
ISSN 0254-2757

Volume 4 Number 3 October 1986

J.Mende

S. Bennan and
L. Walker

K.G. van der Poel and
I.R. Bryson

P.J.S. Bruwer and
J.M. Hattingh

P. Machanick

S.P. Byron-Moore

R.F. Ridler

C.W. Carey,
C. Hattingh,
D.G. Kourie,
R.J. van den Heever and
R.F. V erkroost

D.G. Kourie

Laws and Techniques of Information Systems

· A High-Level Interface to a
Relational Database System

Protection of Computerised Private Information:
A Comparative Analysis

Models to Evaluate the State of Computer Facilities
at South African Universities

Low-Cost Artificial Intelligence Research Tools

What's Wrong with CP/M?

In Praise of Solid State Discs

The Development of an RJE/X.25 Pad:
A Case Study

A Partial RJE Pad Specification to Illustrate LOTOS

1

7

13

21

27

33

39

45

59

BOOK REVIEWS 6, 20

An official publication of the Computer Society of South Africa and of
the South African Institute of Computer Scientists

'n Amptelike tydskrif van die Rekenaarvereniging van Suid-Africa en van
die Suid-Afrikaanse Instituut van Rekenaarwetenskapl.kes

Annual subscriptions are as follow~:

Individuals
Institutions

SA US UK ·
RlO $ 7 £ 5
-Rl5 $14 £10 .

Mr P.P. R.oets
NR4M$
CSIR
P ~O. Sox- 39·5
Pertoria, 00·01

Professor S·.H. v,on Solms
Dep.art.ment of Computer Science
Rand Afrikaans University
Auckland Park
Johannesburg, 2001

P.rofessor M.H .. WUUams
Departme;nt of Comput.er Science
Herriot-Watt Univers.ity, Edinburgh
Scotland

Circulation and Production

. Mr C.S~M. Mueller .
Department of Computer Science
Univeirsity of the Witwatersrand ·
1 Jan Smuts Avenue ·

· Johannesburg, 2001 ·

. Quzstfones lnformat.ice is prepared by the Computer Science Dep.a-rtment of the University
of the Witwatersrand and printed by Printed Matter, far the Computer . Society of South

Africa and the South Afri~n Institute of Computer Scientists.

LOW-COST ARTIFICIAL INTELLIGENCE RESEARCH TOOLS

Philip Machanick
Computer Science Department

University of the Witwatersrand, Johannesburg

There has been a proliferation of low-cost AI tools. Consideration is given as to how significant research may be
conducted using these tools, in the light of experience of developing Al tools on large, expensive machines. As
a case study, research in Knowledge Engineering-Based Learning (KEBL) is detailed, with mention of the tools
used in the project. Results of the KEBL research are not yet available, but the style of the research is an
indication of the potential of the tools described.

CR categories: 1.2.5 Artificial Intelligence Programming Languages and Software, J.3 Computer
Applications: Life and Medical Sciences

1. INTRODUCTION

As interest in Artificial Intelligence (AI) has spread, versions of languages and other AI tools
have become available on relatively cheap computers. Such tools raise the possibility for AI
research related to needs of relatively poor parts of the world.

The background to the development of cheap AI tools is considered, in with consideration of
the lessons of traditional expensive AI tools. Brief consideration is given to how the experience
of Turbo Pascal relates to the process by which AI tools can be expected to develop.

With the present state of available tools, consideration is given to whether significant
research is feasible. The case for tools for practical applications is not an issue here; the number
of potential tools for that market is also growing at an impressive rate [18]. Although there are
many flaws in lower-cost tools, potential candidates for interesting developments are noted.

Research in Knowledge Engineering-Based Learning (KEBL) is used as an example of how
relatively cheap tools can be a basis for Al-style program development. So far, the tools
described - despite some major flaws - have proved adequate to the task. The problems
detailed (and the occasional spectacular operating system crash) are indications that the
technology is not as mature as one would like it to b~, however.

In conclusion, experience with the tools used for KEBL - ExperLISP and Exper0PS5 - is
summed up, with some consideration of how XLISP addresses some of the deficiencies of more
conventional LISP implementations.

2. BACKGROUND

Most LISP books aimed at the low-cost computer market [10, 21] deal with primitive
versions of the language, on the assumption that "big-machine" versions are not accessible to
their readers.

