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SUMMARY

Radioactive decay of nuclei via emission of α-particles is studied using three different

theoretical approaches, viz: the quasi-bound state wavefunction approach (QSWA), the

superasymmetric fission model (SAFM) and the semiclassical approximation (QCA).

The half-lives of the radioactive nuclei, calculated using these methods, are compared

with each other and with available experimental data.

The resonance wavefunction is obtained by numerically integrating the Schrödinger equa-

tion with outgoing boundary conditions. The sensitivity of the calculated decay widths

to two particular parameter sets of the Woods-Saxon (WS) optical potentials are studied.

Double folding (DF) model calculations to obtain the bare α-nucleus potential have

been carried out with the Reid M3Y effective nucleon-nucleon (NN) interactions. The

exchange part of the interaction was taken to be of zero-range pseudo-potential and the

density dependence of the NN interaction is accounted for.

The effectiveness of the method is demonstrated using both even-even and odd-mass

spherical nuclei.

Keywords:

Alpha decay; Double folding potential; Superasymmetric fission model; Preformed cluster

model; Optical potential; Quasi-bound wavefunction; Decay widths; Coulomb penetration

factor; DDM3Y interactions; Gamow model.
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Chapter 1

Introduction

The simplest view of the atomic nuclei is that they are composed of neutrons and protons,

collectively called nucleons. Theoretical and experimental studies of nuclei revealed that

the nucleons constituting them, are not distributed uniformly inside a nucleus. These

studies proved the presence of “clusters” of nucleons in the nucleus, and the participation

of such clusters in nuclear reactions. The concept of clustering is quite sophisticated and

the definition of this will emerge later. Of all such clusters, the one formed by two

protons and two neutrons is the most ubiquitous because of its high symmetry and

binding energy. As is well known, this is referred to as the α-particle, although its

properties inside a nucleus may not be the same as that of a free α-particle, owing to

the action of the surrounding nucleons.

Some nuclei can spontaneously emit the α-particles. This phenomenon was discovered

at the very beginning of the nuclear era and is known as the α-decay. There is a

renewed interest in α-decay partly due to an increase of the role played by α-decay in

the spectroscopy of unstable nuclei [1], which is primarily motivated by the connected

question involving clustering of nucleons in nuclei [2] and partly due to “exotic” decay

modes discovered in 1984 [3], which is decay via the spontaneous emission of heavier

1



Introduction 2

clusters, such as 14C, 20O, 24Ne, etc.

Alpha decay has been extensively studied over the years, and it has been found that

calculations of relative half-lives give results in good agreement with the experimental

values, but that it is far more difficult to account for the absolute values. One of the

difficulties is that only one number (the half-life) is available experimentally; so it is not

admissible to have even one adjustable parameter in the theory that is intended to explain

the process. Everything must be calculated in terms of absolute values. In all models of

alpha decay, the description of the process is either inseparably linked to the description

of the nuclear reactions and quasi-stationary states [4] or as a superasymmetric fission,

which may be conceived to be a sequence of adiabatic rearrangements, depicted as a

continuous change of variables [5].

In what follows, we try to sketch out a historical background of the subject and describe

the present status of the study of α-decay. Since this is a rich subject, neither complete-

ness nor historical order is pursued. We focussed our attention to works that were done

with the ambition of reproducing the absolute width, which is the touchstone for any

microscopic description of the α-decay.

Historically, the theory of α-decay has developed through three stages. The first stage

was characterized by a theoretical explanation of the global characteristics of the process:

quantum mechanical barrier penetration. The emission of α-particles from some nuclei

suggested that fully pre-formed α-particles exist in them, and their scarce appearance in-

dicated that they are restrained by a potential barrier. This approach was independently

and almost simultaneously given by Gamow [6] and by Condon and Gurney [7]. The

half-life was determined by the penetrability of the barrier. The solution of this problem

was one of the first successes of quantum mechanics. This stage was associated with

the observation of the most intense (favored) α transitions. The second stage evolved

as more alpha spectra called unfavored (or hindered) α transitions were identified. A

description of such transitions became possible after the formulation of the shell model
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and the R-matrix theory of nuclear reactions. In this model, α-decay involves two parts:

the process of formation (structure part) and the process of penetration through the

barrier (energy part). The probability of formation depends on the structure of nuclear

states and determines the different classes of α transitions. In the original formulation

of the R-matrix theory, the structure of the nucleus was little known and a black-box

model was therefore proposed. Later, the description of the nuclear structure by single-

particle or collective models constructed on the basis of an infinite oscillator potential

constituted the third stage. In this way, the nucleus was assumed to be opaque. The

use of such models makes it impossible to match correctly the interior and exterior wave

functions.

In Gamow’s treatment, the α-cluster was assumed to be a “particle” present in the

nucleus from the outset, and the problem of clustering was not considered. Today we

would say that this was a macroscopic theory. The Gamow theory reproduced the α-

decay half-lives relative to each other in a range of many orders of magnitude, as is

determined mostly by the decay energies. As an example of the large variation in the

half-lives, consider the nucleus 213Po which decays by emitting α-particles of energy

8.336MeV has a half-life of 1.3 × 10−13 yr, whereas the half-life of 232Th, which emits

3.98MeV α-particles, is 1.4×1010 yr [8, 9]. These two cases, and many others in between,

could nicely be fitted by the Gamow’s model [10].

The great success of Gamow’s theory was due to the excellent description of the pene-

tration of the α-particle through the Coulomb barrier. It explained the linear relation

between the logarithm of the decay width and the energy of the emitted particle (Q-

value). The penetration probability is related to the half-life of the nucleus through the

concept of the “frequency of escape attempts”. That is, the α-particle was assumed to be

moving as a little ball inside the nucleus bouncing on and reflected off the internal wall of

the nuclear potential until it happens to ‘tunnel’ through the barrier. This semiclassical

approach does not give allowance for the possibility that the emitted particle and/or the

residual nucleus are not “pre-formed” in the parent. Thus it was later found that one
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has to include a “pre-formation factor”, which takes into account the probability that

the mother nucleus is found in a state of the α-particle plus daughter nucleus. In spite

of the pre-formation hypothesis, Gamow’s intuitive model reproduces the experimental

relative decay life-times (i.e. the ratios of different life-times) very well. This indicates

that the pre-formation probability vary from case to case much less than barrier penetra-

bilities, but it does not allow to draw much more definite conclusions on the microscopic

structure of nuclei.

At present few phenomelogical models based on this one-body formulation with different

assumptions concerning the above two factors have been developed. Several phenomeno-

logical generalizations of the α-decay were essentially based on this idea. The most im-

portant is the preformed cluster model (PCM) of Buck et al. [11–14]. The PCM has been

tried with various nuclear potentials e.g. square well [11], cosh-form [12, 13] and mixed

Saxon-Woods form [14]. A smooth parametrization of this phenomenological potential,

the effective α-core potential, enables one to satisfactorily predict all α-decay widths [13].

The decay width is obtained within the quasiclassical approximation (QCA) by following

the procedure of Gurvitz and Kälbermann [15]. Buck and co-workers [11–14] within the

framework of PCM successfully reproduced the experimental data of many nuclei. The

theoretical half-lives from the cluster model agree with the data of the favored decays

within a factor of 2 ∼ 3 [11–14].

The two main challenges in studies of α-decay were gradually recognised:

• The need to describe the behaviour of the nucleons which eventually constitute

the α-particle both inside and outside the nucleus. This means that one has to

describe simultaneously the behaviour of the nucleons both in the bound as well

as in the unbound (continuum) state.

• The dynamics of these four bodies moving in the nuclear field pose an unsurmount-

able difficulty. The core of the problem is that the decay is a time-dependent
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many-body processes. The decaying nucleus is a many-body wave packet, and the

initial state is not even well defined.

A way to avoid solving the time-dependent many-body problem explicitly, was found

with the introduction of nuclear reaction theory. It was understood that nuclear particles

could penetrate through the nucleus and interact with its nucleons; there then appeared

directions especially for the calculations of absolute widths of α-decay.

The dominant feature of reaction processes in which two nuclei collide to form a long-lived

compound nucleus that subsequently disintegrates into a pair of nuclei, is the appearance

of resonances [16]. Since the same compound system can be formed in different channels,

the disintegration of the system is virtually independent of its birth. In this respect a

compound resonance is reminiscent of a decaying state. Assuming that the reaction

process is stationary and that the resonance that one is interested in is narrow, the

collision matrix (or S-matrix), as a function of energy, can be parametrized in a many-

level Breit-Wigner form [16], and the residues of the S-matrix are the partial decay

widths. According to Lovas et al. [17], this resonance state corresponds to a pole of the

S-matrix in the complex energy plane with a positive real part, or equivalently to the

zero of the Jost functions. This is the complex eigenenergy belonging to the idealized

decaying state i.e. it corresponds to the solution of the time-dependent Schrödinger

equation with a time dependence of the form of exp[(−iEn − 1
2
Γn)t/~], which describes

exponential decay, and can be valid only in a limited spatial region. (Otherwise the norm

could not be constant in time [16].)

In the preceeding paragraph, it was assumed that the decaying state is stationary. The

reason for the assumption is justified as follows: The half-lives of all α-emitters are very

long indeed (10−6−1017 s) in comparison with the “periods” of nucleon motions (10−21 s).

Thus the average time before decay occurs is at least 1015 “nuclear periods” and may

be as many as 1028. In the time evolution of a decaying state the nucleus has many

opportunities to establish a pattern of motion before it can actually disintegrate. Thus
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the α-decay can be considered as a quasi-stationary process [9].

For the idealized decaying state, the eigenvalue problem HΨ = EΨ, where E = E−i 1
2
Γ, is

to be solved, and the width is obtained from the resulting eigenenergy E as Γ = −2 Im E.

Among heavy nuclei, however, the values of Γ/E range between 10−10−10−30, therefore,

such a procedure would require an enormous numerical difficulty [18]. The purpose of

this study is, in part, to present ways to tackle this problem. Another objective is to

describe a method that handles both the bound and resonant states as mentioned above

on an equal footing and consequently avoid calculating the imaginary part of the resonant

state position.

The first microscopic description of α-decay, published as late as in the fifties, was an

application of a general theory of nuclear reactions, the R-matrix theory [19, 20]. This,

combined with the shell model, which was formulated more or less at the same time,

provided the basis of Mang’s model [21] for α-decay. In the R-matrix formalism, to

calculate these decay widths, we divide the configuration space of the compound system

into two regions, the “internal region” V , to which the compound state is restricted,

and the complementary “external region”, which is the rest of the configuration space.

All nuclear interactions among the nucleons that constitute the decaying α-particle and

those in the daughter nucleus (including those induced by the Pauli principle) are only

felt within the internal region. Therefore only the Coulomb interaction acting between

the centres of mass of the fragments is important beyond V and in this external region

the core and the emitted particle behave like a two-particle system moving outwards with

asymptotic energy En. The solution inside the volume V satisfies a certain boundary

condition on the surface S of V . In the decay of spherical nuclei the surface S can

be chosen to be a sphere of radius R, where R is the distance between the centres of

mass of the core and the emitted α-particle. The residues of the S-matrix can then be

computed in terms of quantities evaluated on the surface S. One finds that the width
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corresponding to the emission of a particle with angular momentum ` is given by [20].

Γ`(R) = 2P`(R)γ2
` (R) , (1.1)

where P`(R) is the Coulomb penetrability at distance R and γ`(R) is the reduced width,

which is related to the formation amplitude F`(R) at the point R by

γ`(R) =

√

~2R

2µ
F`(R) , (1.2)

where µ is the reduced mass. The formation amplitude is the projection of the mother

state onto the (antisymmetrized) product of the states of the two fragments.

The derivation of (1.1) was a great step forward in the study of alpha decay and it

is the basis on which microscopic treatment of cluster decay is based. It contains all

the elements of the Gamow theory plus another important ingredient, the preformation

amplitude. The understanding of Coulomb penetrability is well known and has been ex-

cellently accounted for [22, 23]. The microscopic description of preformation factor has

a key role in the understanding of the decay process and requires a precise knowledge of

the initial quantum state. The success of this hinges in the ability to correctly match the

outgoing wave (Gamow wave) with the internal wavefunction (α-particle formation am-

plitude) at a given radius near the touching configuration. There are several approaches

to the calculation of the formation amplitude, the shell model [21], the hybrid (shell

model + α-cluster) model [18], the BCS method [24] etc.

The application of the shell model to α-decay has a long record of numerous improve-

ments in small steps [2, 21, 22, 25–31]. As was shown by Mang and Rasmussen, the shell

model undershoots the decay width substantially [4, 21, 25]. The reason for this was

found to be in the inconsistent way the Pauli effects were treated in the two-body de-

scription of the α-core motion [32]. This only affects calculations in which a macroscopic

intercluster wave function is extrapolated into the range of the interfragment exchanges.

