
ISSN 0254-2757

QU/ESTIONES
INFORMATICJE

Volume 5 • Number 3 December 1987

M.E. Orlowska Common Approach to Some Informational Systems 1

S.P. Byron-Moore A Program Development Environment for Microcom-
puters 13

N.C.K. Phillips Pointers as a Data Type 21
S.W. Postma

P.J.S. Brower A Model to Evaluate the Success of Information Cen-
J.J. Groenewald tres in Organizations 24

J. Mende· Three Packaging Rules for Information System Design 32

T. D. Crossman A Comparison of Academic and Practitioner Percep-
tions of the Changing Role of the Systems Analyst: an
Empiral Study 36

P.J.S. Brower Strategic Planning Models for Information Systems 44

S.H. von Solms Generating Relations Using Formal Grammars 51

A.L. du Plessis The ELSIM Language: an FSM-Based Language for
C.H. Bornman ELSIM SEE 67

BOOK REVIEW 56

CONFERENCE ABSTRACTS 57

An official publication of the Computer Society of South Africa and of the South African
Institute of Computer Scientists

'n Amptelike tydskrif van die Rekenaarvereeneging van Suid-Afrika en van die Suid­
Afrikaanse Instituut van Rekenaarwetenska plikes

THE ELSIM LANGUAGE:
AN FSM-BASED LANGUAGE FOR THE ELSIM SEE

ABSTRACT

A L du Plessis
CH Bornman

CENSE : Centre for Software Engineering
Department of Computer Science and Information Systems

University of South Africa
P. 0. Box 392, Pretoria 0001

A fonnal requirements specification language, the ELSIM language, is presented. The language uses
conceptual models for modelling data processing, and control characteristics and behavior of real-time systems, and
is structured into two sections, an analysis section and a design section. An extended finite-state machine model is
used for modelling the control features of a system. The ELSIM language incorporates the terminology, syntax
and semantics of the real-time methodology (ELSIM). The full power of the language is realised when using it
within the Software Environment developed under the SEM System. The fonnal nature of the language allows
checking for completeness and consistency of the target system specification.

1. INTRODUCTION

Real-time systems typically have a complex external interface as well as a complex inner
structure. This is due to the potentially great number of interactions that may occur among the
various components of an asynchronous system. Abstract models of real-time systems are
generally used in order to facilitate the specification of its structure and dynamic behaviour. This
is done by formally specifying how input objects determine a set of output objects. As early as
1968 a finite-state-machine (FSM) model was used to specify the requirements of the DEX-1
experimental electronic switching system [11]. Petri nets, first introduced in 1962 by Carl Adam
Petri, have since been widely used to specify and verify concurrent systems [17].

The formalisation of analysis and design requirements is also generally accepted in the
engineering of real-time software. Roman [19] states that significant advances in the
requirements field are determined by the strength of its theoretical foundation, which is the basis
for subsequent automation, and by the extent to which the theoretical results are applied in the
engineering process. Teichroew [21] has performed an early survey of languages for stating the
requirements of computer-based information systems, and Parnas [17] has stressed the
importance of writing abstract specification of requirements which are free from implementation
bias. A numbers of approaches exist to define formal specification languages [19], based mainly
on experience with the design of programming languages. Work done on the development of
compilers and interpreters, for which formal functional requirements are given by the syntax and
semantics of the language for which they are constructed, provides a foundation for the
development of requirements specification languages.

This article describes research on the use of an extended FSM model with a real-time life
cycle methodology, ELSIM, and its implementation in the formal requirements and design
language, the ELSIM language. The principal contributions are: the extensions to the
methodology to support data modelling, and a bridge between analysis and design; and the
design of a formal language based on the methodology. Section 2 addresses the idea of using
FSM conceptual models for modelling real-time systems. Section 3 reviews the ELSIM
methodology, Section 4 describes the ELSIM language and Section 5 presents an evaluation of
the language.

2. MODELLING REAL-TIME SYSTEMS USING FSM CONCEPTUAL
MODELS

Various adaptations of the basic FSM and Petri net models have been proposed in recent
years as conceptual models for real-time systems. A terminal state transition diagram [15], a

67 qua,stiones infonnatice, 5, 3. pp 67-80, i.an 0254-Z757

graphical notation called an R-net underlying the well-known RSL language [2], and a state
transition matrix for the Format and Protocol Language (FAPL) [18] are examples of this
approach. In some cases extensions of the basic FSM model were used, such as the CCITT
System Description Language [5] and the Requirements Language Processor (RLP) [8, 20].

