SYNTHESIS AND FURTHER STUDIES OF CHEMICAL TRANSFORMATION OF THE 2-ARYL-3-HALOGENOQUINOLIN-4(1H)-ONE DERIVATIVES

by

MUTSHINYALO STEPHEN NWAMADI

Submitted in fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in the subject

CHEMISTRY

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: PROFESSOR MJ MPHAHLELE (Ph.D., CMPF)

NOVEMBER 2005

Student number: 3580-580-3

I declare that

SYNTHESIS AND FURTHER STUDIES OF CHEMICAL TRANSFORMATION

OF THE 2-ARYL-3-HALOGENOQUINOLIN-4-(1H)-ONE DERIVATIVES is my

own work and that all the sources that I have used or quoted have been indicated and

acknowledged by means of complete references.

SIGNATURE (MR MS NWAMADI) DATE

i

This thesis is dedicated to my mother, N.F. Daswa.

ACKNOWLEDGEMENTS

I wish to extend my sincere thanks and appreciation to:

My supervisor, Professor M.J. Mphahlele, for broadening my understanding of the chemistry of quinolones and for his constant guidance, friendship and motivation during this project.

The National Research Foundation (NRF) and University of South Africa (UNISA) for financial assistance.

Dr L. Fourie of the North West University (Potchefstroom campus) for mass spectral data.

My family for their continuous support, understanding, guidance and encouragement throughout my studies.

Above all JEHOVAH.

ABSTRACT

Specially prepared 2-arylquinolin-4(1*H*)-ones and their 2-aryl-1-methyl-4-quinolone derivatives were converted in high yield and purity to the corresponding C-3 brominated products using pyridinium tribromide in acetic acid at room temperature. The 2-arylquinolin-4(1*H*)-ones were reacted with iodine and Na₂CO₃ mixture in THF at room temperature to produce the 3-iodo-2-arylquinolin-4(1*H*)-one derivatives. The latter were, in turn, *N*-methylated using NaH-MeI mixture in dry THF to afford the corresponding 2-aryl-3-iodo-1-methyl-4-quinolone derivatives.

The 3-iodo-2-arylquinolin-4(1H)-one and 2-aryl-3-iodo-1-methyl-4-quinolones were converted to 2,3-diarylquinolin-4(1H)-one and 2,3-diaryl-1-methyl-4-quinolones following Suzuki cross-coupling reaction method, respectively.

The 2-aryl-3-bromoquinolin-4(1*H*)-ones, on the other hand, were converted to 2-aryl-3-bromo-4-chloroquinoline derivatives using phosphorus oxychloride under reflux. The 2-aryl-3-bromo-4-chloroquinoline were then transformed to the corresponding 2-aryl-3-bromo-4-*N*-(4"-chloroaryl)-4-aminoquinolines derivatives using 4-chloroaniline in ethanol under reflux. The products synthesized in this investigation were characterised using a combination of ¹H NMR, ¹³C NMR, IR and mass spectroscopic techniques.

TABLE OF CONTENTS

		Page
Declaration		i
Dedication		ii
Acknowledgements		iii
Abstract		iv
CHA	PTER ONE	
INTR	ODUCTION	
1.1	Brief description of quinolones and related analogues	1
1.2	Natural sources of quinolones and their derivatives	2
1.3	Biosynthesis of quinolones and their derivatives	3
1.4	Laboratory methods for the synthesis of 2-aryl-4-quinolone derivatives	4
1.4.1	Classical methods for the synthesis of 2-aryl-4-quinolone derivatives	5
1.4.2	Literature methods for the synthesis of isomeric <i>N</i> -alkylated derivatives	13
1.4.3	Literature methods for the synthesis of isomeric O-alkylated derivatives	16
1.5	Pharmacological and structural activity relationships (SAR) of	
	4-quinolones	18
1.6	Previous work related to this investigation	20
1.7	Aims and Objectives	22
CHA	PTER TWO	
RESULTS AND DISCUSION		23
2.1	Synthesis of substrates	24
2.1.1	Synthesis of <i>N</i> -benzovl-2-aminoacetophenones	24

2.1.2	Synthesis of 2-arylquinolin-4(1 <i>H</i>)-ones	26
2.1.3	Synthesis of <i>N</i> -benzyol- <i>N</i> -methyl-2-aminoacetophenone and 2-aryl-1-	
	methyl-4-quinolones	29
2.2	C-3 Bromination of 2-arylquinolin-4(1 <i>H</i>)-ones	33
2.3	C-3 Bromination of 2-aryl-1-methyl-4-quinolones	35
2.4	C-3 Iodination of 2-arylquinolin-4(1 <i>H</i>)-ones	38
2.5	N-methylation of 2-aryl-3-iodoquinolin-4(1H)-ones	40
2.6	Suzuki coupling reactions of 2-aryl-3-iodoquinolin-4(1 <i>H</i>)-ones	43
2.7	Chlorination of 2-aryl-3-bromoquinolin-4(1 <i>H</i>)-ones	47
2.8	Amination of 2-aryl-3-bromo-4-chloroquinolines	50
CHA	PTER THREE	
MASS	S FRAGMENTATION ANALYSIS	53
3.1	The electron impact induced mass fragmentation of the 2-aryl-3-	
	halogenoquinolin-4(1 <i>H</i>)-ones	53
3.2	The electron impact induced mass fragmentation of the	
	2-aryl-3-halogeno-1-methyl-4-quinolones	56
3.3	The electron impact induced mass fragmentation of the	
	2,3-diarylquinolin-4(1 <i>H</i>)-one	59
3.4	The electron impact induced mass fragmentation of the	
	2.3-diaryl-1-methyl-quinolones	60
3.5	The electron impact induced mass fragmentation of the	
	2-aryl-3-bromo-4-(4"-chloroaniline)quinolones	62
CON	CLUSION	65

CHAPER FOUR

EXPERIMENTAL		67
4.1	Preparation of N-benzoyl-2-aminoacetophenones	67
4.2	Preparation of 2-arylquinolin-4(1 <i>H</i>)-ones	70
4.3	Preparation of <i>N</i> -benzyol- <i>N</i> -methyl-2-aminoacetophenone and	
	2-aryl-1-methyl-4-quinolones	73
4.4	Preparation of 2-aryl-3-bromoquinolin-4(1 <i>H</i>)-ones	77
4.5	Preparation of 2-aryl-3-bromo-1-methyl-4-quinolones	80
4.6	Preparation of 2-aryl-3-iodoquinolin-4(1 <i>H</i>)-ones	82
4.7	Preparation of 2-aryl-3-iodo-1-methyl-4-quinolones	85
4.8	Preparation of 2,3-diarylquinolin-4(1 <i>H</i>)-one	88
4.9	Preparation of 2,3-diaryl-1-methyl-4-quinolones	89
4.10	Preparation of 2-aryl-3-bromo-4-chloroquinolines	92
4.11	Preparation of 2-aryl-3-bromo-4-(4"-chloroaniline)quinolines	94
CHA	PTER FIVE	
REFERENCES		98
APPI	ENDIX	
Mass Spectra		105