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ABSTRACT 

Mycotoxins are toxic secondary metabolites produced by filamentous fungi. Aflatoxins and 

fumonisins are among the most toxic mycotoxins. They are a significant risk factor for a 

cocktail of chronic health conditions including cancer of the liver, oesophagus and kidney, 

teratogenicity, neural tube defects, interference with lipid metabolism, a weakened immune 

system and a negative impact on micronutrient absorption in both man and animals. This 

study compared natural contamination of peanuts, peanut butter and sorghum from Gaborone, 

Botswana and Bulawayo, Zimbabwe with aflatoxins and fumonisins. In total 34 peanut 

samples, 34 sorghum samples and 11 peanut butter samples were collected randomly from 

retail shops and informal markets in the two cities. Fungal contamination was determined 

using standard mycology methods. Aflatoxin and fumonisin contamination was determined 

using HPLC-FLD. A. flavus/parasiticus species were detected in 66% and 100% of randomly 

analysed peanut samples from Bulawayo and Gaborone respectively and 27% (3/11) of 

peanut butter samples from Bulawayo.  67% of randomly analysed sorghum samples from 

Bulawayo showed A. flavus/parasiticus and Fusarium species contamination while none of 

the randomly analysed sorghum samples from Gaborone showed any fungal contamination. 

Furthermore aflatoxins were not detected in any of the sorghum samples; however 61% 

(11/18) of the Bulawayo sorghum samples showed fumonisin contamination (Range: 8 – 187 

ng/g). Three of the peanut samples from Bulawayo were contaminated with aflatoxins (range: 

6.6 – 622 ng/g) and no aflatoxins were detected in Gaborone peanuts.  All 11 peanut butter 

samples from Bulawayo were contaminated with aflatoxins (Mean:   73.5 ng/g, Range: 6.8-

250 ng/g) and AFB1 was the most prevalent. These preliminary results indicate that peanut 

butter and peanuts from Bulawayo are contaminated with high levels of aflatoxins. Stricter 

policing of regulations should be implemented to ensure compliance by manufacturers and 

public health interventions implemented in vulnerable communities.   

 

Key Phrases: mycotoxin, aflatoxins, fumonisins, Aspergillus species, Fusarium species, 

Zimbabwe, Botswana, peanuts, peanut butter, sorghum, PHRED, HPLC, AFPA, MEA+ 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Mycotoxins are low molecular weight (MW ~ 700) natural products produced as toxic 

secondary metabolites by filamentous fungi under a wide range of climatic conditions 

(Richard, 2007; Bennet and Klich, 2003). The term mycotoxin is a combination of the Greek 

word for fungus ‘mykes’ and the Latin word ‘toxicum’ meaning poison (Turner et al., 2009). 

Mycotoxins are fungal products toxic to vertebrates and other animal groups in small 

concentrations, while fungal products toxic to bacteria are called antibiotics and those toxic to 

plants are called phytotoxins (Bennett and Klich, 2003; Bennett, 1987).  The term phytotoxin 

can also refer to toxins made by the plants (Bennet and Klich, 2003). Other low molecular 

weight fungal metabolites that are only toxic in high doses are not considered mycotoxins. 

Mushrooms and other macroscopic fungi make mushroom toxins. Many of the 

mycotoxigenic fungi are also plant pathogens and a relationship between fungal infection and 

mycotoxin production has been demonstrated (D‟Mello and Macdonald, 1997).  

The role that mycotoxins play in the biology of the fungus is not clear, they are neither 

necessary for growth nor development of the fungus in normal situations but in certain 

situations they are useful for the producing organism (Fox and Hewlett, 2008; Hof, 2008). It 

is suspected that since mycotoxins weaken the host, fungi may use them as a strategy to 

better the environment for further fungal proliferation.  Some mycotoxins like penicillin and 

patulin are antibiotic hence may help in blocking bacteria that may be competing for nutrients 

with the fungi in the same ecological niche (Fox and Howlett, 2008; Hof, 2008).  The 

mycotoxin deoxynivalenol (DON) is also thought to enhance the virulence of the fungus 

Fusarium Graminearum (Richard, 2007). However most of the fungi producing the toxins do 

not rely on a host to complete their life cycles and some of the detrimental effects conferred 

by mycotoxins on the host, for example cancer, only occur after the fungus is dead which 

does not confer any benefit to the fungus that produced it (Fox and Howlett, 2008; Hof, 2008; 

Bennet and Klich, 2003).  

Mycotoxins contaminate many types of food crops and food commodities throughout the 

food chain (Reddy et al., 2010; Turner et al., 2009). They occur under natural conditions in 

the soil, food, feeds and the environment (D‟Mello and Macdonald, 1997). Once the crop 

becomes infected in the fields, fungal growth usually continues through harvest, storage and 
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food processing as long as temperature and moisture content are optimal for growth (Reddy 

et al., 2010).  Mycotoxins can develop during production, harvesting or storage of grains, 

peanuts and other food crops (Krska et al., 2008; Bhat and Vasanthi, 2003).  Insect infestation 

and tropical conditions which include high temperatures and humidity, drought stress, 

unseasonal rain during harvest, and flash floods lead to fungal proliferation and mycotoxin 

production (Bhat and Vasanthi, 2003; IARC, 2002; D‟Mello and Macdonald, 1997). Poor 

harvest practices, improper storage conditions and poor methods of food handling during 

transport and marketing have also been shown to lead to fungal and mycotoxin occurrence.  

(Reddy et al., 2010; Shephard, 2008b).  

 Mycotoxins are some of the most potent mutagenic and carcinogenic substances known to 

man (Krska et al., 2008; Bhat and Vasanthi, 2003). They pose various chronic health risks.   

Tricothecenes have been implicated in gastrointestinal disturbances such as vomiting, 

diarrhoea and inflammation (EMAN, 2011; Bennett and Klich, 2003). Aflatoxins have been 

shown to be a risk factor for cancer of the liver and kidney, a weakened immune system, 

negative impact on micronutrient absorption, teratogenicity, mutagenicity and infectious 

disease modulation (Reddy et al., 2010; Katerere et al., 2008a; Williams et al., 2004; Wild 

and Hall, 2000; Hendricks, 1999; Hendrickse, 1997). Fumonisins have been shown to cause 

porcine pulmonary oedema and leukoencephalomalacia in horses as well as being a major 

risk factor for oesophageal cancer (Richard, 2007; Bennet and Klich, 2003). The symptoms 

of mycotoxicosis depend on a number of factors which include the type of mycotoxin, 

amount and duration of exposure, age, gender and health status of the exposed individual or 

animal, and many other poorly understood synergestic effects involving genetics and co-

occurrence (Richard, 2007; Bennett and Klich, 2003; D‟Mello and Macdonald, 1997; 

Bennett, 1987). 

As well as their role in disease etiology, mycotoxins also pose food safety risks, especially in 

developing countries where there is a lack of food security and quality is subsumed by food 

insufficiency (Katerere et al., 2008a; Shephard, 2003). In many developing countries, the 

combination of poor storage practices/infrastructure, climatic conditions and compromised 

food safety oversight mechanisms result in unacceptable/hazardous levels of mycotoxins 

entering the food chain (WHO, 2006).  It is also known that mycotoxin exposure is a function 

of both contamination levels and food consumption thus consuming highly contaminated 

foods in moderate amounts or moderately contaminated foods in high amounts will lead to 
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high exposures (Shephard, 2008b). Most rural subsistence farming communities are faced 

with double adversity in that the staple foods they consume in high amounts are also 

contaminated at significant levels (Wild and Gong, 2010; Shephard, 2008b). 

There are also financial and economic losses associated with mycotoxins (Bennett, 1987). 

Contaminated food is usually sold at very low prices and sometimes may not be traded on the 

formal market and/or has to be destroyed (Reddy et al., 2010; Bhat and Vasanthi, 2003). 

Other losses include reduced livestock production when animals are fed contaminated feed.  

The mycotoxin effects on animals include reduced productivity of milk, eggs, meat, weight 

gain, an inability to resist diseases as well as high mortality (Richard, 2007; Bhat and 

Vasanthi, 2003; Bennett, 1987). Both the quality and quantity of animal products are reduced 

resulting in huge financial losses for farmers (Bhat and Vasanthi, 2003). The contaminated 

animal products may also be passed on to the human diet (Krska et al., 2008; Richard, 2007), 

resulting in protein-energy malnutrition, especially in young children (Katerere et al., 2008a; 

Gong et al., 2002). 

Additionally the cost of exporting mycotoxin safe food especially to the United States and the 

European Union is increased by investments to reduce mycotoxin contamination (Williams et 

al., 2004).  The stringent maximum mycotoxin tolerable levels set by the industrialised 

countries, especially the European Union disadvantages many developing countries that rely 

on food exports for economic growth.  Developing countries also export the least 

contaminated food leaving the contaminated food to be consumed at home; this may result in 

an increase in health care costs and the burden of disease including infectious diseases and 

cancers (Williams et al., 2005; 2004). 

Mycotoxin exposures are generally lower in the developed world compared to the developing 

world (Wild and Gong, 2010; Reddy et al., 2010; Shephard, 2008a; Wu, 2004; Williams et 

al., 2004; Wild and Hall, 2000). This might be due to the fact that in the developed world 

diets are varied, the majority of the population obtain their food from formalized  supply 

chains for example retail markets.   Commercial food suppliers are rigorously monitored for 

quality and the legislated maximum tolerable levels for mycotoxins are widely enforced 

(Reddy et al., 2010; Shephard, 2008a; Wu, 2004). In contrast, the diets in the developing 

countries are less varied and the majority of the population rely on food from subsistence 

farming which is informally traded and impossible to monitor (Shephard, 2008a; Katerere et 

al., 2008a; Williams et al., 2004). To compound matters, food produced on a subsistence 
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basis is usually consumed irrespective of quality due to food scarcity problems as a result of 

poverty (Wild and Gong, 2010; Shephard, 2008a; Williams et al., 2004). Sometimes the 

alternative staple diets are also heavily contaminated with mycotoxins (Shephard, 2008b). 

Even when food is sourced from commercial markets, quality of products is rarely monitored, 

and there is less emphasis on legislating maximum tolerable levels for mycotoxins (Liu and 

Wu, 2010; Shephard, 2008a). Even those countries that have legislation in place usually 

struggle to enforce these due to capacity constraints (Shephard, 2008a; Wu, 2004), especially 

lack of technological infrastructure (Williams et al., 2004). Also the analytical methods used 

to monitor mycotoxins are time consuming; require highly skilled personnel and expensive 

equipment, which use expensive reagents with short shelf lives (Turner et al., 2009; Abbas et 

al., 2004).   

The growth of organic farming has led to debate on the possibility of high mycotoxin levels 

in organic food grown in the developed world (Benbrook, 2005). Organic farmers rely on 

organic matter which encourage fungal proliferation and do not use synthetic pesticides. This 

has led to some researchers postulating that organic farming produce might contain higher 

mycotoxin levels than conventional farming produce (Benbrook, 2005). However several 

comparative studies have detected mycotoxins up to 1.5 times more frequently in 

conventional farming systems than in organic farming and in most studies mycotoxin levels 

in conventional food exceeded those in organic food by a factor of 2.2 (Benbrook, 2005). 

1.2 Problem Statement 

Mycotoxins are a global problem. They are some of the most potent mutagenic and 

carcinogenic substances known (Bhat and Vasanthi, 2003). They pose a cocktail of chronic 

health risks including cancer of the liver and kidney, a weakened immune system, negative 

impact on micronutrient absorption, teratogenicity, mutagenicity and infectious disease 

modulation (Reddy et al., 2010; Katerere et al., 2008; Williams et al., 2005; 2004; 

Hendrickse, 1997). Their presence in food meant for human consumption poses food safety 

risks as well as financial and economic losses associated with poor quality food produce 

(Shephard, 2003). It is estimated that more than 5 billion people in the developing world are 

at risk of chronic exposure to mycotoxins through contaminated food (Sun et al., 2011; 

Williams et al., 2004; Shephard, 2003). Other than infectious agents, mycotoxins are ranked 

as the most important chronic food safety risk factor, and of greater risk than synthetic food 
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contaminants, plant toxins, food additives or pesticide residues (Reddy et al., 2010; Kuiper-

Goodman, 1998). 

It is virtually impossible to eliminate mycotoxins from the food chain because of the 

unpredictable, heterogeneous nature of mycotoxin contamination, hence the only practical 

solution is minimising the amount that ends up on the table and this can be achieved through 

proper regulation and intervention strategies (Reddy et al., 2010; Shephard, 2008b; Williams 

et al., 2004; Bennett and Klich, 2003; Peraica and Domijan, 2001; D‟Mello and Macdonald, 

1997;). However for Governments to regulate the levels of aflatoxins and fumonisins there is 

a need for constant surveillance to generate accurate data (Reddy et al., 2010; Shephard, 

2008b). Such a surveillance study was last carried out in the late 1990‟s in Zimbabwe 

(Shephard, 2003; Gamanya and Sibanda, 2001; Henry et al., 1998; Nyathi et al., 1987; Wild 

et al., 1987) and in Botswana there are only three surveillance studies with the last one being 

in 2005 (Nkwe et al., 2005; Mpande et al., 2004; Siame et al., 1998).  

1.3 Motivation of the study 

From the information available it is clear that surveillance reports on Botswana and 

Zimbabwe are very few and outdated. This study endeavoured to generate current data on the 

extent of aflatoxin and fumonisin contamination in selected food commodities sourced from 

Gaborone, Botswana and Bulawayo, Zimbabwe. The study outcomes will inform the relevant 

authorities and policy makers how the two cities are faring in terms of food control in general 

and aflatoxin and fumonisin control in particular. This information would be instrumental in 

justifying broader country wide and sub-regional surveillance studies, relevant policy 

changes and possible public health interventions. 

1.4 Aims and Objectives 

The main aim of this study was to compare natural contamination of peanuts, peanut butter, 

and sorghum from Bulawayo, (Zimbabwe) and Gaborone, (Botswana) with aflatoxins and 

fumonisins. The specific objective of this study was to assess and compare natural occurrence 

of aflatoxins and fumonisins in selected food commodities in Botswana and Zimbabwe.  This 

involved collection of peanut, peanut butter and sorghum samples, analysis and quantification 

of test samples for aflatoxins and fumonisins as well as analysis of fungal contamination in 

randomly selected test samples.  
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In sub-Saharan Africa peanuts are an important oilseed for local consumption and for export 

(Omer et al., 2001). Peanut butter is one of the cheap sources of protein especially among the 

poor socioeconomic groups. Peanut butter is a popular ingredient in children‟s food including 

sandwiches, porridge and vegetables. In Zimbabwe and Botswana peanuts are mainly grown 

by small scale farmers for household consumption and processing. Sorghum grows in very 

harsh environments where other crops do not usually grow easily. It is a major cereal and 

food source for Sub-Saharan Africa and India.  

1.5 Limitations of the study 

The high cost of sample collection and analysis as well as time constraints meant that only a 

limited number of samples were processed in this study. Thus the study is preliminary in 

nature. But it is significant in that the results can be used to build a case for more frequent 

surveillance studies with a broader reach in terms of sample size and geographical area. 

1.6 Chapter Layout 

Chapter 2 contains the review and critical analyses of relevant literature concerning 

aflatoxins and fumonisins. The incidence, economic, social and health effects and the 

mechanism of toxicity of aflatoxins and fumonisins are also covered. The chapter concludes 

by looking at the current legislation to limit aflatoxins and fumonisins in food and feed. 

 Chapter 3 outlines the methodology used to carry out the study, from sample collection, 

sampling methods, analytical method validation, sample analysis (including sample 

preparation, mycotoxin extraction, clean-up and analysis and mycological analysis). 

Background information on the study area is also covered. 

Chapter 4 presents and discusses the results of mycological analysis of samples, method 

validation and chemical analysis of samples. The results are summarized in form of tables 

and graphs.  

Chapter 5 gives a general discussion of the results and how the current study contributes to 

the body of knowledge. Conclusions and recommendations of the research are also made in 

this chapter. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Shephard (2008a) notes that human mycotoxicoses have probably existed since the 

development of settled agricultural communities reliant on grain stores. Mycotoxins became 

important in the 1960‟s after approximately 100 000 turkey poults died from eating a peanut 

meal contaminated with what became known as aflatoxins from Aspergillus flavus (Bennett 

and Klich, 2003; Forgacs, 1962; Blout, 1961). The five most important mycotoxins in terms 

of economic impact and risk to human health are aflatoxins, fumonisins, deoxynivalenol 

(DON), ochratoxin A (OTA), and  zearalenone (ZON) ( Fox and Hewlett, 2008; Bennett and 

Klich, 2003). 

DON which is also known as vomitoxin is produced by Fusarium species and other fungi 

before harvest , and is one of about 150 related compounds known as trichothecenes (EMAN, 

2011; Richard, 2007). It induces nausea and vomiting in animals, especially swine and its 

immunosuppressive effects may also cause kidney problems (Reddy et al., 2010; Richard, 

2007). ZON is a phenolic resocyclic acid lactone that is oestrogenic when consumed by 

swine (Richard, 2007). It occurs in almost all the agricultural products including maize and 

maize products, breakfast cereals, beer, wheat flour, bread, walnuts and several animal feed 

products (EMAN, 2011). OTA is an innately fluorescent compound which is primarily a 

kidney toxin and carcinogenic and teratogenic effects have also been demonstrated in rats and 

mice (Richard, 2007). It is produced by Aspergillus species in tropical areas and Penicillium 

species in temperate areas (EMAN, 2011; Richard, 2007). However this study was primarily 

concerned with aflatoxins and fumonisins. These are discussed in greater detail below.  

2.2 Aflatoxins 

Aflatoxins are the most well known mycotoxins (WHO, 2006). There are four major 

aflatoxins, aflatoxin B1 (AFB1), AFB2, AFG1, and AFG2 (Reddy et al., 2010; Bennett and 

Klich, 2003). Classification is based on their relative chromatographic mobility during thin 

layer chromatography (TLC) and also on their fluorescence under UV light, blue (B) or green 

(G) (Bennett and Klich, 2003) while the numbers indicate major or minor compounds 

respectively (Sweeney and Dobson, 1999).  Aflatoxins are difuranocoumarin derivatives with 
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closely related structures and form a unique group of highly oxygenated, naturally occurring 

heterocyclic compounds (Figure 2.1). 

