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Abstract

The long-standing problem of possible formation of metastable states in collisions
of the eta-meson with atomic nuclei is revisited. The two-body eta-nucleon in-
teraction is described by a local potential, which is constructed by fitting known
low-energy parameters of this interaction. The many-body eta-nucleus potential
obtained within the folding model, is used to search for metastable states of the
systems formed by the eta-meson with hydrogen and helium isotopes. It is found
that all these systems generate strings of overlapping resonances.
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Chapter 1

Introduction

1.1 Discovery and Properties of the η-meson

The η-meson was discovered in 1961 by a John Hopkins University team at Berke-
ley on the Bevatron accelerator [1]. This was done when physicists had already
understood that many “elementary” particles known at that time, in fact, were not
elementary, and tried to find out what they were made of. Theorists were looking
for an adequate classification of the particles, based on the group theory, and exper-
imentalists supplied them with necessary data. The Berkeley’s discovery came at
the right time since the η-meson was nicely fitted into the octet of other mesons, a
group of particles with more or less similar properties, in accordance with the formal
group theory classification that eventually evolved into the quark theory.

Since its discovery, extensive theoretical and experimental efforts have been
devoted towards achieving a better understanding of the η-meson properties and its
interaction with other particles. This was due to the special role played by the η-
meson in particle physics. For example, its quark composition is such that it opens
up new possibilities for investigating breakdown of the Okubo-Zweig-Iizuka (OZI)
rule [2] and the charge-symmetry breaking (CSB) [3]. The latter can be attributed
to quantum mixing of the quark states corresponding to the η and π0 mesons.

Although the η–meson is four times heavier, it is in many respects similar to the
π0–meson. Both are neutral, spinless, and have almost the same lifetime, ∼ 10−18

s. The kinship between the two mesons manifests itself very clearly in their decay
modes. They are the only mesons that have a high probability of pure radiative
decay. The pion almost entirely (98.798 %) decays into the radiative channel π0 →
γ + γ. For the η, the purely radiative decay is also the most probable mode [4],

η →































γ + γ (38.8%)
π0 + π0 + π0 (31.9%)
π+ + π− + π0 (23.6%)
π+ + π− + γ ( 4.9%)
other decays ( 0.8%) .

It is believed that the π0 and η mesons are related to each other so much that their
physical quantum states are mixtures of each other,

|π0 > = |π′ > cos θ − |η′ > sin θ,
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|η > = |π′ > sin θ + |η′ > cos θ,

where |π0 > and |η > are the physically observed particles while |π ′ > and |η′ > are
their pure isotopic states and the mixing angle is expected to be 0.01 < θ < 0.02.
Moreover, this mixing is one of the reasons why charge symmetry is broken, i.e.
why, for example, the proton and neutron are different (see, Refs. [5, 6, 7, 8]).

Therefore, when π0 and η are viewed as elementary particles, they look quite
similar. However in the interaction with nucleons, their difference is clearly man-
ifested. First of all, the large difference in masses of the η (∼ 547 MeV) and π0

(∼ 135 MeV) mesons should manifest itself in the meson-nucleon dynamics. This is
indeed the case at low energies. For example, the S11-resonance N ∗(1535) is formed
in both π0N and ηN collisions, but at different energies,

Eres
πN(S11) = 1535 MeV −mN −mπ ≈ 458 MeV ,

Eres
ηN (S11) = 1535 MeV −mN −mη ≈ 49 MeV .

As is seen, due to the large mass of the η-meson this resonance is very close to the
ηN -threshold. Furthermore it is very broad, with Γ ≈ 150 MeV, covering the whole
low energy region of the ηN interaction. As a result the interaction of nucleons with
η-mesons in this region, where the S-wave interaction dominates, is much stronger
than with pions.

Another consequence of the S11 dominance is that the interaction of the η-
meson with a nucleon can be considered as a series of formations and decays of
this resonance as shown in Fig. 1.1. Independently of the formation channel, the
intermediate N ∗(1535)-resonance decays with almost equal probabilities into the
ηN and πN channels. This means that in the energy region covered by the S11-
resonance, the ηN and πN interactions should be treated as a coupled channel
problem. When such an analysis was performed, it was found that the near-threshold
ηN interaction is attractive [9]. This is very important feature of the ηN interaction
since it raises the question as to whether this attraction is strong enough to bind
the η-meson inside a nucleus.
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Figure 1.1: Schematic representation of the resonant two-channel scattering ηN →
N∗ → ηN and ηN → N ∗ → πN . The notation η/π means η or π.

