing prostate cancer are functionally related with one another and with novel genes (Table S3). Interestingly, the genes containing SNPs with strong associations and SNPs replicated in multiple independent GWAS were found to be functionally related with genes containing SNPs with weak to moderate associations.

To further gain insights about the functional relationships of the identified genes, we performed unsupervised analysis on significantly differentially expressed SNP-containing and novel genes to identify co-expressed genes with similar patterns of expression profiles. We hypothesized that SNP-containing genes exhibit similar patterns of expression profiles or behave similarly. We further hypothesized that SNP-containing genes and novel genes have similar patterns of expression profiles. The rationale is that co-expression is correlated with functional relationships, such as physical interaction between the encoded proteins, although co-expression does not necessarily imply a causal relationship among transcript levels.23

The results of co-expression analysis for the 131 SNP-containing genes only are presented in Figure 1. The results of co-expression analysis for the novel genes only are presented in Figure 2. In both the cases, hierarchical clustering revealed similarities in patterns of gene expression profiles among the genes under study. Genes containing SNPs associated with an increased risk of developing prostate cancer revealed similar patterns of expression profiles with one another (Fig. 1). The patterns of gene expression profiles for the SNP-containing genes only (Fig. 1) were more spurious than the patterns of expression profiles for the novel genes only (Fig. 2). This can be partially explained by the heterogeneity inherent in GWAS data. Interestingly, genes containing SNPs with strong associations and SNPs replicated in multiple independent studies were found to interact with genes containing SNPs with weak to moderate associations (Fig. 1). This is a significant finding given that relatively few SNPs have \(P \) values sufficiently small to give conclusive evidence of association. Although it is conceivable that some of the SNPs with weak associations could be false positives, the presence of associated SNPs in functionally related genes with similar patterns of expression profiles gives convincing evidence that some of the SNPs and associated genes are genuine even if none of the SNPs individually is strongly associated with prostate cancer.

The similarity in patterns of expression profiles of genes containing SNPs associated with an increased risk of developing prostate cancer was a significant finding. However, it has become evident in prostate cancer research that much of the genetic risk remains unexplained. Therefore, to address this question, we performed unsupervised analysis combining SNP-containing genes with novel genes. The goal was to determine whether genes containing genetic variants associated with an increased risk of developing prostate cancer are functionally related and have similar patterns of expression profiles with novel genes. The results showing patterns of expression profiles for the combined set of genes are presented in Figure 3. Pattern recognition analysis revealed that correlated expression patterns occur between genes containing SNPs associated with an increased risk of developing prostate cancer and novel genes (Fig. 3). Interestingly, genes containing SNPs with weak to moderate associations were found to be co-expressed and functionally related with novel genes (Fig. 3).

Gene regulatory networks and biological pathways. Although pattern recognition analysis using hierarchical clustering provides a high-level overview, it is difficult to gain the broader context in which genes containing genetic variants associated with an increased risk of developing prostate cancer and novel genes operate. Genetic variants and associated genes carry out their functions through intricate molecular networks and biological pathways. To address this question, we performed network and pathway analysis to determine whether SNP-containing and novel genes interact with one another and to identify the gene regulatory networks and biological pathways enriched for genetic variants. We hypothesized that genetic variants and associated genes affect entire network states and biological pathways which in turn increase or decrease the risk of developing the disease or affect the severity of the disease.

First, we performed network analysis using SNP-containing genes only. Our working hypothesis was that genes containing genetic variants associated with an increased risk of developing prostate cancer interact with one another in gene regulatory networks. Thus, the goal of our analysis was to identify molecular networks enriched for genetic variants associated with an increased risk of developing prostate cancer.
The results of network analysis based on genes containing genetic variants associated with an increased risk of developing prostate cancer only are presented in Figure 4. In the networks, the edges represent interactions and the nodes represent genes. Network analysis based on SNP-containing genes only revealed five top networks with scores ranging from 22 to 34. These networks were merged and consolidated into one network (Fig. 4). Network analysis revealed that genes containing SNPs associated with an increased risk of developing prostate cancer are functionally related and interact with one another in complex gene regulatory networks confirming our hypothesis. In addition, we identified genes that were not identified by GWAS. Associated network functions included genes involved in cellular growth and proliferation, cellular development, organismal development, cell-mediated immune response, cellular movement, cellular assembly and

Figure 1. Patterns of gene expression profiles for the 131 significantly differentially expressed genes containing SNPs associated with an increased risk of developing prostate cancer. The heat map is based on 194 cancer patients and 40 cancer-free controls. The columns indicate samples and the rows indicate the genes. Red color indicates upregulation and blue color indicates downregulation.

