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Summary 
 

 
Piaget observed that various stages involved in the construction of different 

forms of knowledge are sequential and that the same sequential order is evident in 

history. There seem to be three main stages in the development of algebra involving 

the independent and general solution of equations followed by the evolution of 

abstract algebra. Piaget referred to these as the intra, inter and transoperational 

stages but they are termed the levels of percepts, concepts and abstractions here. 

The perceptual level involves isolated forms, the conceptual level concerns 

correspondences and transformations amongst forms whilst the abstract level is 

characterised by the evolution of structures of forms. 

Historically the overall perceptual level of abstract algebra lasted from 

antiquity to the middle of the eighteenth century. The conceptual level followed, 

lasting for approximately one century and the subsequent abstract level has 

prevailed from the middle of the nineteenth century onwards. Each of these levels 

involve numerous sublevels but instead of being continually broken down into more 

and more sublevels, in this study a spiral of learning is being considered. Each round 

of the spiral contains a perceptual, conceptual and abstract level. The way in which 

perceptual levels can arise from previous abstract levels gives an indication of how 

knowledge is reorganised and expanded in new unexplored directions as the spiral is 

climbed. The important aspects of proof and axiomatisation are also addressed here. 

The historical emergence of abstract algebra reveals a significant pattern 

concerning the development of mathematics. The levels of thinking involved are 

important and reveal a general trend of algebraic thought. Hence careful 

consideration needs to be paid to the revelations arising from historical investigations 

so that these may help contribute to the encouragement of learning in students of 

algebra. The idea of levels of learning has been substantiated by many researchers 

and investigations undertaken in the past. The main characteristics of the three 

relevant levels and sublevels as well as insights gained from the historical 

emergence of algebra are being united here to form a comprehensive theory of 

learning algebra at both the secondary and tertiary levels of study. 
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