Since η-mesons decay very fast, it is impossible to produce beams of them
and therefore they can only be observed in final states of certain nuclear reactions.
This makes investigation of η-meson dynamics quite complicated. Therefore if an
η-meson could be sustained inside a nucleus for some time, it would expose itself
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for a relatively long period in a series of successive interactions with nucleons, i.e.,
inside the nucleus it would undergo a series of absorptions and emissions through
formation and decay of the N ∗(1535)-resonance as depicted in Fig. 1.2.
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Figure 1.2: Schematic representation of the resonant η-nucleus scattering.

In such a series, after each decay of the S11-resonance the η-meson is generated
anew. Therefore the lifetime of an η-mesic nucleus would not be limited by the
lifetime of the meson itself. However, such an η-nucleus complex cannot be stable,
since eventually theN ∗(1535)-resonance will produce a pion with huge kinetic energy
of ∼ 400 MeV (thanks to its small mass), which will enable it to escape. It is
therefore clear that if an η-meson is bound inside a nucleus, it can only be in a
quasi-bound (metastable) state with a nonzero width.

Such a possibility looked very exciting and thus a search for metastable η-
nucleus complexes started.

1.2 Quest for quasi-bound η-nucleus systems

First estimation obtained in the framework of the optical potential theory [10], put
a lower bound on the number A of the nucleons that could be sufficient to bind the
η-meson, namely, A ≥ 12. Thereafter, other theoretical investigations were devoted
to this problem [11]. All of them predicted η-nucleus bound states obeying the
same constraint A ≥ 12. However, the first experimental attempt to find η-nuclear
bound states with lithium, carbon, oxygen, and aluminum produced negative results
[12]. The conclusion of this experimental work did not discourage theoreticians in
examining the possibility of the η-nucleus binding.

The relatively large scattering lengths obtained for η3He and η4He systems
[13] cast some doubt on the A ≥ 12 constraint. Moreover, in the measurements of
the η-production on nuclei by γ-quanta and other particles, it was found that the
cross-section strongly depends on the energy and is practically isotropic [14, 15],
which can be explained by formation of either a bound or a resonant η-nucleus
state. Indeed, if the η-meson is trapped by a nucleus, their bound or resonant state
can be formed at a specific energy, any shift from which must lead to a significant
decrease of the cross-section, which means strong energy dependence. And after
being captured, the meson forgets the direction of incidence, which means that the
decay of such state must be isotropic.

The first microscopic few-body calculations of the η-meson scattering from d, t,
3He, and 4He nuclei were presented in Ref’s. [16, 17]. By locating the S-matrix poles
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in the complex momentum plane, it was found that with the uncertainties of the
parameters of the η-nucleon potential, even the existence of η-deuteron quasi-bound
state could not be excluded. This work boosted the activity around possible bound
states of the η with light nuclei. Many theoretical papers claimed the discovery of
such states on the basis of simplified calculations [18]. New experimental work also
gave strong evidence supporting the existence of near-threshold bound or resonance
states of the η with 11B, 11C, 4He, and even the deuteron [19]. Such evidence,
however, remains inconclusive because of being based on indirect observations of
the enhancement of the final state interaction between the η and the nucleus, which
takes place at low positive energies. The quasi-bound states, if any, are also not far
from the zero energy, but on the negative side. In this dissertation, therefore, we
explore the near-threshold positive energies.

Being of interest by itself, the existence of η-nuclei would also shed new light
on various fundamental problems of particle physics. This is why so much effort has
been devoted to understanding the η-nucleus dynamics and searching for long-lived
η-nucleus complexes. Our work is another step in this direction.

In contrast to all previous calculations, which were based on a one-term sep-
arable ηN interaction, we construct a local ηN potential. This enables us to use
the very powerful Jost function method to look for metastable states formed by
the η-meson with hydrogen and helium isotopes. We found that all these systems
generate strings of overlapping resonances.

The dissertation is structured as follows. Chapter 2 describes the model as-
sumptions used in our calculations, such as the ηN -potential, η-nucleus potential
and nuclear wave functions. In Chapter 3 methods, e.g. Complex Rotation, for solv-
ing the Schrödinger equation and finding the spectral points with the Jost function
are outlined. The resonances are given in Chapter 4. The conclusions then follows
in the last chapter.



Chapter 2

Model

2.1 ηN potential

As was already said in the Introduction, when the ηN interaction is considered, it
is necessary to take into account the πN channel, i.e. the transitions

ηN → πN →
{

ηN
πN

→ · · · .