2.1 Distinguishing Characteristics of Real-time Systems

Real-time systems are distinguished from other classes of systems by their degree of
responsiveness. The degree of responsiveness is dependent on the criticality of the response to
the operating environment requiring the response, and may range from a few seconds to
fractions of a second. Real-time systems possess general characteristics, some of which are
shared by all computer-based information processing systems (CBIPSs), which are of
paramount importance when modelling their characteristics and behaviour.

Essential characteristics distinguishing real-time systems from other CBIPSs include:
• behaviour is strongly time-dependent requiring quick and correct reaction to

complex sequences of external events.
• performance constraints on the system is time-dependent, i.e. maximal (no more

than a specified amount of time may elapse between the occurrence of two events
representing an absolute real-time constraint), minimal (no less than a specified
amount of time may elapse between the occurrence of two events), and durational
(an event must last for a specified amount of time).

• dynamic behaviour depends on the history of the systems and on complex logic
conditions.

• output types are both data and control.
• dynamic operating rules of systems continuously change due to changes in the

external behaviour of the environment, and technical advances resulting in
changes in physical system configuration.

• systems are often embedded in larger systems whose primary purpose is not
computation.

• physical restrictions on resources used for implementation, e.g. weight, volume,
power consumption, ruggedness (resistance to changes in temperature, pressure
and humidity), are often important.

• interfaces with their environment through special-purpose devices are complex,
asynchronous, highly parallel and distributed.

• close coupling exists with the real world.
• testing is difficult due to time-critical dependencies.

Since real-time systems are often large and complex to understand, it is desirable that the
conceptual models which are used for the development of real-time software support the
principle of abstraction, and allow decomposition into its components. In order to take these
characteristics and requirements into account when engineering real-time software an FSM
conceptual model was considered.

2.2 An FSM Model for Real-Time Systems

The FSM is useful for conceptualising the systematic decomposition of a system into its
comprehensible parts [24]. Decomposition of FSMs are usually performed according to certain
criteria, e.g. to yield strongly connected, isolated sub-machines. Strongly connected machines
are of both theoretical and practical interest because they have the property that any state of the
machine can be reached from any other state. The analogous concept in the theory of automatic
control to strongly connected machines is that of a controllable system. Decomposition of FSMs
results in levels of FSMs within the system. The synthesis of FSMs to form a composite system
may be done in more than one way, e.g. as a network or an hierarchy. The dynamic behaviour
and functional characteristics of FSMs may be specified using state-oriented notations which
express time-dependencies in a precise way. These notations are used in a number of
methodologies, e.g. the SREM System [l] and the USE Methodology [23].

68

2.3 The FSM Model for ELSIM

In the ELSIM methodology, which is described in section 3, the control component of a
system is called a controller. The behaviour of this controller is modelled by means of an
extended Mealy type FSM [12]. The Mealy model [3] was extended to incorporate the concept of
transition event, representing conditions which reflect the arrival of input signals. Enabling
predicates, represented as a transition event, may be required to be true for a transition to occur.
In this sense a state may be represented as a Boolean combination of conditions. A transition
event may be associated with more than one state, in which case both the destination state and the
transition actions may (or may not) be different. Transition actions are outputs activated when the
associated transition event occurs, and are a means of specifying passage of control within the
system. The set of states of a controller, the state history, represents its temporal behaviour and
may be determined by tracing the state transitions among states in reaction to stimuli. The
primary purpose of the FSM attributes of the system is to modify the response of the system
according to past, current, and expected future conditions. The controller is distinct from the
processing component of a system, which is characterised by continuous-valued inputs, outputs
and internal elements.

Control is exerted on processes, or is represented by control signals to the operation..al
environment. It does this by controlling processes (i.e. activating and deactivating them), and
can be thought of in the same way as a feedback control loop in control system theory. Various
state-oriented notations are used with ELSIM, all of which are formal in the sense that they are
concise and unambiguous.

3. ELSIM - THE METHODOLOGY

ELS IM is the Extended Lear. Siegler Inc. Methodology for engineering real-time
software, which is an enhancement of LSIM, originally developed by Lear Siegler Inc. [12].
ELSIM also incorporates concepts relating to transitioning from analysis to design, based on an
approach followed in the Darts Methodology [13]. It is described in detail by du Plessis [10]. In
addition to the extended FSM model, the conceptual models of ELSIM include hierarchical
structure, data and control flow models, functional decomposition, and a data structure model.

