

Database Design: Choice of a Methodology
M.C.F. King, G. Naude

National Research Institute for Mathematical
Sciences, CSIR, PRETORIA, South Africa

and

S.H. von Solms

Department of Computer Science, RAU, Johannesburg, South Africa

Summary
Aspects are discussed of the practical application of recent relational theory. The relevant definitions, extracted from vari01-1s papers, have
been restated using a common notation. An attempt is made to describe unambiguously two competing design procedures: synthesis and
4NF decomposition, as a basis for the discussion. It is argued that the key structure of the synthesized relations models the 'real world'
naturally; that the non-loss criterion has questionable validity in practice; that 'uniqueness' is equally a problem in both procedures; and that
multivalued dependencies are difficult to 'recognize'.

1. Introduction
In the growing flood of database papers a number of conflicting
design approaches are discernible. The present paper is concerned
with two of these: the method of 3NF synthesis of relations, and the
method of 4NF decomposition of a 'universal' relation. Both
methods set out to derive a set of suitable relation schemas, together
with a set of integrity constraints (structured and other).
The earlier work on synthesis (1976) was based on 'functional
dependence' constraints and the associated inference rules, involving
the synthesis of 3NF relations embodying the cover of all the given
functional dependencies (fd's). The method presented here does not
attempt to synthesize the stronger BCNF relations: In fact some
problems have no solution which is in BCNF and still embodies all
the fd's.
The next phase in the development (published in 1 977) was the
definition of a new constraint, multi-valued dependence, and its
inference rules. In terms of this a new normal form, 4NF, was
defined. The definition of multi-valued dependencies was found to
be equivalent to certain lossless join conditions, and this discovery led
to the adoption of the lossless join condition as a criterion for a 'good'
decomposition.
At this stage, the competing design procedures were synthesis and
decomposition. It is still not clear whether in practice the lossless join
condition is a good decomposition criterion or not.
The latest contribution to this development stream is the concept of a
generalized join dependency of which a special case is a multi-valued
dependency. Inference mies for the join dependency have not been
derived. but an algorithm has been published that can decide whether
a given fd or join dependency is implied by a given set of join
dependencies and fd's. Since a lossless join condition is equivalent to
the truth of a join dependency, the algorithm is a tool for finding
'good' decompositions.

16

Throughout the above development of concepts and theorems,
semantic problems in interpreting and applying the models have
presented the greatest difficulty. Whereas the fom1al definitions are
unambiguous (although difficult to grasp), it is difficult to recognize
the constraints which are true in a given real world situation. The
mapping of an assertion (in narrative form) about the real world into
an equivalent forn1al constraint often seems ambiguous.
This is probably the major difficulty in the practical context. The
present paper commences by assembling the relevant definitions in
Section 2. As the paper is not tutorial in nature, no attempt is made to
expand on the definitions. Sections 3 and 4 describe the competing
procedures, synthesis and decomposition. Section 5 discusses the
procedures from various points of view, but always keeping their
practical application in mind.
Finally, Section 6 attempts to resolve the practitioner's dilemma by
suggesting a methodology that takes all the theory into account
without becoming impractical.
It should be mentioned that there is an alternative 'thread' of papers
and concepts which places little emphasis on the formal dependency
constraints, or on redundancy in the formal sense. It seems that this
alternative involves fewer semantic problems and may be the better
approach, but space and time prevent its discussion here.

2. Definitions
Attribute
Attributes are symbols taken from a finite set U = IA1,A2, .. ,).

Domain
The domain DOM(Ai) is the set of possible values for the attribute
Ai.

X-value
For the set of attributes X, an X-value is an assignment of values to
the attributes of X from their domains. It is denoted by the lower case
letter x.

Relation
A relation Ron the set of attributes{Al ,A2, ... ,An} is a subset of the
crossproductDOM(Al)X ... XD0M(An)denotedR(Al,A2,A3, ... ,
,An). A relation Ron the union of the sets of attributes X, Y, ... is
denoted R(X,Y, ...).

Projection
Ifu is an element of R(X) (a tuple ofR(X)) and A is an element ofX
(an attribute in X), then u[A] is the A-component ofu. IfYisa subset
.of X, then u[Y] is the tuple containing the Y-value from u. The
projection of Ron Y, RjY], is {u[Y] I u is an element of Rl. R(Y, WJ
denotes RI_ Y union W].