 

Figure 2.1: Structure of different aflatoxins (Sweeney and Dobson, 1999) 

AFB1 is the most potent natural carcinogen known and has also been classified as a Group 1 

human carcinogen by the IARC together with mixtures of AFB1, AFG1 and aflatoxin M1 

(AFM1) (Wild and Montesano, 2009; Turner et al., 2009; IARC, 2002). It is usually the 

major aflatoxin produced by toxigenic strains and also the best studied (Bennett and Klich, 

2003). AFB2 and AFG2 are classified as Group 2 probable human carcinogens (Reddy et al., 

2010; IARC, 2002). AFM1 is a hydroxylated metabolite of AFB1 found primarily in animal 

tissues and body fluids like milk and urine (Reddy et al., 2010; Wild and Gong, 2010; 

Richard, 2007). AFM1 is thought to be both hepatotoxic and carcinogenic, but its toxicity and 

carcinogenic potential is estimated to be 8-10 times less than that of AFB1 (Wild and Gong, 

2010; D‟Mello and Macdonald, 1997). AFM1 is not a contaminant of grain products (Bennet 

and Klich, 2003).  
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2.2.1 Aflatoxin biosynthesis 

Aflatoxins are produced via a complex polyketide pathway by many strains of A. flavus and 

the closely related Aspergillus parasiticus when the environmental temperatures are between 

24 and 35°C and the moisture content exceeds 10% (Williams et al., 2004; Bennet and Klich, 

2003; Bhat and Miller, 1991; Sweeney and Dobson, 1999). Biosynthesis involves 23 

enzymatic reactions for conversion of acetyl coenzyme A (coA) to AFB1 (Rahimi et al., 

2008). Acetate and malonyl CoA are converted to a hexanoyl starter unit by a fatty acid 

synthase and then to norsolorinic acid, the first stable precursor in the pathway (Sweeney and 

Dobson, 1999). The polyketide undergoes about 12-17 enzymatic conversions, eventually 

forming versicolorin B. The pathway then branches to form AFB1 and AFG1 which contain 

dihydrobisfuran rings and are produced from demethylsterigmatocystin. The other branch 

forms AFB2 and AFG2 which contain tetrabisfuran rings and are produced from 

dihydrodemthylsterigmatocystin.  

The whole aflatoxin biosynthetic pathway is directed by 25 genes clustered in a 75-90 kb 

DNA region (Rahimi et al., 2008; Sweeney and Dobson, 1999). The physical order of the 

genes in the cluster appears to largely coincide with the sequential enzymatic steps of the 

pathway and both gene organisation and structure are conserved within A. flavus and A. 

parasiticus. The significance of this gene cluster is not known although the involvement of 

chromosome structure in gene regulation may be possible (Sweeney and Dobson, 1999). Also 

it is possible that the cluster may allow all of the pathway genes to be expressed rapidly upon 

onset of secondary metabolism since aflatoxins start to accumulate after 18-20 hours of 

mycelia growth (Rahimi et al., 2008). The conserved nature of this gene cluster may suggest 

that the function or regulation of aflatoxin biosynthesis may rely on an intact structural 

organisation (Sweeney and Dobson, 1999; Trail et al., 1995).  

It has been previously noted that A. flavus produces only B aflatoxins and sometimes the 

mycotoxin cyclopiazonic acid (CPA), while A. parasiticus produces both B and G aflatoxins 

but never CPA (Shephard, 2009; IARC, 2002; Dorner et al., 1984).  However, Gieser et al., 

(2000) noted that A. flavus (S strain A. flavus) isolates that produce abundant small sclerotia 

also produced both B and G aflatoxins, while those that produce fewer and larger sclerotia (L 

strain A. flavus) only produced B aflatoxins. In another study carried out on peanuts in 

Botswana by Mphande et al., (2004), 40.6% of all A. flavus isolates identified produced both 

B and G aflatoxins. However only one isolate produced sclerotia after 7 days incubation and 
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could be identified as an S strain in terms of the size of sclerotia (<400µm). Also some of the 

strains identified as A. flavus might have been the closely related A. nomius which produces 

all four aflatoxins (Mphande et al., 2004). Klich and Pitt (1988) also reported isolates of A. 

flavus producing G aflatoxins. The S strain A. flavus also produces higher levels of aflatoxins 

compared to the L strain (Mphande et al., 2004). 

A. nomius is one of the recently identified aflatoxigenic fungi (Kurtzman et al., 1987). It is 

closely related to A. flavus but produces small bullet-shaped sclerotia, which are distinct from 

the large spherical sclerotia produced by many A. flavus isolates. However not all strains of 

either A. nomius or A. flavus produce sclerotia, so this distinction is not always practical. A. 

nomius is also distinguished from A. flavus by its ability to produce both B and G aflatoxins. 

The other new aflatoxigenic species recently identified include A. bombycis (Peterson et al., 

2001), A. pseudotamarii (Ito et al., 2001), and A. australis (Geiser et al., 2000).  

 Currently available evidence indicates that A. flavus and A. parasiticus are responsible for 

the overwhelming proportion of aflatoxin contamination in food and foodstuffs throughout 

the world (IARC, 2002). Of the newer species only A. australis, which appears to be 

widespread in the southern hemisphere and is common in Australian peanut soils may also be 

an important source of aflatoxins in a few countries.  The occurrence of aflatoxins is 

influenced by certain environmental factors; hence the extent of contamination will vary with 

geographic location, agricultural and agronomic practices, and the susceptibility of 

commodities to fungal invasion during preharvest, storage and/or processing periods (Park, 

2002). Also during storage, humidity above 85% as well as the initial growth of fungi in 

kernels usually forms sufficient moisture from fungal metabolism to encourage further fungal 

growth and aflatoxin production (Richard 2007; Shephard, 2003). The optimal temperature 

for fungal growth is 36 to 38°C and maximum toxin production occurs at 25 to 27°C 

(Shephard, 2003; D‟Mello and Macdonald, 1997). 

2.2.2 Natural occurrence in food  

A. flavus is the most widely reported food-borne fungus, sometimes with the proviso that A. 

parasiticus is sometimes not differentiated from it in general mycological profiling studies 

(IARC, 2002). Both A. flavus and A. parasiticus are abundant in the tropics and their 

occurrence in cooler temperate climates is uncommon except in foods and feeds imported 

from tropical countries. The major hosts of A. flavus among food commodities include maize, 
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peanuts, peanut butter, cotton seed and sorghum (Siame et al., 1998; Pitt and Hocking, 1997, 

Pitt et al., 1993). Food commodities associated with A. parasiticus include peanuts, peanut 

butter, and cotton seed but rarely in maize (Shephard, 2009; Pitt et al., 1993). 

The crops that are associated with A. flavus (maize, peanuts, cotton seed, sorghum, wheat etc) 

have a potential of high contamination levels of aflatoxins because the fungus usually invades 

plants and developing seed before or immediately after harvest as well as in storage 

(Shephard, 2008a; Richard, 2007; IARC, 2002), even though some cereal crops like sorghum, 

wheat, and barley are not susceptible to pre-harvest aflatoxin contamination (Reddy et al., 

2010).  The fungi are disseminated via their conidia (asexual spores) which may be carried by 

wind or insects to growing crop (Reddy et al., 2010; Richard, 2007). Drought stress and 

insects damage ( e.g. sap beetles, corn ear worms, and the European corn borer) usually 

provide a port of entry into the host plant tissue which leads to contamination of crops before 

harvest while improper drying and storage lead to contamination in storage facilities (Bennet 

and klich, 2003; Shephard, 2003,). 

 2.2.3 Health Risks 

Human health effects of aflatoxicosis can be categorized as acute or chronic. Acute toxicity is 

generally caused by high toxic dose exposure and has a rapid onset while chronic toxicity is 

characterized by low-dose exposure over a long period of time, resulting in cancers and other 

generally irreversible effects (Bennett and Klich, 2003). Aflatoxins possess a high acute and 

chronic toxicity potential due to their capacity to bind DNA and cellular nucleoproteins 

resulting in deleterious effects on protein synthesis and cellular integrity (Covarelli et al., 

2011). The dose and duration of exposure have a major effect on aflatoxin toxicology. Large 

doses lead to liver cirrhosis, acute illness and death while chronic sub-lethal doses have been 

shown to result in nutritional and immunologic consequences.  All doses have a cumulative 

effect on the risk of cancer (Williams et al., 2004). 

2.2.3.1 Acute effects 

The symptoms of acute aflatoxicosis include hemorrhagic necrosis of the liver, bile duct 

proliferation, jaundice, oedema, fatty infiltration, toxic necrosis, gastro-intestinal 

haemorrhage and lethargy (Shephard, 2008b; Williams et al., 2004; Hendrickse, 1997). Adult 

humans usually have a high tolerance for aflatoxins and in acute cases it is usually the 

children who die (Williams et al., 2004; Cullen and Newberne, 1993). The numbers of acute 
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poisoning are rarely large compared to the population at risk, probably because humans are 

an aflatoxin tolerant species and people usually avoid visibly contaminated foods (Williams 

et al., 2004). In 2004, Kenya had the worst outbreak of acute aflatoxicosis. 317 cases 

manifested with acute hepatic failure, 125 of which were fatal (Azziz-Baumgartner et al., 

2005; Lewis et al., 2005). High AFB1 levels were detected in maize collected from the 

affected areas with 35% and 7% of the samples having levels above 100µg/kg and 1000µg/kg 

respectively (Lewis et al., 2005). In general the levels of aflatoxins inducing acute toxicity 

are one or two orders above levels observed regularly in the staple foods of many populations 

worldwide hence the occurrence of cases of jaundice and acute liver failure unrecognized as 

aflatoxin poisoning is possible (Wild and Gong, 2010). 

2.2.3.2 Chronic effects 

The main human and veterinary health burden of aflatoxin exposure is related to chronic 

exposure which includes cancer induction, kidney toxicity, immune system suppression, and 

infectious disease modulation (Williams et al., 2004; Bennett and Klich, 2003). The data on 

aflatoxin as a human carcinogen is far more conclusive than the data implicating it in acute 

human toxicities (Bennett and Klich, 2003). 

2.2.3.2.1 Hepatocellular Carcinoma 

The liver has a central and critical biochemical role in the metabolism, anabolism and 

catabolism, detoxification and elimination of substances from the body (Crook, 2006; 

Dufour, 2006). Liver functions include glycogen storage, decomposition of red blood cells, 

immune factor synthesis, hormone production and bile production (Dufour, 2006).  Due to its 

role in metabolism and detoxification the liver is also one of the most common sites for 

metastases with metastatic tumours accounting for 90-95% of all hepatic malignancies 

(Dufour, 2006). One of the most common and important primary liver tumours is 

hepatocellular carcinoma (HCC) (Kew, 2002). 

HCC is among the most common cancers in the world (Groopman and Kensler, 2005), and is 

the second leading cancer in men and the fourth in women in sub-Saharan Africa (Sitas et al., 

2006). Most patients survive less than a year after diagnosis (Wild and Hall, 2000). The 

incidence of HCC is unusually high in African and Asian regions (Reddy et al., 2010; Wild 

and Montesano, 2009; Kew, 2002). In 1987 HCC was the third most prevalent cancer in 

Zimbabwe accounting for 12% of all cancer cases and 2% of all deaths (Nyathi et al., 1987). 
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In the late 1990s a survey in Harare, Zimbabwe showed that HCC was affecting 11% and 5% 

of men and women (Chokunonga et al., 2000). A comparative estimated population risk of 

HCC between Kenya and France revealed a cancer risk of 11 versus 0.0015 cancers per year 

per 100 000 population respectively showing a heavy cancer burden in developing countries 

(Shephard, 2008a). 

When people migrate from low HCC incidence countries to high incidence regions, for 

example Europeans moving to Africa or Asia, they always retain the low incidence of their 

country of origin (Kew, 2002). This may be due to the fact that these individuals usually 

retain their original behaviours and generally enjoy a higher standard of living than the locals. 

However migrants from high HCC risk areas to low risk regions show a decline in the 

incidence of tumours with successive generations (Kew, 2002), most probably because they 

adopt a higher standard of living and are no longer exposed to HCC risk factors in their home 

countries. These risk factors include infection with hepatitis B virus (HBV), hepatitis C virus 

(HCV), aflatoxin exposure and chronic alcoholism (Herceg and Paliwal, 2011; Dufour, 2006; 

Wild and Hall, 2000), but the majority of the HCC cases in developing countries are 

associated with HBV, aflatoxins and HIV (Wild and Montesano, 2009; Kew, 2010). Figure 

2.3 illustrates regional distribution of HCC attributable to aflatoxins. 

 

Figure 2.3: Distribution of HCC attributable to aflatoxins (Liu and Wu, 2010) 

Aflatoxin exposure is etiologically associated with HCC (Wild and Gong 2010; Groopman 

and Kensler, 2005; Bennet and Klich, 2003). In the liver AFB1 is metabolised by the 
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cytochrome P450 enzyme system to its reactive intermediate aflatoxin B1-8,9-epoxide 

(AFBO), which readily binds to macromolecules to form adducts (Dufour, 2006; Bennet and 

Klich, 2003). It is the formation of DNA adducts such as AFB1-N7-guanine that leads to 

mutagenesis. If the adduct formed is not repaired, G to T transversion occurs at the third base 

of codon 249 of the p53 gene causing an inactivating mutation (Wild and Gong, 2010; 

Dufour, 2006) and this mutation is observed in HCC patients from regions of high aflatoxin 

exposure (Groopman and Kensler, 2005).  

The AFB1-N7-guanine adduct is excreted in the urine of exposed individuals and can be used 

as a reliable biomarker for AFB1 exposure (Reddy et al., 2010; Wild and Gong, 2010), even 

though it only reflects recent exposure (Bennet and Klich, 2003). The AFB1 8,9-exo-epoxide 

intercalates more readily into the DNA yielding higher levels of adducts for a given dose 

making it more mutagenic and carcinogenic than AFG1 (Wild and Gong, 2010). AFB2 and 

AFG2 lack the 8,9 double bond hence do not form the 8,9-epoxide making them less 

toxicologically active than AFB1 and AFG1 (Wild and Gong, 2010). 

Several epidemiological studies linking aflatoxins to HCC have been carried out. A study in 

Uganda by Alpert et al., (1971), indicated that the distribution of aflatoxins in foods stored 

for consumption correlated with the pattern of incidence of liver cancer in Uganda. In 

Mozambique, Van Rensburg et al., (1985) observed that mean aflatoxin dietary intake values 

were significantly related to HCC rates. They also noted variations in incidence rates between 

the regions studied and they attributed this to the variations in aflatoxin levels ingested. Li et 

al., (2001) compared aflatoxin contamination levels in maize from a high HCC incidence area 

with that from a low incidence area in Guangxi, China. They noted that aflatoxin levels were 

significantly higher in maize from the high incidence area compared to the low incidence 

area. They concluded that AFB1 appeared to be an important risk factor for primary HCC.  In 

an area with endemic aflatoxin contamination of peanuts, Omer et al., (2001) noted a positive 

association between indicators of peanut butter consumption and hepatocelluar carcinoma in 

Sudan. However this was essentially limited to subjects with the glutathione-S-transferase 

M1 (GSTM1) null genotype who are unable to detoxify the aflatoxins properly. GSTM1 is an 

integral part in the body‟s defence system against reactive compounds.  

It is also suspected that aflatoxins cause HCC by acting synergistically with HBV infection 

(Shephard, 2008; Groopman and Kensler, 2005). HBV DNA is thought to be integrated into 

the host genome, possibly caused by the action of the HBV X gene, which may block the 



15 

 

activity of p53, hence increasing the risk for HCC (Herceg and Paliwal, 2011; Dufour, 2006). 

Aflatoxins are thought to alter the pathogenicity of HBV by affecting susceptibility to 

infection and viral replication due to several factors including immune-suppression, DNA 

damage and mutations (Wild and Gong, 2010; Wild and Montesano, 2009). AFB1 has been 

shown to be immunosuppressive in animals and AFB1 exposure may affect susceptibility to 

chronic viral infection in vulnerable populations (Williams et al., 2004). HBV is also 

suspected to play a role in mutagenesis by causing preferential selection of cells harbouring 

this mutation while inflammation and oxidative stress associated with chronic HBV and 

aflatoxin exposure could result in DNA damage and mutations (Wild and Gong, 2010; 

Groopman and Kensler, 2005). Also increased cell proliferation and hyperplasia caused by 

HBV infection may lead to aflatoxin-induced DNA adducts being fixed as mutations due to 

chronic liver injury and regenerative hyperplasia which are critical in the development of 

liver cancer (Wild and Gong, 2010). Aflatoxin induced DNA damage is also suspected to 

increase viral DNA integration into the host genome (Wild and Gong, 2010). It is also 

hypothesized that aflatoxin induced DNA adducts are fixed as mutations due to HBV-related 

increase in cell proliferation and hyperplasia, thus promoting clonal expansion of mutant cells 

(Wild and Montesano, 2009). An increase in the rate of HCC has recently been reported in 

patients co-infected with HBV and HIV (Kew, 2010).  

Aflatoxin and HBV infections commonly occur simultaneously in those regions with high 

HCC making aflatoxins a strong potentiating factor for human HCC (Reddy et al., 2010, 

Wild and Hall, 2000). A 7-year study in China revealed an association between markers of 

aflatoxin exposure and HBV infection and development of HCC (Qian et al., 1994; Ross et 

al., 1992). HBsAg positive individuals had a HCC relative risk of 7.3, but individuals that had 

both urinary aflatoxins and positive HBsAg status had a relative risk of 59 (Groopman and 

Kensler, 2005; Qian et al., 1994; Ross et al., 1992).  

In an attempt to estimate the exact burden of aflatoxin-related HCC worldwide Lui and Wu, 

(2010) found that at the lower estimate aflatoxin may play a role in about 4.6% of total 

annual HCC cases and at the upper estimate, aflatoxin may play a role in roughly 28.2% of 

all HCC cases. Uncertainty and variability in data on cancer potency factors, hepatitis B virus 

(HBV) prevalence, aflatoxin exposure and other risk factors resulted in such a wide 

estimation range. The Joint FAO/WHO Expert Committee on Food Additives (JECFA) also 

performed a quantitative risk assessment of AFB1 and concluded that in HBsAg positive 



16 

 

individuals, the potency was 0.3 cancers/year/100 000 population/nanogram (ng) AFB1/ 

kilogram (kg) body weight (b.w.)/ day and in HBsAg negative individuals the potency was 

0.1 cancers/year/100 000 population/ng AFB1/kg b.w./day (WHO, 2002). Most cases of HCC 

(>80%) occur in either Eastern Asia or Sub-Saharan Africa (El-Serag and Rudolph, 2007; Liu 

and Wu, 2010), of which both Botswana and Zimbabwe are a part. These regions also have 

the highest levels of food contamination by aflatoxins as shown in figure 2.4 (Shephard, 

2008a). It has also been noted that there is a geographic association between the 

contamination of food by aflatoxins and the incidence of HCC (Van Rensburg et al., 1985; 

Yeh et al., 1982; Bulatao-Jayme et al., 1982). However it is difficult to interpret data from 

human studies because of difficulties in properly assessing an individual‟s lifetime exposure 

to aflatoxins and the difficulties in disentangling the effects of aflatoxins from those of HBV 

infections (IARC, 2002). 

