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Summary 

111 

Interval analysis is an essential t~ol in the construction of validated numerical solu­
tions of Initial Value Problems (IVP) for Ordinary (ODE) and Partial (PDE) Differential 
Equations. A validated solution typically consists of guaranteed lower and upper bounds 
for the exact solution or set of exact solutions in the case of uncertain data, i.e. it is an 
interval function (enclosure) containing all solutions of the problem. 

IVP for ODE: The central point of discussion is the wrapping effect. A new concept of 
wrapping function is introduced and applied in studying this effect. It is proved that the 
wrapping function is the limit of the enclosures produced by any method of certain type 
(propagate and wrap type). Then, the wrapping effect can be quantified as the difference 
between the wrapping function and the optimal interval enclosure of the solution set (or 
some norm of it). The problems with no wrapping effect are characterized as problems for 
which the wrapping function equals the optimal interval enclosure. A sufficient condition 
for no wrapping effect is that there exist a linear transformation, preserving the intervals, 
which reduces the right-hand side of the system of ODE to a quasi-isotone function. This 
condition is also necessary for linear problems and "near" necessary in the general case. 

Hyperbolic PDE: The Initial Value Problem with periodic boundary conditions for 
the wave equation is considered. It is proved that under certain conditions the problem 
is an operator equation with an operator of monotone type. Using the established mono­
tone properties, an interval (validated) method for numerical solution of the problem is 
proposed. The solution is obtained step by step in the time dimension as a Fourier series 
of the space variable and a polynomial of the time variable. The n11m~rjc;alj1riplementa­
tion involves computations in Fourier and Taylor functoids. Propagation of discontinuo~s­
waves is a serious problem when a Fourier series is used (Gibbs phenomenon, etc.). We 
propose the combined use of periodic splines and Fourier series for representing discon­
tinuous functions and a method for propagating discontinuous waves. The numerical 
implementation involves computations in a Fourier hyper functoid. 
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Chapter 1 

Introduction 

Solving differential equations is one of the main topics in Numerical Analysis and a large 
variety of numerical methods has been developed, e.g. single- and multi-step methods 
for Initial Value Problems (IVP) of Ordinary Differential Equations (ODE), difference 
schemes and finite elements for Partial Differential Equations (PDE). Typically, if certain 
smoothness conditions are satisfied, these methods produce in theory sufficiently good 
approximations for suitable values of the parameters of the method (e.g. step size, num­
ber of terms in a series, etc.). However, in practice, one seldom knows these values. Even 
by controlling the parameters of the method, the global accuracy is not really controlled. 
Although methods like those mentioned above are robust and reliable for most applica­
tions, usually it is not difficult to find examples where they return very inaccurate results 
without any warning to the user. This is impressively demonstrated by Adams et al. in 
[l], [3] with examples of IVP for ODE in which the computed numerical solution does not 
even reflect the qualitative stability of the exact solution. 

In contrast, validated methods produce verified numerical results which carry within 
themselves assurances of their quality. More precisely, a validated method has two major 
characteristics: 

it verifies the existence of a umque solution to the problem and (1.1) 

produces guaranteed bounds for this solution. (1.2) 

The bounds produced by a validated method are guaranteed in the sense that all sorts 
of errors are taken into account (e.g. truncation, rounding, etc.) so that the numerical 
result has no conditions attached to it and does not require any further analysis. The 
bounds are indeed bounds of the exact solution. 

A validated method may fail in verifying the existence or may produce bounds that are 
unacceptably wide. Then the user is informed accordingly. However, a validated method 
never yields a false result. 

Apart from the obvious comfort in working with a validated numerical solution in any 
mathematical application where the exact solution to a problem is not available, there 

3 
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are situations where validated numerical solutions are particularly desired or needed. We 
will mention here three such situations. 

• Critical computations: when the computational result may be critical to the safety 
of a system. For example, in the conditions of use of LANCELOT, one of the 
leading packages for large-scale nonlinear optimization, it is stated that "it should 
not be relied on as a basis to solve a problem whose incorrect solution could result 
in injury to a person or property" [24]. Software which implements correctly a 
validated method need not be accompanied by such a condition. 