Natural join
Let R(l), R(2), ... , R(m) be relations on the attribute sets X(l),
X(2), ... , X(m). Then the joinifR(l), R(2), ... , R(m) is defined as

JOIN(i=l, ... ,m of R(i)) = {wjcondition l and condition 2},
where condition 1 is (w is an element of the cross product of
the domains of all the attributes in the union ofX(l), ... ,X(m))
and condition 2 is (for all i, 1 <= i<=m, there exists a (u(i)
which is a tuple of R(i) such that u(i) =w[X(i)].

The join is-written R(l)* .. ·*R(m).

Functional dependence
A functional dependence is a binary predicate, _,, on 2**U, written
X - Y. ~ Y is true in a relation R(U) iff IR[XJI = I R[X,YJI where X
and Y are subsets of the attributes U (for any set K, IKI denotes the
cardinality of K).

Key
Let (R(Al,A2, ... ,An) be a relation. Let X be subset of {Al,A2, ..
.,An}. Xis a key of R if for every attribute Ai in {Al,A2, ... ,An),
x-Ai, and no subset of X has this property.

Embodied
A functional dependency x-A is embodied in a relation R if X is a
key of R, and A is any attribute of R.

JNF
A relation is in first normal form (INF) if each domain contains
simple values, i.e. the domains are not themselves relation-valued.

Prime
If an attribute Ai appears in any key of a relation R, it is called prime
in R.

2NF
A relation is in second normal form (2NF) if it is in INF and each of
its non-prime attributes is fully dependent upon every key of R(~ Y
is called full dependence if there is no W, a subset of X, such that
~Y).

Transitive dependence
Let R(Al, ... ,An) be a relation. An attribute Ai is transitively
dependent upon a set of attributes X if there exists a set of attributes
Y which is a subset of {Al, ... , Anl ends
ThatX-Y, norY-X, and Y-Ai,
where Ai is an element of neither X nor Y.

3NF
A relation is in third normal form (3NF) if none of its non-prime
attmmtes are transitively dependent upon any key.

BCNF
A relation R is in Boyce-Codd normal form (BCNF) if the existence
of an attribute A in R and a set of attributes X in R, with A not an
element of X, and x-A, implies that every attribute in R is
functionally dependent on X.

R[x,Y]
Given a relation R(U), and X, Y subsets of U. R[x,Y] = {yl for some
tuple u in R, u[X] = x and u[Y] = y}, i.e. R[x,Y] is the set of all
Y-values that are associated with the X-value x in R.

Multivalued dependency
A multivalued dependency (MVD) is a binary predicate-- on2**U,
written x--Y. A relation R(U) obeys the MVD x--Y iff for
every value of (X union Z), xz, R[x,z,Y] = R[x,Y] where X,Y are
subsets of U, and Z is the complement of (X union Y) in U.

Trivial MVD
AnMVD x--Yis trivialif Zisthe empty set, i.e. U = (X union Y).

4NF
A relation Ris in fourth normal form (4NF) ifwhenevera non-trivial
mvd x--Y holds for R, then so does the functional dependency
x-A for every attribute A ofR. If a relation R is in 4NF, then itis in
BCNF. If a relation R is in BCNF, then it is in 3NF.

Proposition 1 (lossless join criterion)
Let X,Y be subsets of U, and Z be the complement of (X union Y) in
U. Then X-+> Y is true in R(U) iff R =R[X,Y]*R(X,Z]. Notethatthe
equality R = R[X,Y]*R[X,Z] is equivalent to the quality R(x,Y,Z] =
R[x,Y]\ R[x,Z] \ denotes the cross product for all x in R [1].

Generalized join dependency
The generalized join dependency (GJD) is an M-ary predicate on
2**U, writtenX(l)*X(2)*·. ·*X(m)whereX(i)isasubsetofUforall
i. It is true in R(U) iff R(XJ = R(X(l)]* .. ·*R(X(m)] where X
is the union of X(i) over i = 1 to m.

MVD versus GJD
The multivalued dependency is a special case of a generalized join
dependency, with m = 2, and X = U, i.e. it is a full binary join
dependency.

FD as a special case
A functional dependency ~ Y is a special case of a multivalued
dependency with JR[x, YJI = 1 for all x in R. If x-Y in R, then
X--Yin R.

Span
Suppose relation R(i) is defined on the attributes X(i). Then R(i) is
said to span the functional dependency x-Y if the union of X and Y
is a subset of X(i).