The fact that the pion has a much smaller mass, offers a way to simplify the treat-
ment of this two-channel problem. Indeed, the transition ηN → πN is accompanied
by the release of ∼ 400 MeV of kinetic energy. As a result, the pion and nucleon
move very fast relative each other and therefore have a very short time to interact.
This means that the probability of coming back to the initial channel via the reverse
transition πN → ηN is negligible. Therefore, we can safely assume that if the η
happens to undergo the transformation into the pion, it never comes back and is
lost forever.

In quantum mechanics, such disappearances of particles are formally described
by adding an imaginary part to the potential [20]. Thus, instead of considering
the ηN and πN systems as a two-channel problem, we can assume that the ηN
intercation is decribed by an effective one-channel complex potential.

Since the η beams are not available and direct scattering experiments with
them are not possible, the quantitative data that can be used to construct the ηN
potential are very scarce. The only known quantities are the position E(S11) of the
pole of the ηN scattering amplitude, corresponding to the S11 resonance, and the
scattering length aηN , i.e. the value of the amplitude at zero collision energy. Even
this scarce information [21],

E(S11) ≈ (49 − i75) MeV ,

0.2 fm ≤ Re aηN ≤ 1.0 fm ,

0.2 fm ≤ Im aηN ≤ 0.4 fm ,

is not very accurate. In all previous publications, the ηN potential was constructed
in the momentum space and in the separable form, i.e. was non-local. Here we
present the first attempt to describe the ηN interaction by a local potential in
configuration space. Although it is more difficult to construct such a potential, it

5
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opens up new possibilities for exploring the resonance spectra of η-nucleus systems.
This is because with a local potential, we can use the Jost function method (see
Ref.[22, 23]) for locating resonances.

As a starting point, we chose the following functional form for the ηN potential

VηN(r) = a1e
−b1(r1−r)2 − a2e

−b2r2 − ia3e
−b3r2

, (2.1)

where the first term is a barrier responsible for the S11 resonance, the second term
gives a short-range attraction, and the last one is the absorptive part that takes care
of all inelastic processes.

Then, using a fitting procedure within the Jost function method, we found the
set of parameters shown in Table 2.1, which give

parameter value

r1 1.95616478619031975 fm

a1 57.5826586837329657 MeV

a2 26.8157044304329091 MeV

a3 0.603932024464326478 MeV

b1 0.0715471865601824408 fm−2

b2 0.0271505486074286040 fm−2

b3 0.0338015704618582769 fm−2

Table 2.1: Parameters of the ηN potential (2.1).

E(S11) = (48.57 − i75.05) MeV

and
aηN = (0.75 + i0.27) fm .

These figures were obtained via the procedure of minimization. These figures
are intermediate computer results which are used in further calculations. This is
why there is so many decimal places.

Within the above uncertainty interval, this value for the scattering length is
considered as the most probable one since different analyses give the results con-
centrated around it. The potential corresponding to these parameters is shown in
Figs. 2.1 and 2.2.

The two-body ηN potential is the main building block of our model. Using it,
we construct the effective potentials that describe interaction of the η meson with
light nuclei. This is done in the next section in the framework of the folding model.

2.2 η-nucleus potential

When the η meson approaches a nucleus it feels the forces generated by all the
nucleons which the nucleus consists of. These forces depend on distances between the
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Figure 2.1: Real part of the ηN potential (2.1) as a function of the distance between
the η and N .

meson and each individual nucleon. These distances are determined by the distance
r between the meson and the nucleus centre of mass as well as by the positions ~ri

of the nucleons inside the nucleus (see Fig. 2.3). The meson moves relative to the
nucleus and the nucleons constantly move inside the nucleus. At every instance the
total η-nucleus potential energy is a sum of individual ηNi potentials depending on
their individual positions.

The η-nucleus potential is therefore a complicated function of time. This how-
ever can be significantly simplified if we take into account the fact that at low
collision energies (which we are considering) the nucleons move inside the nucleus
much faster than the meson approaches or moves away. This means that while the
meson makes a small move (small change of r), the nucleons have enough time to go
through all possible spatial configurations {~r1, ~r2, . . . ~rA}. The probabilities of dif-
ferent configurations are determined by the nuclear wave function ψA(~r1, ~r2, . . . ~rA).