 

Figure 2.4: Areas at risk of chronic exposure to aflatoxins (Williams et al., 2004)  

The overall body of evidence supports a role of aflatoxins in HCC etiology especially among 

HBsAg positive subjects (Williams et al., 2004; IARC, 2002), hence prevention of HCC can 

be achieved through HBV vaccination and reduction of aflatoxin exposure (Groopman and 

Kensler, 2005; Williams et al., 2004; Wild and Hall, 2000). However for the vaccine to be 

effective it must be delivered as early in life as possible since the majority of the people 

living in HCC high risk areas acquire HBV infection before age three (Groopman and 

Kensler, 2005; Wild and Hall, 2000). This vaccination will over time lessen the global 

carcinogenic impact of aflatoxin because removing the synergestic impact between HBV and 

aflatoxin exposure would significantly reduce HCC risk (Liu and Wu, 2010). It should 
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however be noted that HBV vaccination and aflatoxin reduction alone will not totally 

eliminate the incidence of HCC since there are many other factors (e.g. chronic alcoholism, 

diabetes, obesity and hereditary hemochromatosis) that lead to HCC development. Strategies 

to inhibit AFBO formation (through disruption of the cytochrome P450 system) and/or 

adduct formation are important in prevention of the damaging mutations that lead to HCC 

(Reddy et al., 2010). 

2.2.3.2.2 Immunologic effects  

A majority of the studies in poultry, pigs and rodents have shown that exposure to aflatoxins 

results in suppression of various aspects of the cell mediated immune response especially 

through altered cytokine expression and suppressed T-lymphocyte function (Wild and Gong, 

2010; Reddy et al., 2010). Aflatoxin exposure results in increased susceptibility to bacterial 

and parasitic infections (Williams et al., 2004; IARC, 2002). Reduced humoral immunity has 

also been observed in aflatoxin exposed animals as well as increased susceptibility to 

infections and reduced response to vaccines (Williams et al., 2004). The amount of aflatoxin 

exposure is also influenced by HBV infection; this phenomenon has been extensively studied 

for its effect on cancer but has not been evaluated for other known toxicities of aflatoxins 

(Groopman and Kensler, 2005; Williams et al., 2004). 

The threshold dose for aflatoxin immunotoxic effects in humans is not known (Williams et 

al., 2004), but is suspected to be above the threshold for malnutrition and growth stunting in 

children (Shephard, 2008b). Malnutrition and growth stunting might also influence immune 

response and consequently the disease burden as discussed in Section 2.2.3.2.3 below. In 

numerous animal studies, lymphocyte (T-cell, macrophage, natural killer cell, and B-cell) 

immune functions were suppressed or perturbed by AFB1 (Reddy et al., 2010).  AFB1 may 

also decrease the lymphocytes‟ expression of the CD69 molecule which is essential for a 

normal immune response against an infectious agent or vaccine (Jiang et al., 2005). 

Jiang et al., (2005) examined the cellular immune status of Ghanaians in relation to levels of 

AFB1-Albumin adducts in serum. They described the differential subset distributions and 

alterations of specific lymphocyte subsets between study participants with high and those 

with low levels of AFB1. The major changes were a decrease in activated T-cells and B-cells 

and significantly lower levels of perforin and granzyme A-expressing CD8+ cytotoxic cells 

in those with high AFB1 compared to those with low AFB1. This suggests that CD8+ T-cell 
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function in individuals with high AFB1 level is impaired hence affecting cellular immune 

function against infectious diseases (Jiang et al., 2005).  

In Gambia, secretory Immunoglobulin A (sIgA) was found to be markedly lower in children 

with detectable serum aflatoxin-albumin compared with those with non-detectable levels 

(Turner et al., 2003), however the study failed to detect a dose-response effect when sIgA 

levels were separated by quintiles of aflatoxin-albumin biomarker levels (Shephard, 2008b; 

Turner et al., 2003).  It is also known that sIgA is an important part of membrane barrier 

function that binds to bacterial and viral surface antigens (Turner et al., 2003) and that 

membrane barriers are an important component in fighting gastric diseases (Williams et al., 

2004), hence aflatoxin exposed individuals are more prone to diarrheal diseases. This is 

compounded by the fact that the aflatoxin prone regions of the world are also plagued with 

lack of safe drinking water, sanitation and hygiene, the major factors implicated in about 88% 

of diarrheal diseases worldwide (Williams et al., 2004).  

Williams et al., (2005) hypothesized that the decrease of sIgA levels as a function of aflatoxin 

exposure may modulate the infectivity of the HIV virus which is dependent on human sIgA 

levels and membrane integrity. When both the virus and aflatoxins suppress the body‟s 

immune system, a significant reduction in survival time is likely, particularly because these 

factors also compromise the nutritional status of the infected individuals (Williams et al., 

2004). Aflatoxins have also been shown to suppress interleukin-2 (IL-2) production through 

the down regulation of transcription and it has the potential to effectively accelerate HIV 

progression by making CD4+ cells less effective (Jiang et al., 2005; Williams et al., 2004). In 

animals aflatoxicosis symptoms were shown to be similar to HIV infection symptoms and 

removal of aflatoxins from the diet reversed the symptoms (Williams et al., 2004). However 

most of the studies of immune-modulation in aflatoxin exposed populations have been cross-

sectional, including relatively few subjects and have not been repeated in different 

populations hence are inconclusive (Wild and Gong, 2010).  

2.2.3.2.3 Nutritional effects 

 Food conversion efficiency has been shown to be consistently less in animals that are 

exposed to aflatoxins than in those that are not exposed (Williams et al., 2004). A drop in 

food conversion efficiency (7-10% in pigs and poultry) and decreased growth rate are a 

consistent sign of aflatoxin exposure in animal studies. In children less than 5 years old in 
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Togo and Benin, chronic aflatoxicosis was also linked to both infant growth stunting (a 

reflection of chronic malnutrition) and being underweight (an indicator of acute malnutrition) 

(Gong et al., 2002). Children who were underweight or stunted had 30-40% higher mean 

aflatoxin-albumin levels (Gong et al., 2002). The growth stunting also coincides with 

weaning the children onto apparently aflatoxin contaminated solid foods (Gong et al., 2004). 

It is however not clear if the association between aflatoxin exposure and impaired growth is a 

direct result of aflatoxin toxicity or reflects consumption of fungus infected  food of poor 

nutritional quality (Gong et al., 2002).  

It should be noted that underweight children are prone to early mortality and acute morbidity 

due to diarrhoea, malaria, measles, pneumonia and other infectious diseases of childhood 

(Williams et al., 2004). However it is important to remember that malnutrition is influenced 

by several factors. These include micronutrient deficiency, poor maternal and child care, poor 

health services and environmental conditions, political and ideological factors, economic 

structure and potential resources (Kim et al., 2011; Frongillo et al., 1997). These factors are 

prevalent in the same geographical areas that are plagued with high aflatoxin exposure levels 

compounding the aflatoxin burden in vulnerable communities (Shephard, 2008a; Williams et 

al., 2004). 

Aflatoxins are also closely associated with kwashiorkor, a nutritional disease of obscure 

pathogenesis prevalent in developing countries in the tropics (Katerere et al., 2008a; 

Hendrickse, 1997). Kwashiorkor has puzzling epidemiological features; it is a seasonal, 

tropical disease and goes hand in hand with overfeeding on starchy foods (Hendrickse, 1997). 

There are remarkable similarities in the geographical and climatic conditions that influence 

the prevalence of both kwashiorkor and aflatoxins (Reddy et al,. 2010; Hendrickse, 1997). 

Also the biochemical and metabolic derangements observed in kwashiorkor and those in 

controlled studies of animals exposed to aflatoxins are similar (Hendrickse, 1997).  

Aflatoxins have also been shown to impair the recovery rate from kwashiorkor (Katerere et 

al., 2008a; Hendrickse, 1997). However, it is still not clear whether the finding of aflatoxins 

in kwashiorkor is the cause or consequence of kwashiorkor (Peraica and Domijan, 2001). 

Katerere et al., (2008a), reviewed available studies and data for a link between chronic 

aflatoxicosis and infant malnutrition in Southern Africa. They concluded that there is 

mounting evidence implicating aflatoxin contamination as an important factor in infant 

under-nutrition, increased morbidity and mortality due to negative impact on immune 
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function and micronutrient absorption.  In animal studies aflatoxins have been shown to 

adversely affect absorption of vitamin A, vitamin D, selenium, and zinc but it is difficult to 

extrapolate animal studies data to humans due to a variety of factors including differences in 

species, patterns of exposure and metabolism (Willaims et al., 2004). Aflatoxins have also 

been shown to cross the human placenta (IARC, 2002) and the biochemical, immunological 

and metabolic derangements caused by aflatoxins in the foetus could lead to low birth weight 

and intrauterine growth retardation (Abdulrazzaq et al., 2002). In the United Arab Emirates, 

Abdulrazzaq et al., (2002), reported an extremely high rate of exposure of new born babies to 

significant levels of aflatoxins from their mothers and a negative correlation with birth 

weight.  

2.2.4 Natural occurrence of aflatoxins in Africa 

Extensive surveys of commercial maize crops performed in South Africa have consistently 

demonstrated a very low incidence of aflatoxin contamination (Shephard, 2003). However, 

analysis of samples of peanut butter being used in a school feeding scheme showed total 

aflatoxin contamination of up to 271 µg/kg (Shephard, 2003; PROMEC Unit, 2001) and 

AFM1 levels (range: 0.3-1.54 µg/L) above the South African legislation levels have been 

detected in raw milk (Dutton et al., 2011). Kamika (2012) reported total aflatoxin levels 

above 5 ppb in 60% (12/20, range: 2.1-73.83 ppb) and 85% (17/20, range: 4.02-825.67 ppb) 

of peanut samples collected from Pretoria, South Africa and Kinshasa, Democratic Republic 

of Congo respectively. 

Total aflatoxin contamination levels above the acceptable limit set by the US Food and Drug 

Administration (FDA) were reported in peanut butter from Sudan with a range of 26.6-853 

µg/kg, and a mean of 287 µg/kg (Elzupir et al., 2011). In Tanzania 18% maize samples were 

contaminated with total aflatoxins (range: 1-158 µg/kg) and 12% had AFB1 levels ranging 

from 5-90 µg/kg (Kimanya et al., 2008). AFB1 was also detected in beer samples (range: 10-

50 µg/kg) in Dar es Salaam, Tanzania (Nikander et al., 1991). High levels of AFB1 were also 

detected in Ethiopia in red pepper (range: 250-525 µg/kg) and in a processed mixture of 

legumes (range: 100-500 µg/kg) (Shephard, 2003).In Nigeria AFB1 was detected in 63% of 

stored sorghum sample, 52% of marketed sorghum samples and 31% of field sorghum 

samples throughout the year (Hussaini et al., 2009). The highest incidence was during the 

rainy season.  
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2.2.4.1 Botswana 

Peanut, peanut butter, sorghum, chicken feed and mophane worms (an edible larval stage of 

the emperor moth Imbrasia belina Westwood) samples from Botswana showed high levels of 

aflatoxin contamination (Siame et al., 1998). All mophane worms were purchased from 

harvesters in the field and from retail outlets while all the other samples were collected from 

storage depots or bought from retail outlets. Peanuts, peanut butter and mophane worms had 

aflatoxin levels ranging from 3.2-48 µg/kg, 1.6-64 µg/kg and 0.1-10 µg/kg respectively. 

Sorghum, sorghum meal and chicken feed showed minor aflatoxin contamination ranging 

from 0.1-0.7 µg/kg while maize showed no aflatoxin contamination (Siame et al., 1998). It 

should be noted that only 4 chicken feed samples were tested hence the results might not be 

statistically representative. 

Mphande et al., (2004), reported 78% of raw peanuts tested in Botswana to be positive for 

aflatoxin contamination (range: 12-329 µg/kg, mean: 118 µg/kg).  AFB1 was the most 

prevalent being found in 65% of the samples tested. The samples were bought from different 

retail outlets in the country. However, it should be noted that the investigators collected 

samples into plastic bags and this could have provided a perfect environment for aflatoxin 

proliferation post collection. The investigators also noted that most of the peanuts sold in 

Botswana are imported, yet they did not capture information on the original source of the 

samples as well as storage and shipping conditions. 

No aflatoxins were detected in sorghum malt although Aspergillus species were isolated in 

44% of the samples and A. flavus was isolated from 37% of the samples (Nkwe et al., 2005). 

This confirms the understanding that the presence of fungal isolates does not necessarily 

mean presence of toxin. There are no official aflatoxin regulatory levels in Botswana 

(Mphande et al., 2004; Siame et al., 1998), but the maximum allowable levels of total 

aflatoxins in food meant for human consumption in Codex Alimentarius countries is 15 µg/kg 

(Codex, 2001).  

2.2.4.2 Zimbabwe 

Routine monitoring of groundnuts by the Zimbabwe Government Analyst Laboratory noted 

seasonal variation in aflatoxin contamination. About 46% of the samples analysed during the 

1995 season and 8% of the samples analysed during the 1996 season were contaminated with 

levels above 10 µg/kg (Shephard, 2003; Henry et al., 1998). Studies in the rural villages 
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indicated presence of AFM1 in human breast milk at levels up to 0.05 ng/mL, thus raising 

concerns about post-natal exposure to aflatoxins (Shephard, 2003; Wild et al., 1987). 

Recently Siwela et al., (2011), carried out a study to monitor aflatoxin carryover during large 

scale peanut butter production, their findings reveal that peanuts from local farmers have high 

levels of  aflatoxin contamination (>80 ng/g in raw peanuts). 

Nyathi et al., (1987), carried out a survey of urinary aflatoxin biomarkers in Zimbabwe and 

detected aflatoxins in 4.3% and 4.4% of samples from rural areas and urban areas 

respectively. There was no association between aflatoxin contamination and altitude or 

rainfall, but there was a significant reduction in aflatoxins in the low temperature province of 

Manicaland. Also the degree of mobility of the population in Zimbabwe between rural and 

urban areas is quite significant hence it was difficult for the investigators to draw conclusions 

about any differences based on whether donors belonged to the urban or rural community. 

However the highest percentages of contaminated samples for individual centres came from 

rural areas. The investigators also noted that since most of the samples came from hospitals 

and clinics, a selection bias towards the sick as opposed to a normal cross-section of the 

community could have risen.  

Zimbabwe is one of the African countries that have aflatoxin regulations in place and 

20µg/kg is the maximum allowable level of total aflatoxins in human food. There are no 

recent mycotoxin studies in Zimbabwe and to compound this situation, the food security 

situation has deteriorated extensively during the last decade due to a political and economic 

crisis (Mutisi, 2009). There is therefore an urgent need for continuing surveillance studies in 

the country.  

2.3 Fumonisins 

Fumonisins were first discovered in South Africa by Gelderblom et al., (1988) and were 

chemically characterised by Bezuidenhout et al., (1988).  They are a group of non-flourescent 

mycotoxins thought to be synthesized by condensation of the amino acid alanine into an 

acetate derived precursor (Bennet and Klich, 2003; Sweeney and Dobson, 1999). Branched 

chain methyl groups are added at C-12 and C-16 by an S-adenosyl methionine . Much of the 

biosynthetic pathway is yet unknown and none of the enzymes involved in the fumonisin 

biosynthetic pathway have been isolated (Sweeney and Dobson, 1999). The fumonisin 

chemical structure, which is a C-20 diester of propane-1,2,3-tricarboxylic acid and a 
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pentahydroxyicosane containing a primary amino acid, resembles sphingosine which forms 

the back bone of sphingolipids (IARC, 2002; Merrill et al., 2001; Sweeney and Dobson; 

1999).  Fig 2.5 shows the structural formulas of the major fumonisins. 

 

Figure 2.5: Structural formula of fumonisin B1- B3 (Scott, 2012) 

More than 28 fumonisin analogues have now been described and classified as A, B, C, and P 

series (Rheeder et al., 2002). The major fumonisins are fumonisin B1 (FB1), FB2 and FB3 

(Wild and Gong, 2010; Richard, 2007). FB1 is the most commonly found and the most toxic 

(Scott, 2011; Bennet and Klich, 2003). The other fumonisin analogues differ slightly from the 

FB series. The FA series is acetylated on the amino group at the C-2 position whereas FB 

series have a free amine, the FC series lack the methyl group at the C-1 position and the FP 

series have a 3-hydroxypyridinium functional group at the C-2 position (van der Westhuizen, 

2011; Bezuidenhout et al., 1988). Fumonisins are difficult to study because they are 

hydrophilic, but they are usually extracted with aqueous methanol or aqueous acetonitrile and 

analysed by high performance liquid chromatography (HPLC) with fluorescence detection 

(IARC, 2002; Gelderblom et al., 1988).    

2.3.1 Fumonisin Biosynthesis 

Fumonisins are primarily produced by Fusarium verticillioides (formerly known as F. 

moniliforme), F. proliferatum, the principal causal agents of the “pink ear rot of maize” and 

other Fusarium species, during kernel colonization (Scott, 2011; Covarelli et al., 2011; 
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Richard, 2007). These fungi are taxonomically challenging, with a complex and rapidly 

changing nomenclature that has perplexed both mycologists and non-mycologists (Reddy et 

al., 2010; Bennett and Klich, 2003). F. vertillioides is the major species of importance; it 

grows as a corn endophyte in both the vegetative and reproductive tissues, often without 

causing disease symptoms in the plant (Reddy et al., 2010). However when conducive 

weather conditions, insect damage, and the appropriate fungal and plant genotype are present, 

it can cause seedling blight, stalk rot, and ear rot (Richard, 2007; Bennet and Klich, 2003).  

2.3.2 Natural occurrence in food 

Maize and maize based foods are the most affected by fumonisins even though occurrence 

has also been reported in sorghum, rice, soyabeans and cowpeas (Scott, 2011; Richard, 2007; 

IARC, 2002).  In general much lower concentrations than are common in maize have been 

reported (EMAN, 2011). Fumonisins have also been detected in a number of finished food 

products including maize based cereals and beer but not in animal products like meat, eggs 

and milk (Richard, 2007). Drought stress followed by warm wet weather later in the growing 

season and insect damage seem to be important factors in fungal infection of the growing 

crop (Richard, 2007). However it should be noted that F. verticillioides is abundant in nature 

and is present in virtually every seed and is present in the plant throughout its growth and is 

therefore present in the ears and kernels (Richard, 2007; Bennet and Klich, 2003). Most 

fungal strains do not produce the toxin hence the presence of the fungus does not necessarily 

mean the presence of fumonisins (Bennett and Klich, 2003). 

2.3.3 Health Risks 

The two well-known conditions caused by acute fumonisin toxicity are porcine pulmonary 

oedema and leukoencephalomalacia in horses (Scott, 2011; IARC, 2002). Both these diseases 

involve disturbed sphingolipid metabolism and cardiovascular dysfunction. In humans 

fumonisins have been implicated in one incident of food borne poisoning in 27 villages in 

India (Bhat et al., 1997). The outbreak resulted from infection of crops by F. verticillioides 

due to unseasonal rain during harvest season. The main features of the disease were transient 

abdominal pain, borborygmus and diarrhoea which began about 30 minutes to an hour after 

consumption of unleavened bread prepared from mouldy sorghum or maize (Bhat et al., 

1997). All the patients recovered fully when the offending food was withdrawn. It is also 

important to note that all the individuals affected were from the poorest social strata; who are 
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also at high risk of other infectious diseases due to food insufficiency, poor hygiene and 

sanitation, and lack of a comprehensive health care system (Williams et al., 2004; Shephard, 

2003; Bennet and Klich, 2003).   