ELSIM tools for functional analysis are the data context diagram, the set of data flow
diagrams, and process specifications for each primitive process. Data modelling is supported by
the requirements dictionary and the data structure diagram. Analysis and design tools in support
of real-time characteristics are reviewed below. Other design tools are structure charts, module
specifications for each module, and a design dictionary.

Since the behaviour of real-time systems is strongly time-dependent and state-dependent,
and the inputs and outputs of such systems are characterised by discrete-valued control signals in
addition to continuous data, the modelling of the control structure, flow of control, and the
passage of control within a system is of particular importance. Structured analysis tools, so
appropriate for functional modelling of a system, is inadequate for representing control and
temporal behaviour.

A number of control tools are used with ELSIM to this purpose. A control context
diagram (ccd) is used to represent the overall control structure of a system, with components
being one process depicting the system, control flows and signals and terminators. This diagram
complements the data context diagram. A set of cfds is used to model the flow of control within a
process. A cfd presents the control features of processes on the corresponding dfd. A process
which has an explicit controlling function, modelled as a controller, is supported by the levelled
cfd and an additional tool, the control specification (c-spec). Ac-spec defines the transformation
of control inputs into control outputs, and provides the link between a cfd and the corresponding
dfd by means of control signals called process controls. The syntax of the tools enables the flow
of control between the tools to be shown. Since passage of control may depend on a complex
combination of input stimuli, conditions or events, the c-spec is supported by a number of tools
using state-oriented notations, namely a state transition diagram, a state transition table, a state
transition matrix and a decision table.

Modules within a real-time system may execute sequentially or concurrently, requiring
communication and synchronisation mechanisms. This is achieved by . means of a task
structuring tool called the task structure chart. A task structure chart is used to structure the

69

processes on the dfds into sequential and concurrent tasks, according to a number of criteria, as
described by du Plessis [10]. Tasks on the task structure chart are linked by means of task
interface modules, with directed edges between tasks and modules showing the data and control
flows. Synchronisation between tasks, where no information transfer is involved, is achieved by
means of events. An example is shown on the syntax diagram for the task structure chart in
exhibit 1, to be referenced in more detail in section 4.1. The tasks on a task structure chart, each
of which represents a sequential program, are structured into modules using the structure chart
tool in the design part of ELS IM.

4 .. THE ELSIM LANGUAGE

The ELSIM language is a formal specification language for stating the analysis and
design requirements of a real-time target system in a structured, unambiguous and complete
manner. It is the specification language for the ELSIM Software Engineering Environment
[9, 10], which was developed by means of the System Encyclopedia Manager (SEM) System of
the IS DOS Project [22]. The language is based an the conceptual models of ELS IM, referred to
in section 2, incorporates the semantics of the methodology and supports the analysis and design
tools of the methodology explicitly.

4.1 Language Structure

The language definition was done by means of the Language Definition Manager System
of SEM which requires that the language model be expressed in terms of objects, relationships
and properties. This view corresponds to an entity-relationship-attribute (ERA) model [6, 7],
with some difference in terminology. In this model an object type is a means of classifying data
types; relationship types state how objects of the model are connected to each other; and
properties are values of determinate types that describe data items for an object type. The model
also allows the specification of text types which associate text strings in free format with object
type instances. The data model of the ELSIM language for analysis, shown in table 1,
distinguishes classes of object types according to their function in the system, namely metrics,
project, data,, role control and dynamics.

MEASURES PROJECT

attribute phase-product

performance-metric Phase-product-part

system-parameter tool

tool-part

ROLE DATA

controller data-element

engineer data-flow

process data-signal

processor data-store

system data-substitute

terminator group

timer

table 1

ELSIM Data Model

These classes of object types have the following meaning :

CONTROL

control-flow

control-signal

control-substitute

• Measures : object types enabling the specification of metrics

DYNAMICS

Boolean-combination

condition

event

state

transition-action

• Project : object types which allow instances of tools and phase products to be traced in
support of project management functions

• Data : data object types within the system
• Control : control object types used

70

• Role : object types which perlorm a functional role within the system
• Dynamics : object types which enable dynamic behaviour to be specified.

The choice of object types were based on the semantics of ELSIM. The syntax and
semantics of the ELSIM tools were embodied in the language, enabling the customization of the
SEM tools for ELSIM. An example of the semantic model for the task structure chart is shown
in exhibit 1. This syntax diagram is composed of three parts, namely the ERA diagram on the
top, an instance of the task structure in the middle, and the equivalent ELSIM language
statements at the bottom.