As a result of fast movement of the nucleons, the meson feels the collective
force which is the statistical average over all possible configurations. In other words,
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Figure 2.2: Imaginary part of the ηN potential (2.1) as a function of the distance
between the η and N .
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Figure 2.3: Schematic representation of an η-nucleus system.

it moves in the potential field described by the effective potential

VηA(r) =
∫ A
∑

i=1

Vi(|~r + ~ri|) |ψA(~r1, ~r2, . . . ~rA)|2 d~r1d~r2 . . . d~rA , (2.2)

which is called folding potential [24].
It should be emphasized that the use of the potential (2.2) to describe the

η-nucleus interaction is an approximation, which is valid for low collision energies.
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2.3 Nuclear wave functions

In the present dissertation, we analyze the interaction of the η meson with hydrogen
and helium isotopes. Strictly speaking, the corresponding wave functions needed for
constructing the folding potentials (2.2), should be obtained by solving the rigorous
few-body equations with realistic NN forces. This however would be a separate
extremely difficult task. Furthemore, the accuracy of such wave functions would be
far beyond the accuracy of the ηN potential itself. The current knowledge of the
ηN interaction is rather limited. This means that in any case we are only able to
estimate rather than exactly locate possible η-nucleus resonances. For this purpose,
it is sufficient to use approximate wave functions of the nuclei.

In the system of reference tied to the nucleus centre of mass, only (A − 1) of
the A nucleon coordinates ~ri shown in Fig. 2.3 are independent. Indeed, the fact
that the origin coincides with the centre of mass means that

~r1 + ~r2 + . . .+ ~rA = 0 .

This is why it is more convenient to describe the configuration of the nucleons using
the so-called Jacobi vectors shown in Fig. 2.4.

xN1

x

N2

x

N3x

N4

cη

¦
¦
¦
¦
¦
¦
¦
¦
¦
¦
¦
¦
¦
¦
¦
¦¦

~x1

´
´
´
´
´
´
´
´
´
´

~x2

c
c
c
c
c
c
c
c
c
c
c

~x3
6

~r

Figure 2.4: Jacobi vectors determining the spatial configuration of an η-nucleus system.

Vector ~x1 originates on the nucleon N1 while ~x2, ~x3, etc. are drawn from the
centre of mass of the smaller subsystem towards the additional nucleon. Vector ~r
points to the centre of mass of the whole nucleus.

For the nuclei considered in this dissertation, namely, deuteron (d), triton (t),
3He (τ), and 4He (α), we use the following approximations (taken from Ref. [16])

ψd( ~x1) =
Kd√
4π

exp
(

−kd
1

2
x2

1

)

, (2.3)

ψt,τ ( ~x1, ~x2) =
Kt,τ

4π
exp

[

−kt,τ

(

x2
1

2
+

2x2
2

3

)]

, (2.4)
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ψα( ~x1, ~x2, ~x3) =
Kα

(4π)3/2
exp

[

−kα

(

x2
1

2
+

2x2
2

3
+

3x2
3

4

)]

. (2.5)

The wave functions of the t and τ have the same functional form and differ from
each other only through the constants Ks and ks for s = t, τ .

The dependence on the Jacobi coordinates in the wave functions (2.3- 2.5) is
chosen in such a way that they exponentially attenuate at large distances (as it must
be for any bound state wave function) and are invariant under all possible nucleon
permutations. The last requirement comes from the Pauli principle. Indeed, since
nucleons are fermions, their total wave function consisting of the spatial and the
spin-isospin parts, must be antisymmetric under the permutations. For the S-wave
ground state, the spin-isospin part is antisymmetric, which means that the spatial
part is symmetric.

The constants Ks and ks for s = d, t, τ, α are determined uniquely when two
integrals, one for normalization and one for the root mean square (RMS) radius, are
calculated for a system s.

In evaluating these volume integrals, a situation always arises when the folow-
ing standard integrals [25] have to be calculated

∫ ∞

0
dxx2 exp(−ax2) =

1

4a

√

π

a
, (2.6)

and
∫ ∞

0
dxx4 exp(−ax2) =

3

8a2

√

π

a
. (2.7)

The normalization condition
∫

|ψ(~x1, ~x2, . . . , ~xA−1)|2d~x1d~x2 . . . d~xA−1 = 1

specifies Ks in terms of ks. In which case, for s = d, t, τ, α we obtain, respectively,

1 =
∫

|ψd(~x1)|2d~x1 → Kd =
(

4k
3/2
d /

√
π
)1/2

, (2.8)

1 =
∫

|ψt,τ (~x1, ~x2)|2d~x1d~x2 → Kt,τ =
[

4/
√
π
]
√

(4/3)3/2 k3
t,τ , (2.9)

1 =
∫

|ψα(~x1, ~x2, ~x3)|2d~x1d~x2d~x3 → Kα =

√

(

√

32 k3
α/π

)3

. (2.10)

When calculating the RMS-radii of the nuclei, we now can replace the normalization
constants Ks with the expressions (2.8-2.10) and thus will have only one unknown
parameter, namely, ks for each nucleus. The integration for s = d, t, τ, α gives