Dialects of Common LISP [22] such as GC LISP (IBM PC - not too cheap) [7], ExperLISP
(Apple Macintosh - moderately cheap) and XLISP (IBM PC and Macintosh -public-domain)
[4] are challenging this assumption. Current exchange rates make the required computers
expensive in South Africa, but US prices are declining.

A recent announcement in the personal computer field by Atari has a megabyte of RAM at
under $1000 (albeit excluding a monitor) and is sure to put pressure on other manufacturers to
drop prices, even if it does not turn out to be a major success. The significance of this
development can be put into context by considering that the Interlisp environment was possible to
develop because a large amount of memory was available by the standards of its !iID:e: 256K of
36 bit words of virtual storage [20]. If such a set of tools of acknowledged supenonty could be
developed with what now seems meagre resources, what will transpire now that so much
computing power is so freely available?

27

It may be argued that Interlisp was put together by top-ranking researchers, and
mass-market software will not achieve a similar level of sophistication. However, the lessons of
the Interlisp experience are available for future developers of tools. Another positive factor is that
a language such as LISP lends itself to incremental refinement [19]. Powerful tools - even in
Interlisp - developed from humble beginings, with refinements developing as the need for them
became obvious. Such an approach to development, while carrying the risk of uncontrolled
proliferation by the undisciplined, is well-suited to mass-market tools, as the initial investment
does not need to be high. An example of this is the development of tools around Turbo Pascal.
Although Pascal is not seen as an AI language, Turbo has a significant feature in common with
AI tools: an evironment which allows rapid recompilation after minor incremental changes.

The major difference between Turbo Pascal and AI tools comes in where large projects are
being attempted: a good AI environment allows incremental recompilation, and has powerful
tools to reduce the need for the programmer to keep track of bookkeeping details [20].

The extent to which the experience of Turbo Pascal can be applied to the development of
cheap Al tools will be interesting to observe.

As an example of what can be achieved by such tools, a learning environment for
Knowledge Engineering-Based Leaming was implemented in ExperOPS5 - a version of 0PS5
[6] implemented in ExperLISP. Despite the early stage of development of these tools, the
implementation of OPS5 was viable for constructing a prototype of the required environment
[15]. The final version was implemented directly in LISP to improve performance.

3. FEASIBILITY OF SIGNIFICANT RESEARCH

Most of the AI tools available in the past for small computers were primitive versions of
languages like LISP [5] - or "expert system shells" with relatively few of the features of the
systems used in major research projects [18].

Apple have announced a lMbyte version of the Macintosh - the MacPlus, which should be
capable of supporting sophisticated tools. Many of the Macintosh's features-. overlapping
windows, mouse, powerful graphics - mimic features of sophisticated AI workstations [1,
20]. However, earlier versions were handicapped by having too little memory and disk drives
which were too small and too slow. Since the Macintosh can be expanded to 4Mbyte without a
major redesign, it has considerable potential for future development.

In the IBM range, the potential for expansion beyond the limitations of MS-DOS opened up
by the PC AT are also being exploited: at least one full version of Smalltalk-80 [9] is available
for this machine. Though a PC AT with all the required options is not cheap, it costs far less
than a traditional AI machine - such as a Symbolics 3600 or LISP Machine.

Taking these points into account, there is not a lack of suitable hardware for the development
of low-cost AI environments; suitable software is the missing ingredient. At one end of the
spectrum, software is available, but expensive. The first version of Smalltalk-80 implemented
for the PC-AT, at $1000, is not as expensive as many less exciting tools, but is not particularly
cheap. Nor is Nexpert [8], one of the more interesting-looking tools for the Macintosh, with a
launch price of $5 000. These prices should be seen in contrast with prices like $60 000 for KEE
(Knowledge Engineering Environment) [13], which runs on a LISP Machine, and ExperLISP
for the Macintosh at $495.

Although ExperLISP has many worthwhile features, it is at an early stage of development. It
lacks sophisticated tools for supporting programming-in-the large, such as those found in
Interlisp. However, it does support incremental compilation, and has a multi-window user
interface, which facilitates development of complex programs in a modular fashion - functions
which are closely related can be grouped together in a single file, and many files can be use to
build up a large program. Use of the mouse to selectively compile pieces of text allows simple
testing: by compiling small pieces out of a fun.ction, it is possible to see exactly what happens at
each stage of execution. It also has a sophisticated virtual memory system, which makes good
use of the Macintosh's resources. On the other hand, it lacks one of the most elementary
debugging tools: a break loop [4]. In most LISP interpreters, it is possible to examine values of
variables in the context where a run-time error (or break caused by a breakpoint) occured. This is
particularly valuable in a modem version of the language, using lexical scoping.