Figure 2. Patterns of gene expression profiles for the 200 significantly differentially expressed novel genes only distinguishing cancer patients from cancer-free controls. The heat map is based on 194 cancer patients and 40 cancer-free controls. The columns indicate samples and the rows indicate the genes. Red color indicates upregulation and blue color indicates downregulation.
organization, DNA replication, DNA recombination and repair, cancer, gene expression, RNA damage and repair, RNA post-transcription modification, and reproductive system disease. In addition, we identified the upstream regulators that included the androgen receptor (AR), androgen, dihydrotestosterone, LEF1, and testosterone.

Interestingly, genes containing SNPs with strong associations and SNPs replicated in multiple independent studies were found to be functionally related and interact with genes containing genetic variants with weak to moderate associations (Fig. 4). Among the genes containing SNPs strongly associated with prostate cancer mapping to the networks included the genes AR, MSMB, FERMT2, HNF1B, BIK, KLK3, ITGA6, NKX3-1, JAZF1, NOTCH4, ARL15, and RAD51B (Fig. 4). Genes containing genetic variants with weak to moderate associations mapped to molecular networks included the genes KLK2, ERG, PRKCI, RXRA, NOTCH2, VDR, SULT2A1, PHF20L1, CTDSPL, GADD45A, and CPNE3 (Fig. 4).

Next, we performed network analysis combining SNP-containing and novel genes. Our working hypothesis was that genes containing genetic variants associated with an increased risk of developing prostate cancer interact with novel genes. Thus, the goal of network analysis in this case was to identify molecular networks in which the two sets of genes show functional relationships and interact with each other. The results of network analysis based on the combined set of genes are presented in Figure 5. Network analysis revealed that genes containing genetic variants associated with an increased risk of developing prostate cancer interact with novel genes in gene regulatory networks (Fig. 5). Among the genes identified in network analysis included genes involved in cancer,
immunological disease, DNA replication, recombination and repair, cell-to-cell signaling interaction, tissue development, cell death and survival, organ morphology, drug metabolism, endocrine system development and function, lipid metabolism, and carbohydrate metabolism. In addition, we identified the upstream regulators including the AR, cadmium chloride, androgen, CD437, and CTNNB1, all of which have been implicated in prostate cancer.

Among the genes containing SNPs significantly associated with prostate cancer, those found to be interacting with

Figure 4. Gene regulatory networks obtained using only genes containing SNPs associated with an increased risk of developing prostate cancer. The nodes depict the genes, edges indicate direct interactions, genes in red color fonts contain genetic variants with strong associations and/or replicated in multiple independent studies, genes in blue color fonts contain genetic variants with moderate to weak associations. The novel genes (genes not identified by GWAS) are represented in black color fonts.

Figure 5. Gene regulatory networks obtained using genes containing SNPs associated with an increased risk of developing prostate cancer and novel genes. The nodes depict the genes, edges indicate direct interactions, genes in red color fonts contain genetic variants with strong associations and/or replicated in multiple independent studies. Novel (genes not identified by GWAS) differentially expressed genes are represented in green. Other functionally related novel genes captured through network analysis are represented in black color fonts.
novel genes included \textit{JAK2}, \textit{NOTCH2}, \textit{JAZF1}, \textit{FERMT2}, \textit{SKIL}, \textit{NOTCH4}, \textit{BIK}, \textit{EHBP1}, \textit{ITGA6}, \textit{ERG}, \textit{PRKCI}, \textit{VDR}, \textit{NOOA4}, \textit{GADD45A}, \textit{MYC}, \textit{NKX3-1}, and \textit{SULT2A1} (Fig. 5). Intriguingly, genes containing genetic variants with weak to moderate associations were found to be functionally related and interacting with novel genes in gene regulatory networks. The results of functional relationship and interactions between SNP-containing and novel genes revealed in both Figures 4 and 5 suggest that some of the actions of genes containing SNPs associated with an increased risk of developing prostate cancer may be mediated by novel genes.

To further gain insights about the broader biological context in which the genetic variants operate, we performed pathway analysis. We hypothesized that the SNP-containing and novel genes carryout their joint actions in biological pathways. Thus, the goal of pathway analysis was to identify the pathways enriched for genetic variants and to establish putative functional bridges between GWAS findings and the biological pathways. First, we performed pathway analysis using only genes containing genetic variants associated with an increased risk of developing prostate cancer. Subsequently, we repeated the same analysis using a combined set of SNP-containing and novel genes.