The ELSIM language is structured into two parts, namely an analysis and a design part.
Each of these language parts are arranged into seven system aspects allowing various aspects of
a system to be modelled. A developer is able to concentrate on each of the aspects and builds the
system specification incrementally. The final system specification is a synthesis of all the system
aspect specifications. The system aspects in both the analysis and design parts are : Properties
and Characteristics, System Boundary and Input/Output Flow, System Structure, Data Structure,
Control Structure and System Dynamics, and Data Derivation. An additional aspect for analysis
is the Requirements Traceability aspect, and for design the Design Traceability and Task
Communication and Synchronisation aspects. The involvement of the object types in the analysis
system aspects are shown in appendix 1. Examples of the use of the language for specifying
some system aspects are presented below.

The principle of abstraction is explicitly supported in both the system, data and control
structure aspects. This capability allows the system. data and control components to be
represented as aggregates or subparts. Abstraction is also part of the ELSIM paradigm, and is
used in the analysis and design modelling tools. The various abstraction mechanisms used with
ELSIM all endeavour to simplify complex representations, at first suppressing non-relevant
details in the most abstract form, and gradually incorporating increasing levels of detail. Other
types of abstraction are retrievable from the target system specification database, which is
populated using the ELSIM language statements, by means of the Query System of the SEM
System [14].

The features of the ELSIM language are demonstrated by modelling the structure and
dynamics of an FSM-based controller. The example target system is an embedded ignition
control module for an automobile engine. The module is named LCH ESC (Low Cost Hybrid
Electronic Spark Control). The problem specification requires that the LCH ESC module be
composed of a controlling part, referred to as controller asc, and a data processing part (not
described here). Figure 1 shows a schematic representation of a controller asc with supporting
tools. The asc-2 controller models process pl.3 in cspec-pl.3 using the ELSIM control
specification tool. Control specification cspec-pl.3 defines the transformation of control inputs
into control outputs for process pl.3. The control flow within process pl.3 is modelled in cfd­
pl.3 using the ELSIM cfd tool. The two tool instances can be traced to each other, as is
illustrated by the set of ELSIM statements for the Traceability Aspect following figure 2. The
remaining part of figure 1 is interpreted in a similar manner.

Figure 2 shows the combined dfd and cfd for a process p 1.3 of process asc, which is
defined as cfd-pl.3 with synonym dfd-pl.3 (since these two tools have been combined here).
The cfd syntax allows for the representation of control inputs and outputs entering and leaving
the parent process as defined in the supporting control specification, as is evidenced by cf 4 and
cf3 in figure 2.

71

CONTOLLER
asc-1

models

TOOL
cspec-pl.1

tracrsto

TOOL
cfd-pl.1

CONTOLLER models

asc

CONTOLLER
asc-2

models

TOOL
cspec-pl.3

tracrs to

TOOL
cfd-pl.3

figure 1

in TOOL
cspec-pl

Structure of Controller asc with Associated Tools

shutdown-signal engine-speed engine-speed
dfl.2

spark-advance-angle
cs2 /dfl.2 df2

spark-advance-angle coil-tumon sync-protect-I
df2 spark-inhibit-signal

o2.l

modification k . .t. cfl
df3 spar -1gm 10n

figure 2

data
o2.2

Data and Control Flow Diagram for pl .3

72

A section of the requirements specification for the ignition-control module, electr-spark­
control-proc, specified in the ELSIM language, is presented below by system aspect. Text
descriptions of object instances are given where required to enhance readability.

/* System Structure Aspect*/

DEFINE SYSTEM
SYNONYM

DESCRIYTION;

electr-spark-control-proc;
lch-esc;

The lch-esc is a stand-alone, micro-processor based thick film ignition-control module. Sensor input
signals representing engine speed, manifold pressure and engine coolant temperature are used to
calculate an optimum spark advance for a given engine operating condition. The module then uses the
spark advance value to energize and fire the ignition coil primary based on an internal prediction of
engine crank-shaft position. Special circuitry in the module monitors the coil primary current at spark
ignition, and adaptively modifies the coil turn-on time to reduce excess current dwell and thereby
reduce module power dissipation. An additional output, not related directly to ignition, has been added
to the module to control manifold intake heater relay. This output is switched low, as a function of
engine coolant temperature, to improve engine cold start and drive-away performance. The lch-esc
module uses a custom design CMOS Angular Spark Control integrated circuit as the external timing
/control interface to a standard Motorola 6805R2 microcomputer;

PARTITIONED INTO

DEFINE PROCESSOR
SYNONYM

DESCRIYTION;

asc, sa-mp;

spark-advance-micro-proc;
sa-mp;

