
ISSN 0254-2757

QU/ESTIONES
INFORMATIC/E

Volume 6 • Number 4 April 1989

D G Kourie Editorial

VIEWPOINTS and COMMUNICATIONS

B H Venter

MSc/PhD

Reflections on the Nature and Future of Computer Science
in Southern Africa

Abstracts: MSc/PhD Conference held at Dikhololo in 1988

RESEARCH ARTICLES

PMachanick

GR Finnie

PMQLay
CR Atkinson

D G Kourie

Software Design to Meet Third World Requirements: An
Experimental Software Engineering Approach

A ''Cooperating Expert's" Framework for Busin~ Expert
System Design

The Application of Scientific Method to Information
Systems Analysis

An Approach to Defining Abstractions, Refinements and
Enrichments

The official journal of the Computer Society of South Africa and of the South African
Institute of Computer Scientists

Die amptelike vaktydskrif van die Rekenaarvereniging van Suid-Afrika en van die
Suid-Afrikaanse lnstituut van Rekenaarwetenskaplikes

137

139

143

153

162

169

174

Editor

QUJESTIONESINFORMATICJE

The official journal of the Computer Society of South Africa and of the South
African Institute of Computer Scientists

Die amptelike vaktydskrifvan die Rekenaarvereniging van Suid-Afrika en van die
Suid-Afrikaanse Instituut van Rekenaarwetenskaplikes

Professor D G Kourie
Department of Computer Science
University of the Pretoria
Hatfield
0083

Production
MrQHGee
Department of Computer Science
University of the Witwatersrand
Johannesburg
Wits
2050

Subscriptions

The annual subscription is
SA US UK

Individuals R20 $ 7 £ 5
Institutions R30 $14 £10

to be sent to:
Computer Society of South Africa
Box 1714 Halfway House 1685

Qurestiones lnformaticre is prepared by the Computer Science Department of the University of the
Witwatersrand and printed by Printed Matter, for the Computer Society of South Africa and the

South African Institute of Computer Scientists.

Editorial

by

Derrick Kourie

It is my privilege to have been requested by the
SAICS executive to take over the post of editor of
QI from Professor Judy Bishop. I think it is in order
to thank her on behalf of the readership for the fine
job she has done in boosting the quality of the
journal during her brief but effective term. It is also
appropriate to thank the production editor, Quintin
Gee, for his substantial role in producing the journal.
I am grateful that he is still in the post, and for all
the support and work that he continues to do.

My job as editor is directed towards the overall goal
of serving the South African academic community in
the various computer-related disciplines in particular,
and the computer industry in general. A number of
objectives which support this goal include

• ensuring that high quality papers are published,
thereby providing a display window for
computer-related research in South Africa

• boosting local and international circulation of
the journal both within the academic community
and in the computer industry at large, thereby
promoting a fruitful interchange of ideas

• attempting to do this in a cost-effective fashion
so that the limited financial resources of SAICS
and the CSSA may be released (perhaps even
modestly augmented) to promote their various
other service-orientated activities.

A number of measures are planned which are
intended to meet these objectives. I shall mention
some of them below, while others will become
manifest with the passage of time.

After much debate it has been decided to change the
name of this journal from Qurestiones Informaticre
to The South African Computer Journal/Die Suid­
Afrikaanse Rekenaartydskrif. It will be abbreviated to
SACJ in English and SART in Afrikaans.
Arguments against this name change include the
conciseness and uniformity of reference in both
official languages provided by QI, and a certain kind
of catchiness to the name. Those in favour of the
name change regard the new proposal as being more
descriptive for ordinary mortals (i.e. non-Latin
scholars), less pretentious, and therefore more
inviting for a wider audience. The fact that the new
title identifies the journal as South African is also
regarded as important. Many readers would, I
surmise, be fairly neutral about the name and adopt a
philosophical "a rose by any name" position.
Perhaps the divide is between those who opt for a
high level of abstraction and information hiding, and

Qu:cstiones Informatic:c 6 4 1989 137

those who feel that a measure of refinement is
necessary.

Regarding the quality of papers, I shall continually
strive to ensure that papers submitted are reviewed by
at least two relevant and competent specialists. It is
appropriate here to thank all those who have so
enthusiastically reviewed papers to date. This is a
time-consuming, altruistic, backroom task, with
very little explicit reward. To ensure that the burden
is spread more equitably, I would like to appeal to
readers to suggest additional names of people who
could be approached for reviewing. Names of
overseas contacts would be particularly useful.

I should also like to invite as much reader­
participation in the journal as possible. There are
several levels at which this may be done. The most
obvious is by way of letters to the editor. Many
people out there have strong ideas about a variety of
subjects. In the absence of a decent national network
facility (perhaps someday!), please feel free to use
SACJ as your soapbox.

However, it is also evident that many people read
many books for a variety of purposes. Why not share
these insights by submitting book reviews to the
journal, particularly with respect to books which
could be prescribed for courses? If there are any book
publishers or distributors out there who perchance
may read this editorial, perhaps you should make
inspection copies to lecturers contingent on a review
being provided to SACJ!