For Thomas’s formula (1.1) this means cases in which R was chosen within this range.

A partial remedy was attained by Fliessbach and Mang [26], whose formalism allows us
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to use radii within the range of Pauli exchanges.

The understanding of the role played by configuration mixing to induce the clustering

of the four nucleons that would eventually constitute the α particle also posed a major

problem within the shell approach. The importance of pairing correlations and configu-

ration mixing was already realized in the early sixties [33, 34]. But their fundamental role

in α-decay became clear only when large calculations were possible. Thus, it was found

in Refs. [22, 27] that the inclusion of the neutron-neutron (n-n) and proton-proton (p-p)

pairing interactions within a large shell-model configuration space to describe the move-

ment of the α-particle inside the mother nucleus increases the calculated α-decay widths

by several orders of magnitude for both spherical [22, 27] and deformed nuclei [35, 36].

The physics behind the enhancement induced by configuration mixing is that, with the

participation of high-lying configurations, the pairing interaction clusters the two neu-

trons and the two protons on the nuclear surface [35, 37]. Yet, the eventual clustering of

the α-particle is produced when the proton-neutron (p-n) interaction is also included [29].

The use of the cluster model to produce four-nucleon correlation on the nuclear surface

was introduced by Wildermuth and co-workers [28, 38], and the concept of an “α giant

resonance” to achieve the same phenomenology was proposed by Okabe [31].

Recently, Kaneko and Hasegawa [39] have shown that the nuclear correlations reveal

themselves in the α-decay through the Q-value which affects the Coulomb penetrability.

Furthermore, the “α-condensate” point of view suggests that the strong p-n correlations

in A > 208 nuclei cause the α-like correlations. The α-like correlations are important

for the penetration as well as the formation of α-particle. For these reasons, an accurate

determination of the Q-value for α-decay process is paramount in our work.

The shell model is the most basic of all nuclear models, and any nuclear configuration

can be described in terms of its basic states. This works very well for single-paricle

(s.p.) states but becomes more difficult for cluster states. To describe a nucleus with an

α-particle cluster requires the admixture of a large number of higher configurations. In
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such cases, it is much simpler to represent the nucleus by a sum of shell-model and cluster

configurations. The way to do this has been pioneered and described in detail by Tomoda

and Arima [40]. In this model, called the extended shell-model, the wavefunctions of

states below the α-particle threshold are described by the shell model, and those above

by the cluster model. Tomoda and Arima made detailed calculations for 20Ne and

showed that it gives a good account of the energies, α-particle widths and B(E2) values

of the states of this nucleus. Tonozuka and Arima [22] extended this model to the

study of surface α-clustering and α-decay of 212Po. They included basis states up to

7~ω excitation quanta and went up perturbatively to 13~ω. In order to treat such an

immense function state, they neglected the p-n interactions and the two-particle states

with two like nucleons occupying different orbits. Their value for absolute α-decay width

was still small by a factor of 23, and with the inclusion of Fliessbach’s prescription this

was reduced to 14.

As already mentioned above, the inclusion of p-n correlation states in the ordinary shell

model is a difficult task. The inclusion of the p-n interaction implies that the shell-

model diagonalization is to be performed on a direct-product state space (i.e. a tensorial

product space) of the two-neutron and two-proton bases. There are methods to deal

with this problem. Among these, the multistep shell-model method (MSM) [41], which

is based on a sophisticated truncation scheme, has the advantage that one describes

the system in terms of previously calculated systems. Alpha-decay calculations in the

framework of the MSM were presented in Ref [29]. The resulting decay width still falls

short of the experimental value by a factor of ∼ 15.

Most cluster-decaying nuclei have many valence nucleons, are deformed and some emit

heavy clusters as well. Effort to develop a model of wide enough scope for these cases

leads to the approach of Bardeen-Cooper-Schrieffer (BCS) theory, which is, generally,

viewed as a shell-model based approximation scheme. It accounts for the most important

correlations between nucleons outside closed shells in a reasonably good approximation.

Technically, the BCS approach tranforms the wave function of a correlated system into
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the form of a pure configuration. The BCS approach was introduced long ago in studying

α-decay by Soloviev [34] and by Mang and Rasmussen [4, 25] and subsequently applied

by Poggenburg et al. [42]. This approach was applied to the decay of deformed nuclei by

these pioneers. The collective motions were described in the standard Bohr-Mottelson

rotational model while the intrinsic motions were represented by BCS wave functions

built up from Nilsson s.p. orbits expressed in terms of harmonic-oscillator wave func-

tions. The penetration through the deformed potential barrier was describe in the WKB

approximation.

These pioneering calculations were limited to very small basis sizes: they used single-

shell valence spaces due to the limitation of computing facilities during the time.

Recently, the BCS treatment was applied to studying α-clustering in, and the α-decay

of, spherical systems with many particles outside the core [30]. In that work the power

of modern computers was exploited, and a large number of s.p. states were used. Later,

the approach was used again for deformed nuclei [24, 36, 43, 44].

The first accurate calculation of an α-decay half-life was made by Varga et al. [18].

They made a detailed analysis of one of the simplest alpha decays, that of 212Po to

the the ground state of the doubly magic 208Pb. Following Tomoda and Arima, they

expressed the nuclear wavefunctions as the sum of a shell-model description of the 208Pb

core and a cluster-model description of the emitted α-particle. The cluster wavefunction

is an antisymmetrized product of the intrinsic wavefunctions of the core nucleus, the

emitted α-particle and of their relative motion. The decay was described by a Gamow

wavefunction, which at large α-core distances becomes an outgoing Coulomb wave. The

α-particle was described by 1s harmonic oscillator wavefunctions and the shell-model

basis states obtained by diagonalizing the shell-model Hamiltonian. The calculation of

the α-decay width was carried out avoiding the approximations inherent in previous

work, and all the parameters were fixed from independent experimental data. They

applied this formalism to calculate the absolute decay width of 212Po, which decays to

208Pb. This is a particularly favourable case, as the final nucleus has a double closed
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shell. The result was Γ = 1.45 × 10−15 MeV, which agrees well with the experimental

value of Γ = 1.5 × 10−15 MeV. The probability of formation of an α-particle inside the

nucleus was found to be 0.3.

Further progress in the understanding of α-decay is associated with the development

of non-R-matrix approaches, which in principle do not contain the arbitrary parameter

R. The alternative approaches are based on one of the dynamical reaction theories.

The formalism of Mang [4] as well as Harada and Rauscher [45] are based on the time-

dependent perturbation theory, whereas the formalism of Kadmenskĭi et al. [46] and of

Schlitter [47] are based on a time-dependent and on a time-independent scattering theory

of decay [48], respectively. Săndulescu et al. [49] resort to Feshbach’s resonance theory

based on the projector-operator techniques [50], while Jackson and Rhoades-Brown [51]

provide several derivations for their decay-width formula, starting from different the-

ories. Wildermuth et al. [38] use the unified resonating-group and shell-model theory

of nuclei [52] to derive the Breit-Wigner formula, and from that the expression for the

width.

Each theory introduces a bound initial state Ψ for the parent nucleus and a final scat-

tering resonance state Φ. Most of the final results have essentially the same form, or

indeed, are identical. The generic form of the decay-width formula is as follows:

Γ = 2π| 〈Ψ|H − H0|Φ〉 |
2 , (1.3)

where the Hamiltonians H0 and H are associated with Ψ and Φ, respectively. The

particular form depends on whether any of H0 and H is an exact Hamiltonian and

whether Ψ or Φ is taken to be an eigenstate of the corresponding Hamiltonian everywhere

or just over a limited region.‡

In the fission-like model, various models have been proposed in the understanding of

the highly asymmetric spontaneous disintegration of nuclei into two composite nuclear

‡Some of the approaches mentioned above, together with other approaches, are discussed in the

review section of [51].
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fragments e.g. involving α and various exotic decays had been predicted [53, 54]. These

models can be broadly classified as the superasymmetric fission model (SAFM) [54–56]

and the preformed cluster model (PCM) [57]. In the SAFM the barrier penetrabilities are

calculated assuming two asymmetric clusters while in the PCM the cluster is assumed

to be formed before it penetrates the barrier and its preformation probability is also

included in the calculations.

In the SAFM, the most elegant phenomenological model has been formulated called

the analytical superasymmetric fission model (ASAFM). The description of α-decay

within this model reproduced the half-lives with reasonable success [55, 56]. In the

ASAFM calculations, the entire interaction region is divided into two distinct zones. In

the overlapping zone, where the distances of separation between the centres of the two

fragments are below the touching radius, a parabolic form for the α-nucleus interaction

potential has been used. And for distances beyond the touching radius only the Coulomb

potential plus the centrifugal barrier for the separated fragments have been considered

within a framework of a liquid drop model two center spherical parametrization.

Treating the region beyond the touching radius as a nuclear free-zone and approximating

the nuclear interaction potential to a parabolic form in the overlapping region yield

analytical expression for the WKB action integral [54]. Although the overall uncertainty

of this ASAFM was found to be small, neither the division of the interaction region into

two distinct domains is justifiable nor the use of parabolic nuclear potential has much

physical basis.

Recently, microscopic description of α-nucleus interaction within the framework of SAFM

has been carried out by Basu [58]. The microscopic nuclear potential is obtained by a

double folding procedure of the densities of the fragments α and daughter nuclei with the

finite range realistic Michigan 3 Yukawa (M3Y) effective interaction (DDM3Y) derived

from the G-matrix elements. The density distribution functions for the α-particle and

the daughter nucleus are chosen to be of Gaussian and spherical symmetric Saxon-Woods

forms respectively. These, in turn are used to calculate the half-lives of the parent nuclei



Introduction 13

for the α emission in the SAFM using the WKB approximation for the barrier pene-

tration. The quantitative agreement with experimental data is excellent [58, 59]. The

half-lives of the consecutive α-decay chains of the recently synthesized new superheavy

element 287115 have been calculated within this formalism [59]. The results predict the

general trend very well. The quantitative agreement is found to be reasonable [59].

The main objective of this thesis is to compare the reliability of new theories of alpha

radioactivity. Below we undertake such a comparative calculation, using (i) the quasi-

stationary decaying state approach, (ii) the superasymmetric fission model, and (iii)

the one-dimensional semiclassical method. We demonstrate, numerically, the power and

the weakness of the various procedures. The α-nucleus interactions needed for these

calculations are obtained using both phenomelogical and microscopic approaches.

In Chapter 2 we shall describe the kinematics and characteristics of α-decay. The math-

ematical formalisms of some of the decay theories are briefly outlined in Chapter 3. In

Chapter 4 a detailed description of the double folding model and the three different

methods used in this work for calculating α-decay widths and half-lives are presented.

In Chapter 5 the results are tabulated and discussed. Finally the conclusions of this

work constituted the Chapter 6.



Chapter 2

Basic Equations and Conservation

Laws

The majority of isotopes of the elements above and some neutron-deficient isotopes below

Pb, decay by emission of α-particle. The α-decay process, which is described in various

physics textbooks (see for example Ref. [60]), is the nuclear reaction

A
ZX →A−4

Z−2 Y + α , (2.1)

where X and Y are known as the mother(parent) and daughter nuclei, respectively.

Here, α ≡ 4
2He.

We assume that the decaying parent nucleus X is at rest. Then the energy of the initial

system is just the rest energy of X, given as MXc2. The final state consists of Y and

α, each of which will be in motion to conserve linear momentum. Thus the final total

energy is MY c2 +TY +Mαc2 +Tα, where Ti(i = α, Y ) represents the kinetic energy of the

final fragments. Hence, conservation of energy requires that at infinitely large separation

of the fragments

MXc2 = MY c2 + TY + Mαc2 + Tα , (2.2)

14
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or

[MX − MY − Mα]c2 = TY + Tα . (2.3)

The quantity on the left hand side of equation (2.3) is the net energy released in the

decay, called the disintegration energy or the Q-value:

Qα = (MX − MY − Mα)c2 . (2.4)

Equation (2.4) represents the total amount of energy to be shared by the two final

particles:

Qα = TY + Tα . (2.5)

An additional “screening correction” [25] to Qα may be added to account for the influence

of the electron cloud on the emitted α-particle

Escr = +
(

65.3Z7/5 − 80Z2/5
)

eV (2.6)

where Z is the proton number of the parent nucleus. This correction is at most around

47 keV (for Z = 110) and is often neglected.