This processor performs the calculations of the spark advance angle, logically modelled by process p2
and its decomposed data flow diagrams. The lch-esc module uses a standard Motorola 6805R2
microcomputer to perform the calculations;

DEFINE CONrROLLER
SYNONYM

DESCRIYTION;

angular-spark-control-ic;
asc;

The controller is modelled on a finite-state machine and uses data from the sa-mp processor to
determine control and timing data which energizes the ignition coil and fires the spark;

SUBPARTS ARE
MODELS

DEFINE PROCESS
SYNONYM

DESCRIYTION;

asc-1, asc-2;
pl IN cspec-pl;

asc-proc;
pl;

This is the angular-spark-control process on the level O dfd defined as dfd-pO;

DEFINE TOOL

DEFINE CONrROLLER
SYNONYM
MODELS

DEFINE PROCESS
SYNONYM

cspec-pl;

pl. I-controller;
asc-1;
pl.I IN cspec-pl.1;

establish-reference-time-base;
pl.1;

DEFINECONrROLLER pl.3-controller;
SYNONYM asc-2;
MODELS pl .3 IN cspec-pl .3;
RELATED-TRANSFER-FUNCTION boolfunct-pl .3;

DEFINE PROCESS
SYNONYM pl.3;

spark-advance-proc;

73

DEFINE BOOLEAN-COMBINATION boolfunct-pl.3;

DESCRIPl10N;
This is the boolean function which must be true for control flow spark-advance-control to be

activated;

LOOICAL EXPRESSION cf4 AND c6.c7;

DEFINE CONDillON
AND-PARTS ARE c6, c7;

c6.c7;

DEFINE CONDillON
SYNONYM

engine-speed-normal-cond;
c6;

DEFINE CONDillON manifold-abs-pressure-normal-cond;
SYNONYM c7;

DEFINE CONTROl.rR.OW
SYNONYM

angle-calculated-control;
cf4;

Traceability among the tools, and the components contained in a tool, are illustrated by the
following statements :

/* Traceability Aspect * /

DEFINE TOOL cspec-pl.1;

DESCRIPl10N;
Control specification for process pl.1;

COMPONENTS ARE
TRACES TO

DEFINE TOOL

DESCRIPTION;

tdl, sttl, stdl;
cfd-pl.l;

tdl;

Timing diagram representing the crankshaft position;

DEFINETOOL sttl;

DESCRIPTION;
State transition table for the asc-1 controller;

DEFINE TOOL stdl;

DESCRIPTION;
State transition diagram for the asc-1 controller;

DEFINE TOOL

DESCRIPTION;
Control flow diagram for pl.I;

DEFINETOOL

DESCRIPTION;

cfd-pl.1;

cspec-pl.3;

Control specification for process pl.3;

COMPONENTS ARE
TRACESTO

DEFINETOOL

DESCRIPTION;

dtl;
cfd-pl.3;

Decision table for activating cf.3;

dtl;

The decision-table for the logic to obtain control flow cf3 is :

cf4 c6 cf3
1 1 1

74

The responsibility for a particular part of a system may be stated by :

DEFINE ENGINEER
SYNONYM
RESPONSIBLE FOR

acdeacon;
acd;
asc-proc;

The traceability aspect also allows the specification of the composition of the phase products of
analysis and design and traces among the tool instances which these products are composed of:

DEFINE PHASE-PRODUCT
SYNONYM
TRACESTO

lch-esc-system-req-doc;
lch-esc-srd;
lch-esc-dcd, lch-csc-ccd;

and, for example, the specification of the data context diagram lch-esc-dcd :

DEFINE TOOL
HAS COMPONENTS

lch-esc-dcd;
pO,
tl, t2, t3, t4, t5, t6, t7, t8,
il, i2, i3, i4, i5, i6, i7,
ol, o2, o3,
cf3;

where t(i), i=l,2, ... 8 are a series of terminators in the operational environment, iG), j=l,2, ... 7
a series of input signals, and o(i), i=l ,2,3 a series of output signals. Control flow cf3 was
defined earlier. Once again all object instances should be defined.