I would also encourage researchers to continue
providing a steady stream of research papers to the
journal. Clearly, SACJ is in competition with other
international journals for your research results.
However, this is not a head-on competition. While it
would be sheer hubris to pretend that SACJ is
precisely equivalent to one of the more prestigious
overseas publications, there are considerations which
argue in favour of submitting certain kinds of
research to SACJ. First, SACJ will be dedicated to
providing a quick turnaround in reviewing and
publication. Hence, it is an ideal forum for
presenting and testing interim research results, and
even for quickly assuring your stamp on potentially
important ideas which you hope to flesh out later.
Secondly, SACJ is the obvious forum to use for
locally relevant research. Finally, and quite candidly,
the competition for publication in SACJ is
obviously not as intense as in a more prestigious
international journal. However, I need to be most

explicit on the implications of this latter point.
SACJ should not be seen as a soft option in the

sense that quality will be sacrificed. By this I mean
that on some arbitrary scale of quality measurement,
if CACM contains papers above say the 95%
percentile, then SACJ should fall into about a 60%
percentile category. Put differently, there is clearly a
gap to be filled that lies somewhere between poor,
inferior drivel and outstanding research contributions
- a gap which SACJ will seek to fill. Papers will
therefore be rigorously reviewed, and every effort will
be made to ensure that the journal is worthy of
international recognition - even if such recognition
does not come about immediately. This is not the
impossible task that some might consider it to be.
There are several South African scientific journals
that already enjoy a measure of international
recognition (the South African Statistical Journal -
to name but one). Furthermore, it is my perception
that many of our academics who travel overseas
discover - perhaps slightly to their amazement - that
they are well able to hold their own with academics
at peer institutions. This suggests that there is
probably sufficient brain power, research ability and
research activity in the country to ensure that the

Qu:Estioncs Informatic:E 6 4 1989 138

goal of international recognition is attained.
As for the cost-effective functioning of SACJ, two

points need to be made. First, SACJ will be
available for a limited amount of advertising at
RIOOO per page and R500 per half-page. The
computer industry and book publishers might wish
to avail themselves of this offer, as might
universities and employment agencies. Enquiries in
this regard should be directed to Quintin Gee.
Secondly, a modest charge per page (indicated
elsewhere in this edition) will be levied on accepted
research papers. This has become standard practice for
most journals, the rationale being that the SACJ is
one of the journals which counts for state subsidy
purposes. However, the editor will have the right to
waive such charges in deserving cases, as for
example in the case of an author from industry
whose company is unwilling to provide the financial
support.

Ultimately then, SACJ will critically depend on
your support. It will become what you, the reader,
researcher and reviewer, make it. In a sense the South
African Computer Journal will expose you, the
South African Computer Academic, to the outside
world without a single Latin phrase to hide behind.

Software Design to Meet Third World Requirements:
An Experimental Software Engineering Approach

Philip Machanick
Department of Computer Science, University of the Witwatersrand, Johannesburg, 2050 Wits

Abstract

Appropriate technology refers to technology appropriate for use in less developed parts of the world, especially
the Third World; this paper raises some problems in adapting a definition of appropriate technology to com­
puter software. A partial solution, a strategy called experimental software engineering, is introduced. The
potential of this solution is demonstrated by a case study, in which software for medical education is devel­
oped. The result is a clearer understanding of both appropriate technology and design of software for usability.
Keywords: appropriate technology, software engineering, human-computer interaction, medical education

Received September 1988, Accepted January 1989

1. Introduction

Computers are becoming increasingly widely used in
technologically developed countries, such as the
USA. An important part of this trend is the migra­
tion of computers to contexts where users arc
technically nai:ve. This move of computers to the
mass market has yet to impact less developed parts
of the world. For example, Gambia has been reported
as having no computer dealers at all in 1987 [5].

This paper examines some problems in fitting
computers to needs of third world countries, from the
starting point that dropping prices must eventually
overcome the proplcms such as lack of foreign capi­
tal which inhibit the distribution of computers to
poorer parts of the world. The fact that computer
hardware is becoming more affordable does not mean
computers will meet the needs of a third world coun­
try: the needs of the new society should be taken
into account.

Much research into adapting other technologies to
the third world has already been undertaken [9, 16].
Appropriate technology is the name broadly given to
technologies considered suited to less developed soci­
eties. Mostly, "appropriateness" is measured by
simplicity, and avoidance of high capital costs.
Where computers arc concerned, some thought needs
to be given to the definition of appropriateness,
since computers are a relatively advanced technology
yet they are increasingly becoming affordable. In
order to simplify the problem, the issue addressed
here is how computer technology may be made to fit
a specific, accepted definition of appropriate technol­
ogy. This paper is further restricted in its scope in
looking at a case study of a single application. In
addition, the reasons for choosing the application
domain are not presented.

The major focus of the paper is introducing and

Qurestiones Informatica: 6 (4) 153-161, April 1989 153

evaluating a strategy called experimental software
engineering (ESE). ESE is a strategy for deriving
the requirements when they are not clear, especially
when the users have had little exposure to comput­
ers. ESE emphasizes usability, and placing the user
in control of both the requirements and the finished
product.