Alternatively, the Qα for α-decay of a nucleus X(Z, N) can be obtained from the binding

energies of the particles. It is given by the difference between the sum of the binding

energies of the products of the decay and the binding energy of the decaying nucleus

Qα = B(Z − 2, A − 4) + B(2, 4) − B(Z, A) . (2.7)

where B(2, 4) ≈ 28.3MeV is the binding energy of the α-particle.

A criterion for α instability emerges from these relations (2.4) and (2.7). From the

energetics point of view, spontaneous α-emission is possible if Qα > 0. It is well known

that the Q-values for nuclear α-decay rarely exceed 0.25 percent of the reduced mass,

µ[= (Mα ×MY )/(Mα +MY )]. Hence, nonrelativistic treatments are justified and usually

employed. The above criterion i.e. (Qα ≥ 0) can only be satisfied if

B(2, 4) > B(Z, A) − B(Z − 2, A − 4) ≈ 4
dB

dA
= 4

{

A
d(B/A)

dA
+

B

A

}

. (2.8)
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It is well known that the inequality (2.8) is satisfied [60] when

B

A
≤ 7.075 + 7.7 × 10−3 A . (2.9)

The angular momentum ` of the emerging α-particle also influences the decay process.

This can be seen from the expression for the centrifugal barrier [~2`(` + 1)]/[2µr2]:

higher values of ` increase the height of the barrier the α-particle must surmount. The

possible values of ` for the outgoing α-particles are determined by the conservation of

angular momentum and parity. Using the standard notations for the nuclear spins Ii

and parities πi (i = X, Y ) for the two nuclei of equation (2.1) along with the orbital

angular momentum L for the α-daughter system. Since the α-particle has spin zero,

conservation of angular momentum therefore results in the equality

IX = IY + L . (2.10)

This constraint among quantized angular momentum vectors implies a condition on the

associated quantum numbers. From the vector addition problem, the following bounds

on the orbital angular momentum ` in terms of the initial and final spin quantum numbers

is immediately established

|IX − IY | ≤ ` ≤ IX + IY . (2.11)

The nuclear states X and Y are also endowed with definite parities. The α-particle is

known to have even parity and the final orbital parity is given by (−1)`. Conservation

of parity implies a multiplicative constraint among the various odd and even factors:

πX = πY · πα · (−1)` (2.12)

where πα = + is the parity of the α-particle.

In order to determine the lowest possible value of ` we classify the transitions into “parity-

favored” and “parity-unfavored” decays. The results are listed in Table 2.1. Usually the

α-decays occured between the ground states of even-even nuclei and between the states

of odd-even nuclei and odd-odd nuclei with the same angular momentum and parity.
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Table 2.1: Minimum value of L of the orbital angular momentum ` of the alpha particle in

a transition IX , ΠX → IY , ΠY

Parity-favored: πXπY = (−1)IX−IY `min ≡ L = |IX − IY |

Parity-unfavored: πXπY = (−1)IX−IY +1 `min ≡ L = |IX − IY | + 1

provided that neither IX nor IY

is zero

This kind of decay is known as the favored α-decay because there is no change of the

angular momentum and parity for the parent and daughter nuclei. If the state of the

parent nucleus has different angular momentum and/or parity from that of the daughter

nucleus, the decay is called the unfavored α-decay. Parity-unfavored transitions in which

either IX or IY or both are zero are absolutely forbidden by the conservation laws. Alpha-

decays involving the ground states of even-even nuclei are presumably parity-favored,

with IX = IY = 0. It is imperative to know that that these decays would be completely

forbidden if the parity conditions were unfavorable, i.e., if πX = −πY . We conclude that

` must be even, to give even orbital parity, if X and Y have the same parity, and that `

must be odd if X and Y have the opposite parity.

The most remarkable feature of α-decay is the extraordinarily large variation in the

half-life T1/2 from one nuclide to another, while corresponding α-particle energies and

Q-values vary within only a single order of magnitude. It is apparent that T1/2 must

have a very sensitive dependence on Q. The explanation for this behaviour is the basic

reason for the development of different α-decay theories.
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Review of α-decay theories
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Chapter 3

Decay theories

In this chapter we present both the phenomenological and microscopic mathematical

descriptions of some of the α-decay theories that have found practical applications and

widely used over the years. Detailed descriptions of these methods can be found in the

quoted references.

3.1 Phenomelogical models

3.1.1 Gamow Model

The simplest phenomenological model is the one-body model (Gamow model [6]), which

assumes that the α-particles are already preformed in the nucleus. Correspondingly, the

α-decay width ΓG is given by the product between the frequency ν of the collision with

the potential walls and the barrier penetrability P calculated using WKB approximation

ΓG = νP =
v

2Ri

exp

(

−
2

~

∫ Ro

Ri

[2µ(V (r) − Q)]1/2 dr

)

(3.1)

19
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where v = (2Q/µ)1/2, Ri and Ro are the inner and outer turning points, respectively, µ

is the reduced mass and Q is the aymptotic energy of the relative motion. Alpha-decay

studies with this model, using realistic potentials, have shown that the general trends

of decay constants are well described, but not the absolute values. Consequently, a

spectroscopic factor S was introduced which describes the preformation probability due

to nuclear structure effects, as the ratio of the experimental decay width Γexp over the

one-body decay width ΓG

Γexp = SΓG = SνP . (3.2)

3.1.2 Preformed Cluster Model

Buck et al. [11–14] proposed an extreme cluster model of α-decay. By using a few

parameters they successfully reproduced the experimental data of many nuclei [11–14].

The ground state of the parent nucleus in the cluster model is assumed to be an α-particle

orbiting the daughter nucleus [11–14]. The orbit is denoted by a large value of the global

quantum number G = 2n + L, where n is the node number of radial motion and L is

the angular momentum [11–14]. The Bohr-Sommerfeld quantization is used to describe

the motion of the α-particle in a given potential. It is assumed that the α-particle is

preformed in the parent nucleus and therefore a preformed factor is introduced.

In the cluster model the α-core potential [11–14] is

V (r) = VN(r) + VC(r) +
~

2

2µ

(L + 1
2
)2

r2
, (3.3)

where the nuclear potential VN(r) is given in various forms e.g. square well [11], cosh-

form [12, 13] and mixed Saxon-Woods form [14]. The “cosh” geometry of depth V0,

diffuseness a, and radius Rn is given by the relation

VN(r) = −V0
1 + cosh(Rn/a)

cosh(r/a) + cosh(Rn/a)
(3.4)
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and the Coulomb potential is taken to be of a spherical charge distribution (SCD) of

radius Rc (usually, Rc = Rn)

VC(r) =
ZαZde

2

r
for (r ≥ Rc),

=
ZαZde

2

2Rc

[

3 −

(

r

Rc

)2
]

for (r ≤ Rc) ,
(3.5)

where Zα and Zd are the charges of the α-particle and the core, respectively. A Langer

modified centrifugal barrier is used with L(L + 1) replaced by (L + 1
2
)2.

There are three classical turning points for the above potentials and they are denoted as

r1, r2 and r3 in order of increasing distance from the origin. Their values are obtained

by numerical solutions of the equation V (r) = Q, where Q is the energy appropriate to

the decay under consideration. The value of Q is deduced from the measured α-particle

kinetic energy by applying a standard recoil correction, as well as an electron shielding

correction in a systematic manner as given by equation (2.6) in Chapter 2. Hence,

Q =
Ap

Ap − 4
Eα + (65.3Z7/5

p − 80.0Z2/5
p )10−6 MeV, (3.6)

where Zp and Ap are the charge and mass numbers, respectively, of the parent nucleus.

The radius parameter R can be determined separately for each decay by applying the

Bohr-Sommerfeld quantization condition:

∫ r2

r1

dr

√

2µ

~2
[Q − VN(r) − VC(r)] −

(L + 1
2
)

r2
= (2n + 1)

π

2
= (G − L + 1)

π

2
. (3.7)

In semiclassical approximation, the α-decay width Γ [11–14] is given by

Γ = PF
~

2

4µ
exp

[

−2

∫ r3

r2

k(r) dr

]

. (3.8)

The normalization factor F is

F

∫ r2

r1

dr
1

k(r)
cos2

(
∫ r

r1

dr′k(r′) −
π

4

)

= 1 , (3.9)

where the squared cosine term may be replaced by 1
2

without significant loss of accuracy,

so that

F

∫ r2

r1

dr

2k(r)
= 1 , (3.10)
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with the wave number k(r) given by

k(r) =

√

2µ

~2
| Q − V (r) | . (3.11)

The α-decay half-life T1/2 is then related to the width by

T1/2 =
~ ln 2

Γ
. (3.12)

Buck et al. [11–14] obtained the values of the parameters in the above potential by

fitting the available data on elastic scattering of favored α-particle from nuclei. They

are V0 = 162.3MeV and a = 0.40 fm. The preformation factor of the α cluster is chosen

to be Pα = 1.0 for even-even nuclei, Pα = 0.6 for odd-A nuclei, Pα = 0.35 for odd-odd

nuclei. The values of the global quantum numbers are

G = 22 for N > 126,

G = 20 for 82 < N 6 126,

G = 18 for N 6 82,

(3.13)

where N is the parent nucleus neutron number.

3.2 Microscopic Models

The touchstone of all microscopic theories of α-decay is to reproduce the absolute decay

width. It is well known that the decay is a surface phenomenon, while the usual mi-

croscopic theories of nuclear structure only provide reliable description for the nuclear

interior.

3.2.1 Self-Consistent Microscopic Approach

In what follows we shall briefly, for convenience, recall the standard microscopic approach

(SMA) to compute the α-decay width for spherical nuclei.† The full exposition of this

†It was shown in [43] that for normal deformations 90% of the effect is given by the Coulomb barrier.
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method can be found in great number of articles (see e.g., [4, 17]).

As we mentioned in the introduction, the narrow resonance behaves almost like a bound

state with real energy. The wavefunction has a strongly decreasing behaviour inside

the barrier and can be normalized to unity in the internal region. In order to ensure

the continuity, the external outgoing spherical Coulomb wave should be multiplied by

some coefficient. It turns out from the continuity that this matching coefficient squared

is proportional to the decay width, or to the inverse half-life. Following the continuity

equation, the decay width is given by the relation

Γ ≡
∑

`

Γ` = lim
r→∞

~v
∑

`

|g`(r)|
2 , (3.14)

where v is the relative velocity between the emitted cluster and daughter nucleus. The

radial multipole component of the wavefunction is a spherical wave of the form g`(r)/r. In

the external region, beyond the touching configuration, the function g` obeys a stationary

Schrödinger equation

~
2

2µ

[

−
d2

dr2
+

`(` + 1)

r2

]

g`(r) + V (r)g`(r) = E g`(r) . (3.15)

This equation can be integrated backwards (in the stable direction) starting from large

distances, where V (r) becomes a purely Coulomb potential and the solution is a spherical

outgoing wave

lim
r→∞

[g`(r)] = C`[G`(kr) + iF`(kr)] (3.16)

where k is a complex momentum. As already pointed out, a narrow resonance has

a small imaginary part of E and consequently the regular Coulomb functions F`(kr)

have vanishing values inside the barrier. Therefore, the constants C` are practically real

numbers and |E| = Q. These numbers are determined by matching the outgoing wave

(3.16) with the internal solution at a given radius R near the touching configuration

g`(R)

R
= F`(R) . (3.17)

Here F` is the `th multipole component of the α-cluster formation amplitude. Taking

into account that limr→∞ |G`(kr) + iF`(kr)| = 1 one obtains from equations (3.14) and



Microscopic models 24

(3.16) that the decay width is proportional to the matching coefficient squared, i.e.

Γ` = ~v |C`|
2 . (3.18)

By using equation (3.17) this relation can be written as follows:

Γ` = ~v

[

RF`(R)

G`(kR)

]2

≡ P` γ2
` (3.19)

where we use the well-known factorization in terms of the penetrability and reduced

width, respectively

P` =
2kR

G2
`(kR)

γ` =

[

~
2

2µ

]
1

2

R
1

2F` . (3.20)

The last equality in (3.19) is the standard formula used for many years to estimate α-

decay widths [19]. The generalization for deformed nuclei within the coupled channel

approach is described in [61].

Delion and Săndulescu [62] have shown that the matching condition (3.17) should in

general refer to the logarithmic derivative which is expressed in the form

f`(R) ≡
g′

`(R)

g`(R)
=

[RF`(R)]′

RF`(R)
=

G′
`(kR)

G`(kR)
. (3.21)

It is easily seen that this is equivalent to the standard condition for a resonant state: the

phase shift defined by [62]

lim
r→∞

[g`(r)] = C`[G`(kr) sin δ` + iF`(kr) cos δ`] (3.22)

where k is a real momentum and has a sharp change by passing through δ` = π/2.

