South African Sl:id-Afrikaanse

Computer Rekenaar-
Journal tydskrif
Number 20, December 1997 Nommer 20, Desember 1997
ISSN 1015-7999 ISSN 1015-7999

Contents

Editorial
DG KOUI® o o e I
Research Coniributions
The Abstraction-First Approach to Encouraging Reuse
PMachanick 2

Secure Mobile Nodes in Federaled Databases
MS ONVIEE . . . o o o o 11

Word Prediction Strategies in Program Editing Environments
I Sanders and C Tsai

A Computerised-consultation Service for the Computerisation of the Very Small Small-
business Enterprise
CW Rensleigh and MS Olivier

Some Typical Phases of a Business Transformation Project: The First Steps Toward a
Methodology?
D Remenyi

Technical Reports
Theory Meets Practice: Using Smith’s Normalization in Complex Systems
AJ van der Merwe and WA Labuschagne

Applying Software Engineering Methods o Instructional Systems Development
P Kotzé and R de Villiers

Communications and Viewpoints
Mobile Agents at ISADS 97
TVosloo e AST

The Recovery Problem in Multidatabase Systems—Characteristics and Solutions
K Renaud and PaulaKotzé AB2

Applying Software Engineering Methods to Instructional Systems Development

Paula Kotzé Ruth de Villiers *
*Department of Computer Science and Information Systems, University of South Africa, PO Box 392, Pretoria, 000].
E-mail: {kotzep,dvillmr} @alpha.unisa.ac.za

2
Abstract

The research reported in this paper aims to integrate software engineering approaches with instructional Jactors in the requirements
analysis, design and production phases of instructional software development. The integration has resulted in the evolution of a branch
of software engineering called courseware engineering. The paper reporis on the results of an independent study we have undertaken
into the aspects of software engineering that are appropriate for the development of instructional software systems, Examples of other
research efforts combining the disciplines of software engineering and instructional system development are given, where applicable.
Two software engineering methods were identified as being particularly useful and appropriate to instructional systems development:
prototyping and object-oriented design. Factors that support the use and applicability of these two approaches are discussed and

illustrated by a prototype development called FRAMES.

Keywords: Software engineering, computer-aided instruction, instructional systems developinent, courseware engineering.

Computing Review Categories: X.3./, K.6.3, D.2.10, D.2.m

Received: 26/11/1996, Accepted: 12/2/1997, Final version: 12/2/1997.

1 Introduction

Software engineering (SE) is concerned with the develop-
ment of software systems using sound engineering prin-
ciples including both technical and non-technical aspects.
Over and above the use of specification, design and im-
plementation techniques, human factors and sofiware man-
agement should also be addressed. Weli-engineered sofi-
ware provides the services required by its users. Such
software should be produced in a cost-effective way and
should be appropriately functional, maintainable, reliable,
efficient and provide a relevant user interface [31, 32).

Computer-aided instruction (CAI) is concerned with
the way in which computers can be used to support
students engaged in particular educational activities and
incorporates a variety of computer-aided instruction and
learning modes, for example, formal courseware such as
tutorials and drills, and more open-ended software such
as simulations, concept maps and microworlds. Qver the
last decade such systems have proliferated, evolving from
simple beginnings, merely in the educational territory, to
the realm of complex software systems. As such, they
should be designed and developed by applying the esta-
blished principles of software engineering to instructional
systems development (ISD).

The general problem of ISD is therefore to develop
appropriate methods for the specification, design and im-
plementation of CAI software systems. The research re-
ported in this paper aims to integrate software engineer-
ing approaches with instructional factors in the require-
ments analysis, design and production phases of instruc-
tional software development. The integration has resulted
in the evolution of a branch of software engineering called
courseware engineering [3, 30]. Two SE methods are iden-
tified as being particularly useful and appropriate to ISD:

SACJ/SART, No 20, 1997

prototyping and object-oriented design. Factors that sup-
port the use and applicability of these two approaches are
discussed. These approaches were implemented in the de-
velopment of the FRAMES prototype.

2 Software Engineering Methods

One of the cornerstones of SE is the software life cycle,
describing the activity stages that take place from the ini-
tial concept formation for a software system, up to its im-
plementation and eventual phasing out and replacement.
Complementing these life cycle models are a number of
design and development models.