Surrogate
A name of an entity such that the (imaginary) name values are assumed
to identify instances of the entity uniquely. Surrogate values are not
storable. The surrogate is later replaced by suitable identifying
attributes, e.g. the surrogate 'employee' may be replaced by
'emp-number, department-number' or by 'id-number'.

3. The Synthesis Procedure (to obtain 3NF relations)

The procedure outlined below is used iteratively. In particular, name
changes in step S80 require that S70 should be repeated.
SlO. All relevant attributes are named and defined.

17

S20. A list of functional dependencies of interest is drawn up.
S30. Note: The functional dependencies are between subsets of attri­
butes.
S40. Note: They are chosen according to the designer's
understanding of the attributes and their associations.
S50. Note: This list includes fd's with dummy right-hand sides
representing the non-functional associations [2].
S60. Optionally, a functional dependence diagram is drawn to
support insight, but the list remains the official record.
S70. The fd's are processed by Bernstein's Algorithm [2] to produce a
list of redundant fd's, and a list of synthesized relations.
S80. By inspection, fd's which were erroneously marked redundant
owing to semantic ambiguity, are identified and the appropriate
attributes renamed.
S90. For each multiple key in a relation, a preferred key is chosen for
use in other relations (in a non-key role). and substituted.
S99. The final set of relations is represented on a Bachman diagram.

4. The 4NF decomposition procedure (based on the
lossless join criterion)

D 1. All relevant attributes arc named and defined.
D2. A single relation schema R is formed (as a concept) on all the
attributes. No extension of R is given.
D3. A list is drawn up of those fd's of interest that should hold in R.
D4. A list is drawn up of those MVDs of interest that should hold in
R.
D5. The following algorithm is executed. (Where the attributes of a
relation S are denoted by A(S).)
Reis: = IR: (Reis is a set of relations);
Repeat;

for each relation S in Reis;
if there exist X.Y which are subsets of A(S);
and Z. the complement of (X union Y) in A(S)
is not empty; and X ~-Y. and not X - Z;
then Reis:= (Reis - (Sl)union(S[X,YJ,S[X,Z]i;

Until all relations in the set Reis are in 4NF.
The algnri thm uses the results:

if X---+-> Yin R(X.Y.Z). then
X---+'> Y' in R[X.Y',Z'] where Y' is a subset of Y,
and Z' is a subset of Z:
if X-Y in R(X,Y,Z), then
if X----Y' in R[X.Y',Z'] where Y' is a subset of Y,
and Z' is a subset of Z.
If X ~ Y in R. then X---+-> Y in R.

D6. Every relation is now in 4NF, and therefore in BCNF and 3NF,
but in general there may be some fd's not embodied in the relations.
With each relation, list all constraints that it must satisfy (there will be
no nontrivial MVDs that arc not fd's). and use them to identify its one
or more keys.
List the fd's not emhodied in the relations. They must be explicitly
enforced on the database.

5. The Procedure Discussed from Different
Viewpoints
5.1 Representing the 'real world'

It is assumed that the real world consists of concepts such as: entities
(such as employee, project, ...);
single-valued properties of entities (such as the current surname of an
employee);
multiple-valued properties of entities (such as the children of an
employee);
0/1 properties of entities (such as 'reason for firing');
associations between entities (such as an 'employee, project'

18

association);
events (such as death, birth, payment of account, order of spares).
The associations between entities are themselves entities (abstract)
and may have properties. For instance, the entity 'employee, project'
has the property 'hours worked to date'.
There is an important correspondence between these informal
concepts and the formal concepts of relational theory. By the
definition of a 'key', every relation in lNF has at least one key. If a
lNF relation has more than one key, then the keys are equivalent
(there is a bijection between them) whether or not the relation is in
3NF. Each INF relation may therefore be interpreted to represent
exactly one entity. viz the entity whose instances are uniquely
identified by the key values. Call this the relation-entity.
If a relation is in 3NF then its non-prime attributes, if any, are direct
properties of the relation-entity; whereas if a non-3NF relation has
non-prime attributes. they may be indirect properties of the
relation-entity, or properties of some other entity.
For instance, suppose

EMPLOYEE---+ NAME
EMPLOYEE---+ DEPARTMENT
STOCK-NUMBER, DEPARTMENT-,, QUANTITY
DEPARTMENT-,, MANAGER.

