SYNTHESIS AND FURTHER STUDIES OF CHEMICAL TRANSFORMATION OF THE 2-ARYL-3-HALOGENOQUINOLIN-4(1H)-ONE DERIVATIVES

by

MUTSHINYALO STEPHEN NWAMADI

Submitted in fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in the subject

CHEMISTRY

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: PROFESSOR MJ MPHAHLELE (Ph.D., CMPF)

NOVEMBER 2005
I declare that

SYNTHESIS AND FURTHER STUDIES OF CHEMICAL TRANSFORMATION OF THE 2-ARYL-3-HALOGENOQUINOLIN-4-(1H)-ONE DERIVATIVES is my own work and that all the sources that I have used or quoted have been indicated and acknowledged by means of complete references.

.............................
SIGNATURE DATE
(MR MS NWAMADI)
This thesis is dedicated to my mother, N.F. Daswa.
ACKNOWLEDGEMENTS

I wish to extend my sincere thanks and appreciation to:

My supervisor, Professor M.J. Mphahlele, for broadening my understanding of the chemistry of quinolones and for his constant guidance, friendship and motivation during this project.

The National Research Foundation (NRF) and University of South Africa (UNISA) for financial assistance.

Dr L. Fourie of the North West University (Potchefstroom campus) for mass spectral data.

My family for their continuous support, understanding, guidance and encouragement throughout my studies.

Above all JEHOVAH.
ABSTRACT

Specially prepared 2-arylquinolin-4(1H)-ones and their 2-aryl-1-methyl-4-quinolone derivatives were converted in high yield and purity to the corresponding C-3 brominated products using pyridinium tribromide in acetic acid at room temperature. The 2-arylquinolin-4(1H)-ones were reacted with iodine and Na$_2$CO$_3$ mixture in THF at room temperature to produce the 3-iodo-2-arylquinolin-4(1H)-one derivatives. The latter were, in turn, N-methylated using NaH-MeI mixture in dry THF to afford the corresponding 2-aryl-3-iodo-1-methyl-4-quinolone derivatives.

The 3-iodo-2-arylquinolin-4(1H)-one and 2-aryl-3-iodo-1-methyl-4-quinolones were converted to 2,3-diarylquinolin-4(1H)-one and 2,3-diaryl-1-methyl-4-quinolones following Suzuki cross-coupling reaction method, respectively.

The 2-aryl-3-bromoquinolin-4(1H)-ones, on the other hand, were converted to 2-aryl-3-bromo-4-chloroquinoline derivatives using phosphorus oxychloride under reflux. The 2-aryl-3-bromo-4-chloroquinoline were then transformed to the corresponding 2-aryl-3-bromo-4-\(N\)-(4\(^{\prime}\)-chloroaryl)-4-aminoquinolines derivatives using 4-chloroaniline in ethanol under reflux. The products synthesized in this investigation were characterised using a combination of 1H NMR, 13C NMR, IR and mass spectroscopic techniques.
TABLE OF CONTENTS

Declaration i
Dedication ii
Acknowledgements iii
Abstract iv

CHAPTER ONE

INTRODUCTION

1.1 Brief description of quinolones and related analogues 1
1.2 Natural sources of quinolones and their derivatives 2
1.3 Biosynthesis of quinolones and their derivatives 3
1.4 Laboratory methods for the synthesis of 2-aryl-4-quinolone derivatives 4
1.4.1 Classical methods for the synthesis of 2-aryl-4-quinolone derivatives 5
1.4.2 Literature methods for the synthesis of isomeric N-alkylated derivatives 13
1.4.3 Literature methods for the synthesis of isomeric O-alkylated derivatives 16
1.5 Pharmacological and structural activity relationships (SAR) of 4-quinolones 18
1.6 Previous work related to this investigation 20
1.7 Aims and Objectives 22

CHAPTER TWO

RESULTS AND DISCUSSION 23

2.1 Synthesis of substrates 24
2.1.1 Synthesis of N-benzoyl-2-aminoacetophenones 24
2.1.2 Synthesis of 2-arylquinolin-4(1H)-ones
2.1.3 Synthesis of N-benzyol-N-methyl-2-aminoacetophenone and 2-aryl-1-methyl-4-quinolones
2.2 C-3 Bromination of 2-arylquinolin-4(1H)-ones
2.3 C-3 Bromination of 2-aryl-1-methyl-4-quinolones
2.4 C-3 Iodination of 2-arylquinolin-4(1H)-ones
2.5 N-methylation of 2-aryl-3-iodoquinolin-4(1H)-ones
2.6 Suzuki coupling reactions of 2-aryl-3-iodoquinolin-4(1H)-ones
2.7 Chlorination of 2-aryl-3-bromoquinolin-4(1H)-ones
2.8 Amination of 2-aryl-3-bromo-4-chloroquinolines

CHAPTER THREE
MASS FRAGMENTATION ANALYSIS
3.1 The electron impact induced mass fragmentation of the 2-aryl-3-halogenoquinolin-4(1H)-ones
3.2 The electron impact induced mass fragmentation of the 2-aryl-3-halogeno-1-methyl-4-quinolones
3.3 The electron impact induced mass fragmentation of the 2,3-diarylquinolin-4(1H)-one
3.4 The electron impact induced mass fragmentation of the 2,3-diaryl-1-methyl-quinolones
3.5 The electron impact induced mass fragmentation of the 2-aryl-3-bromo-4-(4''-chloroaniline)quinolones

CONCLUSION
CHAPER FOUR

EXPERIMENTAL 67

4.1 Preparation of \(N\)-benzoyl-2-aminoacetophenones 67

4.2 Preparation of 2-arylquinolin-4(1\(H\))-ones 70

4.3 Preparation of \(N\)-benzyol-\(N\)-methyl-2-aminoacetophenone and 2-aryl-1-methyl-4-quinolones 73

4.4 Preparation of 2-aryl-3-bromoquinolin-4(1\(H\))-ones 77

4.5 Preparation of 2-aryl-3-bromo-1-methyl-4-quinolones 80

4.6 Preparation of 2-aryl-3-iodoquinolin-4(1\(H\))-ones 82

4.7 Preparation of 2-aryl-3-iodo-1-methyl-4-quinolones 85

4.8 Preparation of 2,3-diarylquinolin-4(1\(H\))-one 88

4.9 Preparation of 2,3-diaryl-1-methyl-4-quinolones 89

4.10 Preparation of 2-aryl-3-bromo-4-chloroquinolines 92

4.11 Preparation of 2-aryl-3-bromo-4-(4''-chloroaniline)quinolines 94

CHAPTER FIVE

REFERENCES 98

APPENDIX

Mass Spectra 105