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A fonnal requirements specification language, the ELSIM language, is presented. The language uses 
conceptual models for modelling data processing, and control characteristics and behavior of real-time systems, and 
is structured into two sections, an analysis section and a design section. An extended finite-state machine model is 
used for modelling the control features of a system. The ELSIM language incorporates the terminology, syntax 
and semantics of the real-time methodology (ELSIM). The full power of the language is realised when using it 
within the Software Environment developed under the SEM System. The fonnal nature of the language allows 
checking for completeness and consistency of the target system specification. 

1. INTRODUCTION 

Real-time systems typically have a complex external interface as well as a complex inner 
structure. This is due to the potentially great number of interactions that may occur among the 
various components of an asynchronous system. Abstract models of real-time systems are 
generally used in order to facilitate the specification of its structure and dynamic behaviour. This 
is done by formally specifying how input objects determine a set of output objects. As early as 
1968 a finite-state-machine (FSM) model was used to specify the requirements of the DEX-1 
experimental electronic switching system [11]. Petri nets, first introduced in 1962 by Carl Adam 
Petri, have since been widely used to specify and verify concurrent systems [17]. 

The formalisation of analysis and design requirements is also generally accepted in the 
engineering of real-time software. Roman [19] states that significant advances in the 
requirements field are determined by the strength of its theoretical foundation, which is the basis 
for subsequent automation, and by the extent to which the theoretical results are applied in the 
engineering process. Teichroew [21] has performed an early survey of languages for stating the 
requirements of computer-based information systems, and Parnas [17] has stressed the 
importance of writing abstract specification of requirements which are free from implementation 
bias. A numbers of approaches exist to define formal specification languages [19], based mainly 
on experience with the design of programming languages. Work done on the development of 
compilers and interpreters, for which formal functional requirements are given by the syntax and 
semantics of the language for which they are constructed, provides a foundation for the 
development of requirements specification languages. 

This article describes research on the use of an extended FSM model with a real-time life 
cycle methodology, ELSIM, and its implementation in the formal requirements and design 
language, the ELSIM language. The principal contributions are: the extensions to the 
methodology to support data modelling, and a bridge between analysis and design; and the 
design of a formal language based on the methodology. Section 2 addresses the idea of using 
FSM conceptual models for modelling real-time systems. Section 3 reviews the ELSIM 
methodology, Section 4 describes the ELSIM language and Section 5 presents an evaluation of 
the language. 

2. MODELLING REAL-TIME SYSTEMS USING FSM CONCEPTUAL 
MODELS 

Various adaptations of the basic FSM and Petri net models have been proposed in recent 
years as conceptual models for real-time systems. A terminal state transition diagram [15], a 
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graphical notation called an R-net underlying the well-known RSL language [2], and a state 
transition matrix for the Format and Protocol Language (FAPL) [18] are examples of this 
approach. In some cases extensions of the basic FSM model were used, such as the CCITT 
System Description Language [5] and the Requirements Language Processor (RLP) [8, 20]. 

2.1 Distinguishing Characteristics of Real-time Systems 

Real-time systems are distinguished from other classes of systems by their degree of 
responsiveness. The degree of responsiveness is dependent on the criticality of the response to 
the operating environment requiring the response, and may range from a few seconds to 
fractions of a second. Real-time systems possess general characteristics, some of which are 
shared by all computer-based information processing systems (CBIPSs), which are of 
paramount importance when modelling their characteristics and behaviour. 

Essential characteristics distinguishing real-time systems from other CBIPSs include: 
• behaviour is strongly time-dependent requiring quick and correct reaction to 

complex sequences of external events. 
• performance constraints on the system is time-dependent, i.e. maximal ( no more 

than a specified amount of time may elapse between the occurrence of two events 
representing an absolute real-time constraint), minimal (no less than a specified 
amount of time may elapse between the occurrence of two events), and durational 
(an event must last for a specified amount of time). 

• dynamic behaviour depends on the history of the systems and on complex logic 
conditions. 