In the relation R(STOCK-NUMBER, DEPARTMENT,
QUANTITY, MANAGER) the relation-entity is the association
between stock-items and departments.
Whereas QUANTITY is a direct property of this association,
MANAGER is a property of some other entity, viz department. R is
not in 3NF.
The relation S(EMPLOYEE, NAME, DEPARTMENT,
MANAGER) has the associated relation-entity, employee.
MANAGER is a property of DEPARTMENT. which is a property
of employee, i.e. MANAGER is an indirect property of employee. S
is not in 3NF.
The method of synthesis always creates a minimal set of 3NF
relations embodying a cover of the given fd's. The following
correspondence is therefore guaranteed.
1. Every relation in the solution represents one entity and contains

only direct properties of that entity.
2. Each entity is represented by one relation.
It is the key structure of the 3NF relations which 'captures' the ·entity,
property' structure of the real world (a part of the real semantics).
The decomposition method is less satisfying. Many of the alternative
4NF solutions to a prohlem do not embody all the functional
dependencies. Since the relations are in 3NF (4NF 9 3NF), each
relation represents an entity with its direct properties; however, the
entities sometimes represent 'peculiar' associations: for instance in
the example of Fagin [3] shown in 5b, a different decomposition can
be found which contains the relation R22l(CLASS-SECTION,
RANK, SALARY), in which the rank and salary are actually those
of an instructor who teaches the class and section.
Some problems have no 4NF solutions which embody all the fd's.

5.2 The significance of the loss-less join criterion
Why use the lo~.s-less criterion as a basis for finding a decomposition
into base relations? The following reasons are usually given or
implied.
1. The initial single relation may be recovered without loss of

information.
2. The initial single relation satisfies all constraints. If it can always be

recovered without loss of information, then in some sense the
constraints are 'preserved'.

However a number of 'weaknesses' in these reasons may be noted.
The loss-less criterion involves the operations of projection and join,
which are defined in terms of the extension of a relation (its tuples),

not just its schema, yet in the application of the criterion only the
schemas are actually involved.
IfR has a non-loss decomposition R(l), ... ,R(m) on the attribute sets
X(l), ... ,X(m), this means that given an extension of R (the actual
tuples), R may be projected onto X(l), ... ,X(m) respectively to give
R(l), ... ,R(m), and provided that R(l) to R(m) are not updated after
projection, the original R may be recovered by joining them.
If however the relations R(i) are updated before being joined, then
clearly the original R is not recovered. In this case the constructed
relation might not even satisfy the same constraints. .
In the first case, R(i) = R{X(i)]; while in the second case, R(1) =
modified-R{X(i)].
If, as in the 4NF algorithm, the decomposition procedure involves
only the relation schemas and not their extensions, then there is not
even an extension of R to project, let alone to recover. In this case the
'projections' are actually relation schemas having no initial
extensions. It is the intent of the 4NF decomposition method that
these 'base' relations will constitute the logical view of the database.
The 'full' join of all base relations will probably never be referenced
during manipulation of the database. The update and retrieval
activities will each be confined to the join of the smallest subset of
base relations that satisfies the information requirements of retrieval,
or the integrity needs of update.
Thus, not only is there no single relation extension to start with, but
also the projections (base relations) are being continuously updated.
What then is the value of a 'loss-less decomposition' choice of the
base relations? Since we neither start with nor ever actually recover a
single relation extension, the loss-less criterion must be seen as a
means of finding a set of base relations which are non-redundant, and
which in some sense ensure that the integrity constraints are always
obeyed.
The argument seems to be that although the single relation is never
materialized as an extension, any hypothetical instance of it obeys all
constraints. Therefore when this instance is projected onto the
loss-less components, even though some constraints may not be
spanned or embodied by any component or relation, all constraints
will be true in the full join. It seems to be assumed that to any set of
component relation extensions, there corresponds an instance of the
single relation satisfying all the constraints.
As far as actual data (the extensions) is concerned, the starting point
is the base relations (they are the first to be populated with data). If an
instance of a single relation is ever materialized, it will be by joining
all the base relations. That is, the join operation will not be preceded
by projection. From this viewpoint, the emphasis moves from the
inclusion relation, viz 'R is a subset ofR{X(l)]* .. ·*R{X(m)]', which
underlies the non-loss criterion, to the inclusion relation 'R(i) is a
subset of (R(l) ... R(m))[X(i)] for i = 1, ... ,m'. This last inclusion
casts doubt on whether an arbitrary 'real world' situation can always
be represented by a single relation. For instance, in the 'valid code'
case, where Uob) codes currently used bv employees are a subset of
allowed Uob) codes, the single relation Rl(EMPLOYEE, CODE,
DESCRIPTION) would lose some valid codes. The relation
R2(EMPLOYEE, USED-CODE, V AUD-CODE,
DESCRIPTION), in which the CODE attribute has been renamed,
represents the situation without loss of information (loss associated
with the second inclusion relation above).
Even if it is always possible to 'capture' the reality in a single relation,
it will in general be necessary to rename attributes so that