The results of pathway analysis based on SNP-containing genes only are presented in Figure 6. Pathway analysis revealed many biological pathways significantly enriched for genetic variants. Among the identified pathways included the thrombopoietin, growth hormone, IGF-1, androgen biosynthesis, molecular mechanisms of cancer, prolactin signaling, VDR/RXR activation, MYC-mediated apoptosis signaling, androgen signaling, NOTCH signaling, prostate cancer signaling, axonal guidance signaling, P53 signaling, and the JAK/STAT signaling pathways (Fig. 6). Interestingly, the genes containing genetic variants with strong association and the genes containing SNPs with weak to moderate association were mapped to the same biological pathways.

The results of pathway analysis based on SNP-containing and novel genes are presented in Figure 7. Path analysis revealed that genes containing genetic variants associated with an increased risk of developing prostate cancer and novel genes map to the same pathways confirming our hypothesis. Among the identified pathways included the VDR/RxR activation, prolactin, prostate cancer, thrombopoietin, IGF-1, growth hormone, molecular mechanisms of cancer, Myc-mediated apoptosis, death receptor, JAK/STAT, androgen, PI3/AKT, and apoptosis signaling pathways (Fig. 7). A close examination of the results based on GWAS information alone and the results based on the combined set of SNP-containing and novel genes revealed differences in the ranking of the identified pathways. For example, the NOTCH and P53 signaling pathways found to be among the top pathways when only GWAS information used (Fig. 6) were not among the top pathways identified in combined analysis (Fig. 7). Conversely, a novel pathway, the death receptor signaling pathway,
...was identified in combined analysis (Fig. 7) suggesting that important biological pathways could be missed by focusing only on GWAS information. The interaction between SNP-containing and novel genes in biological pathways suggests that some of the biological activities of genes containing SNPs associated with an increased risk of developing prostate cancer may be mediated by novel genes.

The rationale is that such genes and the biological pathways they map to could serve as potential clinically actionable biomarkers. To investigate the relevance of the SNP-containing and novel genes associated with the disease state in the context of prostate cancer pathogenesis, we conducted literature mining. The goal was to determine whether any of the SNP-containing genes associated with the disease state have been implicated in prostate cancer. The rationale is that such genes and the biological pathways they map could serve as potential clinically actionable biomarkers. A summary of the results of this analysis is given below.

Interestingly, we found that many of the identified genes are involved in prostate cancer. Here, we provide a summary of our findings. One of the most prominent genes identified through network analysis was the novel gene UBC, which was found to be interacting with many SNP-containing as well as novel genes. The UBC regulates the AR events that influence disease progression. The ubiquitin E3 ligase a ring finger protein (RNF)-6 has been shown to promote AR activity through selective modulation of co-factor recruitment such as the androgen receptor-associated (ARA) protein. This function is enhanced in castration-resistant tumors. The MDM2-mediated ubiquitylation of AR results in receptor destabilization and loss of activity.

The human AR has been shown to play a critical role in the growth and differentiation of normal prostate gland as well as in the development of prostate cancer. The AR, which was found to be overexpressed in prostate cancer in this study, is required for prostate cancer growth in all stages, including the relapsed, “androgen-independent” tumors in the presence of very low levels of androgens. The cellular AR levels have been shown to be correlated with primary and metastatic lesions. PTEN loss and AR amplification have been associated with disease progression to lethal, metastatic castration-resistant prostate cancer. TP53 regulates critical prostate cancer pathways and is a crucial therapeutic target in prostate cancer.

The human kallikreins KLK2 and KLK3 are used as diagnostic and prognostic markers. The most studied of the kallikreins is KLK3 popularly known as prostate-specific antigen (PSA), a widely used clinical tumor biomarker for detection and monitoring of prostate cancer progression. Expression of PSA is prostate-specific, regulated by andro-
gens, and increased PSA levels may be an indication of prostate abnormalities.34,35 The KLK2 has very close structural homology to KLK3, and both genes are adjacent to each other on chromosome 19. Like the KLK3, the KLK2 is androgen regulated and may have utility as a prostate cancer biomarker in conjunction with the KLK3, which is expressed at lower levels compared with the KLK2 in poorly differentiated tumors.34,35 The NKKX3-1 has been shown to be a regulator of prostate epithelial growth and differentiation.34,35 These results indicate that AR-targeted SNP-containing genes represent potential clinically actionable biomarkers in prostate cancer.