For this value the matching condition (3.21) (concerning only the irregular Coulomb

function) is fulfilled. The irregular Coulomb wave function is strongly dependent on the

Q-value therefore, the microscopic formation amplitude entering condition (3.21) should

follow this dependence.

The microscopic cluster formation amplitude (CFA) entering equation (3.17) for α-decay

process is defined by the following overlap integral

F`(R) =

∫∫∫

[Ψα(ξα)ΨA(ξA)Y`0(R̂)]∗ΨB(ξB) dξα dξA dR̂ (3.23)
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where ξ denotes the internal coordinates and R the centre of mass (cm) coordinate.

The α-daughter antisymmetrization can be neglected if the radius R is larger than the

touching radius Rc.

The details of how to estimate integral (3.23) are given in [44]. We mention here that the

most important ingredients are the single particle (sp) proton and neutron eigenfunctions.

They are obtained by using the harmonic oscillator (ho) diagolinalization basis with a

standard procedure

b =
M0ω

~
~ω = 41 A−1/3 (3.24)

where M0 is the nucleonic mass. By changing the proton and neutron coordinates to the

relative and cm cooridinates one can analytically compute the overlap integral (3.23) in

terms of Talmi-Moshinsky brackets.

In order to have a proper asymptotic behaviour at large distances (beyond the touching

configuration) it is necessary to include a large number of spherical shells in the basis.

But this can also be achieved by using a mixed non-orthogonal ho basis, thus reducing the

number of shells. For this purpose, Delion et al. [63] gave a more general representation

in terms of radial ho wavefunctions

u`(r) =
∑

2n1+`=N16N0

c
(1)
n1`R

(b1)
n1` (r) +

∑

2n2+`=N2>N0

c
(2)
n2`R

(b2)
n2` (r) . (3.25)

Here b1 is the ho parameter corresponding to a potential which fits the Wood-Saxon

interaction in the region of the discrete spectrum. On the other hand, a smaller b2

corresponds to a flatter ho potential that describes better the continuum part of the

spectrum as a quasicontinuum. These parameters are connected with the standard ho

parameter (3.24) by the multiplier fk,

bk = fkb k = 1, 2 . (3.26)

Here equation (3.25) is an ’effective’ representation of the continuum, consistent with

the used two-body residual interaction and the parameter b2 is chosen in such a way so

as to obtain a minimal amount of basis states reproducing the decay width.
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3.2.2 Microscopic Approach with Optical Model

Another simple microscopic decay theory (MAOM) was developed in [64], by extending

the basic formalism of [49] which unifies the advantages of the shell-model description

of nuclei involved with the optical model for the emitted cluster. This microscopic

description of the decay needs to know two sets of basic states: the states |ΦK〉 of the

initial system and the scattering states |ΦC
E〉 describing the relative motion in the final

channel.

If the states |ΦK〉 are approximated with the bound-shell model or the quasibound [64]

wavefunctions (in these cases K denotes a set of discrete quantum numbers), the scat-

tering states may be obtained by solving the integral equation

(E − H)|χC
E〉 =

∑

K

〈φK | H | χC
E〉|φK〉 (3.27)

where H is the Hamiltonian of the system, E is the total energy and C is the channel

index.

Equation (3.27), together with the orthogonality condition,

〈φK | χC
E〉 (3.28)

determine the decay width of the state

ΓK = 2π
∑

C

|〈φK | H | χC
E〉|

2 . (3.29)

The general solution of equation (3.27) may be written as

|χC
E〉 = |χC

E,0〉 −
∑

K

〈φK | H | χC
E〉|χ

C
E,K〉 (3.30)

where |χC
E,i〉 (i = 0, K) are solutions of the homogeneous and inhomogeneous equations

(E − H)







|χC
E,0〉

|χC
E,K〉







=







0

|φK〉







. (3.31)
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Using equations (3.28) and (3.30) in equation (3.29), one obtains for the width of one

level

ΓK = 2π
∑

C

∣

∣

∣

∣

∣

〈φK | χC
E,0〉

〈φK | χC
E,K〉

∣

∣

∣

∣

∣

2

=
∑

C

ΓCK . (3.32)

The partial width ΓCK can be reduced to the radial dependence by using a model Hamil-

tonian for the final state

H = HA−N + HN + VA−N,N , (3.33)

where HA−N and HN are Hamiltonians containing only the internal coordinates of the

fragments, and VA−N,N represents the kinetic and potential energies in the relative coor-

dinate.

In the channel region a similar seperation is performed for the wavefunctions |χC
E,0〉 and

|χC
E,K〉 and energy

|χC
E,0〉 = φ0

C(r)[|φA−N〉|φN〉|γLM〉] (3.34)

|χC
E,K〉 = φK

C (r)[|φA−N〉|φN〉|γLM〉] (3.35)

EA = EA−N + EN + ε (3.36)

where φi
C (i = 0, K) are solutions for the relative motion of the energy E that will be

determined, and φA−N , EA−N and φN , EN are the internal wavefunctions and energies

of the fragments, respectively.

Equations for the relative wavefunctions result by projecting equations (3.31) and (3.29)

on the channel wavefunctions [|φA−N〉|φN〉|γLM〉]:

[TA−N,N(r) + VA−N,N(r) − ε]







φ0
C(r)

φK
C (r)







=







0

FK
C (r)







. (3.37)

where the projection of the initial state |φK〉 (on the channel wavefunction) is the cluster

formation amplitude (CFA)

FK
C (r) = r〈φK|[|φA−N〉|φN〉|γLM(r)〉]〉 . (3.38)
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Finally, using in equation (3.29) equations (3.34), (3.35) and (3.38), one obtains

ΓCK = 2π

∣

∣

∣

∣

〈FK
C (r) | φ0

C(r)〉

〈FK
C (r) | φK

C (r)〉

∣

∣

∣

∣

2

. (3.39)

It should be noted that no channel radius was introduced in this formulation of α-decay.

The microscopic treatment of the emission rates starts with the calculation of the basic

states |φK〉 by diagonalizing a shell-model Hamiltonian in a truncated space, after which

the CFA is constructed from the orbitals outside the closed shells. After calculating

the CFA with the energy released and the potential interaction in the final state, the

differential equations (3.37) are solved numerically with the usual boundary conditions

for the scattering states (incoming waves in channel C and outgoing waves in all open

channels). No antisymmetry in the final channel is introduced. With such a simple

theory, the experimental α-decay half-lives are quite nicely reproduced [64].

3.2.3 Microscopic description and Superasymmetric Fission

Model

The method of calculating α-decay half-lives based on the double folding and SAFM mod-

els for the spherical [58, 65] and superheavy [59, 66] nuclei is presented in this section. The

calculated densities along with the energy and realisitc M3Y effective nucleon-nucleon

interaction is used in the double folding model to compute the respective interaction

energies between the α-daughter system (see Chapter 4) . These, in turn are used to

calculate the half-lives of the parent nuclei for the α emission in the SAFM using the

WKB approximation.

The total interaction energy V (r) between the α nucleus and the residual daughter

nucleus is equal to the sum of the nuclear interaction energy, the Coulomb interaction

energy and the centrifugal barrier. Thus

V (r) = VN(r) + VC(r) +
~

2

2µ

`(` + 1)

r2
, (3.40)
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where µ = mAαAd/A is the reduced mass, A is the mass number of the parent nucleus

and m is the nucleon mass measured in units of MeV/c2. The minimum centrifugal

barrier is determined from the spin parity conservation as shown in Chapter 2.

The α-nucleus Coulomb interaction potential VC(r) is either assumed to be of a point

charge distribution (PCD) ZαZde
2/r for all r or as a SCD (see equation (3.5)). The

touching radial separation Rc between the α-particle and the daughter nucleus is given

by Rc = cα + cd where cα and cd are obtained from equation (4.18). Although a more

realistic form of VC(r) can be obtained from DFM equation (4.2), both the PCD and

SCD are sufficient for most cases in α-particles decay. The α-nucleus nuclear potential

VN(r) is given by equation (4.25). The energy E that appears in equation (4.25) is the

energy measured in the centre of mass of the α-decay nucleus system which is equal to

the released energy Q.

The half-life T1/2 of the parent nucleus against its split into an α and a daughter in the

SAFM is given

T1/2 =
h ln 2

2Ev
(1 + eK) , (3.41)

where, within the WKB approximation, the action integral K of equation (3.41) is given

by

K =
2

~

∫ rb

ra

{2µ[V (r) − Ev − Q]}1/2 dr (3.42)

where ra and rb are the inner and outer turning points, respectively, determined from

the equations

V (ra) = Q + Ev = V (rb) . (3.43)

The Q value for the α-decay can be obtained either from the kinetic energy (corrected

for the recoil) see eq. (3.6) or from the binding energies of the α nuclei, daughter nuclei

and the parent nuclei. Ev(= 1/2~ω = 1/2hv) is the zero point vibrational energy, where

v is the assualt frequency, and is the parameter appearing in SAFM. The zero point

vibration energies for the α decays which include the shell and pairing effects are given
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as

Ev = 0.1045 Q for even(Z) – even(N) parent nuclei

= 0.0962 Q for odd(Z) – even(N) parent nuclei

= 0.0907 Q for even(Z) – odd(N) parent nuclei

= 0.0767 Q for odd(Z) – odd(N) parent nuclei

(3.44)

The results of the calculations using M3Y and DDM3Y supplemented by a pseudo-

potential are in excellent agreement over a wide range of experimental observed data

spanning about thirty-five orders of magnitude [58].
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Our calculations
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Chapter 4

Methods of Calculation

As already mentioned in Chapter 1, since the α resonances are extremely narrow and

correspond to half-lives that vary over a wide range ∼ 10−6 − 1017 s, it is difficult to

localize the corresponding S-matrix poles numerically. Therefore, in our work, for calcu-

lating Γ we shall use three different methods based on three theoretical models described

in Chapter 3. Our choice of the models is determined purely on the ground of numerical

computation and conveniency. The methods are labeled as Methods A, B and C:

Method A. The quasi-bound state wave function approach (QSWA).

Method B. The superasymmetric fission model, SAFM and DFM.

Method C. The quasiclassical approximation, QCA and DFM.

The SAFM and QCA have been described in section 3.2.3 and section 3.1.2, respectively.

The QSWA method is described below.

To keep our calculations concise and simple, we apply the above methods to the region of

nuclei for α-decays which proceed 100% to the daughter ground state, with the exception

32
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of 217Th, and for which the spins of both the initial and final states are known. We

compare our alpha decay half-lives calculations with measured values for 13 even-even

nuclei and three odd-mass nuclei. We have restricted attention to mostly even-even

parent nuclei for two main reasons. On the one hand, we can be sure that we are dealing

with pure L = 0 transitions. On the other hand, the ground state of the daughter nucleus

is always the most populated following the decay, and is a natural candidate for the core

in the DFM model. Both these simplifications are absent when considering the decays

of odd-mass nuclei. To this end, we carefully chose the odd-A decay data to include

in our set. Furthermore, we also use the odd-mass parent nuclei to test the extent of

application of our theoretical models. In addition, from the WKB action integral, it is

known that the barrier penetration depends exponentially on the Q-value, therefore we

chose data whose experimental ground state masses are accurately known for correct

determination of the Q-value.

In Table 4.1, we show all the parent nuclei for which we made calculations and the data

used. We chose a sample of 16 α emitting nuclei, in different regions of the periodic table,

for which reliable data exist. The radial quantum number N is guessed by following the

procedure given by Wildermuth et al. [74] for the ground state to ground state transitions.

The choice of the global quantum number G and minimum angular momentum lmin are

as described in section 3.1.2 and Chapter 2. The experimental data T expt
1/2 are taken from

reference [56].

We now describe the double folding potential formalism since it plays a central and

crucial role in the methods we are using in this work.

4.1 The Double Folding Model

The double folding model (DFM) was applied to calculate the nucleus-nucleus potential.

This interaction is based upon a realistic G-matrix [67]. This model has been widely used
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Table 4.1: Alpha decay data used in our calculation. The nuclear spin J π of the parent and

daughter nuclei has been added.