< r2
d >=

∫

d~x1|ψd(~x1)|2
(

x1

2

)2

=
3

8kd

, (2.11)

< r2
t,τ >=

∫

d~x1d~x2|ψt,τ (~x1, ~x2)|2
(

2x2

3

)2

=
1

2kt,τ

, (2.12)

< r2
α >=

∫

d~x1d~x2d~x3|ψα(~x1, ~x2, ~x2)|2
(

3x3

4

)2

=
9

16kα

. (2.13)
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With Eqs. (2.11-2.13), the parameters ks can be fixed using known values of the
RMS-radii (see, for example Ref. [16]),

√

< r2
d > = 1.956 fm ,

√

< r2
t > = 1.755 fm ,

√

< r2
τ > = 1.959 fm ,

√

< r2
α > = 1.671 fm .

When ks are found, the normalization constants can be calculated using Eqs.
(2.8-2.10). Thus, both Ks and ks are determined and therefore the wave functions
(2.3-2.5) are completely defined.

2.4 Density functions

Nucleons are identical particles. This fact significantly simplifies calculation of the
folding potential (2.2). Indeed, the wave function is symmetric and therefore it is
not necessary to make a sum in (2.2) over all nucleons. It is enough to take any
one of them and multiply the result by A, because their contributions are the same.
Therefore

VηA(r) = A
∫

Vi(|~r + ~ri|) |ψA(~r1, ~r2, . . . ~rA)|2 d~r1d~r2 . . . d~rA , (2.14)

where i is any one of the nucleon numbers. In the above equation, we can perform
the integration of the wave function independently of the potential, over all nucleon
coordinates except the ~ri. For simplicity, let i = 1, then

VηA(r) =
∫

V1(|~r + ~r1|)ρ(~r1)d~r1 , (2.15)

where
ρ(~r1) = A

∫

|ψA(~r1, ~r2, . . . ~rA)|2 d~r2d~r3 . . . d~rA (2.16)

is the density function. It determines the distribution of the matter inside the
nucleus. Since it does not matter which nucleon to choose in Eq. (2.15), it can be
rewritten in a more symmetrical form

VηA(r) =
∫

VηN(|~r + ~r′|)ρ(~r′)d~r′ . (2.17)

The choice of the functional dependence of the wave functions (2.3-2.5) is very con-
venient for analytical calculation of the density functions. The simplification comes
from the fact that each variable in the wave functions can be separated in an expo-
nential factor. The exponential that is not integrated, provides the density Gaussian
form while the others produce constant coefficients to this Gaussian function. After
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the integration, we obtain the following density functions:

ρd(~r) = 2





√

kd

π





3

exp
[

−4kdr
2
]

, (2.18)

ρt,τ (~r) =
8√
3





√

kt,τ

π





3

exp
[

−3kt,τr
2
]

, (2.19)

ρα(~r) =
√

2





√

3kα

π





3

exp
[

−8

3
kαr

2
]

. (2.20)

As is seen, all these functions have the same Gaussian form

ρs(~r) = Cs exp
(

−csr2
)

, (2.21)

where

Cd = 2





√

kd

π





3

=
1

4

(
√

cd
π

)3

,

cd = 4kd =
3

2 < r2
d >

, kd =
3

8 < r2
d >

,

Ct,τ =
8√
3





√

kt,τ

π





3

=
8

9

(
√

ct,τ
π

)3

,

ct,τ = 3kt,τ =
3

2 < r2
t,τ >

, kt,τ =
1

2 < r2
t,τ >

,

Cα = (
√

3)3
√

2





√

kα

π





3

=
27

16

(
√

cα
π

)3

,

cα =
8kα

3
=

3

2 < r2
α >

, kα =
9

16 < r2
α >

.

These density functions are shown in Figs. 2.5 and 2.6. On the first of them,
vertical axis is linear while the other plot shows the same densities in the logarithmic
scale. The log scale highlights the density spread better.

With these density functions, the η-nucleus folding potential (2.2) was calcu-
lated for each of the isotopes, s = d, t, τ, α. The integration was done in spherical
polar coordinates,

VηA(r) = 2π
∫ π

0

∫ ∞

0
ρs(r

′)VηN

(√
r2 − 2rr′ cos θ + r′2

)

r′2dr′ sin θdθ , (2.22)

with the positive z-axis aligned so that the η-meson approaches the nucleus along
this axis. These potentials are shown in Figs. 2.7 and 2.8.



13

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5

rh
o

Radius r (fm)

The Density Function [fm^(-3)]

d
t

tau
alpha

F
igu

re
2.5:

D
en

sity
fu

n
ction

s
for

th
e

h
yd

rogen
an

d
h
eliu

m
isotop

es.