Several studies have been conducted using experimental animals to check the 

carcinogenicity, toxicokinetics, and genotoxicity of fumonisins especially FB1 (Lemmer et 

al., 1999; Gelderblom et al., 1997; 1996; 1991; Wilson et al., 1985). FB1 was shown to be 

carcinogenic in rodents exhibiting both cancer initiating and promoting effects (Sun et al., 

2011; Wild and Gong, 2010). Experimental animals fed with either pure culture of 

F.verticillioides or FB1 showed decreased weight gain and toxic liver injury and also 

developed papillomas and carcinomas in the forestomach, hepatocellular carcinomas, hepatic 

nodules, cholangiofibrosis and cholangiocarcinomas (Lemmer et al., 1999; Gelderbloem et 

al., 1997; 1996; 1991; Wilson et al., 1985; Marasas et al., 1984). FB1   has been shown to be 

hepatotoxic and nephrotoxic in experimental animals, causing increased apoptosis followed 

by regenerative cell proliferation (IARC, 2002). FB1 has also been shown to be acutely 

poisonous to rats, and high doses caused death within 3 days (Gelderblom et al., 1988). 

However fumonisins are poorly absorbed and rapidly excreted in unmetabolised form in 

animal systems hence there is no known risk of fumonisin carryover in animal products like 

milk, meat and eggs (Richard, 2007; Voss et al., 2001).  

2.3.3.1 Interference with sphingolipid metabolism 

Sphingolipids are a highly diverse class of lipids found in all eukaryotic cells especially in the 

plasma membrane and related cell membranes (Merrill et al., 1997). They serve as structural 

components critical for maintenance of membrane structure, as receptors for vitamins and 

toxins, as sites for cell-cell recognition and cell-cell and cell-substrate adhesion, as 

modulators of receptor function, while complex sphingolipids serve as lipid second 

messengers in signalling pathways responsible for cell growth, differentiation and death 

(IARC, 2002; Merrill et al., 1997).  

Fumonisin B1 inhibits the co-enzyme A (CoA)-dependent acylation of sphinganine to 

sphingosine via interaction with the enzyme sphinganine/sphingosine N-acyltransferase 

(ceramide synthase) (Voss et al., 2009; Turner et al., 2009; IARC, 2002; Marasas et al., 2004; 

Merrill et al., 2001). Ceramide synthase is the enzyme in the de novo biosynthetic pathway of 

sphingolipids that adds a fatty acid to sphinganine to form dihydroceramide and also acts in 
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the reacylation of sphingosine derived from turnover of more complex sphingolipids (Merrill 

et al., 1997). This enzyme recognises both the amino group (sphingoid binding domain) and 

the tricarboxylic side chains (fatty acyl-CoA domain) of FB1 (IARC, 2002; Merrill et al., 

2001). Its inhibition leads to an accumulation of the sphingoid bases and their 1-phosphate 

levels and decreases ceramide and more complex sphingolipids like sphingomyelin and 

gangliosides and their intermediates (Merrill et al., 1997). Voss et al., (2009) demonstrated 

that hydrolysed FB1 (HFB1) also disrupts sphingolipid metabolism even though it was a 

significantly less potent modulator of sphingolipid metabolism than FB1. Figure 2.6 

illustrates the pathways of sphingolipid biosynthesis and turnover in mammalian cells. In 

boxes are the known biological activities affected by FB1 inhibition of ceramide synthase and 

associated with changes in the biosynthesis of various sphingolipid intermediates and 

products. 

 

Figure 2.6 Pathways of sphingolipid biosynthesis and turnover in a mammalian cell (IARC, 

2002). 

This inhibition results in sphingoid base accumulation, imbalances of the sphingoid base 

metabolites, fatty acid and glycerophospholipids, disruption of sphingolipid metabolism and 

in vivo toxicity, depletion of complex sphingolipids, and increased dihydroceramide in vivo  
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(IARC, 2002). In vivo there is a close relationship between sphingoid base accumulation and 

the expression of fumonisin toxicity in the liver and kidney (IARC, 2002; Voss et al., 2001). 

The resulting increase in the sphinganine/sphingosine ratio occurs prior to changes in other 

biochemical markers of cellular injury and is used as a biomarker for fumonisin exposure in 

animals (Voss et al., 2009; Peraica and Domijan, 2001). Plasma sphinganine and sphingonine 

levels for male and female participants were reported to be higher in the high oesophageal 

cancer incident area than in the low incidence area in rural South Africa (van der Westhuizen 

et al., 2008).  

Inhibition of ceramide synthase by FB1 can also result in the redirection of substrates and 

metabolites to other pathways, a good example is when accumulated sphinganine is 

metabolised to sphinganine-1-phosphate, whose breakdown results in production of aldehyde 

(a fatty acid) and ethanolamine phosphate (IARC, 2002). Disrupted sphingolipid metabolism 

leads to imbalances in phosphoglycerolipid, fatty acid metabolism and cholesterol 

metabolism via free sphingoid base- and sphingoid base 1-phosphate-induced alterations in 

phosphatidic acid phosphatise and monoacylglycerol acyltransferase (IARC, 2002).  

2.3.3.2 Neural tube defects  

Neural tube defects (NTDs) are common congenital malformations that occur when the 

embryonic neural tube, which forms the brain and spinal cord fail to close properly during the 

first few weeks of development (Waes et al., 2005; Marasas et al., 2004). It is assumed that 

through competitive inhibition of folate uptake, fumonisins induce NTDs in newborns 

(Hendricks, 1999). Depletion of cellular sphingolipids by FB1 has been shown to cause 

almost complete inhibition of uptake of 5-methyltetrahydrofolate by the folate receptor, and it 

is suggested that dietary exposure to FB1 could therefore adversely affect folate uptake and 

potentially compromise cellular responses dependent on this vitamin (Stevens and Tang, 

1997). Figure 2.7 shows how fumonisins inhibit sphingolipid biosynthesis and affects the 

folate transporter. The scheme shows the step where fumonisins inhibit sphingolipid 

biosynthesis (the acylation of sphinganine by ceramide synthase in the endoplasmic 

reticulum) thereby reducing the formation of sphingomyelin which is a major component of 

the plasma membrane and is required for the proper function of Glycosylphosphatidylinisotol 

(GPI) – anchored proteins such as the folate transporter. 
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Voss et al., (2009) demonstrated that FB1 induces NTDs in mice but the hydrolysed FB1 

proved to less potent and did not cause any NTDs even at 3.5 times the FB1 dose. In vitro 

HFB1 has also been shown to inhibit ceramide synthase in vitro less effectively than FB1 

(Humpf and Voss, 2004). Waes et al., (2005) demonstrated that maternal exposure to FB1 

during early pregnancy results in NTDs in the exposed foetus in mice and that ganglioside 

GM1 therapy was able to restore embryonic folate concentrations above some critical 

threshold level necessary for normal neural tube closure to take place. However they could be 

many confounding factors, like maternal nutritional status including folate and vitamin B12 

deficiency as well as obesity (Missmer et al., 2006; Waes et al., 2005), that might have 

played a role in the development of NTDs in all these studies. 

 

Figure 2.7: Disruption of sphingolipid metabolism and folate transport by fumonisins 

(Marasas et al., 2004). 

Epidemiologically it has been shown that fumonisins may be a risk factor for NTDs (Missmer 

et al., 2006; Hendricks, 1999). The rate for NTDs in black people in the Transkei area of 

South Africa was found to be about 10 times greater than that in black people in Cape Town, 
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South Africa (Kromberg and Jenkins, 1982).  The Transkei area has significantly elevated 

levels of fumonisins in maize based foodstuffs as well as a high rate of oesophageal cancer 

(Marasas, 1996; 1993; Rheeder et al., 1992; Marasas et al., 1981). NTDs have been found to 

be 3 to 5 times higher along the Texas-Mexico border than anywhere else in the United States 

(Marasas et al., 2004; Hendrickse, 1999). The population along the border consume a high 

amount of maize based products and are therefore exposed to high daily intake of fumonisins 

which might explain the high incidence of NTDs (Missmer et al., 2006; Marasas et al., 2004; 

Hendricks, 1999). 

2.3.3.3 Interference with fatty acid and glycerophospholipid metabolism 

Essential fatty acids are major constituents of all cell membrane glycerophospholipids, 

sphingolipids and triglycerides (IARC, 2002). Their most important role is acting as 

structural components of all cell membranes; they also act as precursors of many bioactive 

lipids known to regulate cell growth, differentiation and cell death (IARC, 2002). Gelderblom 

et al., (1996) exposed rat liver and primary hepatocytes to FB1 and changes in the 

phospholipid profile and fatty acid composition of phospholipids indicate that FB1 interferes 

with fatty acid metabolism. The pattern of changes in specific polysaturated fatty acids 

suggests disruption of the Δ6 desaturase and cyclo-oxygenase metabolic pathways (IARC, 

2002; Gelderblom et al., 1996). However, Gelderblom et al., (1997), showed that the pattern 

of changes in vivo is different from that observed in vitro. Major changes were associated 

with both the phosphatidyl-ethanolamine and the phosphatidylcholine phospholipid fractions 

while cholesterol levels in both the liver and serum are increased (IARC 2002; Gelderblom et 

al., 2001). 

Numerous changes in the expression of proteins known to be involved in the regulation of 

cell growth, apoptosis and cell differentiation have been shown at FB1 doses that alter fatty 

acid and glycerophospholipid profiles in rat liver (WHO, 2002). Expression of hepatocyte 

growth factor (HGF), transforming growth factor ά (TGF ά), TGF β1, c-myc oncogene were 

all increased during short term feeding of FB1 (Lemmer et al., 1999). Increased expression of 

the proto-oncogene c-myc could contribute to the enhanced cell proliferation that is required 

for the tumor progression observed in the livers of rats and mice exposed to hepatotoxic 

levels FB1 while overexpression of TGF β1 could play a role in increasing apoptosis (IARC, 

2002). Overexpression of TGF β1 and c-myc (Lemmer et al., 1999) and oxidative damage 
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could further enhance apoptosis and alter cell growth in affected hepatocytes (WHO, 2002; 

Gelderblom et al., 2001). 

FB1 disruption of sphingolipid metabolism and altered membrane phospholipids have been 

suggested to cause changes in several proteins (for example, cyclin D1 and retinoblastoma 

protein) that regulate cell cycle progression (IARC, 2002; Rmaljak, 2000). Accumulation of 

cyclin D1 is due to post-translational stabilisation of the protein (Ramljak et al., 2000). FB1-

induced alterations in cellular glycerophospholipid content and the sphingomyelin cycle are 

thought to interact so as to modify a variety of cellular processes resulting in the increased 

apoptosis and altered hepatocyte proliferation (IARC, 2002). All these alterations are 

hypothesized to result in growth impairment of normal cells, selectively stimulating growth 

of hepatocytes that are resistant to FB1, hence increasing the likelihood of cancer 

development (WHO, 2002; IARC, 2002; Gelderbloem et al., 2001).    

2.3.3.4 Oesophageal cancer 

 Fumonisins have been identified as an important risk factor in the occurrence of human 

oesophageal cancer (Marasas, 1996, 1993; Rheeder et al., 1992).  In the late 1970s a 

statistically significant correlation between the incidence of F. verticillioides in maize and the 

rate oesophageal cancer was shown in the Transkei area of South Africa (Marasas, 1996; 

1993; Rheeder et al., 1992; Marasas et al., 1981). In 1990 it was also shown that significantly 

higher levels of fumonisins occurred naturally in maize from the high oesophageal cancer 

rate area than in the low-rate area (Marasas, 1993). The maize samples collected by Marasas 

et al., (1986) were analysed for FB1 and FB2 by Rheeder et al., (1992), and both toxins were 

significantly higher in maize samples from the high risk area compared to the low risk area.  

FB1 and FB2 also occurred in more samples from the high risk area than from the low risk 

area.  

Van der Westhuizen et al., (2003) also reported high levels of fumonisin contamination in 

maize intended for human consumption in the southern regions of the State of Santa Catarina, 

(Brazil). The mean FB1 level was 1.89 mg/kg which is similar to FB1 levels in other high 

oesophageal cancer regions like Centane, (South Africa), Mazandaran, (Iran) and Linxian 

County, (China). The southern regions of Brazil have the highest incidence of oesophageal 

cancer and these results seem to suggest possible association between the consumption of 

maize contaminated with fumonisins and oesophageal cancer. Recently Sun et al., (2011) 
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reported results from China which supports the hypothesis that FB1 may play an important 

role in the aetiology of human oesophageal cancer. The median FB1 levels were 2.6, 0.4, and 

0.3 mg/kg in maize samples collected from Huaian (a high risk area for oesophageal cancer), 

Fusui (a high risk area for liver cancer) and Huantai (a low risk area for both oesophageal 

cancer and liver cancer) respectively. Another study in China compared fumonisin levels in 

corn from a high risk area for oesophageal cancer with samples from a low risk area. There 

was no significant difference in any of the measured fumonisin levels between the two areas 

(Yoshizawa and Gao, 1999; Yoshizawa et al., 1994). 

 There is no concrete evidence implicating fumonisins in the causation of oesophageal cancer 

(IARC, 2002; Voss et al., 2001). This lack of evidence to implicate fumonisins in 

oesophageal cancer led the IARC to conclude that, “there is inadequate evidence in humans 

for the carcinogenicity of fumonisins” and “there is sufficient evidence in experimental 

animals for the carcinogenity of fuminisin B1”, hence it was concluded that “Fumonisin B1 is 

possibly carcinogenic to humans (Group 2B)” (IARC, 2002).  

2.3.4 Natural occurrence of fumonisins in Africa 

In Tanzania more than half of the samples (n=120) tested were contaminated with total 

fumonisins ranging from 61-11048µg/kg and FB1 with levels up to 6125µg/kg (Kimanya et 

al., 2008). A wide variety of Tunisian food samples were contaminated with fumonisins 

(range: 70-2130µg/kg) and FB1 contaminated the most samples (Ghali et al., 2009). Maize 

based foods were the most contaminated with FB1 in terms of quantity and frequency. 

2.3.4.1 Botswana  

In Botswana FB1 was detected in 85% (28/33) of maize samples, 15% (3/20) sorghum 

samples and 100% (4/4) chicken feed samples collected from storage depots or bought from 

retail outlets. No fumonisins were detected in peanuts, peanut butter, beans or mophane worm 

(an edible larval stage of the emperor moth) (Siame et al, 1998). The highest concentrations 

were detected in maize (up to 1270µg/kg) and chicken feed (up to 1050 µg/kg). The chicken 

feed results should however be treated with reserve since only 4 samples were tested making 

it difficult to establish statistical significance. 

An analysis of sorghum based traditional malt, wort and beer for fungi, aflatoxins, fumonisin 

B1 and zearalenone in Botswana was carried out by Nkwe et al., (2005). Fusarium species 
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contaminated 63% of the malt samples and F. verticillioides was isolated from all Fusarium 

positive samples. FB1 was detected in 2% of the malt samples, but wort and beer made using 

the positive samples had no detectable FB1, implying that FB1 was not carried over during 

the beer making process, even though it has been shown before that FB1 can be carried over 

from raw materials to beer products (Turner et al., 2009; Torres et al., 1998). In another study 

Mpuchane et al., (1997) isolated Fusarium species from maize and sorghum that was stored 

in Botswana silos. F. verticillioides was the dominant species isolated from sorghum.  

2.3.4.2 Zimbabwe 

A study to ascertain the prevalence of Fusarium species of the Lesiola section on 

Zimbabwean corn and their ability to produce mycotoxins zearalenone, moniliformin and 

fumonisin B1 was done by Mubatanhema et al., (2000). The study showed a high incidence 

of Fusarium infection by the species of the Lesiola section on maize from different parts of 

Zimbabwe. Fumonisin B1 production was highly associated with F.verticillioides, with 97% 

of the 698 isolates producing FB1. In comparison only 31% of 67 F. proliferatum isolates 

produced FB1. F. verticillioides was also detected in 3.5% of maize samples and 3.7% of 

sorghum samples collected from Bulawayo by Gamanya and Sibanda, (2001).  Peanuts and 

wheat did not show any Fusarium occurrence. The authors reported a direct link between 

FB1 levels and the incidence of F. verticillioides in the crops collected from different regions 

of Zimbabwe. FB1 was also detected in maize stover residues stored as cattle feed. It ranged 

from 11µg/kg to about 430µg/kg (Coker et al., 2003). 

2.4 Legislation 

The FDA maximum allowable limits for aflatoxins and fumonisins in human foods are 20 

ppb (20 µg/kg) and 4 ppm (4000 µg/kg) respectively (Codex, 2001). The European 

Commission has stricter guidelines, 15µg/kg and 2000µg/kg for aflatoxins and fumonisins 

respectively (EC, 2006). In South Africa maximum tolerable limits for all foods are set at 10 

µg/kg and 5 µg/kg for total aflatoxins and AFB1 respectively (Viljoen, 2003). In Zimbabwe 

the maximum allowable aflatoxin limits for all foods are set at 20 µg/kg and 5 µg/kg for total 

aflatoxins and AFB1 respectively. In Botswana there are currently no regulations in place. 

Botswana and Zimbabwe are members of the Codex Alimentarius that has set 15 µg/kg as the 

maximum allowable limits for aflatoxins in all food. None of the African Countries has 

regulations or guidelines for fumonisins. 
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However legislation works perfectly in the market economies of the developed world, but 

rural subsistence farming communities have a much more complicated situation which is 

difficult to address (Shephard, 2008b). In most developing countries the food consumed is 

usually from subsistence production, consumption of formally traded food items is minimal, 

and laboratories to test the food are inaccessible (Shephard, 2008b; Williams et al., 2004). 

When trade does occur, the least contaminated food is usually exported, leaving the highly 

contaminated food to be consumed by a population already at risk (Williams, 2004).  In 

addition meeting these regulatory and advisory limits on individual foods does not translate 

into food safety, as significant aflatoxin and fumonisin exposures may result from high 

consumption of food with low mycotoxin levels (Shephard, 2008b). Hence mycotoxin risk 

reduction involves reduction of either contamination levels in food or reduction of 

consumption of contaminated food or both (Shephard, 2008b).  
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CHAPTER 3: METHODS AND MATERIALS 

3.1 Study Area 

The study was conducted on samples collected from Bulawayo (Zimbabwe) and Gaborone 

(Botswana), two large cities in the Southern Africa sub-region. Though they are only 700 km 

from each other, they are culturally, agriculturally, socio-economically and agro-ecologically 

different (Figure 3.1).  