• output types are both data and control. 
• dynamic operating rules of systems continuously change due to changes in the 

external behaviour of the environment, and technical advances resulting in 
changes in physical system configuration. 

• systems are often embedded in larger systems whose primary purpose is not 
computation. 

• physical restrictions on resources used for implementation, e.g. weight, volume, 
power consumption, ruggedness (resistance to changes in temperature, pressure 
and humidity), are often important. 

• interfaces with their environment through special-purpose devices are complex, 
asynchronous, highly parallel and distributed. 

• close coupling exists with the real world. 
• testing is difficult due to time-critical dependencies. 

Since real-time systems are often large and complex to understand, it is desirable that the 
conceptual models which are used for the development of real-time software support the 
principle of abstraction, and allow decomposition into its components. In order to take these 
characteristics and requirements into account when engineering real-time software an FSM 
conceptual model was considered. 

2.2 An FSM Model for Real-Time Systems 

The FSM is useful for conceptualising the systematic decomposition of a system into its 
comprehensible parts [24]. Decomposition of FSMs are usually performed according to certain 
criteria, e.g. to yield strongly connected, isolated sub-machines. Strongly connected machines 
are of both theoretical and practical interest because they have the property that any state of the 
machine can be reached from any other state. The analogous concept in the theory of automatic 
control to strongly connected machines is that of a controllable system. Decomposition of FSMs 
results in levels of FSMs within the system. The synthesis of FSMs to form a composite system 
may be done in more than one way, e.g. as a network or an hierarchy. The dynamic behaviour 
and functional characteristics of FSMs may be specified using state-oriented notations which 
express time-dependencies in a precise way. These notations are used in a number of 
methodologies, e.g. the SREM System [l] and the USE Methodology [23]. 
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2.3 The FSM Model for ELSIM 

In the ELSIM methodology, which is described in section 3, the control component of a 
system is called a controller. The behaviour of this controller is modelled by means of an 
extended Mealy type FSM [12]. The Mealy model [3] was extended to incorporate the concept of 
transition event, representing conditions which reflect the arrival of input signals. Enabling 
predicates, represented as a transition event, may be required to be true for a transition to occur. 
In this sense a state may be represented as a Boolean combination of conditions. A transition 
event may be associated with more than one state, in which case both the destination state and the 
transition actions may (or may not) be different. Transition actions are outputs activated when the 
associated transition event occurs, and are a means of specifying passage of control within the 
system. The set of states of a controller, the state history, represents its temporal behaviour and 
may be determined by tracing the state transitions among states in reaction to stimuli. The 
primary purpose of the FSM attributes of the system is to modify the response of the system 
according to past, current, and expected future conditions. The controller is distinct from the 
processing component of a system, which is characterised by continuous-valued inputs, outputs 
and internal elements. 

Control is exerted on processes, or is represented by control signals to the operation..al 
environment. It does this by controlling processes (i.e. activating and deactivating them), and 
can be thought of in the same way as a feedback control loop in control system theory. Various 
state-oriented notations are used with ELSIM, all of which are formal in the sense that they are 
concise and unambiguous. 

3. ELSIM - THE METHODOLOGY 

ELS IM is the Extended Lear. Siegler Inc. Methodology for engineering real-time 
software, which is an enhancement of LSIM, originally developed by Lear Siegler Inc. [12]. 
ELSIM also incorporates concepts relating to transitioning from analysis to design, based on an 
approach followed in the Darts Methodology [13]. It is described in detail by du Plessis [10]. In 
addition to the extended FSM model, the conceptual models of ELSIM include hierarchical 
structure, data and control flow models, functional decomposition, and a data structure model. 

ELSIM tools for functional analysis are the data context diagram, the set of data flow 
diagrams, and process specifications for each primitive process. Data modelling is supported by 
the requirements dictionary and the data structure diagram. Analysis and design tools in support 
of real-time characteristics are reviewed below. Other design tools are structure charts, module 
specifications for each module, and a design dictionary. 