14

1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

1

0 1 2 3 4 5

rh
o

Radius r (fm)

The Density Function [fm^(-3)]

d
t

tau
alpha

F
igu

re
2.6:

D
en

sity
fu

n
ction

s
in

th
e

logarith
m

ic
scale

for
th

e
h
yd

rogen
an

d
h
eliu

m
isotop

es.



15

-10

0

10

20

30

40

50

60

0 5 10 15 20 25

R
e[

V
]

Radius x (fm)

The folding potential (MeV):   theta=0.00*pi

d
t

tau
alpha

F
igu

re
2.7:

R
eal

p
art

of
th

e
fold

in
g
η
-n

u
cleu

s
p
oten

tial
for

fou
r

isotop
es.



16

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 5 10 15 20 25

Im
[V

]

Radius x (fm)

The folding potential (MeV):   theta=0.00*pi

d
t

tau
alpha

F
igu

re
2.8:

Im
agin

ary
p
art

of
th

e
fold

in
g
η
-n

u
cleu

s
p
oten

tial
for

fou
r

isotop
es.



Chapter 3

Method for locating resonances

3.1 Schrödinger equation

Having constructed the effective η-nucleus potential (folding potential VηA), we re-
duced the few-body problem to an effective two-body problem with the Hamiltonian

H = − h̄2

2µs

∆~r + VηA ,

where
µs =

mηms

mη +ms

is the reduced mass for s = d, t, τ, α. The corresponding Schrödinger equation

HΨ = EΨ ,

after the partial wave decomposition, takes the form
[

∂2
r + k2 − `(`+ 1)/r2

]

ψ`(k, r) = UηA(r)ψ`(k, r) , (3.1)

where

UηA(r) =
2µs

h̄2 VηA(r) (3.2)

and k =
√

2µsE/h̄
2 is the η-nucleus relative momentum.

In the calculations, we used the following masses of the particles and reduced
masses [26, 20]:

Meson (η): mη = 547.45 MeV,
Deuteron (d): md = 1876.136 MeV, µd = 423.789646 MeV,
Triton (t): mt = 2809.450 MeV, µt = 458.170754 MeV,
Helion (τ): mτ = 2809.431 MeV, µτ = 458.170248 MeV,
Helium (α): mα = 3728.425 MeV, µα = 477.358732 MeV.

3.2 First order equations

Following Ref. [22, 27, 28, 29], we look for solution of Eq. (3.1) in the form

ψ`(k, r) = h
(−)
` (kr)F

(in)
` (k, r) + h

(+)
` (kr)F

(out)
` (k, r) , (3.3)

17
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where the incoming and outgoing waves h
(−)
` (kr) and h

(+)
` (kr) are embedded ex-

plicitly, and two new unknown functions F
(in)
` (k, r) and F

(out)
` (k, r) are introduced.

As was shown in Ref. [23], these functions obey the system of coupled first-order
equations























d

dr
F

(in)
` = − 1

2ik
h

(+)
` UηA

[

h
(−)
` F

(in)
` + h

(+)
` F

(out)
`

]

d

dr
F

(out)
` =

1

2ik
h

(−)
` UηA

[

h
(−)
` F

(in)
` + h

(+)
` F

(out)
`

]

(3.4)

with the boundary conditions

lim
r→0

F
(in/out)
` (k, r) = 1 . (3.5)

This system is equivalent to the initial Schrödinger equation (3.1) but is more con-
venient for solving the resonance problem.

3.3 Jost function and spectral points

The differential equations (3.4) can be numerically solved from the origin to a suf-
ficiently far point r = R where the potential vanishes (causing the right-hand sides

of the equations to disappear) and therefore F
(in/out)
` (k, r) become constant. These

constants
f

(in)
` (k) = lim

r→∞
F

(in)
` (k, r) (3.6)

and
f

(out)
` (k) = lim

r→∞
F

(out)
` (k, r) (3.7)

are the Jost functions that determine asymptotic behavior of the wave function (see,
for example, Ref. [30])

ψ`(k, r) −→
r→∞

h
(−)
` (kr)f

(in)
` (k) + h

(+)
` (kr)f

(out)
` (k) . (3.8)

It is worthwhile to mention that we use here the notation f
(in/out)
` (k) which is differ-

ent from the traditional notation such as f
(±)
` (±k). There are two reasons for this.