• Uncertain Data: Most differential equations arising from models in applications in 
science or engineering typically contain parameters whose values are only approxi­
mately known. Since validated methods use interval operations, they can produce 
bounds guaranteed to enclose solutions arising from any combination of parameter 
values in the range of interest. Implementing a validated method can be much faster 
and more informative then repeated simulation runs using a standard method. 

• Proving theorems: A validated numerical solution of a mathematical problem can be 
used in deriving mathematical statements about the solution(s). Such applications 
are presented for example in [2]. 

Validated numerical methods have not been very popular in the past mainly because 
the implementation typically requires more computational time than standard methods. 
Now, however, when computational resources are readily available, it seems natural to 
shift the burden of determining the reliability of a numerical solution from the user to the 
computer. 

Validated methods are designed and implemented using interval arithmetic and inter­
val functions. The bounds mentioned in (1.2) are the end points of an interval enclosing 
the exact solution. That is why often validated methods are referred to as interval meth­
ods or enclosure methods. 

In most of the applications it is not enough to produce bounds or enclosure of the 
solution but also 

to produce close bounds (tight enclosure) of this solution (1.3) 

satisfying some acceptable tolerance. In [79], when characterizing the purpose of validated 
scientific computations, Neumaier specifies that (1.1), (1.2) and (1.3) are three separate 
issues associated with such computations. A priori estimates on closeness of the bounds 
produced by a validated method for a particular class of problems characterize, in general, 
the quality of the method indicating its area of applicability and the expected accuracy. 
In obtaining close bounds one has to combat the truncation error of the method, the 
rounding errors, as well as problems related to the type of selected enclosures (intervals) 
like the wrapping effect. 
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In the thesis we consider some aspects of the construction of validated solutions of 
Ordinary Differential Equations (ODE) and Hyperbolic Partial Differential Equations 
(HPDE). 

The idea of solving the Initial Value Problem (IVP) for ODE by constructing lower 
and upper bounds was proposed by Chaplygin [21], [22] in 1919, but Moore [64] in 1965 
formulated enclosure methods using interval arithmetic in the description and implemen­
tation. Since then a variety of methods has been developed (see [86] and [78] for recent 
surveys). In chapter 3, which is devoted to IVP for ODE, we mainly concentrate on 
studying the wrapping effect associated with the construction of interval enclosures of the 
set of solutions of IVP with interval initial conditions and the implications concerning the 
convergence of the enclosures produced by a certain type of method. The wrapping effect 
is widely discussed in the literature and methods to combat it have been proposed [67], 
[55], [37], [59], [81], [78]. We study the wrapping effect using the new concept of wrapping 
function [9] which is the key to understanding the behaviour of interval enclosures when 
the wrapping effect is in force. For example, because of the wrapping effect the enclosures 
often do not converge to the optimal interval enclosure of the solution. In that case, what 
do they converge to? We prove that the limit of the interval enclosures produced by a 
certain type of method is the wrapping function associated with the particular IVP. In 
this way, the wrapping effect can be quantified as a certain norm of the difference between 
the wrapping function and the optimal interval enclosure of the solution set. There is no 
wrapping effect if and only if the wrapping function equals the optimal enclosure. These 
results lead not only to a better understanding of what the wrapping effect is, but also 
to a complete characterization of the problems where no wrapping effect occurs [11] and 
therefore no complicated procedures (e.g.[37], [59]) need be applied. 

Operators of monotone type [23] play an important part in the construction of bounds 
for the solutions of differential equations. The conditions for the operator of the IVP 
for ODE to be an operator of monotone type have been known for a long time [21], 
[68], [92]. It is also well know that there is no wrapping effect when the operator of 
the IVP for ODE is an operator of monotone type. In chapter 3 we further establish 
that "essentially" all problems with no wrapping effect are those that are either problems 
with operator of monotone type or can be transformed into such problems by an interval 
preserving transformation. 