Since the behaviour of real-time systems is strongly time-dependent and state-dependent, 
and the inputs and outputs of such systems are characterised by discrete-valued control signals in 
addition to continuous data, the modelling of the control structure, flow of control, and the 
passage of control within a system is of particular importance. Structured analysis tools, so 
appropriate for functional modelling of a system, is inadequate for representing control and 
temporal behaviour. 

A number of control tools are used with ELSIM to this purpose. A control context 
diagram (ccd) is used to represent the overall control structure of a system, with components 
being one process depicting the system, control flows and signals and terminators. This diagram 
complements the data context diagram. A set of cfds is used to model the flow of control within a 
process. A cfd presents the control features of processes on the corresponding dfd. A process 
which has an explicit controlling function, modelled as a controller, is supported by the levelled 
cfd and an additional tool, the control specification (c-spec). Ac-spec defines the transformation 
of control inputs into control outputs, and provides the link between a cfd and the corresponding 
dfd by means of control signals called process controls. The syntax of the tools enables the flow 
of control between the tools to be shown. Since passage of control may depend on a complex 
combination of input stimuli, conditions or events, the c-spec is supported by a number of tools 
using state-oriented notations, namely a state transition diagram, a state transition table, a state 
transition matrix and a decision table. 

Modules within a real-time system may execute sequentially or concurrently, requiring 
communication and synchronisation mechanisms. This is achieved by . means of a task 
structuring tool called the task structure chart. A task structure chart is used to structure the 
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processes on the dfds into sequential and concurrent tasks, according to a number of criteria, as 
described by du Plessis [10]. Tasks on the task structure chart are linked by means of task 
interface modules, with directed edges between tasks and modules showing the data and control 
flows. Synchronisation between tasks, where no information transfer is involved, is achieved by 
means of events. An example is shown on the syntax diagram for the task structure chart in 
exhibit 1, to be referenced in more detail in section 4.1. The tasks on a task structure chart, each 
of which represents a sequential program, are structured into modules using the structure chart 
tool in the design part of ELS IM. 

4 .. THE ELSIM LANGUAGE 

The ELSIM language is a formal specification language for stating the analysis and 
design requirements of a real-time target system in a structured, unambiguous and complete 
manner. It is the specification language for the ELSIM Software Engineering Environment 
[9, 10], which was developed by means of the System Encyclopedia Manager (SEM) System of 
the IS DOS Project [22]. The language is based an the conceptual models of ELS IM, referred to 
in section 2, incorporates the semantics of the methodology and supports the analysis and design 
tools of the methodology explicitly. 

4.1 Language Structure 

The language definition was done by means of the Language Definition Manager System 
of SEM which requires that the language model be expressed in terms of objects, relationships 
and properties. This view corresponds to an entity-relationship-attribute (ERA) model [6, 7], 
with some difference in terminology. In this model an object type is a means of classifying data 
types; relationship types state how objects of the model are connected to each other; and 
properties are values of determinate types that describe data items for an object type. The model 
also allows the specification of text types which associate text strings in free format with object 
type instances. The data model of the ELSIM language for analysis, shown in table 1, 
distinguishes classes of object types according to their function in the system, namely metrics, 
project, data,, role control and dynamics. 

MEASURES PROJECT 

attribute phase-product 

performance-metric Phase-product-part 

system-parameter tool 

tool-part 

ROLE DATA 

controller data-element 

engineer data-flow 

process data-signal 

processor data-store 

system data-substitute 

terminator group 

timer 

table 1 

ELSIM Data Model 

These classes of object types have the following meaning : 

CONTROL 

control-flow 

control-signal 

control-substitute 

• Measures : object types enabling the specification of metrics 

DYNAMICS 

Boolean-combination 

condition 

event 

state 

transition-action 

• Project : object types which allow instances of tools and phase products to be traced in 
support of project management functions 

• Data : data object types within the system 
• Control : control object types used 
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• Role : object types which perlorm a functional role within the system 
• Dynamics : object types which enable dynamic behaviour to be specified. 