The following statements are the language equivalent of the composite dfd/cf d in figure 2 :

DEFINETOOL
SYNONYM
DESCRIPTION;
Dfd/cfd for pl.3;
COMPONENTS ARE

DEFINE CONTROL-SIGNAL
SYNONYM

DEFINECONTROL-R.DW
SYNONYM

DEFINECONTROL-R.DW
SYNONYM

DEFINE CONTROL-R.DW
SYNONYM

cfd-pl.3;
dfd-pl.3;

pl.3.1, pl.3.2,
cs2, cfl, cf3, cf4,
dfl.2, df2, o2.1 dfl.2, df2, df3, o2.2;
shutdown;
cs2;

sync-protect-1;
cfl;

spark-advance-control;
cf3;

angle-calculated-control;
cf4;

Data flows dfl.2, df2, df3 and data signals o2.1 and o2.2 are defined in the same way.
The behaviour of the asc-1 controller may be illustrated using a timing diagram (tdl), a

state transition table (sttl), and the state transition diagram (stdl) presented in figure 3. These
representations form part of the control specification cspec-p 1.1, as was defined ealier.

The dynamics of the state transition from qO to q 1 are specified by the equivalent regular
set of statements in the ELS IM language for the state transition table of figure 3, as follows :

/* Control Structure and System Dynamics Aspect*/

DEFINE CONTROLLER pl.1-controller;
SYNONYM asc-1,
DESCRIPTION;
The definition of the finite-state machine model of this controller includes the input set I, the output
set Z, the set of internal states Q, the next-state-function delta, and the output function:
I= { 0, 1 } Z = { xO, xl }
Q = { qO, ql, q2, q3, q4 }
delta (qO, 0) = ql w (qO, 0) = xO
delta (ql, 0) = q2 w (qO, 1) = xO

75

delta (q2, 1) = q3
delta (q3, 1) = q4
delta (q4, 0) = q l

DEFINE STATE

DESCRIPTION;

w (ql, 0) = xO
w (ql, 1) = xO
w (q2, 0) = xO
w (q2, 1) = xO
w (q3, 0) = xO
w (q3, 1) = xO
w (q4, 0) = xl
w (q4, 1) = xl ;

qO;

This is the initial state representing the time synchronization point, which is established the instant
the starter motor is activated;

INITIAL ST A TE OF asc-1 WHEN c2;
TRANSITTONS TO ql GIVEN tr-evtl;
STATE-CHANGE TO ql ACITV ATES tr-actl;

DEFINE STATE ql;

DESCRIPTION;
Given initial state qO, this is the state to which the controller transitions upon receiving input signal O;

DEFINE EVENT tr-evtl;
REPRESENTS iO AS crankshaft-0;

DEFINE TRANSITTON-ACTION tr-actl;

DEFINE CONTROL-SIGNAL xO;
EQUIVALENCE WITH tr-actl;

DEFINE CONTROL-SIGNAL crankshaft-signal;
SYN" iO;
ATTRIBUfES crankshaft-pos O;

DEFINE CONDITTON crankshaft-0;

DEFINE BOOLEAN-COMBINATION nextstatc-funct-q 1-q2;
NEXT-ST ATE-FUNCTION MAPS tr-evtl WITH qO INTO q 1;

Another dynamics relationship, allowing the triggering of a process, is the triggers-relation :

DEFINE CONTROL-SIGNAL angle-calculated-control;
TRIGGERS pl.3 IF angle-calc-cond;

where pl.3 is the process which calculates the spark-advance, and the predicate is defined as:

DEFINE CONDITTON angle-calc-cond;

Conditional transfer of control is stated by :

DEFINE PROCESS p2.3.8;
CONTROL-TRANSFER TO p2.3.5 IF c5;

or

EXTERNAL-CONTROL-TRANSFER TO p2.3.5 VIA tr-evt24;

which expresses control transfer dependence on a transition event. A complete specification will
also include the definition of process p2.3.5, condition c5 and transition event tr-evt24.

Task communication and synchronization may be illustrated by referring to the syntax
diagram for the task structuring tool, in exhibit 1. Synchronization between tasks t2 and t5 is
achieved by means of a synchronization module, df4-mod dependent on the arrival of event
delay-ready-evt. Task t2 is concurrent with t3. Tasks t2, t3 and t4 all access data in a data store
dst2-mod. Access is coordinated by specifying that task t2 mutually excludes t3 and t4 on
accessing df2 in df2-mod.