R(i) = (R(i)* ... ~m))[X(i)] for all i.
Moreover, once the decomposition has been made, the attribute
names will have to be changed back if, for instance, it is required to
list the values of EMPLOYEE, CODE and DESCRIPTION, since a
meaningful join will be obtained only if the code attribute has the

same name in the two relations. The descriptions of only the used
codes will be listed If the names are left as V AUD-CODE, and
USED-CODE, the join will yield the Cartesian product rather than
the descriptions of codes used by employees.

A case where the integrity of the full join is not preserved is
illustrated by a 'real life' example dealing with stands and the firms
which occupy them. Groups of firms occupy groups of stands in
such a way that particular stands are not associated with particular
firms, but rather, partitions are defined, each of which contains a
group of stands and a group of firms. The fd's in the single initial
relation R(STAND,FIRM,PARTITION), are STAND -
PARTITION and FIRM -PARTITION and the MVD
PARTITION -STAND. A possible loss-less decomposition is
therefore Rl(STAND,PARTITION), R2(STAND,FIRM), in
which the second fd is not spanned. Joining Rl and R2 after
independently updating them will therefore not preserve
integrity.
It can also be shown that even when every fd is embodied in some
'loss-less' component relation, and consequently the full join
obeys all constraints, a non-full join, even though it spans all the
attributes, does not necessarily obey all the constraints.
This is illustrated by an example from Fagin [3], with the following
constraints:

CLASS-SECTION -CLASS, INSTRUCTOR
CLASS-SECTION, DAY -ROOM
STUDENT -MAJOR, YEAR
INSTRUCTOR -RANK, SALARY
CLASS-SECTION -STUDENT, MAJOR, SCORE, YEAR
CLASS-SECTION -INSTRUCTOR, RANK, SALARY
CLASS-SECTION -TEXT
CLASS-SECTION -DAY, ROOM
CLASS-TEXT
CLASS-SECTION, STUDENT-SCORE.

Starting with a single relation on all the attributes, a possible 4NF
decomposition is:

Rll (CLASS-SECTION, STUDENT, SCORE)
R121 (STUDENT, MAJOR, YEAR)
R122 (STUDENT, CLASS-SECTION)
R211 (INSTRUCTOR, RANK, SALARY)
R212 (INSTRUCTOR, CLASS-SECTION)
R221 (CLASS-SECTION, TEXT)
R2221. (CLASS-SECTION, CLASS)
R2222 (CLASS-SECTION, DAY, ROOM).

A non-full join of all relations except R212 is a relation spanning
all the attributes, yet it does not satisfy the first fd.
Thus not only is loss-less decomposition on its own insufficient to
guarantee the integrity of the (never to be materialized) full join,
but even when the full join does obey all constraints, the non-full
joins do not necessarily do so.

Yet, as was stressed previously, the modus operandi of the
database system relies heavily on non-full joins, and seldom if at
all on the full join.

Whether synthesis or 4NF decomposition is used, a set of base
relations is the result. In both update and retrieval it is sometimes
sufficient to access one base relation, and at other times necessary
to access the join of multiple relations. It seems reasonable to
require that this access relation, whether a single base relation or a
join, should satisfy all of the fd's (given as constraints) which it
spans. The non-loss criterion on its own does not appear to
enforce this condition (Rissanen's independence criterion
addresses this lack [6]).