The choice of object types were based on the semantics of ELSIM. The syntax and 
semantics of the ELSIM tools were embodied in the language, enabling the customization of the 
SEM tools for ELSIM. An example of the semantic model for the task structure chart is shown 
in exhibit 1. This syntax diagram is composed of three parts, namely the ERA diagram on the 
top, an instance of the task structure in the middle, and the equivalent ELSIM language 
statements at the bottom. 

The ELSIM language is structured into two parts, namely an analysis and a design part. 
Each of these language parts are arranged into seven system aspects allowing various aspects of 
a system to be modelled. A developer is able to concentrate on each of the aspects and builds the 
system specification incrementally. The final system specification is a synthesis of all the system 
aspect specifications. The system aspects in both the analysis and design parts are : Properties 
and Characteristics, System Boundary and Input/Output Flow, System Structure, Data Structure, 
Control Structure and System Dynamics, and Data Derivation. An additional aspect for analysis 
is the Requirements Traceability aspect, and for design the Design Traceability and Task 
Communication and Synchronisation aspects. The involvement of the object types in the analysis 
system aspects are shown in appendix 1. Examples of the use of the language for specifying 
some system aspects are presented below. 

The principle of abstraction is explicitly supported in both the system, data and control 
structure aspects. This capability allows the system. data and control components to be 
represented as aggregates or subparts. Abstraction is also part of the ELSIM paradigm, and is 
used in the analysis and design modelling tools. The various abstraction mechanisms used with 
ELSIM all endeavour to simplify complex representations, at first suppressing non-relevant 
details in the most abstract form, and gradually incorporating increasing levels of detail. Other 
types of abstraction are retrievable from the target system specification database, which is 
populated using the ELSIM language statements, by means of the Query System of the SEM 
System [14]. 

The features of the ELSIM language are demonstrated by modelling the structure and 
dynamics of an FSM-based controller. The example target system is an embedded ignition 
control module for an automobile engine. The module is named LCH ESC (Low Cost Hybrid 
Electronic Spark Control). The problem specification requires that the LCH ESC module be 
composed of a controlling part, referred to as controller asc, and a data processing part (not 
described here). Figure 1 shows a schematic representation of a controller asc with supporting 
tools. The asc-2 controller models process pl.3 in cspec-pl.3 using the ELSIM control 
specification tool. Control specification cspec-pl.3 defines the transformation of control inputs 
into control outputs for process pl.3. The control flow within process pl.3 is modelled in cfd­
pl.3 using the ELSIM cfd tool. The two tool instances can be traced to each other, as is 
illustrated by the set of ELSIM statements for the Traceability Aspect following figure 2. The 
remaining part of figure 1 is interpreted in a similar manner. 

Figure 2 shows the combined dfd and cfd for a process p 1.3 of process asc, which is 
defined as cfd-pl.3 with synonym dfd-pl.3 (since these two tools have been combined here). 
The cfd syntax allows for the representation of control inputs and outputs entering and leaving 
the parent process as defined in the supporting control specification, as is evidenced by cf 4 and 
cf3 in figure 2. 
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CONTOLLER 
asc-1 

models 

TOOL 
cspec-pl.1 

tracrsto 

TOOL 
cfd-pl.1 

CONTOLLER models 

asc 

CONTOLLER 
asc-2 

models 

TOOL 
cspec-pl.3 

tracrs to 

TOOL 
cfd-pl.3 

figure 1 

in TOOL 
cspec-pl 

Structure of Controller asc with Associated Tools 

shutdown-signal engine-speed engine-speed 
dfl.2 

spark-advance-angle 
cs2 /dfl.2 df2 

spark-advance-angle coil-tumon sync-protect-I 
df2 spark-inhibit-signal 

o2.l 

modification k . .t. cfl 
df3 spar -1gm 10n 

figure 2 

data 
o2.2 

Data and Control Flow Diagram for pl .3 
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A section of the requirements specification for the ignition-control module, electr-spark­
control-proc, specified in the ELSIM language, is presented below by system aspect. Text 
descriptions of object instances are given where required to enhance readability. 