System Jπ N G lmin T expt
1/2 (s)

144Nd → 140Ce + α (0+,0+) 10 18 0 (7.222±0.505)×1022

146Sm → 142Nd + α (0+,0+) 10 18 0 (3.248±0.158)×1015

150Gd → 146Sm + α (0+,0+) 11 18 0 (5.645±0.252)×1013

152Gd → 148Sm + α (0+,0+) 11 18 0 (3.406±0.252)×1021

174Hf → 170Yb + α (0+,0+) 11 18 0 (6.307±1.261)×1022

190Pt → 186Os + α (0+,0+) 11 18 0 (2.050±0.095)×1019

208Po → 204Pb + α (0+,0+) 12 20 0 (9.139±0.006)×107

212Pb → 208Po + α (0+,0+) 11 22 0 (2.990±0.020)×10−7

216Rn → 212Po + α (0+,0+) 12 22 0 (4.500±0.020)×10−5

224Ra → 220Rn + α (0+,0+) 12 22 0 (3.162±0.020)×105

232Th → 228Ra + α (0+,0+) 12 22 0 (4.431±0.020)×1017

240Cm → 236Pu + α (0+,0+) 12 22 0 (2.345±0.020)×106

256Fm → 252Cf + α (0+,0+) 12 22 0 (1.167±0.020)×105

217Th → 213Ra + α (9/2+,1/2-) 12 22 5 (2.520±0.020)×10−4

227Ac → 223Fr + α (3/2-,3/2-) 12 22 0 (4.975±0.003)×1010

229U → 225Th + α (3/2+,3/2+) 12 22 0 (1.740±0.020)×104

in the last 20 years to calculate the first-order term of the real part of the microscopic

optical potential for elastic and inelastic scattering of α-particles and heavy ions [68]. In

practice, the strength of the DFM potential is often renormalized by a factor (expected

to be greater than unity) to give the best fit to experimental scattering data. This

factor is attributed to the higher-order terms which cannot be calculated with the DFM.

Although detailed descriptions of the DFM can be found in many papers (see, e.g.,

Refs [69, 70]), in order to make this work self-contained we present in the next section a

short description of the main formulae and parameters used.
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4.1.1 Formalism of the DFM

The interaction potential between two nuclei is, generally, written as

U(R) = UC(R) + UN (R) + Urot(R), (4.1)

where UC is due to the electrostatic (Coulomb) interaction, UN is the strong (nuclear)

interaction, and Urot is the rotational term. This last term has a very simple structure,

and since the barriers required for α-decay is provided by the Coulomb barrier, it will

not be considered here.

The Coulomb energy for two spherical nuclei can be written as

UC(R) =

∫

dr1

∫

dr2ρ1ch(r1)vC(s)ρ2ch(r2). (4.2)

Here ρ1ch and ρ2ch are the charge densities of the two interacting nuclear fragments

i.e. α-particle and daughter nuclei, and vC is the Coulomb interaction. The vector

s = R + r2 − r1 corresponds to the distance between two interacting points of the α-

particle and daughter nucleus, whose radius vectors are r1 and r2, respectively. R denotes

the vector joining the centers of mass of the two nuclei. This geometry is illustrated in

Fig. 4.1. The nuclear part of the potential, UN , consists of two terms, the direct UND

term and the exchange UNE term, which are generally energy dependent. The exchange

term is introduced to properly account for the antisymmetrization of the individual

internal wavefunctions under the interchange of nucleons between the two interacting

nucleons. Interchanging the spatial positions of the two nucleons affects the position of

the centres of mass of the two nuclei. The corresponding exchange contribution UNE to

the potential becomes nonlocal. The direct part of the interaction between two colliding

nuclei has a similar form to the equation describing the Coulomb interaction:

UND(R, E) = g(E)

∫

dr1

∫

dr2ρ1A(r1)vD(s)ρ2A(r2). (4.3)

Here ρ1A and ρ2A are the nucleon densities of the colliding nuclei, vD is the direct part of

the nuclear interaction between two nucleons (NN interaction), and g(E) is a multiplier
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Figure 4.1: Geometric parameters for the Double Folding Potential.

that depends upon the energy per nucleon mass E = Elab/AP . The exchange part

involves nondiagonal elements of the density matrix [69]:

UNE(R, E) = g(E)

∫

dr1

∫

dr2ρ1A(r1; r1 + s)vE(s)ρ2A(r2; r2 − s)exp(iks/µ). (4.4)

The wave number k associated with the relative motion of the colliding nuclei is given

by

k2(R) =
2µ

~2
[Ec.m. − U(R)], (4.5)

where the reduced mass number µ = A1A2mn/(A1 + A2), and mn is the bare nucleon

mass.

Two parametrizations of the nucleon-nucleon interaction in the literature are based,

respectively, on the Reid and Paris [67, 69] interactions. These comprise a sum of Yukawa-

type terms, known as M3Y effective nucleon-nucleon interactions, comprising both direct
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vD and exchange vE terms:

vD(s) =

3
∑

i=1

GDi[exp(−s/ri)]/(s/ri) , (4.6)

vE(s) =
3

∑

i=1

GEi[exp(−s/ri)]/(s/ri) . (4.7)

Here subscript D refers to the direct part of NN interaction and the subscript E refers

to the finite-range exchange part of the NN interaction. Each term is determined by the

radius parameters ri and the coefficient GDi and GEi. Instead of a finite-range exchange

NN interaction, one of zero-range was used in early works [68]:

vEδ(s) = GEδδ(s). (4.8)

The function g(E) which defines the energy dependence of the nucleus-nucleus potential

in Eqs. (4.3) and (4.4) reads [69]: g(E) = 1 − kvE, where E is the energy per nucleon.

The values of all the coefficients, namely ri, GDi, GEi, GEδ and kv, are collected in Ta-

ble 4.2. The choice of all coefficients above is beyond the scope of this work; we simply

follow the prescriptions available in the literature.

It is widely known that the original density-independent M3Y interaction failed to sat-

urate cold nuclear matter. In order to obtain the correct value of the central nucleon

density and nucleon binding energy several versions of a density-dependent M3Y inter-

action have been proposed (see e.g., Ref. [71]). A generalized density dependence of the

M3Y interaction was introduced in Ref. [71]. It enters as a multiplier F (ρDA, E) for the

density-independent NN interaction. The function F is given by

F (ρDA, E) = CρDA
{1 + α(E) exp(−β(E)ρDA) − γ(E)ρDA} . (4.9)

The choice of the nucleon density ρDA is specified below. If the M3Y-Paris NN inter-

action is used, this density dependence results in the correct saturation binding energy

of about 16 MeV/nucleon and a nuclear density of 0.17 fm−3, for several sets of coeffi-

cient that are presented in Table 4.3. The different parameter sets in Table 4.3 result

in different values of nuclear matter incompressibility, ranging from 176 MeV for the
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Table 4.2: The coefficients of the Reid and Paris M3Y interactions.

Coefficient Reid Paris

GD1 (MeV) 7999 11062

GD2 (MeV) -2134 -2537.5

GD3 (MeV) 0 0

GE1 (MeV) 4631.4 -1524.25

GE2 (MeV) -1787.1 -518.75

GE3 (MeV) -7.847 -7.847

r1 (fm) 0.25 0.25

r2 (fm) 0.40 0.40

r3 (fm) 1.414 1.414

GEδ (MeV fm3) -276 -592

kv (MeV−1) 0.002 0.003

DDM3Y1 interaction up to 270 MeV for the BDM3Y1 interaction. The original density-

independent M3Y NN forces correspond to parameter set DD0 in this table. The use of

density-dependent forces means that the bare M3Y direct and exchange NN interactions,

vD(s) and vE(s), in Eqs. (4.3) and (4.4) should be replaced by

ϕD(E)(s, ρDA) = F (ρDA, E)vD(E)(s) . (4.10)

The nucleon density ρDA appearing in Eqs. (4.9) and (4.10) has to be specified before any

calculations of the double folding potential can be performed. In Eq. (4.9) for the direct

forces, ρDA is taken to be equal to ρ1A(r1)+ρ2A(r2) [67]. While in Eqs. (4.10), describing

the exchange forces, ρDA = ρ1A(r1 + s/2) + ρ2A(r2 − s/2) [69, 71]. This corresponds to

the density at the midpoint between two interacting nucleons and is found to have some

physical justification.
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Table 4.3: The coefficients of the generalized density-dependent M3Y NN interactions of

Eq. (4.9), compiled from Ref. [71].

DD label Interaction C α β(fm)−3 γ(fm)−3

0 D independent 1 0.0 0.0 0.0

1 DDM3Y1 0.2963 3.7231 3.7384 0.0

2 CDM3Y1 0.3429 3.0232 3.5512 0.5

3 CDM3Y2 0.3346 3.0357 3.0685 1.0

4 CDM3Y3 0.2985 3.4528 2.6388 1.5

5 CDM3Y4 0.3052 3.2998 2.3180 2.0

6 CDM3Y5 0.2728 3.7367 1.8294 3.0

7 CDM3Y6 0.2658 3.8033 1.4099 4.0

8 BDM3Y1 1.251 0.0 0.0 1.7452

4.1.2 Density Dependent and α-nucleus Potential

Although, the above description for generalized DFM had an undisputed success for

heavy ions reactions with the parameters given in Tables 4.2 and 4.3, we use in our study

the work of Chaudhuri [72], which is well suited for α-nucleus interactions as it accounts

for the higher order exchange effects and the Pauli blocking correctly. In that work the

M3Y-Reid effective nucleon-nucleon interaction supplemented by a density-dependent

term was used. The resultant model (called DDM3Y) gave a consistent picture of elastic

scattering.

For the density-independent part, the direct term of Eq. (4.3) and the delta simulated

form of the exchange term Eq. (4.8) were used. This is known as a zero-range pseudopo-

tential [68]. Equation (4.8) then becomes

vEδ(s) = J00(E)δ(s) , (4.11)
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with

J00(E) = −276

(

1 − 0.005
E

Aα

)

(MeV fm3) . (4.12)

In the case of the density-dependent part, Eq. (4.9) was factorized into a product function

consisting of the density functions of the target and projectile term [see [72]], i.e.

t(ρ1, ρ2, E) ≡ F (ρDA, E) = Cf(ρ1, E)f(ρ2, E) , (4.13)

and the function f(ρi, E), i = 1, 2 is given by

f(ρi, E) = 1 − β(E)ρ
2/3
i i = 1, 2 . (4.14)

This assumption is based on the insensitivity of the density parameters to the nature of

the projectile.

In the energy regime 100 MeV to 172 MeV, the typical potential depth of α-decay, by

fitting elastic alpha scattering data, the strength parameter C = 1.3 and the density

parameter β = 1.01 were obtained. It should, however, be noted that other values of C

and β are possible.

4.1.3 Charge and Nucleon Density Distributions

Finally, the densities appearing in Eq. (4.3) and (4.4) are matter densities (sometimes

called “point densities”). However, densities derived from electron scattering are charge

densities and must be corrected for the nucleon charge distribution before they are

used. This is conveniently done in momentum space as suggested and implemented

by Cook [73]. For simplicity, if it is assumed that the neutron density ρn is proportional

to the proton density ρp: ρn = (N/Z)ρp as is often done for nuclei with N ≈ Z; then

the radii of the proton and charge distributions are related by [68]

〈r2〉p ≈ 〈r2〉ch − 0.76 + 0.11(N/Z) . (4.15)
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To keep our calculations simple and numerically convenient, we have used model densities

given by [59, 65, 72]. Thus for the α-particle a Gaussian parametrization given by

ρ1(r) = 0.4229 exp(−0.7024r2) , (4.16)

whose volume integral is equal to Aα (= 4) is used. The density distribution function ρ2

used for the targets (i.e. the daughter nuclei) is chosen to be of the spherically symmetric

Woods-Saxon form given by

ρ2(r) =
ρ0

1 + exp((r − c)/a)
, (4.17)

where

c = rρ(1 − π2a2/3r2
ρ), rρ = 1.13A

1/3
d and a = 0.54 fm , (4.18)

and the value of ρ0 is fixed by equating the volume integral of the density distribution

function to the mass number Ad of the residual daughter nucleus.

4.2 Decay Widths

4.2.1 Method A: Quasi-bound state wavefunction approach

In the usual microscopic approach, the calculation of the decay width [Eq.(3.18)] requires

knowledge of the (quasistationary) initial state wave function of the parent nucleus, the

final state wave functions of the product nuclei, and the interaction potential.

This isolated quasistationary state Φ is obtained by integrating the radial Schrödinger

equation given by equation (3.15) numerically. If Coulomb forces are included, the

solution to the Schrödinger equation (for large r) is a linear combination of the regular

and irregular Coulomb functions which look like, respectively,

F (z) ∼ sin
(

z − η ln 2z − `
π

2
+ σ`

)
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and

G(z) ∼ cos
(

z − η ln 2z − `
π

2
+ σ`

)

. (4.19)

Here σ` stands for the usual Coulomb phase shift and η for the Sommerfeld parameter.