76

cf

Input set 0

Ouput set XO

State set ql

present
state

qo

%

q2

Ch

q4

1

0

90° 180° 270° cf 90° 180° 270°

0 1

XO XO

q2 q3

input

0

1

0

1

0

1

0

1

0

0

1 0 0 1 1

XO Xl xl xl xl

q4 ql q2 q3 q4

Timing Diagram

1

actions

calcRPM

=1

no calc

=O

nocalc

=O

no calc

=O

calcRPM

=1

0

figure 3

output

XO

Xl

00 90° 180° 270°

0 0 1 1

Xi Xz xz xz

ql q2 q3 q4

next state

q

Ch
(Ji

ql

q2

~
q3

<Ii
<\
~

0

State-oriented Notations for the asc-1 Controller

In design, asynchronous calls from one module to another is specified by :

77

/* Task Conununication and Synchronization Aspect*/

DEFINE MODULE process-trans-mod;
SYN ml.3;
ASYNCHRONOUS CALL TOml.3.1 WHEN c5 RECEIVING dc2;

stating that ml.3.1 is called asynchronously on receiving a control signal dc2 when condition c5
is true. Once again all object instances should be defined. Other call relationships used for the
structure chart are the ct-call-relation and the d-iterative-call-relation :

and

DEFINE MODULE delay-hot-module;
SYN ml.3.1;
CALLS ml.3.3 WHEN delay-hot-calcd-cond
RECEIVING dcl;

DEFINE MODULE modl;
CALLS mod2 ITERATIVELY WITHIN mod2-labl;

with all the object instances to be defined.
The language was designed to facilitate mapping to other representation schemes, which

are close to the implementation forms for a system. A prototype of such a mapping was
demonstrated from the target database to the Ladder Diagram Programming Language, a program
design language for a programmable controller [10].

5. EVALUATION OF THE ELSIM LANGUAGE

The ELSIM language was designed to support ELSIM, a structured analysis and design
methodology for the engineering of real-time systems. The language primitives were defined to
explicitly incorporate the terminology, syntax and semantics of the ELSIM methods and tools.
The syntax of the language enforces the rigorous application of the tools when specifying the
characteristics and behaviour of a system. The language also provides support for the
transitioning from analysis to design, and offers traceability among tool products and phase
products. Since the ELSIM language was designed to be used within the automated ELSIM
Software Engineering Environment [9] under the SEM System, traceability is also supported
implicitly. The full power of the language is only realised when used within the environment,
particularly when the retrieval tools of the ELSIM SEE (and hence the SEM System) are
invoked. It has been demonstrated that the language may be used to develop specifications which
may then be mapped by automated means to implementation forms used for real-time
implementations. The issues of validation, verification and testability are under investigation at
present. The formality of the design specification provides support for testability of the
requirements and should facilitate the establishment of validation and verification criteria.

REFERENCES

1. Alford, M., [1985], SREM at the Age of Eight; the Distributed Computing Design System,
Computer, 18,2.

2. Bell, T.E. and D.C. Bixler, [1976], A Flow-oriented requirements Statement Language,
TRW Software series No.TRW-SS-76-02.

3. Booth, T.L., [1967], Sequential Machines and Automata Theory, John Wiley and Sons,
Inc ..

4. Brand, D. and P. Zafiropulo, [1983], On Communicating Finite-state Machines, Journal of
the ACM, 30, 2.

5. CCITT, [1983], Functional Specification and Description Language (SDL),
Recommendations CC/TT Ref. Z.100-Z.104.

6. Chen, P.P., [1976], The Entity-Relationship Model - Toward a Unified View of Data,
ACM Trans. on Database Systems, 1, 1.

78

7. Chen, P.P., [1977], The Entity-Relationship Model - a Basis for the Enterprise View of
Data, Proc. Nat. Comp. Conj., 46.

8. Davis, A.M. and T.G. Rauscher, [1979], Formal techniques and Automatic Processing to
Ensure Correctness in requirements Specifications, Proc. Conj. Specifications of Reliable
Software, IEEE.

9. du Plessis, A.L., D.Teichroew and CH.Bornman, [1986], ELSIM SEE: a Software
Engineering Environment for Real-time Systems, Proc. ISETT Congress, Italy, May.

10. du Plessis, A.L., [1986], A Software Engineering Environment for Real-time Systems,
Ph.D. Dissertation, University of South Africa

11. Gambe,E. and H.Sawabe, [1986], Experimental Electronic Switching System 'DEX-1 ',
Review of the Electrical Comm. La.boratory, 16, 1-2.

12. Hatley, D.J., [1984], The Use of Structured Methods in the Development of Large
Software-based Avionics-based Systems, Proc. Sixth Digital Avionics Systems Conf.