Life cycle models

A multitude of general software engineering life cycle (or
process) models exist, some of which are variations of oth-
ers. Two examples are the so-called ‘waterfall model’ and
the ‘spiral model’.

¢ Waterfall model: In the waterfall approach [9, 12,
32] the software process is viewed as being made up of
a number of stages or activities such as requirements
specification, software design, software implementa-
tion, testing, operation and maintenance, etc. Each ac-
tivity serves as input to the next. The waterfall model
requires that rigorous requirements analysis be done
before design, and rigorous design before implemen-
tation. A disadvantage is thus that it suits an approach
to design in which ail requirements for a system have
to be known before system development is begun.

Real projects, however, rarely follow the sequential
flow that this model proposes. The strict sequential se-
quence of the waterfall and other similar models does
not lend itself to projects that are characterized by un-

49

E— R

e —

e

T Tr————

Educational Product
Needs Reqguests

Y Y

Idea / Research & Major Activities
Proposat Development

v * Meads assessment; ldentify

Needs Analysis

goals & objectives; Learner
analysis; Development/
operating environment.

Feasibility
Study

Requirements
Analysis

Prototype
Construction

ZO——APO-—T-—AM<

-—

Design

ZO-h—<mMA

Implementation
} Development

Justity solution; Time frame;
Costs/benefits analysis.

& Conduct task analysis;
Conduct instructional
analysis.

Build prototype. J

Sequencing; Storyboarding;
Desighing screenfvisual
intercativity, feedback &
learner control.

Flowcharting, Authoring,
Programming

Testing / Testing, Debugging;

Evaluation Formative evaluation.

. Dacumentation;
Maintenance

Maintenance

Y

Figure 1. Chen and Shen’s life cycle model

[

certainty and requirements that are ill-defined in the
early stages of development. It is too rigid for use
in situations of changing or incomplete requirements.
This also applies to CAI systems development.

The behaviour of a CAI system is highly dependent
on the domain knowledge modelled within the system.
The tasks a student-user will perform, or that a teacher
wishes a student to perform, are often not known until
the student and/or teacher is familiar with the system
on which the tasks are performed. A second drawback
of this process model is that it does not promote the use
of notations and techniques which support the user’s
perspective of the CAI system—it is very difficukt for
even an expert on human cognition to predict the cog-
nitive demands that an abstract design would require
of the student-user if the notation for the design does
not portray the kind of information the sStudent must
recall in order to interact with the system [16].

e Spiral model: An alternative to the waterfall approach
is Boehm’s spiral model [7] which is essentially an
iterative model. Its key characteristic is an assess-
ment of management tisk items at various stages of
the project and the initiation of actions to counteract
these risks. Before each cycle, a review procedure
judges whether to move on o the next cycle in the
spiral. A cycle of the spiral commences by elaborat-
ing objectives such as performance, functionality, and
so on. Alternative ways of achieving these objectives
and constraints are then enumerated, followed by an
assessment of each objective. This typically results in
the identification of sources of project risk. The next
step is to evaluate these risks by activities such as more

50

0,p11]

detailed analysis, prototyping, simulation, etc. After
risk-evaluation a development model {or a combina-
tion of models) for the system is chosen.

A major deficiency of the spiral approach is that
it requires an approach to system development that
is both incremental and interactive—the cycles must
be seen to be achieving project aims. Managing a
medium-to-large sized spiral-driven project, especially
when considering scheduling and product delivery as-
pects, is very difficult. The development time required
for typical interactive ISD can get totally out of hand
following such an approach. i

Integrating SE aspects with androgogic activities re-
lated specifically to the design and development of instruc-
tional systems resulted in a number of specialised life cycle
models specifically aimed at the development of computer-
based instructional systems. Two examples are:

s Chen and Shen’s model: Chen and Shen [10] pro-
pose a life cycle model similar to the waterfall model
but aimed specifically at the development of CAl with
the joint objectives of producing high quality products
and development effectiveness. Verification and revi-
sion occur after each phase, resulting in an iterative,
cyclic process, as illustrated in Figure 1.

e Tennyson’s ISD*: Tennyson's Fourth Generation In-
structiona! Systems Design Mode! (ISD*) [33], as il-
lustrated in Figure 2, advocates the employment of ad-
vances in cognitive science and intelligent program-
ming techniques to automate instructional systems de-
velopment. It focuses on explicit production rules or
neural network methods in terms of development ac-
tivities rather than on the sequencing of phases. In-