The next section looks in more detail at how a
definition of appropriate technology may be applied
to computers. In particular, criteria for deciding
whether a computer approach is appropriate technol­
ogy are presented. The following section introduces
ESE, and explains how it relates to the problem of
meeting the criteria for appropriate technology.
From this start, a case study, in which the require­
ments for a tool for medical education are developed,
is presented to illustrate how ESE may be applied.
This case study is used to demonstrate how ESE
brings out issues of usability, and gives the user
control of the development process. In conclusion,
ESE is evaluated in terms of appropriate technology
concerns, and lessons which apply more generally to
software engineering are considered.

2. A Definition of Appropriate
Technology

Appropriate technology is technology specially
adapted or designed for less-developed (especially
third world) countries. Mostly, research into appro­
priate technology has revolved around low
technology industries and agriculture. It is not obvi­
ous how experience of this kind may adapt to a
relatively sophisticated technology such as the com­
puter. For this reason, some attention is given to
adapting an existing definition of appropriate tech­
nology to this new area.

d1 low investment cost per workplace

d2 low capital investment per unit of output

d3 organizational simplicity general definition

d4 small-scale operalions·=·=~=-3*:,,;:,.,.,.~~f«;.::$,-..
'"-:-{\.

dS high adaptability to particular cultural or social environments %:

d6 sparing use of natural resources '<:=·Rt
~·.•.•.•,•.•.•:-

d7 very low cost of the final product ,.:>M

dB intermediate level of techrological sophistication ~~;-~
d9 particularly easy to use by unskilled people ·,,

specific criteria

d1, d2, d6, d7 c1 hardware should be low in cost

d3, d4 c2 multiuser or networked configurations should be avoided

dB, d9 c3 the software should be easy to use

d3, d4 c4 minimal training should be required

dS c5 the user interface should readily adapt to new languages

dS c6 the functionality should easily adapt to new contexts

d1, dS c7 approach should apply to wide range of people, localities

d1, d2, d7 c8 the cost per user should be low

A definition of appropriate technology [9] is used to derive criteria directly related to computer applications.

Figure 1: Criteria for computers as appropriate technology

A specific definition, presented in figure 1, is
used as a starling point. This section derives criteria
for evaluating computers as appropriate technology
from this definition. Derivation of these criteria as
illustrated in figure 1 is not presented in detail here
(see [13]), since the major thrust of this paper is a
description of the software development strategy
employed. Instead, lhc implications of the criteria arc
considered here_

The first criterion (cl) - that the hardware should
be low in cost - is derived from no fewer than four
points of the definition, yet it is considered the least
restrictive. Computer hardware is continually drop­
ping in price; today's expensive workstation is
tomorrow's personal computer. Even in an area as
sophisticated as artificial intelligence (AI), tools for
low-cost equipment such as IBM PCs and Apple
Macintoshes are beginning to rival those on research
machines of the last decade [12]. Low cost, then,
should be seen as relating to a specific project, rather
than as an inhibiting factor on research.

The next criterion (c2) relates specifically to
reducing the complexity of the equipment. Net­
worked or multiuser configurations will not always
be complex - so exceptions should be allowed. For
example, the AppleTalk network is a very cheap and
simple way of sharing resources such as laser print­
ers. However, even such a simple network can
become complex to use when more sophisticated ser­
vices such as file servers arc added [11].

The next criterion (c3) - the software should be
easy to use - requires some thought, since case of

Qrncstiones lnformaticre 6 4 1989 154

use is not trivial to define. This point is further
addressed in the rest of the paper. If the ease of use
criterion can be met, the criterion of requiring mini­
mal training (c4) should not present serious
problems. Both criteria need to be specified concrete­
ly, in the context of a specific project. For example,
when Apple launched the Lisa (the predecessor of the
Macintosh), it was claimed that a novice could learn
to use the machine in half an hour. An experiment
has found that this claim is not literally true [6] -
although some critics of the experiment have com­
plained that its findings arc unfair in some respects
[10, 15].

The next three criteria (cS to c7) relate to adapta­
bility. This fact that three criteria are devoted to
adaptability indicates how important this issue is.
First world countries can generally rely on large
markets to absorb development costs; third world
countries often either have small populations or
wide regional differences.

The final criterion (c8) - the cost per user should
be low - also relates to spreading the usability of
the software as widely as possible. A diskette costs a
few ccnL~, and hardware is becoming cheaper. Clear­
ly, any measure of the cost per user must be heavily
infl,1enced by how widely the cost of the develop­
ment of the software can be spread.

The criteria can be summarized in two major
points: placing the user in control and spreading the
usefulness of the software as widely as possible.
Both of these points are captured (if not in full) in
the concept of usability.

"

Initial requirements

lessons from current attempt
1 • test prototype on users

• identify issues for new version of requirements modified or corrected
requirements ...-

convenlloll sof!ware
engineering

Each iteration leads to further clarification of the requirements, based on experience with a prototype for the
current version of the requirements. Ultimately, should the requirements be sufficiently clear, a
conventional software engineering strategy can take over. Ideally, issues elucidated should help in later
projects as well.