/* System Structure Aspect*/ 

DEFINE SYSTEM 
SYNONYM 

DESCRIYTION; 

electr-spark-control-proc; 
lch-esc; 

The lch-esc is a stand-alone, micro-processor based thick film ignition-control module. Sensor input 
signals representing engine speed, manifold pressure and engine coolant temperature are used to 
calculate an optimum spark advance for a given engine operating condition. The module then uses the 
spark advance value to energize and fire the ignition coil primary based on an internal prediction of 
engine crank-shaft position. Special circuitry in the module monitors the coil primary current at spark 
ignition, and adaptively modifies the coil turn-on time to reduce excess current dwell and thereby 
reduce module power dissipation. An additional output, not related directly to ignition, has been added 
to the module to control manifold intake heater relay. This output is switched low, as a function of 
engine coolant temperature, to improve engine cold start and drive-away performance. The lch-esc 
module uses a custom design CMOS Angular Spark Control integrated circuit as the external timing 
/control interface to a standard Motorola 6805R2 microcomputer; 

PARTITIONED INTO 

DEFINE PROCESSOR 
SYNONYM 

DESCRIYTION; 

asc, sa-mp; 

spark-advance-micro-proc; 
sa-mp; 

This processor performs the calculations of the spark advance angle, logically modelled by process p2 
and its decomposed data flow diagrams. The lch-esc module uses a standard Motorola 6805R2 
microcomputer to perform the calculations; 

DEFINE CONrROLLER 
SYNONYM 

DESCRIYTION; 

angular-spark-control-ic; 
asc; 

The controller is modelled on a finite-state machine and uses data from the sa-mp processor to 
determine control and timing data which energizes the ignition coil and fires the spark; 

SUBPARTS ARE 
MODELS 

DEFINE PROCESS 
SYNONYM 

DESCRIYTION; 

asc-1, asc-2; 
pl IN cspec-pl; 

asc-proc; 
pl; 

This is the angular-spark-control process on the level O dfd defined as dfd-pO; 

DEFINE TOOL 

DEFINE CONrROLLER 
SYNONYM 
MODELS 

DEFINE PROCESS 
SYNONYM 

cspec-pl; 

pl. I-controller; 
asc-1; 
pl.I IN cspec-pl.1; 

establish-reference-time-base; 
pl.1; 

DEFINECONrROLLER pl.3-controller; 
SYNONYM asc-2; 
MODELS pl .3 IN cspec-pl .3; 
RELATED-TRANSFER-FUNCTION boolfunct-pl .3; 

DEFINE PROCESS 
SYNONYM pl.3; 

spark-advance-proc; 
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DEFINE BOOLEAN-COMBINATION boolfunct-pl.3; 

DESCRIPl10N; 
This is the boolean function which must be true for control flow spark-advance-control to be 

activated; 

LOOICAL EXPRESSION cf4 AND c6.c7; 

DEFINE CONDillON 
AND-PARTS ARE c6, c7; 

c6.c7; 

DEFINE CONDillON 
SYNONYM 

engine-speed-normal-cond; 
c6; 

DEFINE CONDillON manifold-abs-pressure-normal-cond; 
SYNONYM c7; 

DEFINE CONTROl.rR.OW 
SYNONYM 

angle-calculated-control; 
cf4; 

Traceability among the tools, and the components contained in a tool, are illustrated by the 
following statements : 

/* Traceability Aspect * / 

DEFINE TOOL cspec-pl.1; 

DESCRIPl10N; 
Control specification for process pl.1; 

COMPONENTS ARE 
TRACES TO 

DEFINE TOOL 

DESCRIPTION; 

tdl, sttl, stdl; 
cfd-pl.l; 

tdl; 

Timing diagram representing the crankshaft position; 

DEFINETOOL sttl; 

DESCRIPTION; 
State transition table for the asc-1 controller; 

DEFINE TOOL stdl; 

DESCRIPTION; 
State transition diagram for the asc-1 controller; 

DEFINE TOOL 

DESCRIPTION; 
Control flow diagram for pl.I; 