19

5.3 Uniqueness
In both the method of synthesis and that of decomposition the
assumption of uniqueness has to be made although it takes
different forms. In the case of synthesis, any two fd's with the same
left-hand and right-hand sides are "the same fd'. This concept
differs from that of a function in mathematics, where differently
named functions may be defined on the same domain and range (y
= f(x), y = g(x)), and composition may differ significantly, e.g. z =
h(y) can lead to z = h(f(x)) or z = h{g(x)).
(In the DIAM binary model the access language makes use of
named paths, and seems to avoid semantic ambiguity of the type
experienced with synthesis.)
In the 4NF decomposition method it is implicit that no two
columns of the single relation may have the same attribute names.
This is equivalent to the synthesis uniqueness assumption.
The uniqueness assumption is associated with some problems of
semantic ambiguity that frequently arise in practice. These
problems are illustrated by some synthesis examples from
Bernstein [2].
Let
fl: DEPARTMENT -MANAGER
f2: MANAGER,FLOOR -. NUMBER-OF-EMPLOYEES
f3: DEPARTMENT.FLOOR-. NUMBER-OF-EMPLOYEES
and suppose that a manager manages more than one department
Then g3: DEPARTMENT,FLOOR NUMBER-OF­
EMPLOYEES can be derived from fl and f2 using pseudo-transi­
tivity. The meaning of g3 (by inspection of its derivation) is the
numberofemployees of the managerofthe department on the given
floor, whereas f3 means 'the number of employees of the department
on the given floor'.
Since g3 is syntactically identical to f3, f3 will be wrongly erased in
the algorithm of Bernstein.
It should therefore be standard procedure to examine all the
redundant fd's {which are listed by algorithm 2).
Semantic ambiguity in these fd's can be detected with the aid of
the data dictionary. For instance a typical entry might be
"NUMBER-OF-EMPLOYEES: The number of employees of a
manager on a particular floor'.
In the case of fd's which have been wrongly erased, the relevant
attributes are then renamed to remove ambiguity. In the above
case, the renaming gives
f2: MANAGER, FLOOR -EMPLOYEES-OF-MNG
f3: DEPARTMENT, FLOOR -EMPLOYEES-OF-DEPT.
Then g3 becomes
DEPARTMENT, FLOOR -EMPLOYEES-OF-MNG
lt is still possible that semantically different but syntactically
identical fd's may exist in the closure. For example,
A-B,K
B-C
K-C
in the cover, leads to A -B -c and A -K -c in the closure.
This is not well understood but it seems that careful
interpretation of the joins that are actuallyused~ would reveal
their ~orrect meaning.It is claimed for 4NF decomposition that
starting with a single relation makes semantic ambiguity visible
from the beginning. In the previous example, the single relation
would be on the attributes
(DEPARTMENT,MANAGER,FLOOR, NUMBER-OF-
EMPLOYEES).
As before, the data dictionary would have an entry for
NUMBER-OF-EMPLOYEES, and in any case it is claimed that
inspection of the single relation would reveal the ambiguity in f2
and f3. Conceptually the ambiguity is indeed easier to notice in

20

the sense that an attribute can have only one meaning in a single
relation.
However, when it is realized that in a 'real' problem there may be
hundreds of attributes and that both synthesis and decomposition
essentially start off with a given set of attributes (whether
regarded as a single relation ornot) and a setofconstraints, then it is
not clear that 4NF decomposition has any advantage in revealing
ambiguity.
A good illustration is given below of the conceptual clarity that a
single relation view can provide.
When listing a set of fd's without regard to a 'universal' containing
relation, it was thought that

Employee-number - Manager (the manager of the employee)
Manager - Employee-number-of-manager (a manager has

his own employee number)
and 'of course' every employee-number-of-manager is an
employee-number therefore

Employee-number-of-manager - employee-number.
When the attributes were seen as belonging to a single relation it
was clear that the last fd could not coexist in the relation without
destroying the meaning that a manager has many employees.
However, using synthesis, the error can be as easily discovered by
examining the bijections.

5.4 Recognizing MVDs
Given a single relation schema on a set of attributes, but no
instance of the relation, how does one set about recognizing the
MVDs that are to be adopted as constraints which the relation
must satisfy? Since the formal definition of an MYD is
unambiguous, if an instance of the relation were given, all MVDs
holding in it could be recognized. However, the decomposition
method starts with a single relation schema, not an extension. The
required MVDs must therefore be identified solely on the basis of
the analyst's understanding of the attributes and their
associations.
This understanding is recorded in narrative form. The question
may then be rephrased as 'how does one recognize the necessary
MVDs from an inspection of the narrative only?'.
Interesting observations were made when the narrative of the
example due to Fagin, described in Sb, was presented
independently to two colleagues. Colleague A works in the area of
category theory in mathematics and had for about 6 months been
exposed in depth to the notion of MVDs. Colleague B has an
honours degree in Computer Science and had been exposed to
MVDs only briefly but also in some depth.
Colleague A correctly identified all the fd's and some of the
MVDs, but wrongly identified the following MVDs
CLASS-SECTION -+'>STUDENT
CLASS-SECTION -+'>DAY,
and omitted the MYDs
CLASS-SECTION -- STUDENT,MAJOR,SCORE,YEAR
CLASS-SECTION -+'> INSTRUCTOR,RANK,SALARY
CLASS-SECTION__,_. DAY,ROOM.