Validated solutions of partial differential equations is a relatively new area with most 
of the important results obtained only during the past decade [34], [50], [69]-[77]. The 
proposed validated methods use the fixed point theorem and computable error estimates 
in obtaining validated enclosures and are mainly applied to problems with point (non­
interval) initial conditions. Our approach is based on establishing monotone properties 
of the problem and using them in designing methods producing validated enclosures. 
The main advantage of this approach is that it works equally well (same convergence 
properties) with point and interval initial conditions. Naturally, there is no wrapping 
effect. In chapter 4 we first find conditions providing for the the operator of the periodic 
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IVP for HPDE to be an operator of monotone type. Since the initial condition of the 
problem involves both the solution and its derivative, the established monotone property 
is not directly applicable to constructing enclosures step by step in the time dimension. 
For that reason a different monotone property, which involves the time derivative of 
the functions, is derived. We use the established monotone properties in constructing 
a method producing interval enclosures for the solution (in the case of a point initial 
condition) or the set of solutions (in the case of interval initial condition) of the problem. 
The bounds for the solutions are represented as a Fourier series of the space variable with 
coefficients that are polynomials of the time variable. This results in computations in the 
Fourier functoid and the Taylor functoid. In addition to the roundings discussed in [49], 
we use an easily computable self-adaptive error estimate for rounding of functions with 
infinite Fourier series. 

The application of the method discussed in chapter 4 is reduced to problems with data 
functions which have at least one derivative with integrable square. This is due to the fact 
that otherwise no sharp bounds for this functions can be obtained using a Fourier series 
(Gibbs phenomenon). Furthermore, when the data functions are not smooth enough, 
sharp bounds can only be obtain when using a large number of terms in the Fourier 
series. Considering problems with not smooth (or not smooth enough) data functions is 
important because 

• such problems are very common in applications 

• the periodic problem, and the transformation of an initial boundary value problem 
into a periodic initial value problem, often lead to discontinuities at the places where 
the boundary conditions are initially given. 

In order to be able to deal with discontinuities of the data functions or their derivatives we 
consider in chapter 5 the Fourier hyper functoid [48]. The Fourier hyper functoid is a finite 
space with basis which, in addition to the standard Fourier basis, includes infinite Fourier 
series. The basis chosen in chapter 5 includes infinite series of periodic splines. Since we 
work with these splines explicitly (not with their series) we refer to these approximations as 
Spline-Fourier approximation. Explicit formulas for computations related to the solution 
of the wave equation in this hyper functoid are derived. It is demonstrated that the use 
of the hyper functoid not only enlarges the area of applicability of the method described 
in chapter 4, but also produces high quality results with smaller computational effort. 



Chapter 2 

Preliminaries 

2.1 Interval spaces. 

Interval structures were first introduced by Sunaga [89] but the real development in this 
area took place after interval arithmetic and interval analysis were introduced in practical 
applications, showing that intervals are a powerful tool for the design of a new kind of 
numerical method. The beginning of this development is associated with the name of R 
Moore [66], [67]. 

In this section we will briefly introduce some interval spaces and discuss some basic 
facts in a way similar to [7]. However, we will follow the approach in [14], [60] and define 
first an interval space over a vector lattice and then consider the real and functional 
interval spaces as particular cases. 

2.1.1 Abstract Interval Space. 

Let R be a real continuous vector lattice with the operations addition ( +) and multipli­
cation by a real number(.) and a partial ordering::::; [47], [6]. This means that 

• R is a linear space with operations + and . over the field of real numbers R; 

• R is a l<J,!Jife with a partial ordering ::::; ; 

• u::::; v =} u + w::::; v + w , u, v, w ER; 

• u::::; v =}Au ::::; Av , u, v ER, A E n+; 

• sup{U} and inf{U} are defined for every bounded subset U of R. 