Clearly, the quasibound resonant state wavefunction behaves like G(r) asymptotically,

which is one of the boundary conditions. The other boundary conditions employed are:

• rΦ → 0 as r → 0, and

• Φ shall have a specified number of internal nodes.

It is not possible to satisfy all these conditions with any arbitrary nuclear potential

V (r). The parameters of the potential must be varied. One determines a normalized

resonant state in the internal region of the one-body potential V (r) (see e.g. Eq. (3.40))

until the external turning point by using the standard matching procedure as described

in section 3.2.1. In this work, the nuclear potential V (r) is given as a simple nuclear

optical potential of a Woods-Saxon type. Since in α-decay there is no absorption, we

completely ignore the imaginary part of the optical potential making the nuclear potential

real. For fixed Woods-Saxon radius and diffuseness, and for energy E(= Q) and quantum

numbers n`j of the quasibound state, the depth of the nuclear potential is iteratively

adjusted until the inner and outer wave functions are smoothly connected.

In this method, we solve equations (3.15), (3.16) and (3.17) for the outgoing Coulomb

amplitude C`. The radial wave function of the α-particle in the quasibound state is given

by

Φn`j(r) =
φn`j(r)

r
. (4.20)

The quasibound α-particle wave function φn`j(r) is found by joining smoothly the wave

function from the interior region with the outgoing Coulomb wave function at large

distance.
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To determine the amplitude multiplying the outgoing Coulomb wave, instead of match-

ing the outgoing Coulomb wave function with the α-cluster formation amplitude as is

normally done in standard microscopic approach (see Eq. (3.17)), we replace the right-

hand side of equation (3.17) with the internal resonant wave function obtained by solving

equation (3.15) i.e.

φn`j(R) = C`[G`(kR) + iF`(kR)], (4.21)

using equation (4.20) in equation (4.21) and solving for C` we obtain

C` =
RΦn`j(R)

G`(kR) + iF`(kR)

therefore

|C`|
2 =

R2Φ2
n`j(R)

G2
`(kR) + F 2

` (kR)
. (4.22)

The decay width is now obtained from equation (3.19) by substituting equation (4.22)

i.e.

Γ` = ~v
R2Φ2

n`j(R)

G2
`(kR) + F 2

` (kR)
. (4.23)

Since F`(kr) � F`(kr) inside the barrier, further approximation is justified, namely,

Γ` = ~v

[

RΦn`j(R)

G`(kR)

]2

(4.24)

The model parameters employed are specified and discussed in section 4.3.

4.2.2 Method B: SAFM and DFM

The half-lives of the parent nuclei within the framework of the SAFM as described

in section 3.2.3 requires the evaluation of the microscopic nuclear interactions of the

α-particle and daughter nuclei using the DFM formalism.

The total interaction potential used in this method is given by equation (3.40). In

section 3.2.3, a detailed description of the method and formulae needed within this
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framework have been presented.

Below we summarized the DFM formulae and data appropriate for our work. The M3Y

effective interaction with the Reid parameters we used in this dissertation is very popular.

They are:

UN (R) = λ0

∫∫

ρ1(~r1)ρ2(~r2)v[|~r2 − ~r1 + ~R| ≡ s] d3r1 d3r2 ,

v(s, ρ1, ρ2, E) = uM3Y (s, E) t(ρ1, ρ2, E) ,

uM3Y (s, E) = A
e−β1s

β1s
+ B

e−β2s

β2s
+ J00(E)δ(s) ,

t(ρ1, ρ2, E) = C(1 − β(E)ρ
2/3
i )(1 − β(E)ρ

2/3
i ) ,

(4.25)

with λ0 of order unity and

A = GD1, B = GD2, J00 = GEδ, β1 = 1/rv1, β2 = 1/rv2

C = 1.0, β(E) = 1.6.

Other values of C and β(E) are possible. For optimum fit to experimental data, these

values of C and β(E) must be chosen carefully (see section 5.2.1).

In the present calculation, the double folding potential is calculated using the computer

code DFPOT [73].

A typical situation of the total interaction (sum of nuclear, coulomb and centrifugal

potentials) used in this work is shown in Fig. 4.2

4.2.3 Method C: QCA and DFM

For low-lying metastable states, the quasiclassical method (WKB) is expected to work

very well. The quasiclassical expressions for Γ can be derived from the two-potential

approach [15]. In particular, the decay width is given in equation (3.8). For the nuclear

interaction, we use the same DFM potential summarized in Method B (see Eq. (4.25)),

which is different from the usual PCM method. The Coulomb potential is taken in

the usual form of either PCD or SCD where the Coulomb radius RC has been chosen

identically with the rms radius of the folding potential VN(r).
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Figure 4.2: A typical DF potential for the system 216Rn → 208Po + α. The nuclear DFM

potential VN , the Coulomb VC and the total interaction V are shown.

In this work, we calculate the α-decay widths and half-lives of different α emitters using

equations (3.8), (3.10), (3.11) and (3.12). The Q-value and the preformation factor,

which are of optimum importance in this analysis, are not taken in the usual manner of

the PCM. It must be pointed out that the preformation factor should be smaller than

unity because the simple two-body model assumes that the ground state wave function

of the α emitter contains a pure α-daughter configuration [23]. The decay width in

this model therefore always overestimates the experimental decay width. Consequently,

we determine the preformation factor P from the ratio between the calculated and the

measured half-lives [56].
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4.3 Model parameters

The systems we consider in this work are chosen based on availability of the experimental

ground state masses for the parent and daughter nuclei. This set was selected because

there is no uncertainty in the determination of the released energy Q which is one of the

crucial quantities for the quantitative prediction of decay half-lives. In all the Methods,

the Q-value of the system is determined using Eq. (2.4), the masses are taken from the

mass excess table of Audi and Wapstra [75].

In Method A, the α optical potential VN was approximated by an average Woods-Saxon

(WS) field, containing only a central term. The WS form factor is defined by the radius,

R0 = r0A
1/3, and diffuseness a. It is well known that considerable ambiguities exist

in the values of the parameters for the α-nucleus optical potentials. Several potentials,

which give the same phase shifts, will also give the same scattering cross section.

Two separate sets A and B of WS parameters [45, 76] have been considered. The sets

were obtained after detailed analyses of the scattering of α-particle and rigorous study

of these ambiguities. Since the imaginary parts are not needed for our present purpose,

only the real parameter values of the two sets are listed in Table 4.4. The depth of the

potential, V0, has not been taken from Refs. [45, 76], but rather adjusted to reproduce

the experimental energy of a quasistationary state with a specified number of nodes.

The Coulomb potential equation (3.5) is used. The Coulomb radius RC is given by

rcA
1/3, the radius parameter rc is also shown in Table 4.4.

The parameters adopted for both Methods B and C have already been explained and

explicitly discussed in section 4.2.2.
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Table 4.4: Woods-Saxon parameters (r0 and a) of α-nucleus potential used in the calculation.

Coulomb radius is rc.

Parameter Set A Set B

r0 (fm) 1.342 1.454

a (fm) 0.566 0.560

rc (fm) 1.3 1.3



Chapter 5

Results: Analysis and Discussion

The effectiveness of an alpha decay theory depends on how well it can reproduce or

predict the decay rates with the least number of adjustable parameters, when Q-value

and the orbital quantum number ` are known.

The results presented here are based on the three different models of Chapter 4 applied

in calculating the decay widths and half-lives of α-nucleus systems.

As already mentioned, our choice of the models is purely based on numerical computa-

tion, conveniency and least number of adjustable parameters.

5.1 Method A: Numerical results

We first perform calculation based on Method A. The α-nucleus optical potentials for two

of the systems considered: 212Po and 144Nd are shown in Fig. 5.1 using the parameters

of Set A.

The calculated wave function Φn`j(r) of the systems are shown in Fig. 5.2 and Fig. 5.3.

As expected, in the interior region (r . 10) fm the wave functions have 11 and 10

48
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Figure 5.1: The upper and lower figure show the optical potential VN and the Coulomb

interaction VC for the nuclei 212Po and 144Nd, respectively. The Q-values are also included.

nodes, respectively. The outer turning point is at about 27 fm and 87 fm for Po and Nd,

respectively. This results in a reduction of the wave function in the barrier region by

about 7 orders of magnitude for 212Po and about 18 orders of magnitude for 144Nd. In

the outer region, outside the classical outer turning point, the characteristic oscillatory

behaviour of the Coulomb function is seen in both cases.

Figures 5.4 and 5.5 illustrate the radial dependence of the three terms involved in cal-

culating the decay width of equation (4.23): the normalized quasibound wave function,
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Figure 5.3: Same as in Fig. 5.2 but for 144Nd.
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Φn`j(r), the regular and irregular Coulomb function, F`(r) and G`(r). The dependence

of the Coulomb penetration factor P` on the radius is illustrated on Fig. 5.6 alongside

the one-body reduced width γ`. The tremendous dependence of γ` on r is somewhat

compensated by the corresponding dependence of P` on r. The main contribution to

N = 11

212
Po

1

0.5

0

-0.5

-1

N = 10

144
Nd

r (fm)

φ
n
lj
/r

(f
m

−
3
/
2
)

15.010.05.00.0

1

0.5

0

-0.5

-1

Figure 5.4: The normalized quasibound radial wave function Φn`j(r) for 212Po and 144Nd as

a function of r. The number of nodes N for each nuclei, are indicated.

the decay width is seen to come from the surface region, where P` and the reduced width

γ intersect and their product is maximum. This is seen to occur around the nuclear sur-

face Ri (see below). This is because the Coulomb function is vanishingly small at small
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Figure 5.5: The Coulomb wave functions: regular F`(r) and irregular G`(r) for 212Po and

144Nd as a function of r. F` is vanishingly small at small r while the usual high values for G`

is seen.

r values, while the wave function of the quasistationary state decreases exponentially in

the barrier region (cf. Fig. 5.2). The α-decay rate is thus expected to depend rather

weakly on the detailed structure of the wave function in the interior part of the nucleus,

while surface properties may be important.

The depths of the optical potential obtained after adjusting to the energy of the α-

particle and the specified number of nodes are shown in Table 5.1. As seen in Table 5.1,

the outer classical turning points Ro are identical for the systems due to the fact only

Coulomb interaction remains for large radial distances. The inner turning point Ri

depends strongly on the potential depths and the number of nodes as is seen in Table 5.1,

it is therefore very important that the matching point of the resonant wave function in

the internal and outer regions be chosen carefully. In this work, we match the wave

function at the inner turning point, which is presumably near the touching configuration

as explained in section 3.2.1. It is reasonable to suppose that alpha formation more

readily occurs in the surface region than in the nuclear interior. This reason is exemplified

in Fig. 5.6.
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Figure 5.6: Coulomb penetration factor P`(r), formation probability γ2
` and their product

γ2
` P` for the transitions 144Nd → 140Ce + α and 212Po → 208Pb + α for the two sets of

parameters A and B.

The half-lives of our systems calculated within the framework of Method A are given in

Table 5.2. Comparison between the calculated and measured decay widths for the two

sets are presented in Table 5.3. If one is satisfied with the order-of-magnitude estimate,

the paramater Set A is found to be superior to Set B. In all the 16 decays examined the

calculations reproduced the half-lives to within a factor 27 or better with the exception

of the nuclei 208Po and 217Th. The reason for this exception is due to the effects of

proton and neutron shell closures on α-decay half-lives [11]. Also, for the case of 217Th,

the effect of angular momentum on the outside solution is such as to decrease Γ, since

`(` + 1)/r2 is considered as an addition to the barrier, making it higher and thicker.
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Table 5.1: Comparison of the optical potential depths, the inner and outer classical turning

points of the two parameter sets A and B of Table 4.4.

Nucleus Node Set A Set B

N V0 Ri Ro V0 Ri Ro

144Nd 10 150.57 8.071 87.666 132.91 8.606 87.666

146Sm 10 149.84 8.100 68.324 132.28 8.640 68.324

150Gd 11 148.41 8.149 63.564 131.08 8.695 63.564

152Gd 11 148.09 8.160 80.987 130.87 8.708 80.987

174Hf 11 160.60 8.500 80.801 141.86 9.076 80.801

190Pt 11 155.10 8.680 67.352 137.18 9.279 67.352

208Po 12 147.90 8.909 45.276 130.86 9.533 45.276

212Pb 12 140.99 9.073 26.372 124.32 9.712 26.372

216Rn 12 159.68 9.163 29.499 140.60 9.800 29.499

224Ra 12 160.77 9.167 42.781 141.94 9.808 42.781

232Th 12 160.92 9.199 62.070 142.36 9.845 62.070

240Cm 12 158.03 9.304 42.314 139.78 9.963 42.314

256Fm 12 153.43 9.465 40.162 135.81 10.142 40.162

217Th 12 151.22 9.136 27.008 133.12 9.779 27.008

227Ac 12 143.51 9.090 49.688 127.22 9.735 49.688

229U 12 142.60 9.128 40.026 126.36 9.778 40.026

The effect of this nonzero ` on the interior solution is determined through the increment

of the wave number with `. This increase indicates a greater kinetic energy inside the

nucleus and hence more frequent collisions with the surface. This situation is reflected

in the reduced value of the one-body reduced width (cf. Fig. 5.6).