Colleague B arrived at exactly the same wrong result
The derivation of the first incorrect MY lJ above was or parn1,:wc11
interest. B was looking for subsets of attributes X, Y and their
complement Z, such that 'a set of Y-values is associated with an
X-value and is independent of the Z-values'. It appeared to B that
STUDENT was independent of MAJ OR and YEAR. He could
see that MAJOR and YEAR were dependent on STUDENT but
not vice versa.
The suggested ways of recognizing an MVD are enumerated
below.

1. In the relation R(EMPLOYEE, CHILD, SALARY),
EMPLOYEE ____._ CHILD holds for R because intuitively an
employee's set of children is completely determined by the
employee and is 'orthogonal' to the salary.

An appreciation of the formal properties of MVDs may be of
assistance in recognizing them even in the absence of an
extension.
2. x____._y in R(X,Y,Z) iff whenever (x.y.z) and (x,y',z') are

tuples of R so are (x,y,z') and (x,y',z).
3. X ____._ Y holds for R(X,Y,Z) iff Y and Z are 'orthogonal' or

'independent' sets of column names.
In this respect note the case

{ empty} ---- Y and
{ empty} ---- Z where X = { }

which is illustrated by a 'single relation' representation of the
traditional 'Bill of Materials' problem, viz

{ }---- PART-NUMBER, DESCRIPTION
(l --ASSEMBLY-NUMBER,COMPONENT­

NUMBER,QUANTITY.
4. Noting that X____._ Yin R(X.Y,Z) implies x- Zin R. the

intuitive meaning of X ____._ Y is that there are really two
independent relation schemas Rl(X,Y) and R2(X,Z).

Some properties of MVDs that complicate their recognition are
shown below.
1. Although X ____._ A,B in R, X ____._ A is not necessarily true.
2. Although X ____._ Y is true in RI (say) it is not necessarily true in

Rl*R2. Although X ---- Y is false inR(say) it maybe true in a
projection of R.

3. An MVD X ---- Yin R does not correspond to the simple
concept 'with each X-value there is an associated set of
Y-values· (which is trivially true in R).

Fagin's example illustrates one aspect of translating narrative to
formal constraints. The narrative 'each CLASS has a set of
TEXTs which arc used by all SECTIONs of the class·, has to be
recognized as equivalent to 'the set of TEXTs are determined only
by the CLASS and are orthogonal to the SECTIONs'.
Alternatively the first assertion may be immediately formalized as
R[class,TEXT] = R[class,class-section,TEXT], for all
(class,class-scction) values in R.
According to the definition of an MVD, this might then be
interpreted as CLASS ---- TEXT is true in R, but note that
CLASS-SECTION is not the complement of CLASS,TEXT in
R. Thus the MVD is true only in the projection
R[CLASS.TEXT,CLASS-SECTION]. We may accept the MVD
as a constraint on R if we assume that TEXT is 'orthogonal' to
every attribute of R except CLASS. What would this mean,
considering that INSTRUCTORS are associated with TEXTs
and that every instructor is not associated with every text? In this
case we realize that every instructor is associated with every text of
every class he teaches. This means that instructors and texts are
indeed orthogonal within their class groups.
The above is typical of the cumbersome type of analysis one is
forced to make.
This section has illustrated that although the decision as to
whether an MVD holds in a given extension is unambiguously
made from the formal definition, it is nevertheless difficult to
decide from the narrative which MVDs 'should' hold in a given
relation schema.