 

Figure 3.1: Map showing the location, agro-ecological patterns of Bulawayo (B) and 

Gaborone (G). (Source: FAO, 2003) 

3.1.1 City of Bulawayo, Zimbabwe 

Bulawayo (20°10′12″S 28°34′48″E), the second largest city in Zimbabwe is located in the 

Matabeleland region and is about 435 km from the capital, Harare. It covers a total area of 

700 km
2
 and the city‟s population was estimated to be 700, 000 people in 2009 (RUAF 

Foundation, 2012). Due to the economic crisis in the country many companies in Bulawayo 

have closed down or moved to Harare, leaving unemployment levels at 80% and poverty 

levels around 60%.  The city is mostly urban and falls in Region IV of the agro-climatic 

zones of Zimbabwe, with an average annual rainfall of 450-650 mm (FAO, 2003). Natural 

region IV is a semi-extensive farming region with low rainfall, periodic seasonal droughts 

B 

G 



35 

 

and severe dry spells during the rainy season. Figure 3.2 shows the average monthly rainfall 

and figure 3.3 shows the average monthly minimum and maximum temperatures for the city. 

There is a lot of agricultural activity in the peri-urban and urban areas of Bulawayo (RUAF 

Foundation, 2012). Designated areas for agriculture include the peri-urban and low density 

areas of the city; however during the rainy season there is a lot of agricultural activity in non-

designated areas mainly from the low income groups. Crop production includes maize, 

vegetables and fruits.  

 

Figure 3.2: Average Monthly rainfall over the year for Bulawayo (source: Weather and 

Climate, 2012)  

 

Figure 3.3: The average monthly minimum and maximum temperature over the year for 

Bulawayo (source: Weather and Climate, 2012)  
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3.1.2 City of Gaborone, Botswana 

Gaborone (24°39′29″S 25°54′44″E) is the capital city of Botswana and is surrounded by 

several villages and the South African border on the south-east. The city covers a total area of 

approximately 169 km
2
 (Maundeni, 2004). There are approximately 232,000 people living in 

the city according to the 2011 census (UNdata, 2012). Situated close to the subtropical high 

pressure belt of the southern-hemisphere Gaborone has an arid and semi-arid climate with 

mono-modal rainfall pattern. The rains fall during summer, between October and April, with 

a mean rainfall of 475mm per annum. Figure 3.4 shows the average monthly rainfall while 

Figure 3.5 shows the average minimum and maximum monthly temperatures in Gaborone. 

 

Figure 3.4: Average monthly rainfall over the year in Gaborone (source: World Weather 

Online, 2012)   

The crop production sector is concentrated in the eastern part of the country and is mainly 

composed of the production of staple sorghum and maize crops together with peanuts, beans, 

cowpeas, millet and sunflower. Due to the semi-arid climate and erratic rainfall, arable land is 

limited to less than 1% of the total area of the country; hence, the country relies heavily on 

food imports (Botswana College of Agriculture, 2008).  
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Figure 3.5: Average monthly minimum and maximum temperatures for Gaborone (source: 

World Weather Online, 2012)  

3.2 Sample collection 

Mycotoxin contamination does not occur in a homogenous way throughout solid matrix 

samples hence good sample selection, representative sample collection and sample 

preparation methods must be used to obtain accurate quantitative results (IARC, 2002; Krska 

et al., 2008; Shephard, 2009). Fungal infection generally occurs in isolated pockets and is not 

evenly distributed in stored commodities (Turner et al., 2009).  Mycotoxins may be 

concentrated in the so called „hot spots‟ (Krska et al., 2008), a scenario where the number of 

contaminated particles may be very low, but the contamination level in each particle is very 

high (Krska et al., 2008; Shephard, 2008b). Nearly 90% of the error associated with 

mycotoxin analysis can be attributed to how the original sample was collected (Turner et al., 

2009).  It was very important to ensure that the samples collected were representative of the 

whole consignment and this was achieved by sampling from different sections of the sack. 

The vendors allowed the researcher access to the sacks that were on display.  

Ethics approval (Reference number: 2012/CAES/004) was obtained from the UNISA Ethics 

committee. Individuals providing samples and information for the questionnaire were asked 

to sign a consent agreement (see Appendix A). Sorghum, peanuts and peanut butter samples 

meant for human consumption were bought from retail shops and the informal market 
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between October and November 2011. The samples were immediately labelled with a unique 

identification number. Thirty four peanut samples (18 from Bulawayo and 16 from 

Gaborone), 34 sorghum samples (18 from Bulawayo and 16 from Gaborone) and 11 peanut 

butter samples from Bulawayo were collected making a total of 79 samples. At the time of 

sampling locally manufactured peanut butter could not be found in Gaborone. The only 

peanut butter on sale there was imported from South African multinational food 

manufacturing companies. Commercial peanut butter from South Africa is regularly 

monitored for mycotoxin levels (PROMEC Unit, 2001). As a result peanut butter samples 

were not collected from Gaborone. All the peanut butter samples from Bulawayo were 

manufactured in Zimbabwe (commercially and informally). All the vendors in Gaborone said 

they partially processed their sorghum by removing the pericarp before selling it on the 

market. 

Information on the original source of samples, storage conditions and storage period was 

collected using a questionnaire administered to the suppliers (see Appendix B). Only one 

interviewer was used for data collection, this minimised differences due to personal bias as 

well as variations in depth and persistence of probing. For samples bought from the informal 

market, the vendors were interviewed, while for samples bought from retail shops, shop 

managers/supervisors were interviewed. Samples were collected only from those people who 

were willing to be interviewed and signed the consent agreement. Shops and vendors were 

randomly picked.  

Sorghum and peanut samples were placed into cotton bags and properly sealed before being 

transported to the South African Medical Research Council (MRC) PROMEC Unit 

Laboratory in Cape Town for analysis. Peanut butter samples were kept in their original 

packaging which was 500mL pet jars with screw cap tops.  

3.3 Laboratory Analysis  

All the laboratory analysis was carried out at the PROMEC Unit and Indigenous Knowledge 

Systems Research Unit, Medical Research Council, in Cape Town, South Africa.  

3.3.1 Mycology Analysis 

Peanuts and peanut butter were cultured for Aspergillus species while sorghum was cultured 

for both Aspergillus and Fusarium species. Mycological analysis was conducted for 
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randomly selected peanut and sorghum samples from both Bulawayo and Gaborone and all 

the peanut butter samples from Bulawayo.  

Aspergillus species were cultured onto Aspergillus flavus and A. parasiticus media (AFPA) 

while Fusarium species were cultured onto Malt Extract Agar media (MEA+). Sorghum and 

peanut samples were surface sterilized with 3.5 % Sodium Hypochlorite for one minute and 

rinsed twice with sterile water before plating to obtain percentage infection. This technique 

limits growth to those fungi which are present inside the kernels or particles at the time of 

plating hence the results will represent true fungal growth and not surface contamination (Pitt 

et al., 1993). However surface sterilization is sometimes not 100 % effective and cross-

contamination between individual seeds might occur during sterilization and subsequent 

washing (Abbas et al., 2004).  One hundred kernels per sub-sample of peanuts and sorghum 

were plated onto AFPA or MEA+ plates (5 kernels per plate).  

The peanut butter samples were plated onto AFPA plates. The spread plate method was used 

for peanut butter samples. One gram of sample was mixed with 9mL of sterile distilled water 

and shaken until the mixture was homogeneous. This was followed by a 1 in 10 serial 

dilution. One millilitre from the primary mixture was mixed with 9 mL distilled water using a 

graduated pippette and shaken until the mixture was homogeneous. This was done for each 

dilution until a 10
-6

 dilution was reached. One millilitre from each dilution was transferred 

onto the petri dish and the cooled media was poured on top, and gently mixed for 1-2 

minutes. The mixture was allowed to set before incubating at 30 °C for 3 days. The isolated 

fungi were enumerated from plates showing well separated colonies and identified using 

colony colour, colony texture, orange yellow reverse colour and soluble pigmentation (Pitt 

and Hocking, 1997). The number of fungal colonies per gram of food was calculated and 

expressed as colony forming units per gram of food (CFU/g). Commercial peanut butter is 

made by dry roasting shelled peanuts at 160°C, blanching/de-skinning, and grinding (Siwela 

et al., 2011). Salt, sugar and dehydrogenated fat (as stabilizer) are also added (Siwela et al., 

2011, Peanut Institute, 2012). Homemade peanut butter is also made by roasting peanuts, 

blanching and grinding even though the roasting temperature is rarely monitored. The 

roasting is believed to destroy most of the vegetative fungi present. The preparation of both 

AFPA and MEA+ is described below. 
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3.3.1.1 Aspergillus flavus and A. parasiticus media (AFPA) 

The AFPA was prepared according to the method developed by Pitt et al., (1983). Twenty 

grams of yeast extract was mixed with 10 g peptone, 0.5 g ferric ammonium citrate, 0.002 g 

dichloran, 0.1 g chloramphenicol (which was dissolved in 3-5 mL ethanol before adding to 

other ingredients) and 15 g agar. The mixture was dissolved in 1000 mL of distilled water, 

and sterilized by autoclaving at 121 °C for 15 minutes. The mixture was allowed to cool 

down to 55 °C before pouring into plates. The surface sterilized samples were plated and 

incubated in the dark at 30 °C for 48 - 72 hours. Samples infected with Aspergillus species 

were positive according to the yellow/orange pigmentation of the underside of colonies. The 

intense orange yellow reverse colouration is induced by ferric citrate (Pitt et al., 1983). 

3.3.1.2 Malt Extract Agar (1.5 % MEA
+
) 

The 1.5 % MEA
+ 

was prepared according to the method describe by Rheeder et al., (1992). In 

summary, 17 g of malt extract were mixed with 17 g of bacto agar, and 0.15 g of sodium 

novobiocin. The mixture was dissolved in 1000 mL of distilled water and sterilized by 

autoclaving at 121 °C for 15 minutes. The mixture was allowed to cool down to 55 °C before 

pouring into plates. The surface sterilized samples were plated and incubated in the dark at 25 

°C for 72 - 96 hours. All the suspected Fusarium species were sub-cultured onto ordinary 

Potato Dextrose Agar (PDA) for 48 - 72 hours before further processing. All the other 

mycoflora were reported as other fungi and as a percentage of the kernels plated. 

3.3.2 Chemical Analysis 

The different chemical and physicochemical properties of mycotoxins require specific 

extraction of the mycotoxin from the sample matrix using a suitable solvent, cleanup of the 

extract to reduce matrix effects, separation and detection methods (Shephard, 2009; Krska et 

al., 2008). A successful analytical method should be robust, sensitive and have a high degree 

of flexibility over a wide range of compounds and should also be specific when required 

(Turner et al., 2009). Mycotoxin analysis methods are usually based on labour-intensive 

sample preparation protocols (Shephard, 2009; Krska et al., 2008). Sample preparation is 

usually the main time factor in mycotoxin analysis, taking up approximately two thirds of the 

time (Turner et al., 2009).  
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The extraction method depends on the structure of the toxin. Polar toxins like fumonisins 

require the presence of water aided by the presence of polar organic solvents while aflatoxins 

are hydrophobic toxins and their extraction relies on the use of organic compounds (Turner et 

al., 2009). An ideal extraction solvent extracts the mycotoxin quantitatively and should be 

recoverable, stable, non-toxic and non-flammable.  Extraction and clean-up procedures are 

usually long hence the extraction solvent should be stable for the duration of the entire 

process (EMAN, 2011).  

 Liquid-liquid extraction or liquid-solid extraction techniques can be used. Liquid-liquid 

extraction involves exploiting the relative solubility of the toxin in aqueous phase and in an 

immiscible organic phase, to extract the compound into one solvent leaving the rest of the 

matrix in the other (EMAN, 2011; Turner et al., 2009). It is widely used in the extraction of 

patulin in fruit juices and AFM1 in milk or urine. Liquid-solid extraction is used in solid 

samples and involves dissolving the toxin in the extraction solvent by either shaking or 

blending. Due to the presence of co-extracting impurities the extracts of most matrices are 

unsuitable for direct chromatographic analysis hence the clean up procedure is the most 

important step as the purity of the sample affects the sensitivity of the results (Turner et al., 

2009; Shephard, 2009). This clean-up can be through several methods including liquid-liquid 

separation, solid phase extraction (SPE) and immunoaffinity columns (IAC). Liquid-liquid 

separation is less frequently used because it is labour intensive, requires large volumes of 

solvents which are sometimes chlorinated, and there is possible contamination and loss of 

toxin due to adsorption onto glassware (Turner et al., 2009).  

In this study two sample cleanup techniques were used, IAC for aflatoxins and SPE using 

strong anion exchangers (SAX) for fumonisins (Figure 3.6). IAC and SPE cleanup techniques 

help to simplify protocols, improve selectivity and hence performance characteristics (Krska 

et al., 2008). IACs contain immobilised antibodies that exclusively retain a certain mycotoxin 

or mycotoxin class, use economic amounts of organic solvents and produce cleaner extracts 

with a minimum level of interfering matrix components (Shephard, 2009; Krska et al., 2008). 

Extracts of various matrices can be purified by essentially the same IAC protocol and IAC 

antibodies can tolerate high amounts of aqueous methanol hence IAC is the preferred clean-

up method for aflatoxin analysis (Shephard, 2009).  
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Figure 3.6: SPE SAX extraction for fumonisins 

The SPE technology is based on small disposable cartridges packed with silica gel, or bonded 

phases which are in the stationary phase that have a high capacity for binding small 

molecules (Turner et al., 2009). SAX is the preferred material for fumonisin extraction, it 

utilises electrostatic interactions formed between the target molecule and charged groups 

bonded to the silica material (Turner et al., 2009). The sample is set to a pH where both 

groups are charged, loaded in one solvent, rinsed to remove most of the co-extracting 

contaminants and eluted by addition of a strong anionic solvent. However SPE performance 

can be affected by pH, solvent and ion concentration of the sample. 

 In previous times, the most popular separation method for mycotoxins was TLC (Shephard, 

2009; Turner et al., 2009). It offers the ability to screen large numbers of samples 

economically with ease of identification, features that appeal to developing country 

laboratories (Turner et al., 2009). However, HPLC has superseded the use of TLC for the 



43 

 

separation of both aflatoxins and fumonisins because it offers high quality separation, low 

detection limits and can be automated (Turner et al., 2009; Shephard, 2009). Normal and 

reversed phase columns can be used for separation and purification of toxins depending on 

their polarity. Most of the separations are performed on reversed phase systems with mobile 

phases composed of water, methanol and acetonitrile mixtures (Shephard, 2009).  

The most common detection methods include UV or fluorescence detectors that rely on the 

presence of a chromophore in the toxin molecules (Turner et al., 2009; Shephard, 2009; 

Krska et al., 2008). Fumonisins lack a suitable chromophore and require pre-column 

derivatization hence automated injection could not be used since the derivatization reagent, o-

phthaldialdehyde (OPA) is unstable. Aflatoxins are naturally fluorescent making them ideal 

candidates for fluorescence detection; however the fluorescence of AFB1 and AFG1 is 

significantly quenched in the aqueous mixtures used for HPLC (Shephard, 2009). To 

overcome this quenching post-column derivatization is employed. The two analogues are 

derivatized at the reactive 8,9-double bond of the dihydrofuran moiety (Shephard, 2009). 

Photochemical derivatization is economic and was used in this study. The HPLC eluate was 

passed through a reactive coil wound around a UV light at ambient temperature which causes 

hydration of AFB1 and AFG1 to their respective hemiacetals.  

 The conventional detection methods described above are gradually being replaced by mass 

spectrometry. Most laboratories in the developed world have adopted liquid 

chromatography/mass spectrometry as the universal approach for mycotoxin analysis (Krska 

et al., 2008). Most potential mycotoxin analytes are compatible with the conditions applied 

during separation and detection. The advantages of mass spectrometry include increased 

selectivity and sensitivity, unambiguous confirmation of the molecular identity of the analyte 

and the option to use isotopically labelled substances as internal standards (Shephard, 2009; 

Krska et al., 2008). It is also possible to investigate the molecular structure of metabolites and 

sugar conjugates and to omit time consuming and error prone derivatization and clean-up 

steps (Shephard, 2009; Krska et al., 2008). However the reduction in sample preparation 

results in relatively poor method accuracy and precision due to the irreproducible and 

unpredictable influence of co-eluting matrix components on the signal intensity of the 

analytes (Krska et al., 2008). Also the high cost of the equipment, limitations in the type of 

solvents to be used and complex laboratory requirements are limiting factors in the use of 

mass spectrometry particularly in developing countries (Turner et al., 2009). 
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Peanuts and peanut butter samples were analysed for aflatoxin contamination, while sorghum 

samples were analysed for both aflatoxin and fumonisin contamination.  

3.3.2.1 Equipment, Reagents and Chemicals 

The following equipment and apparatus were used in this study: 

(a) Agilent 1100 series HPLC system (Agilent, Santa Clara, USA) 

(b) Waters 510 pump (Waters, Herdfordshire, UK) 

(c) Phenomenex Luna C18 5µ particle size column (150 x 4.60mm) (Phenomenex, 

Torrance, CA, USA) 

(d) Waters 470 scanning fluorescence detector (Waters, Herdfordshire, UK) 

(e) UV lamp photochemical reactor for enhanced detection (PHRED) (Aura Industries, 

New York, USA) 

(f) HP Chemstation software for liquid chromatography (Hewlett – Packard, Darmstadt, 

Germany) 

(g) Aflatest® immunoaffinity columns (Vicam, Watertown, USA) 

(h) Strong anion exchange (SAX) columns (Bond-Elut Varian, Palo Alto, USA) 

(i) 12 port solid phase extraction (SPE) manifold (Supelco, Bellefonte, USA) 

(j) Polytron PT 3100 homogenizer (Kinematica, Luzerne, Switzerland) 

(k) EIA CP104 ultrasonic bath (Zona Industriale Viciomaggio, Arezzo, Italy) 

(l) Stuart® Orbital Shaker (Bibby Scientific, Staffordshire, UK) 

All the solvents used to quantify aflatoxins and fumonisins were of HPLC grade (unless 

otherwise stated). All the solvents were purchased from Merck (Darmstadt, Germany) unless 

otherwise stated. Below is a list of all the reagents and chemicals used: 

(a) Aflatoxin standards (Sigma-Aldrich, St Louis, USA) 

(b) Fumonisin standards (PROMEC Unit, Capetown, South Africa) 
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(c) Acetonitrile 

(d) Methanol 

(e) Toluene 

(f) 1M HCL 

(g) Mercaptoethanol 

(h) Sodium tetraborate 

(i) o-phthaldehyde 

(j) Glacial acetic acid 

(k) Pottasium dihydrogen phosphate 

(l) Sodium chloride 

(m)  Distilled water 

3.3.2.2 Aflatoxins 

3.3.2.2.1 Preparation of the standard solutions 

Aflatoxin standard solutions were prepared in accordance with AOAC Official Method 

970.44, (1995). To a container of dry aflatoxins (AFB1, AFB2, AFG1, and AFG2) toluene: 

acetonitrile (9:1, v/v) was added to make separate solutions at the following concentrations 

10.2 µg/mL, 9.99 µg/mL, 10.44 µg/mL and 6.14 µg/mL for AFB1, AFB2, AFG1 and AFG2 

respectively. The absorbance (A) read at 350 nm as well as the molar absorptivity value (ɛ ) 

and the molecular weight (MW) for each aflatoxin were used to determine the concentration 

of each standard (see Equation 3.1):  

Aflatoxin concentration (µg/mL) = A x MW x 100/ ɛ  

 

(MW of AFB1 = 312, AFB2 = 314, AFG1 = 328, AFG2 = 330) 

Equation 3.1: Formula for calculating individual aflatoxin concentrations 
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20 µL of AFB1, 10 µL of AFB2, 50 µL of AFG1 and 20 µL of AFG2 were transferred into 

an amber vial and evaporated at 60°C under a stream of nitrogen. The sample was 

reconstituted in 2 mL of methanol and stored at 4 °C. 