SACJ/SART, No 20, 1997

PRODUCTION

Prepars program description

Specify insir
strategies
Specifty message
design

live)
Prapara managem ent systam
Produce pragram prololype

DESIGN

Prepara instruction al activities
{print, video, computar, inteaclive,

| s l.*"_— EVALUATION
rocrplions g (Diagnosis)

-/ Analyse nead!problems

Analyse constrainls

frasources

Anutyse target population

Propose solution plan

Spacify human
factors
Raview { select

Analyse informatio
- = content

- context
Deafine #ntry knowledgd
DCafine organizalion /
saguence

Conduct form ative
evaluation
Revise program

pecify and
davelop learner
&valuation

COevalop program 10 plan

Refine final program
Define disseminatian

IMPLEMENTATION

Disseminats and
implemant
program {instruction

Conduct summative
avalgation

Define leaming

environm ant

Spacify goals f objectives
Define managemant
Define specificalion of inal

maintenance’
evaluation

Revise and
rafine program

Dafine educational
philosophy

Define Isamning theory
Deafine instructional theory

ANALYSIS

Figure 2. I1SD*
[33,p4]

stead of a system consisting of a confederation of ab-
stract, often ill-defined, or expert controlled proce-
dures, ISD* proposes systems of explicit rules con-
trolled by contextual or situational problem solving
evaluations. ISD* consists of two main components—
a situational evaluation component that assesses the
situation and then offers an expert prescription, and .
a knowledge base that includes five domains of in-
teractive instructional development efements. These
elements are by nature overlapping in their respec-
tive activities, as illustrated in Figure 2. Thus, rather
than a step-by-step instructional development process
as advocated by the waterfall approach or the model of
Chen and Shen, ISD* prescribes the authoring activi-
ties to fit the given situation.

Development models

Detailed software process models are still the subject of

research, but a number of generat models or paradigms of

software development can be identified as supporting these

process models {16, 21, 32]. Two of these approaches have

been widely used:

¢ Exploratory programming (also known as evolu-

tionary prototyping): A working system is developed
as quickly as possible and then modified until it per-
forms in an adequate way. This approach is used to a
great extent in artificial intelligence systems develop-
ment where a detailed requirements specification can-
not be formulated, and where adequacy rather than
correctness is the aim of the systems designers. The
disadvantage of this approach relates to the encapsu- .
lation of design decisions. Firstly, some of the ear-

two

SACJ/SART, No 20, 1997

Maintain syslam

AINTENANCE

lier decisions may have been wrong and may never be
removed from the system. Secondly, because the be-
haviour of an interactive system is highly dependent
on the knowledge modelled within the system, ear-
lier versions of the system will not include all of the
knowledge to be included in the completed system.
Throw-away prototyping: The software process
starts off in a similar way to exploratory programming
in that the first phase of development involves the de-
velopment of a program for user experiment. The ob-
jective of the development is, however, to establish
systemn requirements. Rapid application approaches
are a case in point. Screen layouts resembling those
of a complete system may quickly be developed and
shown to the users for comment. The prototyping pro-
cess is followed by re-design in order to implement the
full software system. Suffering from the satne draw-
backs as exploratory programming, it has a further dis-
advantage in that it may concentrate only on the sur-
face features of the design, rather than on deeper issues
and the functioning of the interface, and does not, on
its own, guarantee that the software produced exhibits
the required interaction qualities.

To compensate for the limitations of the prototyping

approaches, and to support the waterfall and spiral models
in the requirements and design activity phases, a number
of researchers in recent years have advocated the use of

more approaches in the design process of interactive

systems: formal transformation and system assembly from
reusable components.

Formal transformation: A formal or abstract spec-
ification of the software system is developed and

51

=y

e S

1
H

then transformed, by means of correctness-preserving
transformations, to an implemented software system,
The principal value of using formal specification tech-
niques in the software development process is that it
compels an analysis of the system requirements at an
early stage. Correcting errors at this stage of devel-
opment is much cheaper than modifying a delivered
system. A range of abstract modelling approaches for
interactive systems are reported in [1, 13, 15, 18, 21,
27, 28, 32].