Unfortunately, none of the paramater sets give completely satisfactory results. In order

to find useful parameters for VN , we have to make a more systematic parameter search,



Results 55

Table 5.2: Alpha decay half-lives calculated within Method A.

Parent Set A Set B

Z A Q (MeV) T calc
1/2 (s) T calc

1/2 (s) T expt
1/2 (s)

60. 144. 1.9052 1.541×1022 2.429×1021 7.219×1022

62. 146. 2.5289 3.495×1014 5.427×1013 3.248×1015

64. 150. 2.8089 6.603×1012 9.860×1011 5.646×1013

64. 152. 2.2046 5.545×1020 7.971×1019 3.406×1021

72. 174. 2.4948 6.347×1022 7.534×1021 6.307×1022

78. 190. 3.2495 5.025×1017 5.272×1016 2.050×1019

84. 208. 5.2155 7.056×105 7.002×104 9.139×107

84. 212. 8.9541 1.138×10−8 1.409×10−9 2.990×10−7

86. 216. 8.2001 3.461×10−6 3.968×10−7 4.500×10−5

88. 224. 5.7889 2.538×104 2.370×103 3.162×105

90. 232. 4.0827 6.557×1016 5.236×1015 4.431×1017

96. 240. 6.3972 1.094×105 8.720×103 2.345×106

100. 256. 7.0269 5.687×103 4.210×102 1.167×105

90. 217. 9.4240 3.027×10−3 6.697×10−2 2.520×10−4

89. 227. 5.0422 1.878×109 1.597×108 4.975×1010

92. 229. 6.4752 1.437×103 1.245×102 1.740×104

taking configuration mixing into account. However, it should be noted that both poten-

tial sets give the same penetrability but they give different values for the α width.

Variation of the optical model parameters within their uncertainties affects the predicted

half-lives by not much than a factor of 7 to 9. The sensitivity of T1/2 to the details of

the optical α potential has been known for very long time [45]. It is well known that

more than 85–94% of the penetrability, P`, comes from the region r > rB, the Coulomb

barrier radius, which is almost solely determined by the combined Coulomb + centrifu-
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Table 5.3: Alpha decay widths calculated in the QSWA method with the two parameter Set

A (ΓA) and Set B (ΓB), compared with the experimental data (Γexp)

Parent Set A Set B Expt.

Z A ΓA (MeV) ΓB (MeV) Γexp (MeV) ΓA/Γexp ΓB/Γexp

60. 144. 2.960×10−44 1.878×10−43 6.320×10−45 4.68 29.72

62. 146. 1.305×10−36 8.407×10−36 1.405×10−37 9.29 59.85

64. 150. 6.910×10−35 4.627×10−34 8.082×10−36 8.55 57.25

64. 152. 8.227×10−43 5.723×10−42 1.340×10−43 6.14 42.72

72. 174. 7.188×10−45 6.056×10−44 7.234×10−45 0.99 8.37

78. 190. 9.080×10−40 8.653×10−39 2.226×10−41 40.79 388.76

84. 208. 6.466×10−28 6.516×10−27 4.992×10−30 129.52 1305.2

84. 212. 4.008×10−14 3.239×10−13 1.526×10−15 26.27 212.29

86. 216. 1.318×10−16 1.150×10−15 1.014×10−17 13.00 113.41

88. 224. 1.798×10−26 1.925×10−25 1.443×10−27 12.46 133.41

90. 232. 6.958×10−39 8.713×10−38 1.030×10−39 6.76 84.62

96. 240. 4.172×10−27 5.232×10−26 1.946×10−28 21.44 268.89

100. 256. 8.023×10−26 1.084×10−24 3.908×10−27 20.53 277.26

90. 217. 1.507×10−21 6.812×10−21 1.811×10−18 0.008 0.038

89. 227. 2.429×10−31 2.857×10−30 9.171×10−33 26.49 311.54

92. 229. 3.175×10−25 3.664×10−24 2.622×10−26 12.11 137.93

gal interaction. Consequently, a rough estimate of T1/2 can be obtained by ignoring the

nuclear structure details.
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5.2 Method B and C: Numerical results

The DFM potential plays a central role in Methods B and C. The results of Eq. (4.25)

are used in determining the nuclear interaction.

5.2.1 Method B: SAFM and DFM

We next perform calculations based on the framework of the SAFM as described in sec-

tion 3.2.3. We test this model using two different forms of the Coulomb interaction i.e.

point (PCD) and spherical charge distributions (SCD). In addition, the effective inter-

actions of M3Y and DDM3Y with zero-range psuedo-potential are used for the nuclear

interaction.

The WKB action integral K (3.42) is determined by using simple Simpson’ rule. After

the integral has been evaluated, the half-lives of the α-decays is found by using equa-

tions (3.41) and (3.44). Following Basu’s suggestion [77], the strength parameter C and

the density-dependent parameter β appearing in equation (4.25) have been kept fixed

at 1.0 and 1.6, respectively. This results from the optimum fit on the experimental data

on α-decay. The zero-range pseudopotential J00(E) is also practically independent of

energy for the decay process and has been taken as -276 MeV.fm3.

The results of the calculations are summarized in Tables 5.4 and 5.5 for SCD and PCD,

respectively. We plot the graphs of experimental data for logarithmic α-decay half-

lives as a function of the mass numbers of the parent nuclei along with the results of the

present calculations. Fig. 5.7 shows the distribution obtained using the SCD interactions.

In the figure the open circles depict the experimental data while the continuous line

with solid circles represents the corresponding calculations using the DDM3Y effective

interaction and the dotted line represents calculations using the M3Y effective interaction

supplemented by a zero-range pseudo-potential.



Results 58

Table 5.4: Comparison between calculated α-decay half-lives using spherical charge distri-

bution (SCD) for the Coulomb interaction and using effective interactions M3Y and DDM3Y

with zero-range pseudo-potential for the nuclear interaction.

Theoretical value Experimental value

Parent M3Y DDM3Y

Z A Q (MeV) T calc
1/2 (s) T calc

1/2 (s) T expt
1/2 (s)

60. 144. 1.9052 5.786×1021 8.383×1021 7.219×1022

62. 146. 2.5289 2.372×1014 3.619×1014 3.248×1015

64. 150. 2.8089 5.371×1012 8.210×1012 5.646×1013

64. 152. 2.2046 2.701×1020 3.946×1020 3.406×1021

72. 174. 2.4948 5.758×1022 7.480×1022 6.307×1022

78. 190. 3.2495 9.028×1017 1.095×1018 2.050×1019

84. 208. 5.2155 3.182×106 4.066×106 9.139×107

84. 212. 8.9541 6.200×10−8 9.849×10−8 2.990×10−7

86. 216. 8.2001 3.011×10−5 4.495×10−5 4.500×10−5

88. 224. 5.7889 2.225×105 2.638×105 3.162×105

90. 232. 4.0827 4.098×1017 3.955×1017 4.431×1017

96. 240. 6.3972 1.602×106 1.575×106 2.345×106

100. 256. 7.0269 1.153×105 1.094×105 1.167×105

90. 217. 9.4240 1.695×10−5 2.054×10−5 2.520×10−4

89. 227. 5.0422 1.949×1010 2.102×1010 4.975×1010

92. 229. 6.4752 1.143×104 1.266×104 1.740×104

The results within the frame work of Method B is seen to predict the general trend of

experimental data quite well. The quantitative agreement with experimental data is

excellent. The reason for this, is partly, due to the that the effective nuclear potential

is designed to properly describe decay properties and scattering wave functions. More
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Table 5.5: The same as in Table 5.4 but using point charge distribution (PCD) for the

Coulomb interaction.

Theoretical value Experimental value

Parent M3Y DDM3Y

Z A Q (MeV) T calc
1/2 (s) T calc

1/2 (s) T expt
1/2 (s)

60. 144. 1.9052 5.786×1021 8.821×1021 7.219×1022

62. 146. 2.5289 2.372×1014 3.620×1014 3.248×1015

64. 150. 2.8089 5.373×1012 8.216×1012 5.646×1013

64. 152. 2.2046 2.702×1020 3.947×1020 3.406×1021

72. 174. 2.4948 5.993×1022 7.509×1022 6.307×1022

78. 190. 3.2495 9.610×1017 1.106×1018 2.050×1019

84. 208. 5.2155 3.397×106 4.129×106 9.139×107

84. 212. 8.9541 6.221×10−8 9.888×10−8 2.990×10−7

86. 216. 8.2001 3.044×10−5 4.537×10−5 4.500×10−5

88. 224. 5.7889 2.482×105 2.810×105 3.162×105

90. 232. 4.0827 4.965×1017 4.282×1017 4.431×1017

96. 240. 6.3972 1.941×106 1.705×106 2.345×106

100. 256. 7.0269 1.429×105 1.190×105 1.167×105

90. 217. 9.4240 1.900×10−5 2.108×10−5 2.520×10−4

89. 227. 5.0422 2.218×1010 2.257×1010 4.975×1010

92. 229. 6.4752 1.295×104 1.355×104 1.740×104

importantly, the microscopic properties of the nucleons involved in the interactions (M3Y

or DDM3Y) are taken into consideration with greater realibility.

The above results show that the differences in the α-decay lifetimes obtained using the

spherical charge distributions or point charge distributions for calculating the Coulomb

interaction are small. Introducing the density dependence and the zero-range pseudopo-
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Figure 5.7: The logarithmic α-decay half-lives for the nuclei considered as a function of the

parent mass number calculated in the M3Y and DDM3Y models. Experimental half-lives are

indicated.

tential does not alter the general trend of the results. Use of the M3Y interaction alone

for calculating the double folding nuclear interaction potentials is sufficient to provide

reasonable estimates for the α-decay lifetimes.

In Table 5.6, the results of calculations of the turning points of the WKB action inte-

gral and SAFM calculations of the α-decay half-life from the nucleus 216Rn have been

presented which are obtained using the DDM3Y double folding potential with different

normalization factor λ0. The effect of the dependence of the inner turning point on λ0

in calculating the half life is obvious from the table. This shows the effect the potential
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depth has on decay lifetimes.

Table 5.6: Potential turning points and α-decay half life calculated using different normal-

ization factor for DF potential with DDM3Y parametrization.

Turning points Theoretical

Normalization First Second Decay width half life

factor (fm) (fm) Γ(s−1) log10 T (s)

1.0 7.329 26.671 1.015×10−17 -4.347

0.9 7.159 26.671 6.211×10−18 -4.134

0.8 6.946 26.671 3.375×10−18 -3.869

0.7 6.690 26.671 1.566×10−18 -3.536

0.6 6.350 26.671 5.633×10−19 -3.092

0.5 5.838 26.671 1.280×10−19 -2.448

Experimental values: 1.014×10−17 -4.347

5.2.2 Method C: PCM and DFM

We next present calculations within the model of section 4.2.3. In this method, the

nuclear potential VN(r) is calculated within the DDM3Y parametrization and the SCD

is used for the Coulomb interactions.

To calculate the decay widths for our systems, the classical turning points ri appearing

in equations (3.8) and (3.10) need to be determined. For 0+ → 0+ s-wave decay the

innermost turning point is at r1 = 0. r2 varies from about 6 to 8 fm, and r3 varies from

26 up to about 90 fm. In Table 5.7, we collected the values of these turning points used

in our calculation. In addition, the rms values of the DF potential using the DDM3Y

interactions are shown in the table as well. As remarked above, an effective potential is
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Table 5.7: The values of the various radii needed for calculation of α-decay widths and

half-lives for our systems in the framework of Method C. All parameters are in fm.

Parent Turning points

Z A r1 r2 r3 r
rms

60. 144. 0.0 6.6272 87.6726 5.5663

62. 146. 0.0 6.6407 68.3289 5.5839

64. 150. 0.0 6.6604 63.5685 5.6186

64. 152. 0.0 6.6496 80.9930 5.6358

72. 174. 0.0 6.7479 80.8068 5.8169

78. 190. 0.0 6.8369 67.3567 5.9404

84. 208. 0.0 7.0163 45.2795 6.0723

84. 212. 0.0 7.3131 26.3738 6.1007

86. 216. 0.0 7.2516 29.5014 6.1288

88. 224. 0.0 7.1281 42.7845 6.1841

90. 232. 0.0 7.0554 62.0744 6.2382

96. 240. 0.0 7.1317 42.3173 6.2913

100. 256. 0.0 7.2332 40.1647 6.3943

90. 217. 1.8351 7.0240 27.5081 6.1358

89. 227. 0.0 7.0872 49.6915 6.2045

92. 229. 0.0 7.1227 40.0285 6.2181

presented which is designed to describe decay properties and scattering wave functions

and which leads to realistic preformation factors P .