DEFINETOOL 

DESCRIPTION; 

cfd-pl.1; 

cspec-pl.3; 

Control specification for process pl.3; 

COMPONENTS ARE 
TRACESTO 

DEFINETOOL 

DESCRIPTION; 

dtl; 
cfd-pl.3; 

Decision table for activating cf.3; 

dtl; 

The decision-table for the logic to obtain control flow cf3 is : 

cf4 c6 cf3 
1 1 1 
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The responsibility for a particular part of a system may be stated by : 

DEFINE ENGINEER 
SYNONYM 
RESPONSIBLE FOR 

acdeacon; 
acd; 
asc-proc; 

The traceability aspect also allows the specification of the composition of the phase products of 
analysis and design and traces among the tool instances which these products are composed of: 

DEFINE PHASE-PRODUCT 
SYNONYM 
TRACESTO 

lch-esc-system-req-doc; 
lch-esc-srd; 
lch-esc-dcd, lch-csc-ccd; 

and, for example, the specification of the data context diagram lch-esc-dcd : 

DEFINE TOOL 
HAS COMPONENTS 

lch-esc-dcd; 
pO, 
tl, t2, t3, t4, t5, t6, t7, t8, 
il, i2, i3, i4, i5, i6, i7, 
ol, o2, o3, 
cf3; 

where t(i), i=l,2, ... 8 are a series of terminators in the operational environment, iG), j=l,2, ... 7 
a series of input signals, and o(i), i=l ,2,3 a series of output signals. Control flow cf3 was 
defined earlier. Once again all object instances should be defined. 

The following statements are the language equivalent of the composite dfd/cf d in figure 2 : 

DEFINETOOL 
SYNONYM 
DESCRIPTION; 
Dfd/cfd for pl.3; 
COMPONENTS ARE 

DEFINE CONTROL-SIGNAL 
SYNONYM 

DEFINECONTROL-R.DW 
SYNONYM 

DEFINECONTROL-R.DW 
SYNONYM 

DEFINE CONTROL-R.DW 
SYNONYM 

cfd-pl.3; 
dfd-pl.3; 

pl.3.1, pl.3.2, 
cs2, cfl, cf3, cf4, 
dfl.2, df2, o2.1 dfl.2, df2, df3, o2.2; 
shutdown; 
cs2; 

sync-protect-1; 
cfl; 

spark-advance-control; 
cf3; 

angle-calculated-control; 
cf4; 

Data flows dfl.2, df2, df3 and data signals o2.1 and o2.2 are defined in the same way. 
The behaviour of the asc-1 controller may be illustrated using a timing diagram (tdl), a 

state transition table (sttl), and the state transition diagram (stdl) presented in figure 3. These 
representations form part of the control specification cspec-p 1.1, as was defined ealier. 

The dynamics of the state transition from qO to q 1 are specified by the equivalent regular 
set of statements in the ELS IM language for the state transition table of figure 3, as follows : 

/* Control Structure and System Dynamics Aspect*/ 

DEFINE CONTROLLER pl.1-controller; 
SYNONYM asc-1, 
DESCRIPTION; 
The definition of the finite-state machine model of this controller includes the input set I, the output 
set Z, the set of internal states Q, the next-state-function delta, and the output function: 
I= { 0, 1 } Z = { xO, xl } 
Q = { qO, ql, q2, q3, q4 } 
delta ( qO, 0 ) = ql w ( qO, 0 ) = xO 
delta ( ql, 0 ) = q2 w ( qO, 1 ) = xO 
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delta ( q2, 1 ) = q3 
delta ( q3, 1 ) = q4 
delta ( q4, 0 ) = q l 

DEFINE STATE 

DESCRIPTION; 

w ( ql, 0) = xO 
w ( ql, 1 ) = xO 
w ( q2, 0) = xO 
w ( q2, 1 ) = xO 
w ( q3, 0) = xO 
w ( q3, 1 ) = xO 
w ( q4, 0 ) = xl 
w ( q4, 1 ) = xl ; 

qO; 