The formality of these models is intended to assure
the exploration of the consequences of the design with-
out constructing prototypes or other working models
of the design, as well as algorithmic manipulation of
the design.

This development technique is, however, still in its
infancy and mainly used in high-budget safety-critical
system developments, where correctness-proving isa
major criterion.

o System assembly from reusable components: The
system development process is either a total reuse pro-
cess using components which already exist in assem-
bling the new system, or it involves the reuse of avail-
able components applicable to the envisaged system
while additional components are developed using any
other development approach.

A trait of an engineering discipline is that it is
founded upon an approach to system design which
makes maximum use of existing components. Design
engineers base their designs on components which are
common to, and tried and tested in other systems of
the same, or similar, nature. A number of reuse ap-
proaches are reported in [4, 20, 21, 34).

Development of reusable components takes much
more effort and specific design than for once-off sys-
tems development. Issues still being actively re-
searched include frameworks for reusable components
[21] and other architectural issues such as cross-
platform design-compliant assembly of components.

Notwithstanding the disadvantages of the various pro-
totyping approaches, they are still the most viable soft-
ware development models for the development of interac-
tive instructional systems. There are several reasons for
this, the first being the high interactivity that characterizes
instructional software. It requires that the user interface
and response mechanisms be experienced, expanded and
refined hands-on, rather than merely from paper-based sto-
ryboards. Another reason relates to the computer literacy
levels of the intended end-users, i.e. the learners, who fre-
quently are computer novices. Unless they are at ease with
the human-computer interface, the software wiil do little
to achieve its instructional and learning ends. Prototypes
can be pilot-tested by such end-users. A third factor is that
the clients (instructors, teachers, trainers, etc.) requiring
instructional software for their target group of learners, are
often inexperienced computer users with no background in
formal specification methods. The use of formal transfor-
mation techniques would therefore be totally inappropri-
ate.

52

Prototyping aliows for early evaluation by instructors,
trainers, teachers, subject-matter experts, peers, etc. Visual
perception and hands-on experience of part of an opera-
tional system often results in the instructor-client modify-
ing the objectives and strategies.

The major purposes of conventional software are data
processing and information processing, where defined ac-
tivitiegroccur in a predefined sequence. Instructional soft-
ware, by contrast, comprises synthesis, presentation, prac-
tice and assistance facilities in the complex realm of human
cognition, and has a high level of human-computer inter-
activity. Whether in a situation of program-control where
the flow is branched deterministically according to user-
response, or in a situation of user-control where the learner
may branch or browse at will, the sequence of events and
activities varies greatly. CAI prototypes can play a vi-
tal role in demonstrating proposals on-screen, thus clari-
fying actual requirements and identifying misconceptions
and potential problems at an early stage. Not only should
basic aspects such as screen layout and colours be scru-
tinised, but also the strategies for control and navigation
through the material. Usability factors, such as learnabil-
ity and consistency can be evaluated, also interface aspects
such as coherence of textual and visual displays, and ac-
cessibility of facilities.

Particularly when an instructional software package is
innovative, prototyping is required at the design and pro-
gramming stages in order to ensure feasibility of inten-
tions, to refine requirements, to reduce excessive written
descriptions, to determine the optimal navigation and con-
trol strategies hands-on, and also to ensure that an appro-
priate programming approach is used for implementation
[14].

Development tools or authoring environments should
offer modularity, thus facilitating the removal, addition or
adaptation of a segment without affecting other segments
or the unit as a whole, and plasticity, the ability to make
changes easily. If exorbitant time and costs are incurred
in developing a prototype, the process is not cost-effective.
An ISD prototype may either be evolutionary, i.€. a limited
version of the final product later developed through to full
functionality, or else a throwaway. In the latter case, the
software used to build the prototype may not be the same
as that used for the final system.

It is also interesting to note that prototype production
forms a central part of Chen and Shen's life cycle model,
and is also listed as one of the activities in the production
phase of 1ISD*. Other researchers advocating the use of
prototyping approaches for ISD include Biack and Hin-
ton [5, 6], Gray and Black [17], Lantz [23], Tripp and
Bichelmeyer [35], and Wong [36].

Furthermore, although envisaged by many, there is still
no common base of reusable components of CAI software
which is widely documented and which can be used when
developing a CAI system with similar functionality [21].