28

On the IBM PC, GC LISP is an implementation of a "subset" of Common LISP. Although
it has enough of a the flavour of the full language to be useful as a teaching aid, it is not as cheap
as ExperLISP ($495 for an interpreted version; a similar amount extra for a compiler), and lacks
some key features - such as lexical scoping. Furthermore, while ExperLISP runs on a 512K
Macintosh, GC LISP needs at least 640K on an IBM PC to perform realistically. Despite these
limitations, it has some useful features: GMACS (a version of the well-known EMACS editor),
more sophisticated debugging facilities than ExperLISP's (although with some flaws) and a
tutorial program (the San Marco Explorer) [7].

Turbo PROLOG, with a launch price of $99, has the potential to open up a completely new
market. If it has the same impact on the AI community as Turbo Pascal had on programmers
(effectively displacing BASIC as the PC "standard"), interesting possibilities are opened up.
Although some features of PROLOG which are difficult to compile have been left out , and typing
has been introduced, the negative effects will depend on a specific programmer's style. The
viability of this environment for serious research is worth investigating.

4. CASE STUDY: KEBL

Knowledge Engineering-Based Learning grew out of several concerns: the need for
education to move away from rote learning where acquisition of sophisticated skills is
concerned, the need to develop technologies suitable for a third-world context and a desire to
exploit the potential offered by the steady improvement in performance of computers in relation
to price.

Medical education was identified as an area in which the first concern was taken seriously
by many educationalists [3]. Specifically, diagnostic skills are not easy to teach, and many
students only move from memorization of book knowledge to knowing how to apply this
knowledge in a clinical situation two to three years after graduating (12]. Given that a shortage
of medical skills is widespread in underdeveloped parts of the world, medical education is an
obvious area to tackle in terms of the second concern. Use of computers as diagnostic aids
was rejected as a first step because the number of computers needed would be much higher.
The points mentioned above in relation to the development of AI tools for cheap computers was
a consideration in exploring an AI-related approach; the experience of expert system builders
in honing their skills during knoweldge acquisition was another.

ExperLISP and Exper0PS5 on the Macintosh were chosen as the best compromise between
cost and performance available at the time the research was initiated. These tools offer an
approximation to those found on large systems, at a fraction of the cost. The relationship of
ExperLISP to other AI tools has been detailed above. Exper0PS5 was found to be an adequate
approximation to the language as implemented elsewhere [6], and was a useful prototyping
tool, but was not fast enough for the response time required, so the final implementation was
in LISP.

Most studies of how diagnosis takes place focus on the development of hypotheses,
leading to the acceptance of a specific hypothesis as the diagnosis. The approach is very
similar to that of scientific method - pieces of evidence are gathered in a way directed by the
currently active hypotheses. Various different processes are concurrently occurring, including
hypothesis activation or deactivation, confirmation of active hypotheses and denial of
alternative hypotheses [11]. An approach to teaching this style of learning - called
problem-based learning - has been advocated [3], but with disappointing results [2].

A major problem is that different individuals have different approaches to problem solving.
For instance, given the same problem, one person could start by considering objective
measurable medical facts, whereas another could consider the patient's social background­
and both ought to arrive at the same diagnosis [17].

Doubts are being cast on the validity of labelling the problem-solving process as
consisiting of evidence supporting or refuting hypotheses [16]. In order to avoid this debate,
the more neutral terms "signs and symptoms" and "causes" were used instead.

Taking the experience of expert system builders into account, the construction of a simple
expert system by medical students is a potential approach to developing their problem-solving

29

,..

ability. However, the construction of a full expert system requires significant skills which
would take too much overhead to teach to non-computer scientists. The approach used in
KEBL is to concentrate on discussion of a problem-solving approach in the context of a
simplified approach to constructing and interpreting rules.

The rules take the form of <name of sign or symptom> supports <name of cause>,
or <name of sign or symptom> against <name of cause>. Problem-solving is split into
rule acquisition and tackling a specific problem. During knowledge acquisition, names of
signs and symptoms and names of causes are added using the top half of the screen. A mouse
pointing device is used to select the box in which a new name is to be typed. Once added to the
system, names can be linked by selecting them and activating soft buttons on the screen to set
up supporting or refuting links.