First of all, we do not fix the normalization of the solution ψ`(k, r). As a result, both

f
(in)
` (k) and f

(out)
` (k) can have an arbitrary common factor. We are not concerned

with this factor because no observable quantity depends on it. In contrast to a
majority of other studies, we leave the normalization of the Jost functions free, and
therefore need a notation that is different from the traditional. The second reason
is that the superscripts (in) and (out) are unambiguous and thus we avoid possible
confusion caused by the existence of notations with opposite signs for the same Jost
functions.

There are certain discrete points in the complex k-plane (bound, resonant, and
virtual states), at which the physical wave function (3.3) has only outgoing waves in
its asymptotic behavior (3.8). Therefore at these so called spectral points we have

f
(in)
` (k) = 0 . (3.9)

As is seen, the distribution of the spectral points in the complex k-plane (determined
by this equation) does not, as was mentioned earlier, depend on the normalization
of the Jost function.
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3.4 Resonances

Resonance states are formed when quantum particles collide at certain (resonant)
energies. Before moving apart, they stay together for a while. During the resonance
lifetime, the particles move around each other and “forget” the direction from which
they came. Therefore, when the resonance eventually decays, the particles “choose”
the direction to move away at random.

In quantum mechanics, this physical concept is mathematically formulated as
follows (see, for example, Ref. [30]). Resonant states are spectral points (the above
mentioned certain energies), i.e. eigenstates of the Hamiltonian with pure outgoing-
wave asymptotics (which means no “memory” of the incoming information).

Therefore, resonances are spectral points, i.e. such points in the complex
momentum plane, where the Jost function is zero. The probabilities of possible
outcomes of the collision are determined by the S-matrix, which is the ratio of the
asymptotic coefficients,

S`(k) =
f

(out)
` (k)

f
(in)
` (k)

, (3.10)

and therefore has poles at all spectral points. A resonance energy,

E = Er −
i

2
Γ , (3.11)

has a negative imaginary part, which is called resonance width. The width Γ deter-
mines how long the resonance lives. Indeed, the probability of finding the system at
any given place,

|Ψ(t0)e
−iE(t−t0)|2 = |Ψ(t0)|2e−Γ(t−t0) ,

exponentially diminishes with time due to imaginary part of the energy. Another
meaning of Γ is that it defines a window around the collision energy Er, within which
the resonance can be excited.

3.5 Complex rotation

The differential equations (3.4) enable us to obtain a complete solution of the ηA
scattering problem at any energy of physical interest. Their advantage over the
corresponding Schrödinger equation becomes especially evident when we consider
complex values of the energy.

As is shown in Refs. [22, 23], the scheme described in previous sections, enables
us to overcome well-known difficulty caused by the divergence of Jost solutions in
the resonance domain of the complex momentum plane.

The origin of the difficulty can be understood if we look at the Riccati-Hankel
function h

(+)
` (kr) in the resonance domain of the complex k-plane (below the real

axis). As can be seen from its asymptotics

h
(±)
` (z) −→

|z|→∞
∓i exp {±i[z − `π/2]} , (3.12)

this function diverges when r → ∞. As a result the right hand side of the first
equation of the set (3.4) diverges and hence the limit (3.6) cannot be calculated. It
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should be emphasized that this fact does not mean that this limit does not exist.
It does exist, but by simply moving along the real r-axis, we cannot reach it. It is
easy to see, that

if Im kr > 0 =⇒ h
(+)
` (kr) −→

|kr|→0
0 . (3.13)

When Im kr = 0 this function remains finite (oscillates) at large r. The condition

Im kr > 0 for asymptotic vanishing of the function h
(+)
` (kr) involves the imaginary

part of the product kr but not of the momentum alone. This offers an elegant way
to extend the domain of the k-plane where the limit (3.6) can be calculated, to
practically whole k-plane. Indeed, if, for example, Im kr is negative we can always
make it positive by using complex values of r. This of course requires that the
potential is defined for complex r and tends to zero when |r| → ∞ at least in a
certain sector of the complex r-plane. In our case, it vanishes when r → ∞ along
any line

r = z exp(iθ) , z ≥ 0 , (3.14)

for the rotation angle θ in the interval 0 ≤ |θ| ≤ θmax < π/2. The coefficients

f
(in/out)
` (k) in the wave function asymptotics are the same for all choices of the

rotation angle because they do not depend on r. By considering complex r, we
actually do the analytic continuation of f

(in)
` (k) to the domain where Eqs. (3.4) do

not give finite values for this function.



Chapter 4

Results

The low-energy ηN and η-nucleus interaction is dominated by the S11 resonance,
which means that all higher partial waves make a negligible contribution as compared
to the one coming from the S-wave. In all our calculations, we therefore assume
that ` = 0.