Design models

Software design is in essence a problem-solving task. It
is more important to design a solution that will achieve

SACJ/SART, No 20, 1997

its purpose in doing the required job effectively, than to
achieve elegance and efficiency at the expense of accuracy
and reliability. A designer needs to abstract the critical fea-
tures of a system, so as to concentrate initially on building
a logical modet of the system rather than becoming over-
involved with detailed design and physical implementation
at an early stage.

Various méthodologies and representations are avail-
able to facilitate the processes of analysis, design, and sys-
tem modelling, in particular, the process-oriented, data-
oriented, and object-oriented approaches:

¢ Process-oriented: The process-oriented approach
centres around the events, procedures and flows that
comprise a traditional procedural software system.
Such applications are characterised by conventional
data flow and updating of data stores. Events trigger
processes, and processes call other processes, sequen-
tially or selectively. The process-oriented approach is
epitomised by concepts and tools such as top-down
design, functional decomposition, transaction analy-
sis, data-flow diagrams, structure charts and input-
output transformations. It tends to discount evolution-
ary changes.

e Data-oriented: The data-oriented approaches are
based on the philosophy that data is more stable and
unchanging than processes. The underlying principles
are enterprise analysis and relational database theory,
and key concepts are entities, attributes, relationships
and normalisation.

¢ Object-oriented: The latest advancement is the
object-oriented approach (2, 8, 9, 11, 12, 29], which
integrates aspects of, and uses formalisms from, both
the other major methodologies, and uses certain con-
cepts from object-oriented programming languages.
It is based on objects, which encapsulate both data
and operations (processes) on that data. An ob-
ject is a real-world entity whose processes and at-
tributes are modelled in a computerised application. In
object-oriented programming languages, computation
is achieved when messages are passed to the objects
in the program, and a central aspect is the abstract data
type (ADT), which permits operations to be performed
on an object without being implementation-specific.
Objects incorporating data are identified as data en-
tities and not as specific data structures.

Conventional data-flow and process-linkage are not
characteristic features of instructional and learning soft-
ware and suchi software therefore does not lend itself to
the process-oriented approach. CAI courseware and en-
vironments comprise relatively few objects and compo-
nents when compared to the large, complex systems devel-
oped by the object-oriented methodology. Nevertheless,
the object-oriented strategies outlined can be beneficially
applied in the analysis, design and development of instruc-
tional and learning software.

Budgen [9] describes an object as an entity which pos-
sesses a state, exhibits behaviour, and has a distinct iden-
tity. Sommerville [32, p 194] proposes the following def-
inition: “An object is an entity which has a state (whose

SACJ/SART, No 20, 1997

representation is hidden) and a defined set of operations
which operate on that state. The state is represented as a
set of object attributes™,

Analysis of classical CAI tutorials, simulations, drill-
and-practice software, and state-of-the-art user-controlled
interactive learning environments reveals distinct design
object& or components, which possess unique identities,
certain attributes and relationships, and have operations
performed on them, i.e. much CAI software explicitly,
or implicitly, consists of instructional components [25].
Many CAI systems are comprised mainly of instructional
presentations and exercise/question segments. The main
processing activities are determination of which unit / seg-
ment / example / exercise to present or do next, and the
assessment of student responses. The means of determi-
nation depends on the locus of end-user control whether
program-control, learner-control, or a combination thereof,
The various and varied instructional activities and learn-
ing experiences comprising learning segments, example
presentations, practice exercises and assessment activities
whether in textual or graphic form, whether requiring ac-
tive learner participation or passive perusal, can readily be
perceived as objects. The objects are separate, yet strongly
interrelated and it is appropriate to implement them in an
object-oriented design. Such component-based insiruc-
tional systems can best be implemented by an object-
oriented design [14]. The object-oriented approach thus
appears to be the most appropriate software engineering
development methodology for ISD.

Even in the traditional life cycle models such as the
waterfall model, the distinction between the system de-
sign (broad design) and the program design (detailed de-
sign/coding) can become blurred. In the object-oriented
approach, however, the boundary is even more indistinct,
because both top-down analysis and bottom-up program
development occur simultaneously or, at least, iteratively.
The three traditional activities of analysis, design, and im-
plementation are all present, but the joints between are
seamless. The unifying factor is the prime role played by
objects and their interrelationships. Modelling is promi-
nent in object-oriented design, the basic architecture be-
ing assembled from models of the entities and the relation-
ships between them. Reuse is a feature of object-oriented
design, since the prominent class and inheritance features
lend themselves to code reuse.