Modulus l·I is defined in a vector lattice as lxl = sup{x,O}-inf{x,O}, x ER. 
Let ;r, x E R and ;r ::::; x. The set 

7 
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is called an interval. 
By 1lR we denote the set of all intervals 

1lR = {X =Lr, x] : ;i;., x E ?R,;i;.::; x} 

For every x E ?R the interval [x, x] is identified with x. In this way ?RC 1.lR. The elements 
of ?R will be called point intervals. Let U be a bounded subset of ?R. Optimal interval 
enclosure of U is defined as 

[U] = [inf(U), sup(U)] 

The optimal interval enclosure [U] is the tightest interval enclosure of U in the sense 
that for any other interval Y, U C Y implies [U] C Y. The intersection of two intervals 
X, Y E 1lR (considered as subsets of ?R), if not empty, is also an interval 

xny = [sup{;r.,1!_},inf{x,y}] 

while for the union of intervals this is not true. The operation joint (V) is introduced as 
follows. If X, Y E 1lR then 

XV Y = [XLJY] 

In 1lR we consider the following operations 

• addition: X + Y = [;i;_ + 1!_, x + y], X, YE llR, 

• subtraction: X - - Y = [(;i;_ -1!.) V (x - y)], X, Y E llR, 

• multiplication by a scalar: aX = (a;i;_) V (ax), XE llR, a ER. 

The operation subtraction defined above is known as nonstandard or inner subtraction 
of intervals and we use for it the same notation as in [61], [62]. It can not be generated 
by the other two operations if we stay within the realm of the elements of 1.lR. The plain 
subtraction sign - will be used (as in most of the literature on intervals) for the standard 
subtraction defined by 

X - Y = X + (-l)Y 

In a similar way inner addition can be defined as 

x+- Y=x-- (-l)Y 

Let us note that 

A+-BcA+B, 
A - - B c A - B , A, B E 1lR 

Definition 2.1 The set 1lR with operations+, -- and. is called interval space generated 
by the vector lattice ?R. 
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Let A, B, CE 1lR and ex, /3 E !R. The following properties hold true 

(A+B)+C=A+(B+C) (2.1) 
A+B=B+A (2.2) 
A+ 0 =A (2.3) 

If A+ C = B + C then A= B (2.4) 

If ex/3 :'.'.'. 0 then (ex+ /3)A = exA + /3A and (ex - /])A= exA - - /3A (2.5) 

a(A + B) = exA + aB, a(A -- B) = aA-- exB (2.6) 

(ex/3)A = ex(/3A) (2.7) 
I.A= A (2.8) 

Let us note that 1lR is not a linear space with regard to the operations + and . since the 
non point intervals have no opposite elements and the distributive law ( a+/3)A = aA+/3A 
is satisfied only in some cases. The condition for the existence of an opposite element is 
replaced by a cancellation law of the form (2.4), and a distributive law of the form (2.5) 
is satisfied. Such a space is called quasi linear. The concept of quasi linear space was 
introduced by Mayer [63] and further developed in [85] and [62]. The inner operations are 
needed precisely because the interval space is not strictly linear. For example, the inner 
subtraction satisfies the following properties 

A-- B=O ~A=B 

(A+C)-- (B+C)=A-- B 

which are not true in general for the standard subtraction. 
Many of the identities in a linear space are satisfied m an interval space only as 

inclusions, e.g. 

Ac (A-- B) + B 

(A-- B)c(A-- C)+(c-- B) 

In 1lR we also consider the operators 

• modulus: I· I : 1lR >--+ !R defined by 

IXI = sup{l;rJ, lxl} , X E 1lR 

• width: w : 1lR >--+ !R defined by 

w(X) = x - ;r_ , X E 1lR 

(2.9) 
(2.10) 
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The range of both modulus and width is the positive cone J?+ with respect to the ordering 
::;. Let X, Y E 1lR and a E R. We have 

IXI :::: 0 ' IXI = 0 -¢==;> x = 0 

IX+ YI::; IXI + IYI ' IX_- YI :::: I IXI - IYI I (2.11) 

laXI = lallXI 

w(X) :'.'.'. 0 , w(X) = 0 -¢==;>XE lR 
w(X + Y) = w(X) + w(Y) , w(X -- Y) = lw(X)- w(Y)I (2.12) 

w(aX) = lalw(X) 

If a norm 11.11 is defined in the linear space R, a metric in 1lR can be introduced by 
defining the distance between intervals A, B E 1lR as 

p(A,B)= lllA-- Biii 

This definition satisfies the axioms for distance: 