Figure 2: Experimental software engineering

3. Experimental Software
Engineering

One of the most difficult issues in software engineer­
ing is accurately capturing the user's requirements
[24]. The user usually does not have a clear under­
standing of what a computer can do, while the
software engineer may not have much knowledge
about the application domain. In the context of
appropriate technology, this problem is exacerbated
in two significant ways.

Firstly, there is little experience in implementing
software as appropriate technology. Such work as
there has been has either been in the form of isolated
projects [l], or of investigations into general policy
issues [16]. No serious attention has been given to
the problem of the issues in software engineering of
meeting criteria for appropriate technology.

Secondly, potential users have had little exposure
to computers, which increases the already serious dif­
ficulty of obtaining accurate requirements from the
users.

In defining a strategy for dealing with these prob­
lems, two sources are drawn on in this research:
other experience with software engineering in which
usability has played a major role, and experience in
an area in which software is created without a clear
initial idea of the requirements. The example of usa­
bility is the 1984 Olympic Message System; the
latter example is programming in artificial
intelligence.

The Olympic Message System - which allowed
athletes and other interested parties to leave messages
for each other - was designed with usability as a cen­
tral issue. The underlying philosophy was one of

Qu:estiones Informatica! 6 4 1989 155

using behavioural measures to ascertain the accepta­
bility of the system to the user. Although large
numbers of people were used to test the system at
later stages, the methodology was relatively infor­
mal. The strategy used deviated from the classical
model of the software life cycle - sometimes known
as the waterfall model [2]. The design and require­
ments analysis were carried through to relatively late
stages. As features were implemented, they were
tested on potential users for acceptability, and the
system was changed as problems were identified [8].
This is in contrast to the waterfall model, in which
software development is seen as consisting of largely
non-overlapping stages.

The Olympic Message System is an important
example, because it illustrates how far system design
and construction can be driven by usability, especial-
1 y in a nontrivial program. The users were from a
wide range of backgrounds, and the software worked
well and was accepted positively by the users [ibid.].
However, the potential of applying the experience of
this project directly to other areas is limited in two
respects. The initial functionality was reasonably
clearly specified - the details were the real problem.
Also, the implementers had access to a table-driven
tool for generating user interfaces, which considera­
bly increased their flexibility in changing the design.
This tool was specifically intended for communica­
tions applications; such a tool may not necessarily
be easy to construct for other applications.

AI is an interesting source of ideas for dealing
with the issue of constructing software where the
initial idea of the requirements is extremely vague.
Some AI researchers view programming in AI as an
experiment, in which the requirements are clarified.

r1 free switching between gathering evidence and forming, confirming and
rejecting hypotheses should be supported

r2 no order should be imposed on the specific hypotheses and evidence which
are considered

r3 association of hypotheses and evidence should be explicit
r4 an ordered record of the hypotheses and evidence considered should be kept
r5 the system should be non-judgmental
r6 solving of problems meaningful to the learner should be supported
r7 the student should supply medical knowledge for solving a given problem by

some approximation to building an expert system - the system should not
contain any medical knowledge

r8 ease of use should be emphasized; this implies that user interface may become
a major issue

r9 inference should be avoided: the student, not the program, should find the
solution

These requirements, which were the starting point for the experimental software engineering strategy, are
based on the educational approach called knowledge engineering based learning (KEEL) as well as the
criteria for appropriate technology of figure 1.

Figure 3: Initial requirements

Al is seen by some as an empirical science [17), in
which programs produced by successive researchers
form data points in a grand experiment [4]. The
long-term outcome is an enhanced understanding of
human intelligence and what computers can do. Pro­
gramming in an experimental fashion requires
powerful tools and techniques. Examples include the
Interlisp programming environment (23] and struc­
tured growth, in which modules of a program may
be rewritten as more sophisticated possibilities arc
considered feasible [21]. Some critics of AI have
gone as far as to claim that the development of tools
which support programming without a clear idea of
the requirements is the major contribution AI has
made [7]. Some lessons from AI research have found
their way into software engineering environments,
such as Cedar (22) and Pecan [20).

AI is however not always a suitable basis for con­
structing robust software, which is intended for
widespread use. The lack of a precise specification of
requirements makes testing difficult, and is likely to
cause problems in the long term with maintenance.
This claim is borne out by software engineering
research which has measured the effects of replacing
the requirements and design stages of the waterfall
model by prototyping. The general finding is that
the lack of formal documents cases problems with
the later stages of the project, from integration
onwards [3].

For developing software as appropriate technolo­
gy, some of the ideas from the Olympic Message
System and from AI can be put together. The first
principle is to emphasize usability. To this end,
behavioural measures of how the users relate to the
software should be used. The second principle is that
the requirements should be derived by a process of a

Quiestiones lnformaticru 6 4 1989 156

succession of prototypes, each of which can be seen
as a data point in an experiment to determine the cor­
rect functionality and user interface of the program.
The earlier prototypes should be constructed using
tools which allow maximum flexibility in changing
the approach - in the AI tradition - while later pro­
totypes should use increasingly rigorously specified
languages in the spirit of software engineering. The
outcome of this process, which is given the name
experimental software engineering (ESE), is a pre­
cise specification of the requirements which may be
used in a conventional software engineering project
to implement the software.