CALI software incorporates well-defined objects, both
concrete and abstract, and particularly in situations with
an initial lack of precise specifications, the procurement of
instructional software can be expedited and facilitated by a
development process incorporating evolutionary prototyp-
ing. This requires a life cycle model emphasizing over-
lap and evolution with explicit incorporation of a prototyp-
ing phase. Chen and Shen’s model, ISD?, as well as other
similar life cycle models, for example the Wong prototyp-
ing model {36], the Booch model [8] and the Henderson-
Sellers and Edward’s fountain model [19], all incorporate
these requirements.

53

il = M e

ekl ke

3 An Application of Software Engineering
Methods to CAl

The principles outlined in section 2, in particular, proto-
typing and an object-oriented approach, were applied in
the design and development of FRAMES, an interactive
practice environment in Theoretical Computer Science. A
complete description of the development of FRAMES and
examples of its components are given in [14]. The target
group is 1st-level BSc students and the context is relations,
a topic in discrete mathematics. A prototype implementa-
tion was developed according to an evolutionary prototyp-
ing life cycle and in line with the object-oriented method-
ology.

The requirements analysis phase in instructional sys-
tems development is broad, incorporating decisions re-
garding the general characteristics, both instructional-
and computing-oriented, of the required software. The
goal in developing FRAMES was to produce a practice-
environment, a kind of androgogic activity box, providing
a variety of useful instructional and learning activities, and
to develop it using a software engineering approach. The
problem domain, namely relations, was modelled with an
entity-relationship-attribute diagram to identify its entities
and the relationships between them. The instructional de-
sign approach selected for FRAMES is based on a cogni-
tive theory, Merrill’'s Component Display Theory (CDT),
whereby all instructional and learning activities (termed
instructional transactions or components) [24, 26] are cat-
egorized on a 2-dimensional grid according to the content
taught and the type of performance expected from learners.
Thus FRAMES consists of components which are well-
modelled by objects according to the object-oriented ap-
proach. These components comprise both presentation of
tutorial matter and practice opportunities.

Correct application of CDT results in instructional
products which learners can actively control to meet their
own needs, according to learning style or stage of study.
This active role of the learner was the prime factor in de-
termining the design and screen layout of FRAMES. The
idea was not to produce a formal tutorial, but to develop a
structure comprising a variety of components available as
exercises for the learner, where each instructional compo-
nent may be perceived as an object. Each learner makes
his/her own selection of content, strategy, quantity and se-
quence, thus constructing screens comprising hisfher own
chosen sel of components. This design lends itself to im-
plementation via an object-oriented development method-
ology, in which each instructional transaction / component
comprises an object. The objects are closely interrelated,
since:

e the more complex, integrated problems are comprised
of simpler objects;

e certain objects have the same format, because they in-
corporate the same kind of analysis operation applied

1o different examples from the domain;

e other objects apply different kinds of analysis opera-
tions, but to the same example data;

54

e certain objects cover exactly the same material but
in different instructional modes, thus facilitating rein-
forcement.

Although the high degree of user control permits
each learner to create his‘her own diverse combination
of activities, the control structure and nature of activities
lend themselves to reusability of structures and formats.
FRAMES has a high reuse factor of its components.

Most transactions are interactive objects, requiring re-
sponse on the part of the learner; in these cases meaningful
feedback is given in the form of judgement and assessment.
Some of these are open-ended, in that they require the
learner to synthesise examples. The environment also con-
tains useful auxiliary objects such as definitions, graphic
aids, help overlays and control icons.

An initial throwaway prototype was used to test the
feasibility and visual aspects of certain innovative tech-
niques. The major evolutionary prototype was produced
by a design-and-refine paradigm which facilitated evalua-
tion of the interaction, clarified requirements and identified
potential problems.

The FRAMES prototype is a highly interactive, indi-
vidualised practice environment covering about 40% of the
material intended for inclusion in the production model.
FRAMES was programmed in TenCORE 5.0 by pro-
grammers of CENSE {Centre for Software Engineering at
Unisa) and runs under DOS.