3.3.2.2.2 Method validation 

The aflatoxin method was assessed for specificity, linearity, accuracy and precision.  

Specificity validation was done by injecting aflatoxin standards three times before injecting 

samples and comparing the retention times. This was done for every batch of samples. 

Linearity, accuracy and precision validations were done by spiking twenty seven blank 

samples (nine for peanuts, nine for peanut butter and nine for sorghum) at three levels (5 

ng/g, 10 ng/g and 20 ng/g) with individual aflatoxins (AFB1 , AFB2, AFG1, and AFG2) in 

triplicate. A blank sample was run for all the samples (peanuts, peanut butter and sorghum). 

The spiking volumes were calculated using the formula in Equation 3.2 below. The standard 

curves generated by plotting area versus concentration were analysed by linear regression 

Spiking volume = AB/C 

Where  A is the weight of the sample used in grams (g) 

 B is the concentration to be spiked in nanograms per gram (ng/g) 

 C is the concentration of the standard solution in nanograms per millilitre (ng/mL) 

                                  

Equation 3.2: Formula for calculating spiking volumes for aflatoxins and fumonisins  

3.3.2.2.3 Sample Extraction 

The extraction method was adapted from a previously described method (Gnonlofin et al., 

2012). In brief 10 g of sample were mixed with 1 g of sodium chloride (NaCl) extracted with 

MeOH: H2O (80:20, v/v). The mixture was shaken using a Stuart® Orbital Shaker for 10 

minutes at 250 rpm, then centrifuged for 5 minutes at 4000 rpm and 5 °C. The supernatant 

was filtered into a conical flask using Whatman number 4 filter paper and a 10 mL aliquot 

from the filtrate was diluted with 40 mL distilled water. 10 mL of the diluted sample were 

loaded onto AflaTest® IAC at a flow rate of 1-2 drops per second. The IAC was then washed 

with 15 mL distilled water and aflatoxins eluted with 3 mL methanol into an amber vial. The 

extract was dried at 60 °C under a stream of nitrogen gas. The residue was reconstituted in 

200 µL of methanol and stored at 4 °C until injection time. 
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3.3.2.2.4 Chromatography 

The reconstituted samples were analyzed using an Agilent 1100 series HPLC system 

equipped with a Quaternary pump set at flow rate 1.5 mL/minute, an auto-sampler set to 

inject 10 µL and connected to a fluorescence detector (FLD) set at excitation wavelength of 

365 nm and emission wavelength of 435 nm. Post-column derivatization was performed 

using a photochemical reactor for enhanced detection (PHRED). The mobile phase used was 

0.1 M KH2PO4: Acetonitrile: Methanol: Acetic acid (690:150:75:20, v/v/v/v) (Gnonlonfin et 

al., (2012). Data was collected and analysed by the Agilent ChemStation software and 

quantification was achieved by comparing area under the curve for samples with those of 

aflatoxin standards. 

3.3.2.3 Fumonisins 

Only sorghum samples were analysed for fumonisin contamination since peanuts and peanut 

products are not known substrates of the toxin (EMAN, 2011). 

3.3.2.3.1 Method validation 

The fumonisin method was assessed for specificity, linearity, accuracy and precision.  

Specificity validation was done by injecting fumonisin standards three times before injecting 

samples and comparing the retention times. This was done for every batch of samples. 

Linearity, accuracy and precision validation was carried out by spiking nine blank sorghum 

samples at three levels (500 ng/g, 5,000 ng/g and 10000 ng/g) with fumonisin standards 

(FB1, FB2, and FB3 prepared at PROMEC Unit, Medical Research Council, South Africa) in 

triplicate. The spiking volume was calculated using the formula shown in Equation 3.2. The 

standard curve generated by plotting area versus concentration was analysed by linear 

regression. 

3.3.2.3.2 Sample Extraction 

The extraction was based on the modified method of Sydenham et al (1996). In summary 20 

g of milled sorghum was extracted by mixing with 100 mL methanol: water (3:1, v/v) and 

blending for 3 minutes in a Polytron PT 3100homogenizer followed by centrifugation at 4000 

rpm for 10 minutes at 4 °C. The supernatant was filtered through Whatman 4 filter paper into 

a conical flask and the pH was adjusted to 6.00 with 1 M NaOH or 1 M HCL using a 

calibrated pH meter. SAX columns mounted onto the SPE manifold were pre-conditioned 
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with 5 mL methanol and 5 mL methanol: water (3:1, v/v) at a flow rate of <2 mL/min. The 

column was not allowed to dry throughout the clean-up process. A 10 mL sample aliquot was 

loaded onto SAX columns. The cartridge was then washed successively with 5 mL methanol: 

water (3:1, v/v) and 3mL methanol. The fumonisins were eluted with 10 mL methanol: acetic 

acid (99:1, v/v) under gravity. The eluate was transferred into 4 mL glass vials and dried at 

60 °C under a stream of nitrogen. The samples were stored at 4 °C until analysis. 

3.3.2.3.3 Derivatization 

The derivatization procedure was based on the method by Shephard et al., (1990). OPA was 

prepared by dissolving 40 mg of OPA in 1mL of methanol and diluting in 5 mL of 0.1 M 

sodium tetraborate containing 50 µL of mercaptoethanol. The OPA reagent should not be 

kept for longer than a week.  

3.3.2.3.4 Chromatography 

The samples were re-dissolved in 200 µL of methanol and a 50 µL aliquot derivatized with 

200 µL of OPA reagent. 20 µL of samples and 10 µL of standards were injected within 2 

minutes after mixing. The derivatization product was analysed by reverse-phase isocratic 

HPLC system consisting of a Waters 510 pump at a flow rate of 1 mL/minute, a Luna C18 5 

µ particle size column (150 x 4.60 mm) and a Waters 470 scanning fluorescence detector 

(FLD) set at excitation wavelength of 335 nm and emission wavelength of 440 nm. The 

mobile phase was made up of MeOH: 0.1 M NaH2PO4 (78:22, v/v) and adjusted to pH 3.35 

with o-phosphoric acid. The mobile phase was filtered through a 0.45 µm Waters HV filter 

and degassed for 30 minutes using an ultrasonic bath. The standards and samples were 

injected at a flow rate of 1 mL per minute. Data was collected and analysed by the Agilent 

ChemStation software and quantification was achieved by comparing area under the curve for 

samples with those of fumonisin standards. 

3.4 Health and Safety  

Since mycotoxins are hazardous substances, safety precautions were adopted during 

handling, analysis and disposal of samples and standards. Personal protective equipment 

(PPE) including laboratory coat, gloves, goggles, sharps containers and a fume hood were 

used during sample preparation (Figure 3.7). Care was taken in handling and disposing liquid 
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waste and use of sharps containers. All spills were cleaned with bleach then water. All 

glassware was rinsed with bleach and washed thoroughly. 

 

Figure 3.7: Working under a fume hood in the PROMEC Unit extraction laboratory 

3.4 Statistical analysis 

The data was summarized into a Microsoft Excel 2007 master sheet.  Descriptive statistics 

were used to describe the source and storage conditions of the samples. Regression analysis 

was used to determine the linearity of validation results. Frequency tables, graphs and charts 

were also used for illustrative purposes. 
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CHAPTER 4: RESULTS AND DISCUSSION   

4.1 Sample collection  

Samples were collected from 30 respondents from Bulawayo and 24 respondents from 

Gaborone. Of the Bulawayo respondents 70% (21/30) were women and 30% (9/30) were 

men. Shop mangers/supervisors made up 23% (7/30) of the total respondents and they were 

all men. In Gaborone 81% (13/16) were women and 19% (3/16) were men. 

The vendors in Bulawayo said they sourced most of their peanuts and sorghum commodities 

from Gokwe, a village about 400km away. The crops are then transported by buses and other 

public transport modes to the central market in Bulawayo. The vendors in Bulawayo then 

collect their orders from the central market and take to their respective selling points scattered 

around the city. The peanut butter samples from Bulawayo were a mixture of homemade 

(4/11) and commercial samples (7/11). All the commercial samples were manufactured by 

different Zimbabwean companies, the majority of which are small to medium scale 

companies. The peanuts on sale on the informal market were used to make homemade peanut 

butter and it was assumed the commercial peanut butter was also made from locally produced 

peanuts. All the homemade peanut butter samples were purchased from the market while all 

the commercial samples were purchased from retail shops around the city.  

In Gaborone, 81% (13/16) of the respondents sourced their peanuts from the Botswana 

Agriculture Marketing Board and 56% (9/16) sourced their sorghum from the same source. 

19% (3/16) of the respondents imported their peanuts from Zambia. The remaining sorghum 

samples came from the fields around Gaborone. The sorghum samples from Gaborone had 

the pericarp removed before being sold at the market. All the respondents in Bulawayo stored 

their peanuts and sorghum stored in sacks both at home and at the vending site. However in 

Gaborone 88% (14/16) stored their peanuts and sorghum in sacks while 12% (2/16) stored 

their commodities in plastic bags both at home and at the vending site. Sacks allow good air 

circulation within the sample that helps keep temperatures and moisture levels low hence 

prevent pockets of fungal growth.  
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4.2 Mycology Analysis  

The mycology results for peanut butter, peanut and sorghum samples are presented below. 

4.2.1 Peanut Butter 

Only three samples showed fungal growth with the most contaminated sample yielding 1x10
2
 

CFU/g of peanut butter. This is below the maximum tolerance limit (10
4
 CFU/g) 

recommended by the International Commission on Microbiological Specification for Foods 

(Elliot, 1980; da Silva, 2000).  

4.2.2 Peanuts 

A. flavus/parasiticus isolates were obtained from all six randomly analysed peanut samples 

from Gaborone (Table 4.1). The contamination ranged from 2 - 15 % of the seeds examined. 

Similarly, Mphande et al., (2004) reported Aspergillus species from 94 % (113/120) of peanut 

samples from Gaborone and the A. flavus/parasiticus were detected on 66 % of the samples.  

Table 4.1: Contamination of peanut samples from Bulawayo and Gaborone with A. 

flavus/parasiticus (as indicated by % kernel growth on AFPA media)  

Gaborone 

Samples 

(% kernels showing 

Aspergillus growth) 

Bulawayo 

Samples 

(% kernels showing 

Aspergillus growth) 

1 5.0 1 20 

2 3.0 2 4.0 

3 2.0 3 NG 

4 15.0 4 3.0 

5 6.0 5 NG 

6 10.0 6 5.0 

NG – no growth 

Of the Bulawayo samples only four were contaminated with A. flavus/parasiticus species, 

with a contamination range of 3 - 20 % of the seeds examined. In Thailand 100 % of the 

peanut samples showed some fungal infection and 84 % of all kernels examined were 

infected (Pitt et al., 1993). A. flavus isolates were the most dorminant followed by A. niger, 

being found in 95 % and 86 % of all the samples examined respectively. A. parasiticus 
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incidence was found to be very low. In this study differentiation of the Aspergillus species 

was not done. 

4.2.3 Sorghum 

Only the sorghum samples from Bulawayo showed fungal growth on both MEA+ media as 

shown in Tables 4.2. 

Table 4.2: Contamination of sorghum samples from Bulawayo with Fusarium species 

and other fungi (as indicated by % growth on MEA+ media) 

Bulawayo 

Samples 

(% kernels showing Fusarium 

species growth) 

(% kernels showing other fungi 

growth) 

1 1.0 47.0 

2 NG 32.0 

3 3.0 58.0 

4 1.0 64.0 

5 NG 16.0 

6 1.0 71.0 

NG-No growth 

On MEA+ 4/6 of the randomly analysed sorghum samples from Bulawayo showed 

contamination with Fusarium species ranging from 1 – 3 %. The following Fusarium species 

were isolated F. scirpi, F. thapsinum, F. incarnatum and F. proliferatum. All the sorghum 

samples from Bulawayo were also infected with fungi other than Fusarium species and this 

ranged from 16 – 71 % of the kernels. Epicoccum species were the most common genus 

identified under other fungi. The Fusarium species commonly associated with sorghum 

include F. verticillioides, F. proliferatum, and F. thapsinum (Nkwe et al., 2005). Gamanya 

and Sibanda (2001) reported F. verticillioides prevalence of 0.2 % and 3.5 % in sorghum and 

maize samples collected from Bulawayo respectively. They also noted a direct link between 

FB1 levels and F. verticillioides incidence. A high incidence of Fusarium infection by the 

species of the Liseola section on maize from different parts of Zimbabwe has also been 

reported, although there was no correlation between fungal contamination and mycotoxin 

production (Mubatanhema et al., 1999). The distribution of F. verticillioides has been shown 
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to be significantly higher in maize (p < 0.05) than in other crops (Gamanya and Sibanda, 

2001) suggesting selective substrate preference with regards to fungal contamination and FB1 

production (Gamanya and Sibanda, 2001, Doko et al., 1996). 

There was no fungal growth in any of the randomly analysed sorghum samples from 

Gaborone. In contrast Nkwe et al., (2005) identified Fusarium species in 63 % of sorghum 

malt samples from villages around Gaborone. However the processing of sorghum into malt 

is suspected to encourage growth of Fusarium species (Nkwe et al., 2005). Also mouldy 

crops, specifically separated from visibly non-mouldy crop are usually used for beer 

processing (Shephard et al., 2005). In Brazil only 25 % of the samples yielded Fusarium 

species with F. verticillioides representing 25 % of the Fusarium identified (da Silva et al., 

2000). In Thailand F. verticillioides was isolated from 42 % of the samples (Pitt et al., 1994). 

The mycoflora results of the present study differ quite significantly from the Brazil and 

Thailand results. This might be a reflection of the huge differences in sample numbers used. 

Table 4.3: Contamination of sorghum samples from Bulawayo with A. flavus/parasiticus 

(as indicated by% kernels showing Aspergillus growth)  

Bulawayo Samples (% kernels showing Aspergillus growth) 

1 3.0 

2 NG 

3 NG 

4 2.0 

5 2.0 

6 22 

NG - no growth 

Only the sorghum samples from Bulawayo showed growth on AFPA media as shown in 

Table 4.3. 67 % (4/6) of the randomly analysed sorghum samples from Bulawayo showed 

contamination with A. flavus/parasiticus. 

Samples infected with Aspergillus species were positive according to the yellow green 

pigmentation of the underside of colonies.  Figure 4.1 shows a photo of Aspergillus species 

growth on one of the samples on AFPA media.  
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Figure 4.1: A photo of Aspergillus species growth in sorghum on AFPA media 

None of the sorghum samples from Gaborone showed any fungal growth, this might be 

attributed to the fact that all the sorghum samples had the pericarp removed. Nkwe et al., 

(2005) reported Aspergillus species in 44 % of sorghum malt from villages around Gaborone. 

Maize and sorghum from grain storage silos in Botswana had A. flavus and A. parasiticus 

isolates in up to 41 % of the fungal isolates in maize and 25 % of those in sorghum 

(Mpuchane et al., 1997). Sorghum from Thailand had very high levels of A. flavus, about 86 

% of the samples were infected (Pitt et al., 1994), but sorghum is used exclusively as animal 

feed in Thailand (Pitt et al., 1994). In Brazil, da Silva et al., (2000) observed Aspergillus 

presence in 42.7 % of sorghum samples and A. flavus was the most prevalent.   
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4.3 Chemical analysis  

4.3.1 Validation of the aflatoxin method 

The specificity and reproducibility validations for the HPLC method for aflatoxins were 

determined by measuring intra-day repeatability of the working standards. The retention 

times and percentage coefficient of variation (% CV) calculated from peak areas (Table 4.4) 

indicate that the reproducibility and specificity of the method with respect to aflatoxin 

standards is good.  

Table 4.4: Peak areas and percentage CV’s for aflatoxin standards 

 AFB1 AFB2 AFG1 AFG2 

Standard 2 

Standard2 

Standard 3 

39.4 

38.6 

37.9 

96.8 

95.5 

94.5 

44.5 

44.5 

43.9 

53.1 

53.1 

52.7 

Mean 

SD 

% CV 

38.6 

0.8 

2.0 

95.6 

1.2 

1.0 

44.3 

0.3 

1.0 

53.0 

0.2 

0.0 

 

Peanut and peanut butter samples bought from a shop in Cape Town and a pooled sorghum 

sample were spiked in triplicate with the aflatoxin standard at 5 ng/g, 10 ng/g and 20 ng/g. 

Recovery, precision and linearity validation were assessed by performing triplicate intra-day 

injections of the spiked samples. The recoveries, precision and linearity of the method are 

shown in Tables 4.5a, b, and c.  