(i) p(A,B) :'.'.'. 0 and p(A,B) = 0 {o} A= B , A,B E 1lR 

(ii) p(A,B) = p(B,A), A,B E 1lR 

(iii) p(A, B) :S: p(A, C) + p(C, B), A, B, CE 1lR 

(2.13) 

Conditions ( i) and (ii) follow immediately from the definitions of p and - - . We will 
prove (iii). Using inclusion (2.10) we have 

IA-- Bl :S: l(A-- C)+(c-- B)l:S:l(A-- C)l+l(C-- B)I 

Therefore 

p(A,B) lllA-- Biii :S: lll(A-- C)l+l(C-- B)lll 

< lll(A-- C)lll + lll(C -- B)lll 

p(A, C) + p(C, B) 

2.1.2 The Real Interval Space IR.. 

Let R = R. Then the interval space IR. consists of all compact intervals on the real line 
with operations as defined in the previous section. 

Usually in IR. the operation multiplication and division are also defined 

XY = {xy: x EX, y E Y} = [ inf (xy), sup (xy)] , X, YE IR. (2.14) 
xEX,yEY xEX,yEY 

X+Y={=:xEX,yEY}=[ inf(=), sup (=)],X,YEIR.,O!f_Y(2.15) 
y xEX,yEY y xEX,yEY Y 
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These operations are important in the computation of enclosures of rational expres­
sions. 

The modulus in R is also a norm in R. Therefore the distance between intervals is 

p(X, Y) = IX - - YI 

and coincides with the Hausdorff distance [43] between intervals considered as subsets of 
R. 

2.1.3 The n-Dimensional Interval Space mn. 
This is the interval space over the n-dimensional linear space Rn. The elements of IRn 
are hyper rectangles of the form 

X [;r_,x] = {x E Rn: ;r_:::; x:::; x} 

{(xi,x 2 ,. .. ,xnf: x; E R,x; E [;r_;,x;]} 

where;r_= (;r_i,;r_2 , . .• ,;r_n)T and x= (x1,xz, ... ,xnf are vectors in Rn such that;!'_; :::;x;, 
i = 1, 2, ... , n. 

The intervals X; = [;r_,;, x;] are elements of IR. Since X is a Cartesian product of 
Xi, X2, ... , Xn, it is also represented in the form 

It is easy to see that in IRn the operations and operators defined in an interval space can 
be represented using the corresponding operations and operators in IR coordinate-wise. 
Let X = (X1, X 2 , ••• , Xn) and Y = (Yi., Y,, ... , Yn) be intervals in IRn and a E R. We 
have 

x + y = (Xi+ Yi, X2 + Y2, ... , Xn + Ynf 
x-- Y=(Xi--Yi.,Xz--Y,,. . .,Xn-- Yn)T 

aX = (aXi,aXz, ... ,aXnf 

IXI = (IX1I, IX2I,. ·., IXnlf 
w(X) = (w(Xi), w(X2),. .. , w(Xn)f 

Let A= (a;j) be a real n x n matrix and A= (Ai, A2, ... , Anf E IRn. The product 
AA is defined by 

0<11 0<12 CT in 

AA~ ( "." 
0<22 O<zn 

O<ni O<nz °'nn 
)( ::i ( a11A1 + ai2A2 + ... + CTinAn l 

a21Ai + a22A2 + ... + CT2nAn 

CTniAi + O<n2A2 + · · · + °'nnAn 
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Some of the properties of the matrix multiplication are listed below 

where IAI = (laijl). 

A(A+ B) = AA+AB 

A(,8A) = ,8(AA) 

w(AA) = IAlw(A) 

12 

For every norm II.II in Rn the function p(A,B) = lllA-- Biii defines a distance in 
ITr. However, if the norm in Rn is the maximum norm 

the distance induced in the interval space mn by this norm is the Hausdorff distance. 
We will prove this below. 