4 Conclusion

This article overviewed general software engineering mod-
els, tools and techniques, and investigated their applicabil-
ity to instructional systems development.

The main
difference between conventional and instructional systems
development is important—conventional systems primar-
ily involve data processing, while instructional systems at-
tempt to stimulate human cognition by means of interactive
presentation, practice opportunities, and support. Conven-
tional systems must support tasks such as data capturing
and report generation through task-appropriate user inter-
faces, while instructional systems should promote learning
through a good user interface, proper knowledge modelling
and navigation through such recorded knowledge.

The absence of data-flow interaction in instructional
systems calls for a development process based more on re-
finement of presentation and knowledge navigation struc-
tures, than on formal data flow and algorithmic models.
A life cycle model which includes evolutionary prototyp-
ing, such as the approach foltowed with FRAMES, there-
fore appears 1o be most appropriate for the development of
instructional software, so that initially fuzzy requirements
can be refined and the initial working version can be modi-
fied and expanded towards a final operational CAI product.

The object-oriented methodology proves itself to be,
in the terms of Korson & McGregor [22], “a unify-
ing paradigm”, which is appropriate for the analysis and
representation of CAI CAIl systems consist of compo-

SACJ/SART, No 20, 1997

nents which can be well-modeiled by objects in an object-
oriented approach. Viewing a system as object-based pro-
vides a more versatile foundation than a view based funda-
mentally on data modelling or on its functions and proce-
dures. Although user-input plays a major role in determin-
ing the path through instructional software, there is little
conventional data flow. The concept of an object is there-
fore a utilitarian approach, which brings together such var-
ied items as concrete objects, abstract objects, data, pro-
cesses, and environmental entities external to the software
(yet vital components of the system), such as the human
user. Incorporation of the user as an object is particularly
beneficial in CAI, due to its highly interactive and indi-
vidualised nature. Tools and representations of the object-
oriented approach were used in the analysis, design and
documentation of the instructional software incorporated
in the FRAMES system.

Although experience has shown that re-design and re-
implementation are almost always inevitable in order to
produce a reusable framework, it is hoped that object-
based control structures developed for specific applica-
tions, as demonstrated in FRAMES, can eventually be used
as generic, content-free shells to present formal instruc-
tion or practice exercises in different instructional modes
in varying subjects and courses. This would capitalise on
the modularity and reuse potential inherent in an object-
oriented design.

References

1. G D Abowd. Formal Aspects of Human-Computer In-
teraction. DPhil Thesis, Oxford University, Programming
Research Group, 1991.

2. D Bell, I Morrey and J Pugh. Software Engineering:
A Programming Approach. Prentice Hall International,
Hemel Hempstead, 1992,

3. M N Bessagnet, T Nodedot, G Gouarderes and JJ Rigal.
A new approach: courseware engineering. In: Comput-
ers in Education, edited by A McDougall and C Dowling.
Elsevier Science Publishers, Amsterdam, 1990.

4. T 1 Biggerstaff and A] Perlis (Eds). Software Reusability,
Volumes 1 & 2. Addison-Wesley, Reading MA, 1989.

5. T R Black. Prototyping CAL courseware: a role for
computer-shy subject experts. In Aspects of Educational
Technology Vol XXI, Designing New Systems and Tech-
nologies for Learning, edited by H Mathias, H Rushby
and R Budgett. Kogan Page, London, 1988,

6. T R Black and T Hinton. Courseware design methodol-
ogy: the message from software engineering. In Aspects
of Educational Technology Vol XXII, Promoting Learning,
edited by C Bell, J Davies and R Winders. Kogan Page,
London, 1989.

7. B W Boehm. A spiral model of software development and
enhancement. [EEE Computer, 21(5), 61 - 72, (1988).

8. G Booch. Object-Oriented Analysis and Design: with
Applications. Benjamin/Cummings Publishing Company,
Redwood City, 1994,

9. D Budgen. Sofiware Design. Addison-Wesley, Woking-
ham, 1994,

10. J W Chen and C Shen. Software engineering: a new com-

ponent for instructional software development, Educa-
tional Technology, 29(9), 9 - 13, (1989).

SACJ/SART, No 20, 199

20.

2L

22,

23.

24,

25.

26.

27.

28.

29.

30.