Several biological pathways enriched for genetic variants identified in this study have been implicated in prostate cancer. The AR signaling pathway is one of the critical biological pathways associated with prostate cancer.30,34–36 In the initial stages, prostate cancer is dependent on androgens for growth, which is the basis for androgen ablation therapy, although in most cases, prostate cancer progresses to a hormone refractory phenotype for which there is no effective therapy available at present.33,34 Studies have also shown that AR signaling plays a major role in advanced prostate cancer, which is hormone refractory or androgen independent.33–36 Therefore, directed therapies targeting the androgen–receptor axis may be effective.37

The IGF-1 signaling pathway increases the transactivation potential of AR.38 In addition, various reports have implicated the IGF-1 signaling pathway in modulating AR signaling.34,38 For example, IGF-1 and IGFBP-3 coordinate in prostate cancer pathogenesis.38 Large-scale epidemiological studies have demonstrated that there is a correlation between high serum levels of IGF-1 and low levels of IGFBP-3, a serum protein that regulates the binding of free IGF-1 to IGFR and increased the risk of developing prostate cancer.39 The potential molecular mechanisms include AR phosphorylation40 and AR translocation40 or stimulation of expression of AR co-factors.41 As an example, IGF-1 has been shown to promote the formation of a complex involving AKT, AR, and MDM2, which results in phosphorylation-dependent ubiquitylation and degradation of AR by a proteasome-dependent mechanism.42 The P53 signaling pathway modulates the genes involved in DNA damage and cell-cycle regulation, and therefore is a crucial target in the development of therapeutic strategies and early interventions in prostate cancer.43

However, it is worth noting that adaptation of prostate cancer cells to androgen deprivation may involve both amplification and mutations of the AR.44 In addition to alterations of AR function, protein kinase pathways activated by peptide hormones and local growth factors are known to promote proliferation and survival of prostate cancer cells either directly or through stimulation of AR actions.44 One such growth factor-initiated protein kinase signaling pathway in prostate cancer is the prolactin-Janus kinase (JAK2) signaling pathway46 identified in this study. In addition to the pathways discussed above, we identified the JAK/STAT pathway that has been associated with the risk of developing prostate cancer.47 The discovery of the JAK/STAT pathway found in this study is consistent with the literature reports.48 Taken together, these results demonstrate that genetic variants associated with an increased risk of developing prostate cancer are likely to dysregulate entire molecular networks and biological pathways, which in turn may increase or decrease the risk of developing prostate cancer or affect the severity of the disease. The discovery of multiple pathways enriched for genetic variants suggests that pathway crosstalk may be involved.

Discussion

This research was conducted to infer the causal association between gene expression and the disease, to understand the broader context which the genetic variants operate and to establish functional bridges between GWAS findings and molecular networks and biological pathways. The unique feature of our analysis is the integration of GWAS information with an intermediate phenotype (ie, gene expression data). This study demonstrates that integrative genomics combining GWAS information with gene expression data provides a unified approach for linking GWAS information to the disease state and for the discovery of gene regulatory networks and biological pathways enriched for genetic variants.

There are several novel features in using this approach. First, the results demonstrate that the genetic variants are likely to affect entire network states and biological pathways. Specifically, the results revealed that, in the context of prostate cancer as a polygenic disease, the disease state is an emergent property of molecular networks and biological pathways that are likely to be affected by many genetic variants (both common and rare), rather than one or a few genetic variants with strong associations. Second, the approach allows identification of novel genes not identified by GWAS. Therefore, this is a powerful approach for explaining the missing variation. These are significant findings in light of the small fraction of the heritable variation explained by the variants identified thus far.

Third, the results revealed that genes containing genetic variants strongly associated with an increased risk of developing prostate cancer interact with genes containing genetic variants with weak to moderate associations and novel genes. This suggests that some of the biological activities of genes containing genetic variants with strong associations may be mediated by novel genes and genes containing genetic variants with weak to moderate associations. The results demonstrate that integrating genotype with gene expression data holds the promise of not only identifying the affected networks and biological pathways, but also providing important insights about the broader context in which the genetic variants operate. This is critical to identifying potential targets for the development of novel therapeutic strategies, early interventions, and translating GWAS discoveries into clinically actionable biomarkers to improve human health.
In the published literature, many reports using a pathway-based approach in GWAS analyses have been reported. Our intention in this report was not to refute the methods of GWAS analysis, but to offer a complementary approach that provides new insights that were not provided by single-SNP GWAS analysis in prostate cancer. An important finding in this study is that genetic variants and associated genes carry out their functions through intricate gene regulatory networks and biological pathways. Identifying the genetic variants that map to biological pathways associated with prostate cancer is an excellent first step to uncovering the drivers of prostate cancer. In the published literature on GWAS, the functions of many SNPs associated with an increased risk of developing prostate cancer have not been well characterized. However, as demonstrated in this study, the functions of particular pathways such as the IGF-1 and the AR signaling pathways have been much better characterized.