13. Gomaa,H.,[1984], A Software Design Method for Real-time Systems, Comm. of the
ACM, 27,9.

14. ISDOS Ref.#M0456-3 System Encyclopedia Manager (SEM) Query System User Manual.
15. Parnas, D.L., [1969], On the Use of Transition Diagrams in the Design of a User interface

for an Interactive Computer system, Proc. of the ACM, 24th Nat. Conf.
16. Parnas, D.L., [1977], The Use of Precise Specifications in the Development of Software,

Proc. IFIP Congress, Toronto.
17. Peterson, J.L., [1977], Petri Nets, Computing Surveys, 9, 3.
18. Pozefsky, D.P. and F.D. Smith, [1982], Meta-implementation for Systems Network

Architecture, IEEE Trans. on Communications, COM-30, 6.
19. Roman, G-C, [1985], A Taxonomy of Current Issues in Requirements Engineering,

Computer, 18, 4.

APPENDIX 1: Object types involved in Analysis System Aspects

Object Types

Performance-metric
System Parameter
Attribute

Phase-product
Phase-product-part
Tool
Tool-part

Data-element
Group
Data-signal
Data-substitute
Data-flow
Data-store

System
Contoller
Processor
Process
Terminator
Engineer

Contol-signal
Control-substitute
Contol-flow
--------------- --·-
Timer
Boolean-combination
State
Transition-action
Event
Condition

1

X
X
X

X
X
X
X

X

X
X
X

X
X

X
X

X
X
X

X

X
X
X

-·-------
X
X
X
X

X
X

2

X

X
X

X
X

X
X

X

X

X

X
X
X

X

X

3

X

X

X

X
X

X

X
-----·-----

X
X

X

4

X

X
X

X
X

X

X
X

X
X
X

X

X

X

X

X
X
X
X

79

5

X
X
X
X

X
X

X

X

X
X
X

6

X
X

X

X

X

X

X

X
--·-------

X

7

X
X

X

X

X

X
X

X

X

----------·---
X
X
X
X

X
X

1 Properties and
Charac.

2 Requirements
Tracablity

3 System Bounary
Input Output Flow

4 System Structure
5 Data Structure
6 Data Derivation
7 Control Structure

System Dynamics

20. Taylor, B.J., [1980], A Methcxl for Expressing the Functional Requirements of Real-time
Systems, IFAC!IFIP Workshop on Real-time Programming, Leibnitz, Austria, April.

21. Teichroew, D., [1972], A Survey of Languages for Stating Requirements for Computer­
based Information Systems, Proc. FJCC.

22. Teichroew, D. and E. Hershey III, [1977], PSL/PSA :A Computer-aided Technique for
Structured Documentation and Analysis of Information Processing Systems, IEEE Trans.
on Software Engineering, SE-3, 1.

23. Wasserman.A., [1986], Developing Interactive Information Systems with the User
Software Engineering Methodology, IEEE Trans. on Software Engineering, SE-12, 2.

24. Zeigler, B.P., [1984], Multifacetted Modeling and Discrete Event Simulation, Academic
Press.

EXHIBIT 1: Syntax Diagram for Task Structured Chart

Di a gram Syntax

I
I ' D-FLOW

' 1,---~, \ I\ I _c_-F_L_ow_, H 98 , MODULE
~. ---~I I '-----~r--t--t----,..-1

GROUP

D-EL

.....
----1 ' I I i I [~I .

ll TASK :l---,811 i~ TASK 1

< '-._,/ I ;

I : 0-FLOh' I BOOLCOMB

i 1_c_-:-::-:---, ~;3 JL~~ I ,~·-D--~::~ 1 EVENT

COND

\

1.· (-SIGNAL ---- 350\ 1 - J
. '~' D-ST i (-FLOW

__ lL;i-/~ df2-mod ·,-' ----:,,,,.,,..."'---~..,._..--
.\._,/ ~· ~--

Fonnal Statements
TASK t2

TASK t5
TASK t3
EVENT delay-rcady-evt

TASK tl

TASK t4
TASK t2

CONCURRENT WITII t3
MUTUALLY EXCLUDES t3, t4 ACCESS df2
READS el3 IN dst2
SYNCHRONIZED BY df4-mod WHEN delay-ready-evt
RECEIVES-?vlESSAGE df6 FROM dfl-mod
SIGNALLED ON ARRIVAL OF df4
ACTIVATE t5
WRITES TO ell df2
ACCEPT il
PRODUCES 01, 02
SEND-?vlESSAGE df4 TO df4-mod

80

811 ct-concurrent
850 ct-produces
940 ct-accepts
980 ct-arrival-activate
981 d-mutual-excl
984d-read
985 ct-receive-message
986 ct-send-message
987 d-task-synch
988 d-write