The specific problem phase, using the lower half of the screen, takes the form of
activating or deactivating hypotheses, and activating (stating whether present or absent) or
deactivating pieces of evidence. As an additional aid, it is possible to highlight all the
hypotheses which relate to a specific piece of evidence. As with knowledge acquisition, the
user interface relies heavily on using the mouse to activate "soft" buttons.

• File Edit Windows [omi>HP KEBL ~

[]
exert dys
orthopnea
basal creps
hoarseness
tr ache al dev
perc dull

[]
clubbing
tb contact
weight loss

signs and s1J mptoms

trauma
card fail
cancer
tb

R7)1 [support

l1:!.J [refute

] Choose a sign or
symptom and a
cause by pointing

] at each with the
mouse and clicking

[.] its button-

[]
~elete lmk th~n !ink them by

c l1ckmg on one of
[delete] SUPPORT or

'------------' REFUTE; if links
causes a lre.adu exist

l I l (edit name] ;~;P~R; ~~dicate
Click o ... n-on_e_o_f_t_h-es_e_b_o_x_e_s_t_o __.add a nev, name RETURN when done . RE~UTE.

exert dys../
trauma
orthopneax

chron cough./
weight loss./
clubbing../
hoarseness../
exert dys../
c:anc:er
orthopneax

solue problem

chron cough./
weight loss·./

chron cough./ clubbing../
exert dy s../ hoarseness../
c:ard fail
orthopneax tb contactx

figure 1
The KEBL user interface

trauma
cancer

card fail
tb

[QUIT]

This situation gave rise to the following interaction between two simulated students (actually Computer
Science lecturers) and a doctor:

doctor
first "student"
second "student"
doctor

what can you tell me?
I think it's cancer
I would say she has both TB and cancer
in fact, you couldn't tell the difference with this
information; you would need to take an X-ray

30

.,

The causes given in the rules appear in a table, and are activated or deactivated by pointing at
them with the mouse and clicking the mouse button. Pieces of evidence are listed with buttons to
add them (" ./" for "present", "x" for "absent"), remove them or highlight the hypotheses
relating to them. Once an hypothesis is activated, its name appears in the active area, where up
to four hypotheses may appear. Supporting evidence appears above the name of the hypotheses;
evidence against appears below (each tagged with a ".f" or "x" to indicate its presence or
absence).

An example of a KEBL screen appears in figure 1. In this instance, a practitioner entered
the rules and simulated the patient while a Computer Science lecturer with no clinical knowledge
attempted to gather information to form a diagnosis. Another Computer Science lecturer gave a
second opinion. A more knowledgeable student would be expected to build up the rules as well.

By comparison with a conventional expert system, KEBL does relatively little. It does not
weight signs and symptoms (evidence), form patterns explicitly, ask or answer questions or
arrive at conclusions. The idea is that the user (and a tutor) would perform these functions. The
student, by articulating the problem-solving process in a visible form, is in a position to discuss
matters with a tutor (see figure 1). The formalization necessary to make the program run is also
valuable as a focus for sorting out details. In many respects, the thought processes required are
similar to those of the expert and knowledge engineer combined; the extra volume of work
required to make the system function for another user in a general situation is missing.

In order to constrain the size of the domain, a well-known differential diagnosis is used as a
starting point. More general diagnosis can be attempted at a later stage, but the approach is likely
to fall down if the amount of knowledge acquisition needed before a specific problem can be dealt
with becomes too high.

A preliminary study was carried out with first-year medical students (mainly because they
were available at the time) [15]. Although the students had inadequate medical knowledge to
carry out a thorough evaluation of the approach, some interesting points arose. For instance, a
largely text-based user interface is a problem - it takes too much learning and the average
student is a slow typist. Also, if the user interface constrains the approach too much, it inhibits
exploration of alternative approaches. As a result, the user interface of figure 1 was designed.
Not only does it require very little use of the keyboard, but all options are simultaneously
available. The user is only constrained by the information currently in the system. In contrast to
a conventional expert system, switching between knowledge acquisition and problem-solving is
expected to happen at any time. It is possible, for instance, to modify rules in the middle of
solving a problem.