The Hausdorff distance between two sets A and B is defined by 

Ph(A, B) = max{ sup inf Ila - bll, sup inf Ila - bll} 
aEA bEB bEB aEA 

The unit ball relative to the maximum norm is 

U = {x E Rn: llxll S l} = ([-1, l], [-1, l], ... , [-1, l])T = [-e, e] 

where e = (1, 1, ... , 1). Using the fact that the unit ball U is an element of mn we can 
define Hausdorff distance between A, BE mn in the following equivalent way 

Ph( A, B) = inf{a ER+: AC B + aU and B c A+ aU} (2.16) 

We also have 
CC l!CllU , CE mn 

From the above inclusion and (2.9) we obtain 

Ac(A-- B)+BcB+lllA-- BlllU 

Bc(B-- A)+AcA+lllA-- BlllU 

Therefore from the definition (2.16) it follows that 

Ph(A,B) S lllA-- Biii (2.17) 

From the inclusions A C B + Ph( A, B)U and B C A+ Ph(A, B)U the following 
inequalities can be derived 

g_ 2: b_ +Ph( A, B)e , b_ 2: g_ + Ph(A, B)e, 

aS b+ Ph(A,B)e , b_ Sa+ Ph(A,B)e. 
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Hence 
IA -- Bl= sup{ I!!. - 111, la- bl} :0: Ph(A, B)e 

Therefore 
II IA-- Biii :0: lltih(A, B)ell = Ph(A, B) 

Inequalities (2.17) and (2.18) imply 

Ph(A,B)= lllA-- Biii 

13 

(2.18) 

Throughout the thesis we will only use the Hausdorff distance in mn and will denote 
it simply by p, i.e. p = Ph, if not otherwise stated. 

2.1.4 Interval Space over a Space of Real Functions. 

Let :F(f1, Rn) be the set of all bounded functions defined in f1 with values in Rn. :F(f1, Rn) 
is a linear space with the operations: 

• addition 

f + g : (f + g)(x) = f(x) + g(x), x E fl, f,g E :F(f1, Rn) 

• multiplication by a scalar 

af : (af)(x) = af(x), x E fl, f E :F(f1, Rn), a ER. 

It is also a vector lattice considering the ordering between functions f, g E: :F(f1, Rn) 
defined by 

f :0:g {o}j(x) :O:g(x), x E f1 

Therefore we can consider the interval space I:F(f1, Rn) over :F(f1, Rn). The operations 
and operators in this space can be represented in the following form using the correspond­
ing operations and operators in mn. 

F+G 
p_- G 

aF 

IFI 
w(F) 

(F+ G)(x) = F(x) +G(x), x E f1 
(F-- G)(x) = F(x)-- G(x), x E f1 

(aF)(x) = aF(x), x E f1 

(IFl)(x) = IF(x)I, x En 
(w(F))(x) = w(F(x)), x E f1 

Let F = [f,]] E :F(f1,Rn). Then F(x) = [f(x),](x)] E mn, x E fl. Hence FE 
- -

:F(n,mn) where :F(n,mn) is the set of all bounded functions defined inn with values 
in mn. If GE :F(f1,IRn) then G can be written as G = [g,g] where g,g E :F(f1, Rn). 
Therefore I:F = I:F(f1, Rn)= :F(f1,mn). - -
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Every function F = [f, JJ E IF can be also written in the form F = (Fi, F2, ... , Fnf 
- - r- -- -r 

where F; = [L,f;) E :F(O,m), i = (1,,L,···,in) , f = (f1,f2, ... ,fn) and the 
interval operations and operators can be represented coordinate-wise in the same way as 
in mn. 

When 0 E mm the space IF= :F(O,mn) consists of interval-valued function of an 
interval argument. 

Definition 2.2 Let FE :F(O,mn),O c mm. Function Fis called inclusion-isotone if 
X CY, X, YE 0 implies F(X) c F(Y). 

Let us note that the standard operations in any interval space are inclusion-isotone, 
i.e. if A C C then 

A+BcC+B 
aA caC 

A-BcC-B 
B-AcB-C 

The nonstandard (inner) operations -- and+- are not inclusion-isotone, in general. 
Particularly useful in the applications of interval analysis are interval functions of an 

interval argument that are obtained as extensions of real functions of a real argument. 
These functions are discussed in the following section. 

2.1.5 Interval Extensions of Real Functions of a Real Argument. 

Consider :F(O, Rn) where 0 C Rm. Denote by In the set of all intervals XE Rn such 
that X C 0. 