The average total aflatoxin recoveries for peanut butter were 95 %, 90 % and 75 % for 

samples spiked at 5 ng/g, 10 ng/g and 20 ng/g respectively. Yentür et al., (2006) reported an 

average recovery of 82 % for peanut butter analysed using HPLC. The recoveries in this 

study were considered to be acceptable. The method showed acceptable linearity in the range 

5 ng/g – 20 ng/g with the regression coefficient value ranging from 0.9802 to 1. Elzupir et al., 

(2011) also reported regression coefficient values of >0.9. 
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Table 4.5a: A summary of the recovery validation results of the aflatoxin HPLC method 

for peanut butter 

Aflatoxin Spiking level % Recovery 

(RSD %) 

R
2
 Equation 

AFB1 5 

10 

20 

107 (4) 

81 (0.9) 

86 (2) 

0.9890 y = 1.1993x + 1.4035 

AFB2 5 

10 

20 

82 (5) 

79 (0.6) 

74 (8) 

1.0000 y = 5.762x + 2.8195 

AFG1 5 

10 

20 

98 (3) 

65 (5.3) 

72 (20) 

0.9802 y = 0.3648x + 1.2015 

AFG2 5 

10 

20 

95 (10) 

76 (0.9) 

68 (15) 

0.9993 y = 1.8132x + 7.6115 

 

The average total aflatoxin recoveries for peanuts were 65 %, 61 % and 84 % for samples 

spiked at 5 ng/g, 10 ng/g and 20 ng/g respectively. These recoveries are slightly lower than 

82 % and 92 % reported by Siwela, (1996) for peanuts spiked at 5 ng/g and 20 ng/g 

respectively. The method showed acceptable linearity in the range 5 ng/g – 20 ng/g with the 

regression coefficient value ranging from 0.9310 to 1.  
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Table 4.5b: A summary of the recovery validation results of the aflatoxin HPLC method 

for peanuts 

Aflatoxin Spiking level % Recovery 

(RSD %) 

R
2
 Equation 

AFB1 5 

10 

20 

66 (20) 

84 (1.3) 

93 (18) 

1.0000 y = 1.5496x + 2.7456 

AFB2 5 

10 

20 

67 (17) 

73 (0.7) 

85 (19) 

0.9975 y = 6.981x + 11.135 

AFG1 5 

10 

20 

55 (23) 

50 (4.7) 

77 (18) 

0.9577 y = 0.6099x + 2.1102 

AFG2 5 

10 

20 

59 (17) 

38 (3.3) 

85 (9) 

0.9310 y = 3.4652x + 13.501 

 

The average total aflatoxin recoveries were 89 %, 75 % and 87 % for sorghum samples 

spiked at 5 ng/g, 10 ng/g and 20 ng/g respectively. These recoveries are similar to aflatoxin 

recoveries reported in spiked cassava samples (Gnonlonfin et al., 2010) and in spiked maize 

samples (Kimanya et al., 2008). Nkwe et al., (2005) used TLC and reported similar 

recoveries in wort and beer samples from Botswana. Sun et al., (2011) reported an average 

recovery of 92 % (RSD = 3.2 %) for maize samples spiked with AFB1. The current method 

showed acceptable linearity in the range 5 ng/g – 20 ng/g with the regression coefficient 

value ranging from 0.9956 to 1. 
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Table 4.5c: A summary of the recovery validation results of the aflatoxin HPLC method 

for sorghum 

Aflatoxin Spiking level % Recovery 

(RSD %) 

R
2
 Equation 

AFB1 5 

10 

20 

87 (11) 

95 (0.1) 

87 (9) 

0.9956 y = 1.3078x + 0.5475 

AFB2 5 

10 

20 

84 (12) 

80 (1) 

80 (4) 

0.9999 y = 6.0687x + 1.2595 

AFG1 5 

10 

20 

97 (2) 

95 (0.9) 

94 (11) 

1.0000 y = 0.634x + 0.114 

AFG2 5 

10 

20 

90 (7) 

91 (0.2) 

87 (5) 

0.9992 y = 2.9558x + 1.1805 

 

4.3.2 Aflatoxin contamination of peanut butter samples 

Table 4.6 shows aflatoxin results for peanut butter samples from Bulawayo. All the peanut 

butter samples were contaminated with total aflatoxins (range: 6.8 – 250.9 ng/g).  Two of the 

samples had total aflatoxin levels above 200 ng/g (250.9 ng/g and 244.9 ng/g) and one had 

total aflatoxin levels between 100 – 200 ng/g (105.1 ng/g). Figure 4.2 shows chromatograms 

of two highly contaminated peanut butter samples.  

The mean aflatoxin concentration is about five times higher than the Codex Alimentarius 

Commission, Joint FAO/WHO Food Standards Program limit of 15 µg/kg for total aflatoxins 

in food (Codex, 2001) and 18 times higher than the EU regulations. Zimbabwe is a member 

of the Codex Alimentarius (Codex, 2012). The EU has stricter regulations, with a maximum 

allowable limit for total aflatoxins of 4 µg/kg for groundnuts, nuts and processed products  
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Table 4.6: Aflatoxin results for peanut butter samples (ng/g).  

Sample AFB1 AFB2 AFG1 AFG2 Total AF 

BCPB1 

BCPB2 

BCPB3 

BCPB4 

BCPB5 

BCPB6 

BCPB7 

BCPB8 

BCPB9 

BCPB10 

BCPB11 

32.5 

10.1 

7.70 

191.0 

42.9 

38.2 

186.0 

6.1 

19.0 

23.8 

3.7 

6.2 

1.8 

1.2 

25.7 

6.3 

4.0 

24.9 

1.0 

1.8 

2.3 

0.9 

9.3 

4.8 

4.2 

3.0 

47.1 

4.6 

30.3 

2.0 

10.4 

3.8 

1.9 

1.9 

0.6 

0.8 

3.8 

8.8 

0.7 

3.5 

ND 

1.4 

0.4 

0.3 

50.0 

17.2 

14.0 

251.0 

105.0 

47.6 

245 

9.1 

32.6 

30.2 

6.8 

ND – not detected  

 

intended for direct human consumption or use as an ingredient in food stuff (EU, 2010). 

AFB1 was detected in all the samples and accounted for the highest toxin levels (mean: 51.02 

ng/g, range: 3.7 - 191 ng/g). All the samples exceeded the maximum AFB1 level set by the 

EU of 2 µg/kg in peanut and peanut products for direct human consumption (EU, 2010) and 5 

µg/kg the regulatory limit for AFB1 in food in Zimbabwe.  

Similar results were reported by Yentür et al., (2006). Aflatoxins were detected in 100 % 

(20/20) of the peanut butter samples analysed (range: 8.16 – 75.74 ng/g). Elzupir et al., 

(2011) reported much higher levels (total aflatoxin concentration range: 26.6-853 µg/kg) in 

peanut butter from Sudan with 90 % of the samples exceeding the EU maximum level by a 

factor of >20. Only 27 % (3/11) of samples in the current study exceeded the EU level by a 

factor of >20. The differences might be due to the hot and humid storage systems for peanuts 

prevalent in Sudan (Omer et al., 2001; Elzupir et al., 2011). Also the Sudanese peanuts were 

crushed and stored in plastic bags at ambient temperatures before butter making which might 

have contributed to the higher aflatoxin levels reported in Sudan. Higher total aflatoxin 
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concentrations in peanut butter were also reported in Nepal with 42.5 % (43/101) of the 

samples contaminated and 19.8 % (20/101) of the samples having total aflatoxin 

concentration >30 ppb (>30 ng/g) (Koirala et al., 2005). The Indian subcontinent is a known 

hotspot for aflatoxins (Bhat and Vasanthi, 2003).  

 

Figure 4.2: Chromatograms of contaminated peanut butter samples 
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Siwela et al., (2011) reported a 78 % reduction in total aflatoxins after roasting and 

blanching. During the roasting process, the melting point for aflatoxins (237 °C – 289 °C) is 

not reached, but the roasting temperature is high enough to cause change in the aflatoxin 

chemical structure in a significant number of peanuts hence reducing the toxin concentration 

(Siwela et al., 2011; Ogunsanwo et al., 2004). Roasting has also been shown to produce 

average aflatoxin reductions of between 45 % - 83 % in peanuts and coffee beans (Kabak, 

2009). Using drastic conditions like roasting to attack any compound usually leads to 

indiscriminate bond breakage (Ogunsanwo et al., 2004). It has also been noted that the peanut 

skin contains a significant amount of aflatoxins (Siwela et al., 2011; Ogunswano et al., 2004) 

and blanching in the peanut butter processing removes about 27 % of the total aflatoxins 

(Siwela et al., 2011). However, peanut butter samples in this study were highly contaminated 

with aflatoxins despite the anticipated reduction due to roasting and blanching. 

4.3.3 Aflatoxin contamination of peanut samples 

Aflatoxin results for peanuts from Bulawayo showed that 17 % (3/18) of the samples were 

contaminated with total aflatoxins ranging from 6.6 – 622.1 ng/g. Two of the contaminated 

samples had detectable levels of both AFB1 (6.3 ng/g; 54.0 ng/g) and AFB2 (0.3 ng/g; 3.3 

ng/g). All the contaminated samples were above 4 µg/kg set by the EU as the maximum 

allowable limit for peanuts destined for human consumption and the most contaminated 

sample exceeded that limit by a factor of 155. AFB1 was detected in all three samples (range 

6.3 – 528 ng/g) and exceeded the Zimbabwean regulatory limit (5 µg/kg) for AFB1 in human 

food. Mphande et al., (2004) also reported AFB1 as the most commonly detected toxin. High 

aflatoxin contamination levels in Zimbabwean peanuts have been reported before (Siwela et 

al., 2011; Henry et al., 1998; Shephard, 2008b; Siwela et al., 2011; Wild et al., 1987). AFB1 

is one of the most carcinogenic compounds known and is classified as a Group 1 carcinogen 

by IARC (IARC, 2002) hence any amount of AFB1 in food should be of concern to the 

consumers.  

None of the peanut samples from Gaborone had any detectable levels of aflatoxins (LOD = 

0.1 ng/g; LOQ = 5 ng/g) even though A. flavus/parasiticus isolates were identified from all 

the six samples analysed. In contrast, Mphande et al., (2004) reported detectable aflatoxins in 

78 % (93/120) of peanut samples from Gaborone (total aflatoxin range: 12-329 µg/kg, mean: 

118 µg/kg). About 49 % (59/120) of the samples had a total aflatoxin concentration above the 

Codex Alimentarius regulatory limit of 15 µg/kg, while all the positive samples were above 
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the stricter EU limits of 4 µg/kg.  Siame et al., (1998) also reported aflatoxin contamination 

in 52 % (15/29) of peanut samples from Gaborone (range: 3.2-48 µg/kg, mean: 14 µg/kg). 

The lack of detectable aflatoxins in peanuts in this study might be due to several reasons. 

There is a possibility that the A. flavus/parasiticus strains isolated in the Gaborone peanuts 

were non-aflatoxigenic strains, or that the peanuts were properly dried with very low water 

activity or that the storage conditions were not conducive for aflatoxin production (Luque et 

al., 2011; Abbas et al., 2006, Mphande et al., 2004).  

4.3.4 Aflatoxin contamination of sorghum samples 

None of the sorghum samples from both Bulawayo and Gaborone contained any detectable 

levels of aflatoxins (LOD = 0.1 ng/g, LOQ = 5 ng/g). Nkwe et al., (2005) did not detect any 

aflatoxins in sorghum malt, wort, or beer samples from Botswana. Siame et al., (1998) 

detected low aflatoxin levels in 16 % of sorghum samples (range 0.1-0.5 µg/kg) from retail 

shops and storage depots in Gaborone. Mpuchane et al., (1997) reported aflatoxins ranging 

from 5-25 µg/kg and 5-50 µg/kg in sorghum and maize from storage silos in Botswana 

respectively. In Brazillian sorghum, da Silva et al., (2000) also detected low AFB1 levels 

(mean concentration range 7-33 µg/kg). In a Ugandan study, 38 % of sorghum samples were 

positive for aflatoxins ranging from 1 µg/kg to >1000 µ/kg (D‟Mello and Macdonald, 1997). 

Kimanya et al., (2008) reported total aflatoxins in 18 % of maize samples (range: 1 – 158 

µg/kg) analysed from Tanzania. AFB1 was the most prevalent toxin and had the highest 

levels.  

4.3.5 Validation of the fumonisin method 

The specificity and reproducibility validations for the HPLC method for fumonisins were 

determined by measuring intra-day repeatability of the working standards. The retention 

times and percentage CV‟s calculated from peak areas (Table 4.7) indicate that the 

reproducibility and specificity of the method with respect to the fumonisin standards is good. 

The percentage CV‟s were in agreement with those reported by Ndube et al., (2011).  
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Table 4.7: Peak areas and percentage CV’s for the fumonisin standards 

 FB1 FB2 FB3 

Standard 1 

Standard 2 

Standard 3 

19341 

17848 

18895 

8313 

7895 

8052 

6729 

7926 

8034 

Mean 

SD 

% CV 

18428 

800 

4.0 

8087 

211 

3.0 

7563 

725 

10.0 

 

Recovery, linearity, accuracy and precision validations were assessed by performing triplicate 

intra-day injections of spiked samples. A pooled sorghum sample was spiked in triplicate 

with the fumonisin standard at 500 ng/g, 5000 ng/g and 1000 ng/g. The results of recovery, 

specificity and linearity validation of the method are shown in Table 4.8.  

Table 4.8: A summary of the recovery validation of the fumonisin HPLC method for 

sorghum 

Fumonisin Spiking level % Recovery RSD (%) R
2
 Equation 

FB1 500 

5000 

10000 

80 

78 

71 

0.65 

9.44 

6.81 

0.9976 y = 9.1733x + 1870 

FB2 500 

5000 

10000 

76 

74 

72 

6.98 

9.57 

2.78 

0.9997 y = 9.062x + 679.86 

FB3 500 

5000 

10000 

71 

71 

68 

6.13 

9.42 

0.94 

0.9995 y = 9.1256x + 819.16 
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The average recoveries ranged from 71 - 80 %, 72 - 76 % and 68 – 71 % for FB1, FB2 and 

FB3 respectively. Similar recoveries (FB1 = 75 – 83 %, FB2 = 75 – 76 %) were reported for 

sorghum analysed using HPLC in Tunisia (Ghali et al., 2009). In Botswana, Nkwe et al., 

(2005) reported recoveries of 65 %, 57 % and 62 % from malt, wort and beer samples 

respectively. Ndube et al., (2011) also reported fumonisin recoveries in maize (58 – 75 %) 

that were similar to the recoveries in the present study. However, Kimanya et al., (2008) 

reported very high fumonisin recoveries in spiked maize samples. This might be due to the 

differences in extraction methods used. The recoveries in the current study were considered 

to be acceptable. The method showed good linearity in the range 500 ng/g – 10,000 ng/g and 

the regression coefficient value ranging from 0.9975 to 0.9997 which was considered 

acceptable.  

4.3.6 Fumonisin contamination in sorghum samples 

Only sorghum samples from Bulawayo were contaminated with fumonisins as shown in 

Table 4.9. Total fumonisins ranging from 8 – 187 ng/g were detected in 61 % (11/18) of the 

samples. FB1, FB2 and FB3 were detected in 61 % (11/18), 33 % (6/18), and 28 % (5/18) of 

the samples respectively. FB1 contamination ranged from 8 – 143 ng/g and only two samples 

had contamination levels above 100 ng/g. FB2 and FB3 contamination for all the 

contaminated samples was below 50 ng/g. The fumonisin levels in the current study were 

below the EU regulatory limit of 400 µg/kg for fumonisins in food meant for direct human 

consumption. FB1 was the most prevalent (50 %, 9/18) and had the highest levels of 

contamination (range 8-143 ng/g). These results are similar to 0.2 mg/kg reported by 

Gamanya and Sibanda (2001) for an aggregate sample of sorghum from Bulawayo. Similar 

results were also reported for FB1 by da Silva et al., (2000) in Brazil (mean concentration 

range 0.11-0.15 µg/g). However, high fumonisin contamination levels were reported in 

sorghum from Tunisia (Ghali et al., 2009). Doko et al., (1996) also reported very high FB1 

levels (range 55-2735 ng/g) in maize from Zimbabwe, one of the staple foods for most 

Zimbabweans.  

Fumonisins were not detected in any of the samples from Gaborone.  This correlates with the 

absence of Mycoflora in this sample set as shown in section 4.1.3. FB1 contamination in 15 

% (3/20) of sorghum samples (range 20-60 µg/kg) has been previously reported (Siame et al., 

1998). Nkwe et al., (2005) reported FB1 in 2 % (3/46) of malt samples (range 47-1316 
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µg/kg), but there was no carryover to wort and beer samples. However, Shephard et al., 

(2005)  

Table 4.9: Fumonisin results for sorghum samples from Bulawayo (ng/g) 

Sample FB1  FB2  FB3  Total  

BCS1 

BCS2 

BCS3 

BCS4 

BCS5 

BCS6 

BCS7 

BCS8 

BCS9 

BCS10 

BCS11 

BCS12 

BCS13 

BCS14 

BCS15 

BCS16 

BCS17 

BCS18 

ND 

ND 

98 

143 

13 

8 

ND 

ND 

137 

76 

11 

ND 

ND 

ND 

67 

13 

9 

28 

ND 

ND 

25 

32 

ND 

ND 

ND 

ND 

31 

14 

ND 

ND 

ND 

ND 

13 

ND 

ND 

9 

ND 

ND 

9 

12 

ND 

ND 

ND 

ND 

8 

4 

ND 

ND 

ND 

ND 

3 

ND 

ND 

ND 

ND 

ND 

132 

187 

13 

8 

ND 

ND 

176 

94 

11 

ND 

ND 

ND 

83 

13 

9 

37 

ND – not detected 

reported fumonisins contamination in traditional maize beer in the former Transkei area of 

South Africa between 1991 and 2003 (Range: 43 – 1329 ng/mL). Doko et al., (1996) also 

reported average FB1 concentration of 20 ng/g in sorghum meal and very high FB1 levels in 

maize from Botswana. In a recent study in Tunisia FB1 levels (mean: 223.8 µg/kg) were 
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detected in 10.2 % (5/49) of sorghum samples (Ghali et al., 2009). In Italy, fumonisin 

contamination in maize samples meant for animal feed ranged from 0.1 to 25.7 mg/kg, which 

is below the EU legal limit for fumonisins in animal feed of 60 mg/kg (Covarelli et al., 2011).  
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CHAPTER 5: GENERAL DISCUSSION  

5.1 General Discussion 

Mycotoxins are abundant in nature and they contaminate a variety of crops in the field as well 

as in storage and can be passed into the food chain (Bennett and Klich, 2003; D‟Mello and 

Macdonald, 1997). Generally in developing countries rural dwellers are exposed to higher 

levels of mycotoxins than do urban dwellers mainly because urban dwellers usually consume 

a more varied diet than rural dwellers and also their food is better controlled for mycotoxins 

(Liu and WU, 2010; Wild and Hall, 2000). Nyathi et al., (1987) reported a significantly high 

level of aflatoxin contamination in urine samples collected from white middle class urban 

dwellers in Zimbabwe. This might be a reflection of significant aflatoxin contamination in 

processed commercial food commodities. 

Tackling the problem of mycotoxins in developing countries is very difficult and complex 

(Wild and Gong, 2010, Liu and Wu, 2010). Policy makers and the general public in the 

regions with the highest contamination levels generally lack full knowledge of mycotoxins 

and the scale of adverse health effects they cause (Wild and Gong, 2010). A vast majority of 

the people most affected produce and consume their own food, rendering regulatory measures 

to control exposure ineffective (Shephard, 2003). In general, public health programmes like 

vaccination, malaria prevention and control, improved sanitation and clean drinking water 

supply are perceived to be of more value than mycotoxin control (Wild and Gong, 2010). 

Furthermore, the mycotoxin problem sits at the interface of agriculture, health and 

international trade and it is impossible to tackle it without first tackling the insurmountable 

problems affecting these sectors in the developing countries (Wild and Gong, 2010; 

Shephard, 2008a).   