The ESE strategy is summarized in figure 2.

4. A Case Study: A Tool for Medical
Education

The case study presented here illustrates how ESE
may be applied in practice. The example used is the
specification of requirements for a tool for medical
education. An initial attempt at specifying require­
ments for this tool is based on the criteria for
appropriate technology of figure 1. The tool is
intended to be an approximation to an expert system
shell, which will support learning medical problem
solving in the same sense as Logo supports learning
mathematical problem solving [18). The philosophy
is one of learning by doing, with the learner in con­
trol. The learner is placed in the role of a knowledge
engineer, although in a much simplified version of
an exercise in expert system construction. A full
explanation of this step of the project is beyond the
scope of this paper, which focuses on the application
of ESE. This section presents a series of experi-

[] chronic cyrrhosis [] I support) alcohol hepatoma
jaundice l hematem [refute

1 weight loss

[]
dysphagia [] [delete link] blur vision
~11 I 1:JII

(delete) shangaan I
signs and sy rnptoms causes

I abd swe I q I I I 11, m1 '-11111
1,;;\ C;;,:l,:.;;1c;,:;k..;o:;:,n:.;o~n.:.;;e;..o;:;.f:..;;,;,th,:.;;e.:;s.:.e.:b;;;;o~x.:.es:;..;,to;:;.,;;a.,dd...,.a_n_e_w n_am__,e,_(._R_E_T_U_R_N_w_h_e_n_d_o_n_e ..) ---~--­

(a) The top half of the screen is used for adding, deleting and editing names - as well as making and
hreaking links. Here, a name is about to be edited.

hepatomeg lv'
scanv'
exudatev'
+Mstov'
afpv'
hepatoma
bruitx
chronicv'

jaundicev'
ascitesv'
dilated vv'
test atv'
scanv'
cirrhosis
ggtx
liver failx
spleenx
spidersx
gynx

shangaanv'
chronicv'
alcoholv'
jaundicev'
hepatitis
ggtx
liver failx
exudatev'
+histov'
hepatomeg lv'

hepatitis
th tleri
hepatom

neph syn
cirrhosis

(b) The bottom half of the screen is used for activating and deactivating causes (hypotheses), and marking
signs or symptoms as present or absent. The section of the screen illustrated here contains a table of all
causes on the right; those in grey are not currently active. The active ones appear in white on black writing
in a report to the left of the table, with evidence for the above and evidence against below (based on the
student's rules). A cause is activated or deactivated by selecting its name in the table.

Figure 4: The LISP prototype's user interface

ments which were carried out in developing the
requirements, starting from the initial requirements
in figure 3. ·

The first experiment was an initial attempt at
investigating the implications of the requirements.
The tool used was a program called CLASSIFY, a
simple decision tree-like approximation to an expert
system shell, which is supplied with Prolog-86 (an
IBM PC implementation). The outcome of this
experiment was used to validate the initial require­
ments; the requirements were then more fully tested
using a program written in OPSS on an Apple Mac­
intosh (which is used for subsequent prototypes as
well). The next version of requirements - in keeping
with the philosophy of moving to tools which are
increasingly useful for rigorously defining the beha­
viour of the program - was tested by an experiment
with a prototype written in LISP. The final version
of the requirements was prototyped in Pascal.

The CLASSIFY experiment mainly established
communication with medical educators. A group of
six people (three educators, two registrars and a med­
ical student) which was presented with the KEBL
idea was able to see merit in it, but agreed that
CLASSIFY was not usable. The software proved to
be limiting, and difficult to use. In particular, the

Qurestioncs Informaticre 6 4 1989 157

fixed order in which the program asked questions
based on its decision tree caused difficulty. Since this
aspect of the program conflicted with the require­
ments, the finding was taken as confirmation that
software conforming to the requirements should be
constructed for another experiment.

The next prototype constructed was written in
OPSS, in order to facilitate flexibility in changing
the control strategy as new ideas were offered by
medical educators. This prototype more fully imple­
mented the requirements. It allowed the student to
make supporting and refuting links between evidence
and hypotheses, and to supply questions which the
program could ask to find out if evidence was
present. Once the student's rules had been construct­
ed, the program would ask the student to give names
of evidence. The student determined the order of
inputs, in keeping with the learner in control philos­
ophy. The program did not perform any inference -
the idea was the student should learn to solve a prob­
lem in a systematic way by building a computer
representation of the steps taken in finding the solu­
tion. The student could ask for a report of evidence
for and against each hypothesis, and had to decide
when to stop, as well as what the solution was. The
option of switching to having the program ask the

r1 free switching between gathering evidence and forming, confirming and
rejecting hypotheses should be supported - to this end, a permanent report on
evidence for and against active hypotheses should be displayed, and
hypotheses and evidence should be explicitly activated and deactivated

r2 no order should be imposed 'on the specific hypotheses and evidence which
are considered

r3 rules should specify evidence as supporting or refuting hypotheses
r4 an ordered record of all actions taken by the student should be kept - including

choice of hypotheses and evidence to consider, and the order of rule formation
r5 the system should be non-judgmental
r6 solving of problems meaningful to the learner should be supported
r7 the student should supply medical knowledge for solving a given problem by

some approximation to building an expert system - the system should not
contain any medical knowledge

r8. ease of use should be emphasized: the use of the keyboard should be
eliminated as far as possible

r9 inference should be avoided: the student, not the program, should find the
solution

r1 O only one mode should be used for both problem-solving and knowledge
acquisition

r11 signs and symptoms should be automatically considered present when brought
into consideration

r12 allowance for a range of attributes in addition to present or absent should be
considered

The experiments with USP KEEL led to a further revision of the requirements, in the final application of
the experimental software engineering methodology.