In the normal PCM (see section 3.1.2), a preformation factor P = 1 for even-even nuclei,

as used in [13] seems to be the consequence of the specially shaped cosh potential of that

work. As an example, we compare the potentials V (r) = VN(r) + VC(r) + VL(r) from

this work and from [13] for the system 216Rn →212Po +α in Fig. 5.8. It is seen that the
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rms radius of the potential from [13] is significantly smaller (r
rms

= 5.670 fm) than the

rms radius of the folding potential (r
rms

= 6.129 fm). Therefore, the Coulomb barrier

in [13] is significantly higher than in this work.
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Figure 5.8: Comparison of the potential VN (r) from this work (folding potential, full line)

and from [13] (cosh potential, dashed line) for the system 216Rn → 208Po + α. The deacy

energy Q is indicated by a dotted line. Note the significantly higher Coulomb barrier in [13]

compared to the folding potential.

The results of our calculation for the half-lives and decay widths for the data shown in

Table 4.1 are summarized in Tables 5.8 and 5.9 respectively. As seen in Table 5.9, the

calculated decay widths tend to over-estimate the measured decay widths. The reason

for this is that we completely neglect the pure α-daughter configuration as pointed

out above. This is motivated by the fact that the WKB exponent in equation (3.8)

largely contribute to the value of the half-lives in the region of large r. In addition,

the normalization constant λ0 = 1 is used throughout in our calculation rather than
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adjusting it to the bound state wave function with the specified number of nodes at the

decay energy Q. Even in this first approximation, the decay widths calculated agree

with the experimental data to a very good order.

Table 5.8: Alpha decay half-lives for the data in Table 4.1 using the Method C for our

calculation.

Parent

Z A Q (MeV) T calc
1/2 (s) T expt

1/2 (s) P

60. 144. 1.9052 8.423×1022 7.219×1022 1.167

62. 146. 2.5289 2.768×1015 3.248×1015 0.852

64. 150. 2.8089 5.326×1013 5.646×1013 0.943

64. 152. 2.2046 4.065×1021 3.406×1021 1.194

72. 174. 2.4948 3.344×1023 6.307×1022 5.303

78. 190. 3.2495 2.146×1019 2.050×1019 1.047

84. 208. 5.2155 5.954×107 9.139×107 0.651

84. 212. 8.9541 2.895×10−7 2.990×10−7 0.968

86. 216. 8.2001 8.881×10−5 4.450×10−5 1.974

88. 224. 5.7889 9.468×105 3.162×105 2.994

90. 232. 4.0827 2.509×1018 4.431×1017 5.663

96. 240. 6.3972 7.733×106 2.345×106 3.298

100. 256. 7.0269 4.650×105 1.167×105 3.983

90. 217. 9.4240 1.429×10−4 2.520×10−4 0.567

89. 227. 5.0422 9.780×1010 4.975×1010 1.966

92. 229. 6.4752 4.979×104 1.740×104 2.862

In Fig. 5.9, we show the variation of the preformation factor with parent mass number.

As expected, the value of P for 174Hf in the neutron-deficient p nuclei region is unusually

high. In the heavy nuclei region, the value of P is unnecessary high showing the effect
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Table 5.9: Alpha decay widths for the data in Table 4.1 using the Method C for our calcu-

lation.

Parent

Z A Q (MeV) Γcalc (MeV) Γexpt (MeV) Γcalc/Γexpt

60. 144. 1.9052 5.4163×10−45 6.3196×10−45 0.857

62. 146. 2.5289 1.6480×10−37 1.4047×10−37 1.173

64. 150. 2.8089 8.5666×10−36 8.0815×10−36 1.060

64. 152. 2.2046 1.1222×10−43 1.3397×10−43 0.838

72. 174. 2.4948 1.3641×10−45 7.2342×10−45 0.189

78. 190. 3.2495 2.1261×10−41 2.2258×10−41 0.955

84. 208. 5.2155 7.6632×10−30 4.9922×10−30 1.535

84. 212. 8.9541 1.5758×10−15 1.5258×10−15 1.033

86. 216. 8.2001 5.1375×10−18 1.0139×10−17 0.507

88. 224. 5.7889 4.8187×10−28 1.4428×10−27 0.334

90. 232. 4.0827 1.8183×10−40 1.0297×10−39 0.177

96. 240. 6.3972 5.8999×10−29 1.9458×10−28 0.303

100. 256. 7.0269 9.8123×10−28 3.9083×10−27 0.251

90. 217. 9.4240 3.1922×10−18 1.8105×10−18 1.763

89. 227. 5.0422 4.6653×10−33 9.1705×10−33 0.509

92. 229. 6.4752 9.1639×10−27 2.6224×10−26 0.349

of not properly taking the bound state wavefunction into consideration.

5.3 Comparison of the Methods

The half-lives of the α emitters in Table 4.1 calculated with the different theoretical

methods described in Chapter 4 are summarized in Table 5.10. In the table, we indicate
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Figure 5.9: Variations of the preformation factor P and the root-mean-square values with

the parent mass numbers for our data. The characteristic linear dependence of the rms value

is seen from the figure.

only the results for Set A of QSWA and the DDM3Y with SCD interactions for Methods

B and C.

As seen in Table 5.10, different methods applied in our work give similar results. If one

is satisfied with the order-of-magnitude estimate, the simplest Method A is an excellent

tool. The half-lives obtained with the Method A are within 10% of those with the

Method B.
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Table 5.10: Half-lives of α emitters T calc
1/2 calculated with different methods. The Set A of

the optical model parameters is used for Method A. DDM3Y with zero-range pseudopotential

is used for the nuclear interactions for Methods B and C. The SCD interactions is assumed for

Coulomb potential in all cases. The Q-values for the systems have been left out.

Nucleus T calc
1/2 (s) T expt

1/2 (s)

A B C

144Nd 1.541×1022 8.383×1021 8.423×1022 7.219×1022

146Sm 3.495×1014 3.619×1014 2.768×1015 3.248×1015

150Gd 6.603×1012 8.210×1012 5.326×1013 5.646×1013

152Gd 5.545×1020 3.946×1020 4.065×1021 3.406×1021

174Hf 6.347×1022 7.480×1022 3.344×1023 6.307×1022

190Pt 5.025×1017 1.095×1018 2.146×1019 2.050×1019

208Po 7.056×105 4.066×106 5.954×107 9.139×107

212Pb 1.138×10−8 9.849×10−8 2.895×10−7 2.990×10−7

216Rn 3.461×10−6 4.495×10−5 8.881×10−5 4.500×10−5

224Ra 2.538×104 2.638×105 9.468×105 3.162×105

232Th 6.557×1016 3.955×1017 2.509×1018 4.431×1017

240Cm 1.094×105 1.575×106 7.733×106 2.345×106

256Fm 5.687×103 1.094×105 4.650×105 1.167×105

217Th 3.027×10−3 2.054×10−5 1.429×10−4 2.520×10−4

227Ac 1.878×109 2.102×1010 9.780×1010 4.975×1010

229U 1.437×103 1.266×104 4.979×104 1.740×104

The Method C yields half-lives which are closer to those obtained with Method B than

method A in several cases. This result demonstrates that our first-order approximation

of ignoring the effect of the bound state wavefunction is justified.

As discussed in section 4.3, in the QSWA calculations, the depth of the central potential

V0, has been adjusted to reproduce the experimental Q-value. Formally, when making the
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adjustment, one should correct for the energy shift between the “true” quasistationary

state and the “bound state” energy. This correction might be important in some cases,

since the value of V0 appears in the reduced width (see Eq. (4.23)) and in the WKB

exponent of Methods B and C.

Although, the general trend of the half-lives as calculated by Method C is very good, it

should be pointed out that this calculation is somehow deceptive due to the negligence of

the very important physical property of the bound state wavefunction. This property is

taken into account in Method B through the physical concept of the zero point vibrational

energy of equation (3.44). The excellent agreement of the half-lives as calculated in

Method B with the measured values is thus not unexpected.

In Fig 5.10, we compare the logarithmic half-lives of the different models. It is seen that

in the region of neutron deficient p-nuclei (i.e. the stable proton-rich nuclides that lie

between 94Se and 196Hg on the chart of nuclides) the Methods agree quite well with the

observed values. The discrepancy among the models is seen around the parent nucleons

number 170 ∼ 210. The deviation of the half-lives as obtained from Method A is seen

to come from mass number region 168 and beyond.

With the analyzed data, the quantitative agreement of the half-lives of Method B and C

with experimental data is reasonable. The half-lives of the odd mass nuclei considered

are well accounted for. The value of half-life of the nucleus 217Th is underestimated by

Method A possibly due to additional centrifugal contribution to the barrier. Another

discrepancy among the methods is due to the shell and Pauli effects. In SAFM, however,

the shell effects are implicitly contained in the zero point vibration energy due to its

proportionality with the Q-value, which is maximum when the daughter nucleus has a

magic number of neutrons and protons. Nonetheless, the values of T1/2 for the nuclei

144Nd, 146Sm, 150Gd and 152Gd as calculated in Method B are underestimated. The

change is possibly due to the factors mentioned above.
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Figure 5.10: Logarithmic half-lives against parent mass number calculated with different

models.
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Conclusions

In this thesis, we have tried to review the theoretical models available for numerical

computation of spherical alpha decay nuclei and put forward the present status of the

microscopic theories of alpha radioactivity. We think that the touchstone for a micro-

scopic description is the absolute width. Our aim is to review theories rather than results,

and that is why we focussed on models.

Three theories for describing the ground-state alpha radioactivity in spherical nuclei

have been investigated: the quasi-bound state wavefunction approach, the superasym-

metric fission model, and the quasiclassical method. In spite of the different degrees of

sophistication in these models, they were nonetheless found to give rather similar results.

In this work, all of the models we studied heavily depend on a realistic α-nucleus poten-

tials. The half-lives for α-decay have been analyzed with both microscopic (DFM) and

optical nuclear potentials. The microscopic nuclear potentials are based on profound

theoretical basis. It has been shown in Ref [78] that a systematic double folding po-

tential is able to reproduce both the bound state properties and elastic α scattering of

nuclei. It is worth mentioning that our calculations using realistic microscopic nuclear

interaction potentials have been performed without adjusting the depth of the nuclear

70
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potentials using any renormalization or adjusting any other parameters. Despite this,

the results of these calculations i.e. SAFM and QCA using microscopic potentials are

in excellent agreement over a small range of experimental data spanning about twelve

orders of magnitude.

Using the SAFM model, we have tested our calculations by considering both the M3Y

and DDM3Y effective NN interaction supplemented by a pseudo-potential. The results

obtained are in good agreement with experimental data. Present calculations show that

the differences in the results of the α-decay lifetimes obtained using the spherical charge

distributions or point charge distributions for calculating the Coulomb interaction are

small.

In the QSWA approach, we take into account the resonance nature of the quasistationary

state using two sets of parameters of Woods-Saxon (WS) optical potential. The sensi-

tivity of the calculated half-lives on variations in the optical potential parameters has

been studied. Comparison with the experimental data, our results show that the WS

potential with set A is preferable. Clearly, the results obtained from the two sets agree

within an order of ∼ 10, however, they both underestimate the observed values due to

the highly correlated ambiguities between the parameters of the potentials. At the mo-

ment, no optical potential has been found to adequately account for α-decay half-lives.

We conclude that we can find a better agreement to the experimental values if the WS

optical potential is replaced with the more realistic DFM potential.

The final points to emerge from this study concern general trends in the behaviour

of (T calc
1/2 /T expt

1/2 ) which may reflect corresponding trends in the α-preformation factor

P . Although we can adequately describe the α-decays of nuclei by all the methods,

methods A and C, underestimate and overestimate the half-lives in a systematic manner,

respectively. This can be corrected by adjusting the DFM potential strength parameter

to the energy of the α-particle bound states wavefunction in the QCA model. In addition,

there is an indication of a small systematic increase in P to the higher mass number as
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the N = 82 neutron shell closure is approached as manifested by the decay data in

Fig. 5.9.



Bibliography

[1] E. Roecki, Radiochim. Acta 70/71 (1995).
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