This is the initial state representing the time synchronization point, which is established the instant 
the starter motor is activated; 

INITIAL ST A TE OF asc-1 WHEN c2; 
TRANSITTONS TO ql GIVEN tr-evtl; 
STATE-CHANGE TO ql ACITV ATES tr-actl; 

DEFINE STATE ql; 

DESCRIPTION; 
Given initial state qO, this is the state to which the controller transitions upon receiving input signal O; 

DEFINE EVENT tr-evtl; 
REPRESENTS iO AS crankshaft-0; 

DEFINE TRANSITTON-ACTION tr-actl; 

DEFINE CONTROL-SIGNAL xO; 
EQUIVALENCE WITH tr-actl; 

DEFINE CONTROL-SIGNAL crankshaft-signal; 
SYN" iO; 
ATTRIBUfES crankshaft-pos O; 

DEFINE CONDITTON crankshaft-0; 

DEFINE BOOLEAN-COMBINATION nextstatc-funct-q 1-q2; 
NEXT-ST ATE-FUNCTION MAPS tr-evtl WITH qO INTO q 1; 

Another dynamics relationship, allowing the triggering of a process, is the triggers-relation : 

DEFINE CONTROL-SIGNAL angle-calculated-control; 
TRIGGERS pl.3 IF angle-calc-cond; 

where pl.3 is the process which calculates the spark-advance, and the predicate is defined as: 

DEFINE CONDITTON angle-calc-cond; 

Conditional transfer of control is stated by : 

DEFINE PROCESS p2.3.8; 
CONTROL-TRANSFER TO p2.3.5 IF c5; 

or 

EXTERNAL-CONTROL-TRANSFER TO p2.3.5 VIA tr-evt24; 

which expresses control transfer dependence on a transition event. A complete specification will 
also include the definition of process p2.3.5, condition c5 and transition event tr-evt24. 

Task communication and synchronization may be illustrated by referring to the syntax 
diagram for the task structuring tool, in exhibit 1. Synchronization between tasks t2 and t5 is 
achieved by means of a synchronization module, df4-mod dependent on the arrival of event 
delay-ready-evt. Task t2 is concurrent with t3. Tasks t2, t3 and t4 all access data in a data store 
dst2-mod. Access is coordinated by specifying that task t2 mutually excludes t3 and t4 on 
accessing df2 in df2-mod. 
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cf 

Input set 0 

Ouput set XO 

State set ql 

present 
state 

qo 

% 

q2 

Ch 

q4 

1 

0 

90° 180° 270° cf 90° 180° 270° 

0 1 

XO XO 

q2 q3 

input 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

1 0 0 1 1 

XO Xl xl xl xl 

q4 ql q2 q3 q4 

Timing Diagram 

1 

actions 

calcRPM 

=1 

no calc 

=O 

nocalc 

=O 

no calc 

=O 

calcRPM 

=1 

0 

figure 3 

output 

XO 

Xl 

00 90° 180° 270° 

0 0 1 1 

Xi Xz xz xz 

ql q2 q3 q4 

next state 

q 

Ch 
(Ji 

ql 

q2 

~ 
q3 

<Ii 
<\ 
~ 

0 

State-oriented Notations for the asc-1 Controller 

In design, asynchronous calls from one module to another is specified by : 
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/* Task Conununication and Synchronization Aspect*/ 

DEFINE MODULE process-trans-mod; 
SYN ml.3; 
ASYNCHRONOUS CALL TOml.3.1 WHEN c5 RECEIVING dc2; 

stating that ml.3.1 is called asynchronously on receiving a control signal dc2 when condition c5 
is true. Once again all object instances should be defined. Other call relationships used for the 
structure chart are the ct-call-relation and the d-iterative-call-relation : 

and 

DEFINE MODULE delay-hot-module; 
SYN ml.3.1; 
CALLS ml.3.3 WHEN delay-hot-calcd-cond 
RECEIVING dcl; 

DEFINE MODULE modl; 
CALLS mod2 ITERATIVELY WITHIN mod2-labl; 

with all the object instances to be defined. 
The language was designed to facilitate mapping to other representation schemes, which 

are close to the implementation forms for a system. A prototype of such a mapping was 
demonstrated from the target database to the Ladder Diagram Programming Language, a program 
design language for a programmable controller [10]. 