6. A Suggested Methodology
A factor cont1ibuting to the difficulty is that the full relation is
being 'searched' for MVDs: the 'orthogonality' of the whole
complement has to be established each time. If the MVD concept
and its associated non-loss criterion could be used in a smaller

relation context, the problem of identifying the MVDs should be
far easier. Hence it is suggested that 4NF decomposition be used
as an element in the synthesis procedure after the base relations
have been synthesized. The intent would be to recognize relations
of the type illustrated by Fagin [3], in which the key consists of all
the attributes and non-trivial MVDs are present. These relations
would then be suitably decomposed.
The relations synthesized by Bernstein's algorithm have their
origin either in the dummy fd's used to represent nonfunctional
associations, in which case the single key includes all the
attributes, or in the 'true' fd's, in which case there may be more
than one key, none of which includes all the attributes.
A characteristic of the synthesized relations is that they embody
all the fd's. In using 4NF decomposition as a final step applied to
each base relation obtained by synthesis, we shall arbitrarily
ensure that all fd's remain embodied. This means that only those
relations synthesized from the non-functional associations can be
candidates for decomposition. This follows from the following
proposition.

Proposition
If a 3NF relation embodying at least one non-trivial fd is not in
4NF, then the fd's embodied in the relation are not all embodied
in the associated non-loss decomposition.

Proof:
Given R(U) is in 3NF and embodies at least one non-trivial fd.
Let its keys be Xl, X2, ... , Xm and its non-prime attributes (there
may be none) be Bl, ... , Bn.
Given X ____._ Y in R(U) and there exists A an element of U such
that not (X - A), and Z = U - (X union Y) not = { empty} (i.e.
non-trivial MVD),
then R = R[X,Y]*R[X,Z].
Suppose the set of fd's embodied in R is equal to the union of the
sets of fd's embodied in R[X,Y] and R[X,Z].
Then at least one key of R, Xr say, is a key of both R[X,Y] and
R[X,Z]: (for ifno Xr were a key of both projections, then all keys
of R would have to be keys of one projection - else bijections
would be lost - and all non-prime attributes of R would have to be
attributes of the same projection, which contradicts Z not =
{empty}).
Therefore Xr is a subset of X, and X - Xr. It follows that X -
{all attributes ofRl.This contradicts the given condition (not X -
A). Therefore the fd's embodied in Rare no longer embodied in
the projections.
End of proof.

A modified synthesis procedure
Only the steps to be added to the original synthesis procedure are
shown.

Sl. Every entity of interest is named (using surrogates) and
defined.
S 11. Assertions (in natural language) about the entities and
attributes. are noted and agreed upon with the 'user'.

S3 l. Note: The fd's are also between entities and entities, and
between entities and attributes.
S41. Note: They are chosen also according to the designer's
understanding of the entities.
S81. If any bijection (multiple keys in a relation) does not make
sense, the offending fd is deleted, or the relevant attribute
renamed.
S82. For each svnthesized relation, the MVDs of interest are
noted (the assertions being kept up to date in the process).

21

S83. Suppose Sis the set of synthesized relations. While S contains
a relation T(X) which is not in 4NF and whose key is X (i.e. a
relation induced hy a non-functional association), T(X) is
replaced by its components.
S84. For the remaining non-4NF relations the MVD constrains to
be explicitly enforced are noted. The relations are not
decomposed.
S85. Suitable attributes are chosen which uniquely identify each
entity. and these attributes substituted for the surrogates.
'llrns. in this modified synthesis procedure, MVDs will have two
effects. Some relations, having their origin in nonfunctional
associations, will he decomposed, while some MVDs will have to
be explicitly enforced.

References
[I] BEERL FAGIN and HOWARD. (1977). A complete

axiomatization for functional and multivalued dependencies

22

in database relations. Proc. ACM SJGMOD. Int. Conf. on
Manag, Toronto, Canada, 47-61.

[2] BERNSTEIN, P.A. (1976). Synthesising third normal form
relations from functional dependencies. ACM TODS, 1,4
272-298.

[3] FAGIN, R. (1977). Multivalued dependencies and a new
normal form for relational databases. ACM TODS, 2, 3,
262-278.

[4] FAGIN. R. (1977). Decomposition versus the synthetic
approach to relational database design. Proceedings 1977
Very Large Database Conference (Tokyo), Third Int. Conf.
on Very Large Data Bases, Tokyo. Oct. 1977, 441-446.

[5] KING, M.C.F., NAUDE, G. and VON SOLMS, S.H.
(1979). NRIMS Note (to be published).

[6] RISSANEN. J. (I 977). Independent components of
relations. ACM TODS, 2, 4, 317-325.