Figure 5: The final requirements

questions the student had supplied for evidence was
allowed, to see whether the students would readily
adopt the learner in control strategy. The program
made use of the underlying LISP system's listener
window to record the student's steps, and the stu­
dent's rules could be saved to disk for reuse or
evaluation.

The OPS5 prototype was tested with a group of
47 first-year students, who were given simple prob­
lems to solve. Informal observations were the main
measure of the usability of the system. In addition, a
survey of the students' attitudes was carried out at
the end of the exercise, and they were given the
opportunity to discuss their impressions with a
group of medical educators. The survey results were
generally positive; however, the survey was taken
just before a long weekend, and only 51 % of the stu­
dents participated, so the results cannot be considered
accurate. Of more significance are the observations
of the students' use of the program. Typing turned
out to be a major problem: the students were unable
to make reasonable progress without intervention. In
addition, they were only too willing to allow the
computer to do the work. The "learner in control"
mode of the program was generally avoided, and the
mode in which the computer asked the questions was

Quiestiones Informaticie 6 4 1989 158

immediately used.
Based on these points - and other observations -

the requirements were modified for the next proto­
type. The biggest innovation was the introduction of
a mouse pointing device to make links; the only use
of the keyboard according to these new requirements
was to be in entering new names. The learner in con­
trol aspect was further emphasized, by removing the
possibility of having the computer ask questions.
Three other changes were matters of detail. A report
indicating the evidence for and against each hypothe­
sis under consideration was to be maintained at all
times on the screen. In addition, a full record of the
steps taken by the user was to be kept on disk, to
allow retracing of the user's steps. This is in con­
trast to the OPS5 prototype, where windows on the
screen needed to be explicitly saved, and the exact
order of the user's steps was not recorded.

The next prototype was written in LISP. The ver­
sion of LISP used allowed incremental compilation,
which made for flexibility in accommodating the
wishes of the three medical educators who tested ear-
1 y versions of the prototype. The essential
functionality had ben fixed in the previous experi­
ment, and the issue being investigated was the user
interface. The LISP implementation had reasonable

" • File Edit Attributes Windows
.,

• fit
age 1 5 months

age 15 months
supports
meninoitis

age 15 months
fit

tumourtrauma
toHin
p reHIDI

The Pascal Program has only one mode, and the keyboard is not used. Names are loaded into signs and
symptoms (top left) and cause (bottom right) dictionaries from disk, and are brought into consideration
(into the middle part of the screen) by selecting them with the mouse. Causes are activated (i.e., become
active hypotheses) by selecting their names in the "in consideration" section, and then selecting a cause
position in a report (bottom). Names may be sent back to the dictionaries, and links are ma.de or broken
using the icons in the centre of the screen. Lists may be of indefinite length, and can be scrolled in the
standard Macintosh style (using the mouse).

Figure 6: The Pascal prototype's user interface

access to the Macintosh graphics toolbox; other lan­
guages such as Pa$al were better in this respect, but
were considered less suitable for rapid prototyping.
The user interface of the program is illustrated in fig­
ure 4. For this implementation, a change in
terminology occurred: signs and symptoms replaced
evidence, and causes replaced hypotheses. The reason
for this change was to avoid a debate in medical edu­
cation research as to whether medical problem
solving was or was not hypothesis formation [14].
· The program was initially tested in field studies at
Hillbrow Hospital, Johannesburg, using a total of
14 fourth-year and sixth-year medical students. Sub­
sequently, an experiment was conducted with 16
nursing sisters from the Soweto Community Health
Centres. In both cases, findings were based on infor­
mal observations. Despite the considerably reduced
reliance on the keyboard, typing remained a problem.
In neither the Hillbrow nor the Soweto exercises was
there time to train the users sufficiently in the use of
the keyboard; all typing was done for them. In other
respects, the program proved to be clumsy in detail,
though the overall strategy was acceptable to the
users.

It· is interesting to contrast the attitudes of the
medical students with those of the sisters, who had

Qu:cstiones lnformatic~ 6 4 1989 159

less exposure to technology. The medical students
were keen on setting up a computerized guru which
would find all the answers for them. One went as far
as to suggest that the computer could be linked to
laboratory equipment to save time in entering infor­
mation. The sisters on the other hand were more
sceptical. One expressed concern that using a com­
puter in a clinical setting would cause the patient to
feel neglected. Another argued strongly that the com­
puter strategy could just as easily be carried out on
paper. On the whole, though, most participants were
positive and indicated interest in seeing further
research.