5. EVALUATION OF THE ELSIM LANGUAGE 

The ELSIM language was designed to support ELSIM, a structured analysis and design 
methodology for the engineering of real-time systems. The language primitives were defined to 
explicitly incorporate the terminology, syntax and semantics of the ELSIM methods and tools. 
The syntax of the language enforces the rigorous application of the tools when specifying the 
characteristics and behaviour of a system. The language also provides support for the 
transitioning from analysis to design, and offers traceability among tool products and phase 
products. Since the ELSIM language was designed to be used within the automated ELSIM 
Software Engineering Environment [9] under the SEM System, traceability is also supported 
implicitly. The full power of the language is only realised when used within the environment, 
particularly when the retrieval tools of the ELSIM SEE (and hence the SEM System) are 
invoked. It has been demonstrated that the language may be used to develop specifications which 
may then be mapped by automated means to implementation forms used for real-time 
implementations. The issues of validation, verification and testability are under investigation at 
present. The formality of the design specification provides support for testability of the 
requirements and should facilitate the establishment of validation and verification criteria. 
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APPENDIX 1: Object types involved in Analysis System Aspects 
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Performance-metric 
System Parameter 
Attribute 

Phase-product 
Phase-product-part 
Tool 
Tool-part 

Data-element 
Group 
Data-signal 
Data-substitute 
Data-flow 
Data-store 

System 
Contoller 
Processor 
Process 
Terminator 
Engineer 

Contol-signal 
Control-substitute 
Contol-flow 
--------------- ........ --·- ..................... 
Timer 
Boolean-combination 
State 
Transition-action 
Event 
Condition 
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X 
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X 
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X 

X 
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---------
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X 
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X 
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X 
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X 
X 

X 
X 
X 

X 

X 

X 

X 
----------

X 
X 
X 
X 
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----------·---
X 
X 
X 
X 

X 
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5 Data Structure 
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7 Control Structure 
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EXHIBIT 1: Syntax Diagram for Task Structured Chart 

Di a gram Syntax 

I 
I ' D-FLOW 

' 1,---~, \ I\ I _c_-F_L_ow_, H 98 , MODULE 
~. ---~I I '-----~r--t--t----,..-1 

GROUP 

D-EL 

..... 
----1 ' I I i I [~I . 

ll TASK :l---,811 i~ TASK 1 

< '-._,/ I ; 

I : 0-FLOh' I BOOLCOMB 

i 1_c_-:-::-:---, ~;3 JL~~ I ,~·-D--~::~ 1 EVENT 

COND 

\ 

1.· (-SIGNAL ---- 350\ 1 - J 
. '~' D-ST i (-FLOW 

__ lL;i-/~ df2-mod ·,-' ----:,,,,.,,..."'---~..,._..--
.\._,/ ~· ~--

Fonnal Statements 
TASK t2 

TASK t5 
TASK t3 
EVENT delay-rcady-evt 

TASK tl 

TASK t4 
TASK t2 

CONCURRENT WITII t3 
MUTUALLY EXCLUDES t3, t4 ACCESS df2 
READS el3 IN dst2 
SYNCHRONIZED BY df4-mod WHEN delay-ready-evt 
RECEIVES-?vlESSAGE df6 FROM dfl-mod 
SIGNALLED ON ARRIVAL OF df4 
ACTIVATE t5 
WRITES TO ell df2 
ACCEPT il 
PRODUCES 01, 02 
SEND-?vlESSAGE df4 TO df4-mod 
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811 ct-concurrent 
850 ct-produces 
940 ct-accepts 
980 ct-arrival-activate 
981 d-mutual-excl 
984d-read 
985 ct-receive-message 
986 ct-send-message 
987 d-task-synch 
988 d-write 