. P Coad, D North and M Mayfield. Object Models: Strate-

gies, Fatterns and Applications. Prentice Hall, Englewood
Cliffs, 1995.

. 8 A Conger. The New Software Engineering. Wadsworth

Publishing Company, Betmont, 1994,

. AM Dearden. The use of Formal Models in the Design of

Interactive Case Memory Systems. DPhil Thesis, Human-
omputer Interaction Group, University of York (UK),
995.

M R De Villiers. [Integrating a Software Engineer-
ing Approach in Instructional Software Development—
Hlustrated by a Prototype in Theoretical Computer Sci-
ence. MSc Dissertation, Department of Computer Sci-
ence, University of South Africa, 1995.

. A Dix. Formal Methods for Interactive Systems. Aca-

demic Press, London, 1991,

A Dix, I Finlay, G Abowd and R Beale. Human-Computer
Interaction. Prentice-Hall, Hemel Hempstead, 1993,

D E Gray and T R Black. Prototyping of computer-based
training materials. Computers in Education, 22(3), 251 -
256, (1994).

M D Harrison and H Thimbleby (Eds). Formal Meth-
ods in Human-Computer Interaction. Cambridge Univer-
sity Press, Cambridge, 1990.

. B Henderson-Sellers and] M Edwards. The object-

oriented systems life cycle. Communications of the ACM,
33(9), 142 - 159, (1990).

R Johnson and B Foote. Designing reusable classes.
Object-Oriented Programming, 1(2), 22 — 35, (1988).

P Kotzé. The Use of Formal Models in the Design of
Interactive Awthoring Support Environments. DPhil The-
sis, Human-Computer Interaction Group, University of
York(UK), 1997,

T Korson and J D McGregor. Understanding object-
oriented: a unifying paradigm. Communications of the
ACM, 33(9), 40 - 60, (1990).

K E Lantz. The Prototyping Methodology. Prentice-Hall,
Englewood Cliffs, (no date).

M D Merrill. Component Display Theory. In Instructional
Design Theories and Models: An Overview of their Cur-
rent Status, edited by C M Reigeluth, Lawrence Erlbaum
Associates, Hillsdale, 1983.

M D Merrill. Applying component display theory to the
design of courseware. In fnstructional Designs for Micro-
computer Courseware, edited by D H Jonassen. Lawrence
Erlbaum Associates, Hillsdale, 1988,

M D Metrill. Instructional Design Theory for Automated
Instructional Devetopment. In Emerging Computer Tech-
nologies in Education: Selected papers from the Inter-
national Conference on Computers in Education (ICCE)
Taiwan, 1993, edited by T Chan and A Self. AACE, Char-
lottesville, (1993).

P Palanque and R Bastide (Eds). Proceedings of the
Eurographics Workshop in Toulouse France, June 1995.
Springer-Verlag, Wien, 1995,

F Paterng (Ed). [nteractive Systems: Design, Specifica-
tion and Verification. Springer-Verlag, Berlin, 1995,

S R Schach. Classical and Object-Oriented Software
Engineering. Aksen Associates Inc. Publishers, Boston,
1996.

J Schoenmaker, E Nienthaus, J Scholten and J Titulaer.
A methodology for educational software engineering. In
Computers in Education, edited by A McDougall and C
Dowling. Elsevier Science Publishers, Amsterdam, 1990.

3L

32,

33

34.

35.

36.

56

B Shneiderman. Designing the User Interface. Addison-
Wesley, Reading, 1992.

[Sommerville. Software Engineering. Addison-Wesley
Publishing Company, Wokingham, 1996.

R D Tennyson. Knowledge base for automated instruc-
tional system development. In Automating Instructional
Design, Development, and Delivery, edited by R D Ten-
nyson. Springer Verlag, Berlin, 1994,

W Tracz (ed). Software Reuse: Emerging Technology.
IEEE Computer Society Press, Washington, 1988.

S D Tripp and B Bichelmeyer. Rapid prototyping: an alter-
native instructional design strategy. Educational Technol-
o0gy, Research and Development, 38(1), 31 - 44, (1990).

8§ C Wong. Quick prototyping of educational software: an
object-oriented approach. Journal of Educational Tech-
nology Systems, 22(2), 155 - 172, (1993).

SACJ/SART, No 20, 1997