The major weakness of the program was its use
of two modes: one for making and breaking links
(called knowledge acquisition) and one for activating
and deactivating causes (called problem solving).
Although these two modes were considered natural in
terms of the original intention to emulate an expert
system-building exercise, they were confusing to the
users. This finding is considered important for its
confirmation of earlier similar findings about the dif­
ficulty of using moded software [19]. In addition,
modes can be seen as contrary to the learner in con­
trol philosophy, in that they restrict the options
open to the user.

5. Evaluation of Experimental
Software Engineering

The research has only gone as far as a final version
of the requirements, with a matching prototype -
this time written in Pascal - which, it is hypothe­
sized, could form the basis for continuing with a
conventional software engineering exercise. These
final requirements are presented in figure 5; key
aspects of the Pascal program are illustrated in figure
6. The Pascal program has not been fully imple­
mented. However, the key elements of the user
interface are in place, and sufficient detail has been
implemented to make a detailed design reasonable
straightforward.

Further research is needed into how ESE interfac­
es to the rest of the software life cycle. In particular,
consideration should be given to including ESE
tools in a software engineering environment designed
to support later stages of the software life cycle.
Also, work on examining the cost implications of
ESE is needed. Since the ESE aims to increase the
accuracy of the requirements specification, it is rea­
sonable to suppose that the later stages - especially
maintenance - should be facilitated. However, this
claim needs to be justified by further research.

Nonetheless, the ESE case study has illustrated
how relatively computer-muve users can make a
meaningful contribution to specifying non-trivial
software, aimed at meeting criteria for appropriate
technology. In addition, some issues clarified by this
research are of wider application. Use of a keyboard
is considered to be an inhibiting factor for users who
are unfamiliar with technology. A mode less user
interface, in which the user is free to choose the
order of events, is found to be more intuitive than a
heavily moded one. Furthermore, a learner in control
strategy is found to be natural, and the learner should
not have the option of allowing the computer to
control the order of events. An important finding is
the usefulness of AI tools on relatively cheap com­
puters, especially as tools for ESE.

The extent to which these lessons apply generally
needs further research. It would be particularly inter­
esting to investigate whether the process of software
production could become appropriate technology, so
that third world countries could develop their own
software industries. The case study presented here
illustrates what can be achieved using relatively low­
cost equipment; further research should be possible
without losing sight of the intention of making the
results accessible to poorer parts of the world.

Acknowledgements

I would like to thank Conrad Mueller and Prof.
A.M. Starfield, who supervised the research for a
Masters degree on which this paper is based, for their

Qmcstioncs Informaticre 6 4 1989 160

helpfulness and encouragement. In addition, Dr
Andrew Truscott was very helpful in setting up the
experiment in Soweto. Ian McNairn, Prof Graham
Mitchell and Prof Pat MacPhail assisted in designing
and testing the LISP prototype. The students who
were prepared to be subjects of the experiments, as
well as those who assisted in setting up and running
the experiments, made the whole thing possible.
Scott Hazelhurst assisted in proofreading this paper,
and made helpful comments.

References

[1] B Auvert, P Aegerter, V Gilbos, E Benillouche,
P Boutin, G Desve, M-F Landre and D Bos, [1986],
Tropicaid: Un systeme expert sur ordinateur portatif
pour l 'aide a la decision medicate dans 1es pays en
developpement, 6th International Workshop on
Expert Systems and Their Applications, 28-30,
Avignon, France.
[2] B W Boehm, [1976], Software Engineering,
IEEE Transactions on Computers, 25 (12),
1226-1241.
[3] B W Boehm, TE Gray and T Seewaldt, (1984],
Prototyping Versus Specifying: A Multiproject
Experiment, IEEE Transactions on Software
Engineering, 10 (3), 290-303.
[4] BG Buchanan, (1982], New Research on Expert
Systems, Machine Intelligence 10 (ed. J E Hayes, D
Michie and Y-H Pao), Ellis Horwood, Chichester,
269-299.
[5] P B yass, [1987], Computers in Africa:
Appropriate Technology? Computer Bulletin, 3 (2),
1987, 17.
[6] J M Carroll and S A Mazur, [1986],
LisaLearning, Computer, 19 (11), 35-49.
[7] J Doyle, [1985], Expert Systems and the "Myth"
of Symbolic Reasoning, IEEE Transactions on
Software Engineering, 11 (11), 1361-1374.
[8] J D Gould, S J Boies, S Levy, J T Richards and
J Schoonard, [1987], The 1984 Olympic Message
System: A Test of Behavioral Design Principles of
System Design, CACM, 30 (9), 758-769.
[9] N Jequier and G Blanc, [1979], Appropriate
Technology Directory, OECD, Paris.
[10] G Kiliany, [1987], Response to "LisaLearning"
Article (letter to editor), Computer, 20 (3) March, 4.
[1 I] MACazine, [198_7], Business Report,
MACazine, 4 (12), 41---63.
[12] P Machanick, [1986], Low-Cost Artificial
Intelligence Tools, Qua:stiones Informatica:, 4 (3),
27-32.
[13] P Machanick, [1988]. Design of Medical
Education Software as Appropriate Technology
Using Artifical Intelligence and Software
Engineering (masters dissertation), Computer
Science Department Technical Report 1988-01,
University of the Witwatersrand, Johannesburg.