In order to locate possible η-nucleus resonances, we searched for zeros of the
Jost function f

(in)
` (k) in the fourth quadrant of the complex k-plane. The search

was done using the Newton’s method [31]. For each point in the k-plane, the Jost
function was obtained by solving the differential equations (3.4) from r = 0 to a
point sufficiently far from the origin where the potential vanishes and the function
F

(in)
` (k, r) reaches its limit value (3.6). To avoid the divergence, the integration of

the differential equations was done along the line (3.14) in the complex r-plane with
the rotation angle θ such that Im kr remains positive.

The resonances thus found are given in Tables 4.1-4.4, where the resonance
momentum k and the energy

E = Er −
i

2
Γ

are related as

E =
k2

2µs

.

The positions of the Jost function zeros (i.e. the S-matrix poles) given in Tables
4.1-4.4, are shown in Figs. 4.1-4.8. For each nuclear system (d, t, τ , and α),
these zeros are shown both in the momentum and energy planes. For all isotopes
considered, the distribution of the Jost function zeros in the energy plane follows
almost vertical line. This means that the resonances completely overlap each other.
Since the width Γ increases very fast with the resonance number, only the first
resonance for each nucleus may be discern in the scattering or final state interaction
picture. All higher resonances form a collective background.
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Re k (fm−1) Im k (fm−1) Er (MeV) Γ (MeV)

0.516676386 -0.250053354 9.39 23.74

0.557757739 -0.466126622 4.31 47.78

0.850332662 -0.734765811 8.42 114.81

0.749837117 -0.581803575 10.28 80.17

0.944632738 -0.816615407 10.36 141.75

1.051964840 -0.926330329 11.42 179.06

1.126248400 -1.014329900 11.01 209.92

1.234325320 -1.111359490 13.25 252.08

Table 4.1: η-d resonances.

Re k (fm−1) Im k (fm−1) Er (MeV) Γ (MeV)

0.909378894 -0.219888233 33.09 33.99

1.081057020 -0.603766038 34.17 110.94

1.237657840 -0.927171221 28.56 195.04

1.348924640 -1.079850840 27.77 247.58

Table 4.2: η-t resonances.

Re k (fm−1) Im k (fm−1) Er (MeV) Γ (MeV)

0.891738122 -0.226294155 31.61 34.30

1.059055894 -0.604922991 32.11 108.90

1.213812711 -0.917415813 26.84 189.28

1.330761160 -1.066909850 26.88 241.32

Table 4.3: η − τ resonances.

Re k (fm−1) Im k (fm−1) Er (MeV) Γ (MeV)

1.23264042 -0.198489492 60.36 39.92

1.40505908 -0.571114105 67.21 130.92

1.58269994 -0.951647370 65.23 245.72

Table 4.4: η − α resonances.
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Chapter 5

Conclusions

This investigation was devoted to the search of possible resonance states of the
systems consisting of the η-meson and the isotopes of hydrogen and helium. To do
the search, we first constructed a local ηN potential by fitting the S11 resonance
and the ηN scattering length. Then, for each of the four isotopes, an η-nucleus
potential was constructed within the folding model. This folding potential was used
within the Jost function method. Solving the linear first-order differential equations
of this method, from the origin to a sufficiently far point along a complex-rotated
coordinate, we were able to calculate the Jost function in the fourth quadrant of
the complex momentum plane. According to the rigorous definition of quantum
resonances, the zeros of this function in the fourth quadrant of the k-plane are the
resonances we were looking for.

The results of our calculations show that all considered isotopes support strings
of completely overlapping resonances. The widths of the resonances belonging to
each string grows very fast with the resonance number. This means that the first
resonance of a string may manifest itself on the background formed by all higher
resonances.

The resonances for the t and τ systems are very close to each other. This is
due to the fact that the number of nucleons in these nuclei are the same. The only
difference between them comes from a slight variation in the mean square radius.
This radius determines the density distributon spread. The mass difference makes
a negligible effect.

When comparing with the other nuclei, i.e. with deuteron (d) and 4He (α),
nucleon number difference is important. This is due both to the multiplicities of con-
tribution each nucleon makes to the density in the nuclei, and the specific differences
in the density distributions.

No quasibound state has yet been discovered in any experiment [21]. Mean-
while, there are many different predictions based on scattering length calculations,
which however have serious drawbacks and therefore are inadequate [18]. The re-
sults obtained in this dissertation, are based on a rigorous Jost function method and
therefore are more reliable. Of course our predictions cannot be considered as exact
and final because they were obtained with an ηN potential constructed using lim-
ited experimental data. A more precise potential would slightly shift the resonance
positions, but the general picture would remain intact.
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