An additional feature of KEBL is a record which is kept of the entire session. Statistical
analysis of approaches to problem-solving, as well as playing a session back for evaluation and
feedback, are possibilities which will be explored.

5. EXPERIENCE WITH TOOLS

ExperOPS5 may potentially be implemented more efficiently, but in the form used for the
KEBL prototype, is not a practical proposition for a large project. It is, however, an excellent
basis for learning about production systems, with a good range of debugging tools (single-step,
display the conflict set, undo etc.), although better use of the Macintosh user interface could
have been made.

ExperLISP, despite the positive points noted, is not without problems as well. It is very
slow to load (at least a minute), and has some unexpected bugs, especially in relatively esoteric
areas like menu manipulation and graphics programming. Furthermore, the current release does
not support the Macintosh approach to programming its user interface through "resources",
which means much which ought to be available through the operating system has to be explicitly
programmed. Another problem is the operating system can easily be crashed by accessing
invalid pointers. Clearly, from the point of view of providing safe access to such features as
menu manipulation, a full class system (promised for the next release) is essential.
Object-orientedness would also tie in naturally with the Macintosh interface, and would provide
much-needed support for programming-in-the-large.

Even taking these negative points into account, the system is usable for fast prototyping and

31

developing sophisticated programs. The key - as with any LISP system - is to develop
suitable tools [14]. The current release of ExperLISP (version 1.5) is adequate for developing
programs of up to 1 000 lines, or about 1 500 lines with a hard disk. Larger progra.ms start
exposing bugs in the compiler; in any case, developing programs much bigger than this would
need tools for programming in the large (in the Interlisp style).

For an introduction to object-orientedness, XLISP is a worthwhile acquisition (especially as
it is in the public domain). Although the syntax is sometimes clumsy, and large programs are
likely to be unacceptably slow (it is not compiled), it is easy to generate some interesting
examples, which make the lack of object-orientedness in other LISPS seem a major ommission.
Furthermore, it is a good approximation to the spirit of Common LISP (it supports lexical
scoping, unlike GC LISP), even if it is a relatively small subset of the language. On the
Macintosh, the lack of a built-in editor can be overcome by using Switcher to run XLISP and a
word processor more-or-less concurrently. The IBM PC version of XLISP can similarly be run
using a resident editor such as Sidekick.

Since XLISP is continually being improved, perhaps it will rival some of the commercial
products in time; $500 is a good lower bound on the price of sophisticated, usable (if flawed)
AI tools.

REFERENCES

1. Alexander, Torn. The Next Revolution in Computer Programming, Fortune 29 October 1984 (65-70).
2. Babbo4 David and Halter, William D. Clinical Problem-Solving Skills of Internists Trained in the

Problem-Oriented System, Journal of Medical Education 58 1983 (947-953).
3. Barrows, Howard S. and Tamblyn, Robyn M. An Evaluation of Problem-Based Learning in Small Groups

Using a Simulated Patient, Journal of Medical Education 51(1) January 1976 (52-54).
4. Betz, David. An XLISP Tutorial, Byte 10(3) March 1985 (221-236).
5. Bortz, Jordan and Diamant, John. LISP for the IBM Personal Computer, Byte 9(7) July 1984 (281-291).
6. Brownston, Lee, Farrell, Robert, Kant, Elaine and Martin, Nancy. Programming Expert Systems in OPS5,

Addison-Wesley, Reading, Massachusetts, 1985.
7. D'Ambrosia, Bruce. Golden Common LISP, Byte 10(13) December 1985 (317-321).
8. Dunn, Robert J. "Expandable Expertise for Everyday Users", Computing SA 5(40) 14 Oct 1985 (14,15,18).
9. Goldberg, Adele and Robson, David. Smalltalk-80: The Language and its Implementation, Addison-Wesley,

Reading, Massachusetts, 1983.
10. Hasemer, Tony. A Beginner's Guide to LISP, Addison-Wesley, Wokingham, Berkshire, 1984.
11. Kassirer, Jerome P. and Gorry, G. Anthony. Clinical Problem Solving: A Behavioural Analysis, Annals of

Internal Medicine 89(8) August 1978 (245-255).
12. Leaper, D. J., Gill, P. W., Staniland, J. R., Horrocks, Jane C. and de Dornbal, F. T. Clinical Diagnosis