[14) C H McGuire, [1985), Medical Prob­
lem-Solving: A Critique of the Literature, Journal of
Medical Education, 60 (8), 587-595.
[15] D L Metzger, (1987], "LisaLearning" Called
Apple-Bashing Session (letter to editor), Computer,
20 (3), 4.
[16) M Munashinghe, M Dow and J Fritz, [1985],
Microcomputers for Development, CINTEC-NAS,
Sri Lanka.
[17) A Newell and HA Simon, [1976], Computer
Science as Empirical Enquiry: Symbols and search,
CACM 19 (3), 113-126.
[18) S Papert, [1980), Mindstorms, Harvester Press,
Brighton.
(19] T S Perry and P Wallich, [1985], Inside
PARC: The 'Information Architects', IEEE
Spectrum, 22 (10), 62-75.

Qu:cstiones lnformaticre 6 4 1989 161

[20] S P Reiss, (1985], PECAN: Program
Development Systems that Support Multiple Views,
IEEE Transactions on Software Engineering, 11 (3),
276-285.
[21) E Sandewall, [1978), Programming in an
Interactive Environment: the 'LISP' Experience,
Computing Surveys, 10 (1), 35-71.
[22) W Teitelman, [1984), A Tour through Cedar,
IEEE Software, l (2), 44-73.
[23) W Teitelman and L Masinter, [1981], The
INTERLISP Programming Environment, Computer,
14 (4), 25-33.
[24] P Wegner, [1984], Capital-Intensive Software
Development, IEEE Software, 1 (3), 7-45.

This paper was received iri camera-ready form.

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to publish
original papers in any field of computing.
These may include research, review and ex­
ploratory articles of interest to the journal's
readers. The preferred language of the journal
will be English, although papers in Afrikaans
or other congress languages of IFIP will not
be precluded. Typed manuscripts for review
should be submitted in triplicate to:

Professor D G Kourie
Department of Computer Science
University of Pretoria
Hatfield 0083
Pretoria

Form of Manuscript
Manuscripts for review should be prepared
according to the following guidelines.
• Use double-space typing on one side only

of A4 paper, and provide wide margins.
• The first page should include:

- title (as brief as possible)
- author's initials and surname
- author's affiliation and address
- an abstract of less than 200 words
- an appropriate keyword list
- a list of Computing Review Categories.

• Tables should be typed on separate sheets
of A4 paper, and should be numbered and
titled.

• Figures should also be supplied on separate
sheets of A4 paper, and should be idertti­
fied on the back in pencil with the author's
name and the figure number. Original line
drawings, and not photocopies, should be
submitted.

• Mathematical and other symbols may be ei­
ther handwritten or typed. Greek letters and
unusual symbols should be identified in the
margin. Distinguish clearly between:
- upper and lower case letters
- the letter O and figure zero
- the letter rand the number one
- the letter K and kappa. ·
References should be listed after the text in
alphabetical order of the (first) author's sur­
name, cited in the text in square brackets.
References should take the following form:
[1] E Ashcroft and Z Manna, [1972], The
translation of 'GOTO' programs to
'WHILE' programs, Proceedings of IFIP
Congress 71, North-Holland, Amsterdam,
250-255.
[2] C Bohm and G Jacopini, [1966], Flow
diagrams, Turing machines and languages
with only two formation rules, Comm.

ACM, 9 (3), 366-371.
Manuscripts accepted for publication

should comply with the above guidelines, but
may be in one of the following three formats:

• typewritten and suitable for scanning
• provided as an ASCII file on diskette
• camera-ready.
Authors wishing to provide camera-ready

copy may obtain a page specification from the
production editor.

Charges
A page charge, scaled to reflect production
costs, will be levied on papers accepted for
publication. The costs per final page are as
follows:

Typed format, not camera-ready R60
Disk in ASCII format R40
Camera-ready format R20

These charges may'be waived upon request
of the author, and at the editor's discretion.

Proofs
Proofs of accepted papers will be sent to the
author to ensure that typesetting is correct,
and not for addition of new material or major
amendments to the text. Corrected proofs
should be returned to the production editor
within three days.

Copyright
Copyright in published papers will be vested
in the publisher.

Letters and Communications
Letters to the editor will be welcomed and will
provide a forum for discussion on topical is­
sues. They should be signed, and should be
limited to about 500 words.

Communications reflecting minor research
contributions will be considered for publica­
tion in a separate section of the journal. Such
communications will, however, not be regard­
ed as a fully-fledged publication for FRD sub­
sidy purposes. .
Book Reviews
Contributions in this regard will be wel­
comed. Views and opinions expressed in such
reviews should, however, be regarded as
those of the reviewer alone.

Advertising
Placement of advertisements at RlOOO per full
page per issue and R500 per half page per is­
sue will be considered. Enquiries should be
directed to the production editor.