Many dysregulated pathways identified in this study including IGF-1, AR, prostate cancer, Notch, and P53 signaling pathways were enriched for genetic variants, suggesting that the genetic variants associated with an increased risk of developing prostate cancer act through biological pathways. This indicates that the networks and biological pathways can be used as an organizational framework for dissecting the molecular mechanisms underpinning prostate cancer development and progression. These pathways could also be used as candidates for the development of novel therapeutic and early intervention strategies.

Beyond the identification of network states and biological pathways enriched for genetic variants, there is a critical and urgent need to delineate the molecular mechanisms by which the genetic variants dysregulate the network states and biological pathways. The integrative approach reported here has another novel feature, that is, it can be used to identify genes and biological pathways to prioritize for targeted massively paralleled sequencing.

However, it is worth noting that, although the integrative genomics approach presented here has the promise to address many longstanding questions as demonstrated in this study, limitations of the study must be acknowledged. First, it is worth noting that our approach relies on using publicly available GWAS information and gene expression data. Thus, our analysis is subjected to all the limitations inherent in such data, including but not limited to genotyping and experimental errors, publication bias, lack of uniformity in data analysis methods, population heterogeneity and stratification, sampling errors, etc. Second, although this is a holistic approach and accounts for all the genetic variants in the genes, it provides no information about allele-specific expression. Therefore, it is difficult to discern the effects of individual SNPs on gene expression and the pathways. It is also conceivable that some of the SNPs and associated genes from GWAS may be false associations. Nevertheless, it is worth noting that our goal here was to establish the association between GWAS information and the disease state, and to gain insights about the broader context in which the genetic variants operate.

Importantly, genetic variants regulate gene expression, and previous studies have reported allele-specific expression in human populations and correlations between risk variants and clinical parameters for genes and genetic variants in breast cancer. Finally, an important consideration is that the overwhelming majority of GWAS particularly in earlier studies on prostate cancer, most of which were used in this study, were limited to populations of European ancestry, and gene expression used in this study was based on populations of European ancestry. Given that genetic susceptibility and gene expression in prostate cancer can be population specific, the variability in gene expression between and among populations, along with the fact that common genetic variants can account for differences in expression among ethnic groups.

The results found in this study cannot be over generalized. We recommend that future studies should include other racial/ethnic populations.

In conclusion, this investigation demonstrates that integrative genomics analysis is a powerful approach for associating GWAS information with the disease state, identifying novel genes, and gaining insights about the broader context in which the genetic variants associated with an increased risk of developing prostate cancer operate. The identification of functionally related genes interacting in gene regulatory networks and biological pathways enriched for genetic variants provides a framework and a critical step toward understanding the molecular mechanisms underpinning prostate cancer development and the discovery of biomarkers for the development of novel therapeutic strategies. More research is needed to understand the molecular mechanisms by which the genetic variants regulate gene expression in different populations and different disease states.

Author Contributions
Conceived and designed the experiments: CH, SV, MT, SG. Analyzed the data: CH, TK, RR. Wrote the first draft of the manuscript: CH, SV, TK, MT, RR, JS. Contributed to the writing of the manuscript: CH, SV, MT, TK, SG, JS, RR. Agree with manuscript results and conclusions: CH, SV, MT, TK, SG, JS, RR. Jointly developed the structure and arguments for the paper: CH, SV, MT, SG. Made critical revisions and approved final version: CH, SV, MT, SG, TK, RR. All authors reviewed and approved of the final manuscript.

Supplementary Data
Table S1. List of genes and SNPs associated with an increased risk of developing prostate cancer and estimates of \(P \) values for genes derived from gene expression data; and GWAS association \(P \) values for the SNPs.

Table S2. List of novel genes (genes not identified by GWAS) that were highly significantly \((P < 10^{-6})\) differentially expressed between prostate cancer and cancer-free controls and their estimates of \(P \) values.

Table S3. Combined list of GWAS identified and novel genes (genes not identified by GWAS) and their functional
relationships depicted by molecular function, biological component process, and cellular component in which they are involved.

REFERENCES

17. Human Genome Nomenclature Committee (HGNC) Database. Available at http://www.genenames.org/

46. Knudsen KE, Penning TM. Partners in crime: deregulation of AR activ...