Process: An Analysis, British Medical Journal 3(9) 15 September 1973 (569-574).
13. Linden, Eugene. Intellicorp: The Selling of Artificial Intelligence, High Technology 5(3) March 1985

(22-25, 82).
14. Machanick, Philip. Tools for Creating Tools: Programming in Artificial Intelligence, Qutestiones

Informaticte 3(3) August 1985 1985 (30-36).
15. Machanick, Philip. A Study in Knowledge Engineering-Based Learning, Computer Science Department

Report CS-PM-86-008, University of the Witwatersrand, Johannesburg, 1986.
16. McGuire, Christine H. Medical Problem-Solving: A Critique of the Literature, Journal of Medical

Education 60(8) August 1985 (587-595).
17. Mitchell, Graham. Private Communication, 1986.
18. PC Magazine. 4(8) 16 April 1985: special issue on expert systems.
19. Sandewall, Erik. Programming in an Interactive Environment: The 'LISP' Experience, Computing

Surveys 10(1) March 1978 (35-71).
20. Teitelman, Warren and Masinter, Larry. The Interlisp Programming Environment, Computer 14(4) April

1981 (25-33). .
21. Touretzky, David S. LISP: A Gentle Introduction to Symbolic Computation, Harper and Rowe, New

York, 1984.
22. Winston, Patrick Henry and Horn, Berthold Klaus Paul. LISP (second edition), Addison-Wesley, Reading,

Massachusetts, 1984.

32

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to
publish original papers in any field of
computing. Papers submitted may be
research articles, review artilces and
exploratory articles of gen~al interest to
readers of the journal. The preferred
languages of the journal will be the congress
languages of IFIP although papers in other
languages will not be precluded.

Manuscripts should be submitted in
triplicate to:

Prof~ G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0106
South Africa

Form of maJuscript
Manuscripts should be .in double-space

typing on one side only of sheets of A4 siu,
with wide margins. Manuscripts produced
using the Apple Macintosh will be
welcomed. Authors should write concisely.

The first page should include the article
title (which should be brief), the author's
name and affiliation and address. Each
paper must be accompanied by an abstract
less than 200 words which will be printed at
the beginning of the paper, together with an
appropriate key word list and a list of
relevant Computing Review categories.

Tables -and figures ·
Tables and figures should not be

included m the text, although tables and
figures sliould be referred. to in the printed
text Tables should be typed on separate
sheets . and _should b,e numbered
consecu.tively and titled.

Fi~es should ~lso be supplied on
~epar~c sheet&, and eac~ should be clearly
identified on the back m ~ncil and the
authors name and ftgu:re number .. -Original.
line drawings {nob photocopies) -should be
submitted arid shoold include all the relevant
details. Drawings etc., should be submitted
and should include all rielevant details.
Photogra1;1hs as illustrations should be
avoided · 1f possib-le. If this cannot be
avoided, glossy bromide prints are required.

Symbols
. Mathematic~ and other symbols may be

either handwntten or typewritten. Greek
letters and unusual symbols should be
identified in the margin. Distinction should

· be made bt!tween capital and lower case
letters; between the letter O and zero;
between the letter I, the number one and
prime; between K and kappa

References
References· should be listed at the end of

the manuscript in alphabetic order of the
author's name, ·and cited in the text in
square brackets. Journal references should
be.arranged thus:

1. Ashcroft E. and Manna Z The
Translation of 'GOTO' PropnlS to
'WHILE' programs., Proceedings
of IFJP Congress 71,
Nortb ... HolJand, Amsterdam,
250-255, 1972. .

2. Bohm C. and Jacopini G., Flow
Diagrams, Turing Machines and
Languages with only Two
Formation ~ules., Comm. ACM,
9, 366-371, 1966.

3. Ginsburg S., Mathematical Theory of
Context-free Languages, McGraw
Hill, NewYork, 196'.

Proofs and reprints
Pro.ofs will be sent to the author to

ensure- that the papexs have· been co.ncetly
typeset and nm for. the ad4itian m new
materi~l or major amendment to tlie-tcx.-ts,
Exce$5~ alter.anons may be disallowed.
Cor.rected proofs mpst be returned to. th&
production manager witbin three days to
minimize the risk of the authors
~ontri.bution baring tO be he1d ovei:to-a..J.alcr.
issue.

DP.J.y orginal papers wilrbea~a
copyright in published J)8peJS will-be v6ifm:
in the publisher.

