Rosuvastatin is transferred into human breast milk: A case report.

Aletta E Schutte PhD,¹ Elizabeth A Symington MDiet,² Jan L du Preez PhD³

¹Hypertension in Africa Research Team (HART), North-West University, South Africa
²Department of Life and Consumer Sciences, University of South Africa, South Africa
³Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University, South Africa

Corresponding author:

Prof. AE Schutte
Hypertension in Africa Research Team (HART)
North-West University
Private Bag X6001
Potchefstroom
2531
South Africa
Telephone: +27 18 299 2444
Fax: +27 18 299 1053
E-mail: Alta.Schutte@nwu.ac.za

Funding source: None

Conflict of interest statement for all authors: None declared.

All authors had access to the data and a role in writing the manuscript.

Article type: Clinical Communication to the Editor

Key words: Rosuvastatin; breast milk; human

Running head: Rosuvastatin transfer in human breast milk
To the Editor:

Controversy exists on whether lactating women with familial hypercholesterolemia should resume statin treatment. This is partly due to the unavailability of data in humans regarding the transfer of statins into breast milk. Statin manufacturers advise against statin use for nursing mothers, referring to a study on rats indicating the transfer of atorvastatin via breast milk. It is generally accepted that statin levels of animal breast milk may not accurately reflect human breast milk levels. To our best knowledge no published data is available on the transfer of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors via breast milk in humans.

CASE SUMMARY:

We present a case of a 31-year old Caucasian woman with familial hypercholesterolemia. Before pregnancy her serum low-density lipoprotein cholesterol (LDL-C) level was 3.6 mmol/L with chronic daily treatment of 40 mg rosuvastatin (Crestor®, AstraZeneca)(Table). Statin use was stopped during pregnancy. It is known that LDL-C levels increase during pregnancy, and in this patient the LDL-C was 12.6 mmol/L nine days postpartum. Thirty-three days postpartum a daily dose of 40 mg rosuvastatin treatment was resumed.

Figure A demonstrates the hourly increases in rosuvastatin concentrations in breast milk after oral ingestion, whereas Figure B shows the breast milk concentrations on various days after initiation of treatment. Rosuvastatin concentrations in breast milk increased steeply from hour 1 to 7 (i.e. 15.2 to 29.4 ng/mL) after oral intake with a peak expected after approximately 10 hours. We obtained predominantly hindmilk samples on the days indicated in Figure B, but the foremilk-to-hindmilk ratio may be different for the hourly samples in Figure A. Whether there are differences between fore- and hindmilk statin concentrations is unknown.

The breast milk concentrations ranged between 21.9 and 22.8 ng/mL over three test days (Figure B) with sampling done after 3, 3.8 or 21 hours after intake. Serum
Rosuvastatin concentration 23 hours after dose intake was lower than overall breast milk concentrations, namely 18 ng/mL.

DISCUSSION:

Our case report presents the first human evidence for transferral of rosuvastatin into breast milk, confirming a study in rats.\(^1\) Breast milk rosuvastatin concentrations were higher than in serum (22.4 versus 18 ng/mL) at 21-23 hours after intake. We found clear dose-related hourly fluctuations in breast milk rosuvastatin concentrations, but further studies are needed to demonstrate 24 hour concentration curves.

Although this data adds to our knowledge regarding statin transfer into breast milk, it does not provide information on the safety of statins for infants. Controversy exists on when statin treatment should be initiated in children of families with familial hypercholesterolemia. Rodenburg \textit{et al} suggests the earlier the better,\(^2\) in line with the American Heart Association recommendation of ≥ 10 years in males and at the onset of menses in females.\(^3\) Elahi \textit{et al} found reduced cardiovascular risk in offspring of mice exposed to a high-fat diet and pravastatin during pregnancy and lactation.\(^4\)

Consequently, physicians are uncertain whether, when and how to treat children with familial hypercholesterolemia. Potential benefits of early statin treatment are evident, but unless indicated otherwise, the possibility exists that HMG-CoA reductase inhibitors transferred via breast milk may have a potential to cause serious adverse reactions in nursing infants.

CONCLUSIONS:

Rosuvastatin transfers into human breast milk at high concentrations. After 21-23 hours, breast milk concentrations were approximately 4 ng/mL higher than in serum.
References

Figure Legend

FIGURE 1.

A. Hourly concentrations of rosuvastatin in breastmilk after intake of a 40 mg dose. (Concentration at -3hrs: 21 hrs after dose intake)

B. Breast milk and serum rosuvastatin concentrations on different days after initiation of treatment

(3 hrs after dose intake: Day 4; 3.8 hrs after dose intake: Day 24; 23 hrs after dose intake: Day 25; 21 hrs after dose intake: Day 80).
<table>
<thead>
<tr>
<th>Treatment</th>
<th>TC (mmol/L)</th>
<th>LDL-C (mmol/L)</th>
<th>HDL-C (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A month before pregnancy</td>
<td>5.8</td>
<td>3.6</td>
<td>1.6</td>
</tr>
<tr>
<td>40 mg rosuvastatin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nine days postpartum</td>
<td>14.6</td>
<td>12.6</td>
<td>1.4</td>
</tr>
</tbody>
</table>

TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.
Figure(s)