Poverty and consequently food security issues have plagued Africa for decades and are an 

impediment to improvements in food safety (Shephard, 2003). It is difficult to address food 

safety issues, especially mycotoxin contamination, in communities where poverty is rampant 

and food sufficiency has not been attained (Wild and Gong, 2010; Shephard, 2008a; 2003). 

These communities are more likely to consume mycotoxin contaminated food due to food 

insufficiency and lack of alternative diets (Shephard, 2003). The attendant malnutrition also 

exacerbates the detrimental effects of mycotoxins (Wild and Gong, 2010; Shephard, 2008a).  
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Fungal spores are ubiquitous and often impossible to eliminate in the environment and 

because of the microscopic nature of fungal mycelia and spores, contamination may not 

always be evident (Mphande et al., 2004). The fungi that produce mycotoxins proliferate in 

the tropics where climatic and crop storage conditions such as temperature, humidity, and 

water activity are conducive for fungal growth (Shephard, 2003; D‟Mello and Macdonald, 

1997). The incidence of fungal contamination has also been linked to high rainfall and high 

relative humidities (Gamanya and Sibanda, 2001). However it is important to remember that 

the presence of mycotoxigenic fungi in food does not necessarily mean the corresponding 

mycotoxin will be present, as many factors (e.g. conducive temperature and humidity) are 

involved in toxin production (Turner et al., 2009). Likewise the absence of any visible mould 

will not guarantee absence of toxin, since the toxin persists long after the fungus is dead 

(Turner et al., 2009; Hof, 2008,).  

Aspergillus and Fusarium species are the fungi that produce aflatoxins and fumonisins 

respectively. Fusarium species are plant pathogens that contaminate crops in the field or 

immediately after harvest while Aspergillus species are predominantly storage contaminants 

(Sweeney and Dobson, 1999), however A. flavus invades some crops both in the field and in 

storage (Shephard, 2008a; Richard, 2007). Of the Aspergillus species, A. flavus is more 

abundant than A. parasiticus and is found in air, soil, food and water (Mphande et al., 2004; 

IARC, 2002). Data on A. parasiticus in food is rare because it is a less common contaminant 

of food and most researchers are rarely able to differentiate between A. flavus and A. 

parasiticus.  

Traditional fungal detection methods that are based on fungal morphology were used in this 

study. These methods however are time consuming and require considerable expertise; hence 

molecular biology techniques, for example polymerase chain reaction (PCR), are becoming 

the preferred method for fungal identification (Luque et al., 2012). These techniques detect 

genes directly involved in the synthesis of mycotoxins for example the aflatoxin regulatory 

gene (aflR) and are also rapid, sensitive and specific for mycotoxigenic fungi however they 

require expensive technologies and specialised skills which are scarce in developing 

countries (Luque et al., 2012; Manonmani et al., 2005). To get precise and accurate 

information on the presence of fungal populations, mycological isolation followed by PCR 

identification is one of the most reliable tools (Covarelli et al., 2011). 
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In this study, peanut butter and peanut samples (from both Bulawayo and Gaborone) showed 

A. flavus/parasiticus contamination. Peanuts and peanut products are among the foodstuffs 

most susceptible to contamination by aflatoxigenic fungi in both pre- and post-harvest stages 

because they contain proteins, oils, fatty acids, carbohydrates and minerals providing a rich 

medium for fungal growth (Barberis et al., 2012; Mphande et al., 2004). Previous studies 

have also reported significant A. flavus/parasiticus contamination in peanuts (Mphande et al., 

2004; Pitt et al., 1993). However, only the sorghum samples from Bulawayo were 

contaminated with A. flavus/parasiticus. The sorghum samples from Bulawayo also showed a 

low incidence of Fusarium contamination on MEA+ medium. This is in line with previous 

reports from Bulawayo (Gamanya and Sibanda, 2001). The sorghum samples from Gaborone 

had the pericarp removed and that processing might have destroyed any vegetative fungi 

present. The presence of A. flavus/parasiticus and Fusarium strains in food means there is 

always potential for aflatoxin and fumonisin production and changes in storage conditions 

like increases in water activity, humidity, and temperature may lead to fungal proliferation 

and toxin production (Mphande et al., 2004; Shephard, 2003; D‟Mello and Macdonald, 

1997).  

The selection of sensitive methods is a pre-requisite to accurately quantify mycotoxins in 

stored food commodities (Shephard, 2009; 2008b). Conventional analytical methods 

including TLC, gas chromatography, and HPLC coupled with UV and/or fluorescence 

detectors are used to quantify mycotoxins in stored food (Turner et al., 2009; Shephard, 

2009). In the last few years mass spectrometry has emerged as the most sensitive detection 

method replacing UV and fluorescence detectors (Krska et al., 2008). However due to 

capacity constraints in most developing countries (Shephard, 2008a), the application of 

simple, cheap, adaptable and effective solutions for detecting mycotoxins so as to meet 

regulatory requirements is increasingly being required (Turner et al., 2009). In this study the 

methods used for both aflatoxins and fumonisins in peanuts, peanut butter and sorghum were 

successful validated for precision, accuracy, linearity, reproducibility and specificity. 

Peanut butter is widely promoted in children‟s food including soft porridge, sandwiches, and 

vegetables as a cheap protein source (Siwela et al., 2009). It has excellent nutritional benefits 

including proteins and micro-nutrients like phosphorous, potassium, zinc, folate, vitamin E 

and some phytochemicals (Peanut Institute, 2012). It is also high in mono- and poly-saturated 

fats hence consumption can contribute to improved cholesterol levels and improved health. In 
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this study all the peanut butter samples and a small number of the peanut samples from 

Bulawayo were contaminated with high levels of aflatoxins.  

The commercial peanut butter was the most contaminated. This might be due to several 

factors including poor policing of set regulations by the authorities and lack of effective 

quality control systems (e.g. factory inspection for aflatoxin contamination, hand sorting to 

remove shrivelled nuts, and proper cleaning of equipment) in most of the manufacturing 

companies as a direct result of the decade long economic crisis in Zimbabwe. However 

Siwela et al., (2011) demonstrated that use of effective quality control systems in the 

manufacturing process can reduce aflatoxin contamination to levels that are acceptable in 

many countries. It is also imperative that effective systems for policing of set regulations be 

put in place. This will prevent manufacturers from churning out peanut butter that has 

aflatoxin levels above the maximum tolerable limits.   

High levels of aflatoxin and fungal contamination result in a decrease in quality and 

nutritional value of the peanuts and peanut butter (Gong et al., 2002). Furthermore, available 

research suggests that children are most vulnerable to the detrimental effects of aflatoxins 

(Williams et al., 2004; Cullen and Newberne, 2003) hence the detection of high levels of 

aflatoxins in peanut butter is a cause for concern.  Also the threshold dose for aflatoxin 

leading to malnutrition and growth stunting in children is very low (Shephard, 2008b; Cullen 

and Newberne, 2003). In Togo and Benin chronic aflatoxicosis was also linked to infant 

growth stunting and being underweight in infants under 5 years old (Gong et al., 2002).  It 

should also be noted that underweight children are also prone to child mortality and acute 

morbidity due to diarrhoea, malaria, measles, pneumonia and other selected infectious 

diseases (Williams et al., 2004).  

In Sudan, Elzupir et al., (2011) assumed a mean consumption of 10 g of peanut butter per 

child per day. Working with the same assumption and using the mean aflatoxin level of 73.48 

ng/g, daily aflatoxin intake would be 734.8 ng. Using this consumption level, a 5 kg body 

weight child consumes approximately 146.1 ng/kg body weight (bw) per day. This is a very 

high aflatoxin intake which is approximately 365 times the estimated provisional maximum 

tolerable daily intake (TDI) of 0.4 ng/kg bw/day for adults with HBV infection and 146 times 

the maximum TDI for adults and children without HBV infection of 1.0 ng/kg bw/day 

(Kuiper-Goodman, 1998). This daily intake falls within the JECFA (2008) estimated daily 

intake for aflatoxins in Africa of 3.5-180 ng/kg bw/day confirming the high aflatoxin intake 
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levels in African children. In view of the carcinogenic, immunotoxicity, nutritional and 

biochemical derangements associated with aflatoxins, especially in young children, this is a 

very high aflatoxin intake that warrants intervention strategies.   

Sorghum is an important part of the staple diet of many people in Africa and other countries 

like China and India (da Silva et al., 2000, Siame et al., 1998). It has been shown to have 

properties that inhibit tumor growth, protect against diabetes and insulin resistance and help 

in managing cholesterol (Whole Grains Council, 2012). Some of the respondents in 

Bulawayo pointed out that they sold most of their sorghum to people living with diabetes. 

The sorghum grains are also used as raw materials for poultry, swine and bovine feeds and 

also in the manufacture of a variety of products including beer (Nkwe et al., 2005; da Silva et 

al., 2000, Siame et al., 1998).  

None of the sorghum samples in this study showed any aflatoxin contamination. The absence 

of aflatoxins sorghum in this study (although other studies have shown some level of 

contamination) could be due to several reasons. Contamination of samples takes place both in 

the field and in storage (Shephard, 2008a; Richard, 2007; IARC, 2002). In storage the major 

conditions favouring contamination include high moisture content and ambient temperatures 

(Reddy et al., 2010; Richard, 2007; Shephard, 2003; Bennet and klich, 2003).  It was 

observed that the samples from both Bulawayo and Gaborone were stored in sacks that allow 

good air circulation (Kew, 2010). Most of vendors also said their crops were sold in a very 

short space of time, within a month on average.  The seasonal and annual variations in 

aflatoxin contamination of food commodities may have come into play as well (Siame et al., 

1998). Also the small sample size might not be representative of the full picture on the 

ground.    

The sorghum samples in this preliminary study showed low fumonisin contamination levels 

compared to the levels reported in maize samples from different parts of Zimbabwe 

(Gamanya and Sibanda, 2001; Mubatanhema et al., 1999; Doko et al., 1996). Selective 

substrate preference by F. verticillioides may contribute to the differences in contamination 

levels noted between maize and sorghum (Gamanya and Sibanda, 2001). Significantly higher 

fumonisin concentrations have been reported in regions with high rainfall and moderate 

temperatures as compared to low rainfall regions. During high rainfall mature kernels 

experience prolonged periods of high water content that may favour fungal growth and 

mycotoxin production (Kimanya et al., 2008; Gamanya and Sibanda, 2001). 
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The aflatoxin and fumonisin burden may be reduced if the government encourages vulnerable 

communities to adopt sorghum as their staple diet replacing maize which is more susceptible 

to fungal infestation and fumonisin contamination. Sorghum is an indegenious crop and may 

have developed resistance to fungal infestation hence mycotoxin contamination. However the 

nutritive value of sorghum is lower than other cereals due to reduced content of some 

essential amino acids and the presence of condensed tannins which are anti-nutritional 

compounds (Anglani, 1998). 

5.2 Conclusion and Recommendations 

The specific objective of this study was to assess and compare natural occurrence of 

aflatoxins and fumonisins in selected food commodities in Botswana and Zimbabwe. All the 

peanut butter samples from Bulawayo were contaminated with aflatoxins. The peanut 

samples from Bulawayo also showed high levels of aflatoxin contamination while the 

samples from Gaborone had no detectable aflatoxin levels. Most of the peanut samples from 

Gaborone were from a commercial source while all the Bulawayo samples came from the 

fields. This might have contributed to the differences in aflatoxin contamination. Sorghum 

samples from both Bulawayo and Gaborone did not have any detectable aflatoxin levels. The 

differences were noted on fumonisin contamination, 61 % of the sorghum samples from 

Bulawayo had detectable fumonisin levels while fumonisins were not detected in any of the 

Gaborone samples. The partial processing of the Gaborone samples as well as the difference 

in humidity and average temperatures might have played a role.  

The presence of fungal contaminants and mycotoxins in sorghum, peanuts and peanut butter 

from Bulawayo warrant intervention strategies for minimizing mycotoxin contamination. The 

traditional approach to preventing exposure to mycotoxins has been to ensure that foods 

consumed have the lowest possible concentrations (Williams et al., 2004). This has been 

achieved in developed countries mainly through regulations imposed on traded foodstuffs 

(Shephard, 2008a; Williams et al., 2004). However regulations are only partly feasible in 

reducing mycotoxins in developing countries (Turner et al., 2009; Shephard, 2008a; Abbas et 

al., 2004). Many developing countries are failing to enforce mycotoxin regulations due to 

capacity constraints and the informal channels of food distribution prevalent in these 

countries (Shephard, 2008a). However, manufacturers and government agencies should be 

encouraged to adopt rapid, cost effective and easy to use on-site methods for screening 

mycotoxins in food commodities (Krska et al., 2008).  
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Ways of reducing mycotoxin contamination of food as well as mycotoxin related disease can 

be divided into two, those applicable to the individual level and those applicable to the 

community level (Wild and Hall, 2000). At the community level primary intervention 

strategies applicable to subsistence farmers (like education, pre-harvest and post-harvest crop 

management) can be used (Williams et al., 2004; Wild and Hall, 2000). Pre-harvest 

intervention include use of crops resistant to fungal infection, reduction of crop stress in the 

field (through irrigation, and use of fertilizers, fungicides and insecticides), and biocontrol 

(for example use of non-aflatoxigenic fungal strains in the soil (Dorner, 2009; Kimanya et al., 

2008; Wild and Hall, 2000; D‟Mello and Macdonald, 1997). However in developing 

countries insect damage in the field is not controlled, drought is a common phenomenon, and 

crop production is usually done without the option of irrigation (Williams et al., 2004).  

Post-harvest interventions will include improved drying methods (<10 % moisture content), 

sorting to remove kernels that are discoloured or visibly contaminated by fungi, using grain 

with very low mycotoxin levels to dilute heavily contaminated grain and controlled storage 

conditions (Kimanya et al., 2008; Williams et al., 2004; IARC, 2002; Wild and Hall, 2000). 

However, proper handling of stored products does not exclude fungal spores but will prevent 

germination of spores and fungal proliferation in the stored products (Mphande et al., 2004). 

Campaigns to sensitize the public on the health and economic impact of mycotoxins can also 

complement the abovementioned prevention strategies (Kimanya et al., 2008). 

At the individual level dietary change and chemoprevention can be used to limit exposure as 

well as prevent mycotoxin related diseases (IARC, 2002; Wild and Hall, 2000). 

Ammoniation and certain adsorbents have been effective in reducing or eliminating the 

effects of aflatoxins in animals (Richard, 2007;  IARC, 2002; D‟Mello and Macdonald, 1997) 

but ammoniation was found to be ineffective in reducing fumonisin concentrations in maize 

(IARC, 2002).  The Ministries of Health and Agriculture should educate the general public as 

well as Agricultural Extension Officers on mycotoxins, their impact on the economy and the 

range and scale of adverse health effects they cause. The general public also needs education 

on the dangers of consuming mouldy foods which might be contaminated with mycotoxins.  

Policymakers should also encourage research translation that will lead to implementation of 

pre- and post-harvest mycotoxin control strategies that have been effective under research 

conditions. Van der Westhuizen et al., (2010) implemented a hand sorting and washing 
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procedure which successfully reduced fumonisin concentration by about 62 % in home grown 

maize.  However, washing contaminated maize might present an effluent problem.  

Further surveillance studies should be carried out on peanuts and peanut butter from 

Zimbabwe with a much larger sample size to confirm these results. Dietary exposure studies 

in children around Zimbabwe should also be carried out to ascertain the extent of the 

aflatoxin problem. Both Zimbabwe and Botswana are members of Codex Alimentarius 

(Codex, 2012) and frequent mycotoxin surveillance studies should be carried out to ensure 

food commodities in these countries meet the set regulations. 
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Appendix A 

Participant’s informed consent 

This is a Research project being carried out by Innocent Mupunga in fulfilment of 

University of South Africa’s requirements for a Master of Science in Life Sciences 

Title of research Project: A comparative study of natural contamination with aflatoxins and 

fumonisins of selected food commodities from Botswana and Zimbabwe. 

The main purpose of this study is to compare natural contamination levels of peanuts, peanut 

butter and sorghum from Bulawayo, Zimbabwe and Gaborone, Botswana with aflatoxins and 

fumonisins. 

Participation in this study is voluntary and will not affect your rights or your business. The 

information you are providing will be treated with strict confidentiality and your name and 

personal details will not be divulged to anyone else.  

Your participation in this study will take less than 10 minutes of your time and it involves 

filling out a questionnaire. 

Approved by Supervising Scientist:  Dr L S Teffo 

Name of Interviewer: ................................................................................................ 

 

Sign: ........................................................................................................................   

Place: ........................................................................................................................ 

 

 

Participant’s Declaration: The purpose of the study has been explained to me. I am 

participating in this study out of my own will and being of the understanding that my 

name and details will be kept confidential at all times 

Signed: ....................................................................................................................  

Date.......................................................................................................................... 

Witness: .................................................................................................................. 

Date: ....................................................................................................................... 
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Appendix B 

Questionnaire 

This is a Research project being carried out by Innocent Mupunga in fulfilment of 

University of South Africa’s requirements for a Master of Science in Life Sciences 

Title of research Project: A comparative study of natural contamination of selected food 

crops from Zimbabwe and Botswana with aflatoxins and fumonisins. 

 

Please answer all questions to the best of your ability 

 

Date: ........................................................................................................................ 

 

Sample:  

Peanuts □  peanut butter  □   sorghum □ 

 

Sample no: .............................................................................................................. 

 

Where did you get your peanuts/peanut butter/sorghum from? 

Commercial □ Field □ Cross-border□     Specify...........  

Other □   Specify.................... 

How long have you had this current stock?  

<1 month □  1-3 months □  3-6 months □  >6 months □ 

How do you store your peanuts/peanut butter/sorghum? (show them photos of the 

different storage conditions) 

Plastic bags □ sacks □        open containers □         other□    Specify...........  

On average how much do you buy at a time? 

......................... Kg 

How long does it take to sell everything? 
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<1 month □  1-3 months □     3-6 months □  >6 months □ 

 

Thank you for your time.....  
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Appendix C 

 Publications and Conference Presentations 

Articles from the Thesis submitted for publication 

1) Mupunga, I., Mnqgwawa, P., Rheeder, J.P., Teffo, L.S., and Katerere, D.R., 

(2013). Mycoflora and natural occurrence of aflatoxins in peanuts and peanut 

butter from Bulawayo, Zimbabwe. Submitted  

Conference Presentations 

1) Mupunga, I., Teffo, L.S., Katerere, D.R., (2011). A comparative study of 

mycotoxin contamination of selected food commodities from Botswana and 

Zimbabwe. (Poster) UNISA CAES, School of Life Sciences Postgraduate 

Symposium on September 23
rd

 2011 

2) Mupunga, I., Mnqgwawa, P., Rheeder, J.P., Teffo, L.S., and Katerere, D.R., 

(2013). Mycoflora and natural occurrence of aflatoxins in peanuts, peanut butter 

and sorghum from Botswana and Zimbabwe. (Oral) 12
th

 East and Southern Africa 

Laboratory Managers Association Conference, University of Botswana (9-13 

December 2013) 

 

 