Definition 2.3 Let f E :F(O, Rn). Function FE :F(In,mn) is called an interval ex­
tension of function f if 

(i) F is inclusion-isotone 

(ii) F(x) = f(x), x E 0 

(iii) x E X implies f(x) E F(X), XE In 

Definition 2.4 Let f E :F(O, Rn). Function f* E :F(m,mn) defined by 

f*(X) =[inf f(x),supf(x)) 
xEX xEX 

is called optimal interval extension of function f. 
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Let us note that f*(X) can also be represented in the form 

f'(X) = V f(x) = [ LJ f(x)] 
xEX xEX 

i.e. f*(X) is the optimal interval enclosure in mn of all values f(x) when x E X. It 
is easy to see that the optimal interval extension is an interval extension in the sense of 
definition 2.3 and also f*(X) C F(X), X E 1f! for every other interval extension F off. 

Let us consider the function f(x, y) = ax+ (Jy, where x, y E Rn, a, (J E R. Obviously 
f E :F(R2n, ~ ). The optimal interval extension off in terms of the operations in mn is 

f*(X, Y) = aX + (JY 

which implies that the standard operations in mn are optimal interval extensions of the 
linear operations in nn. 

Computing the optimal interval enclosure in the case of nonlinear functions is generally 
an optimization problem. Simply replacing the reals by intervals leads to an interval 
extension (sometimes called naive interval extension) which is not necessarily the optimal 
one. Let us take for example f(x) = x2, x E R. F(X) = X.X is an interval extension 
while the optimal one is 

f *(X) = { [O, IXl 2
] 

[;r,2 v y2] 
if 0 EX 
if 0 r/: x 

We have F([-2,2]) = [-4,4] while J*([-2,2] = [0,4]. 
Computing interval enclosures is a separate area of interval analysis. In the thesis we 

will use only the optimal interval extension of real functions and we will refer to it simply 
as interval extension. When X = x E nm the values off* and fare the same. Therefore, 
using the same notation for f and f* does not lead to confusion. We will denote both 
functions by f (or the symbol used for the original function). 

2.2 Advanced Computer Arithmetic. 

In general, computers are equipped with floating-point arithmetic to approximate mathe­
matical operations with real numbers. Details of the representation of floating-point num­
bers as their radix, number of digits, exponent range, were in the past central points of the 
analysis and the implementation of a computer arithmetic. A significant breakthrough 
was the axiomatic definition [57], [58] of computer arithmetic which is independent of 
such details. 

Let R be the set of real numbers and R be a finite set of floating-point numbers. A 
mapping 0 : R >-+ R is called rounding if it satisfies the following conditions: 

Ox = x when x E R 

x::; y ~ Ox ::; Dy, x, y ER 

(projection) 

(monotonicity) 

(2.19) 
(2.20) 
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If a rounding 0 satisfies also 

0(-x) =-(Ox) (2.21) 

it is called antisymmetric. 
Floating-point operations are defined by 

x~y=0(x 0 y), 0 E{+,-,*,/}, (yyfO when ° =/) (2.22) 

A mapping 0 satisfying axioms (2.19)-(2.22) is said to be a semimorphism. Axiom 
(2.21) also defines the unary negation operator El in R. 

Bx= 0(-x) =-(Ox) 

Definition 2.5 A floating-point number ~ is said to be an approximation of maximum 
quality {84} to a real number x if there is no floating point number between ~ and x, i.e. 

[~Vx]nR=0 

It is easy to see that a rounding 0, which is a semimorphism, provides a maximum 
quality representation of every real number as well as maximum quality floating point 
arithmetic operations over the set of floating point real numbers R. 

The standard operations in the space IR. of real intervals are inclusion isotone. In 
order to preserve this property for the corresponding floating point interval operations 
directed roundings are used. These roundings are denoted by '\l (downward) and D 
(upward) and we have 

V x ~ x and Dx 2: x 

The directed rounding are required to satisfy (2.19)-(2.20), the floating point operations 
are defined by (2.22) but (2.21) is replaced by 

v(-x) = -(Dx), 6(-x) = -('\lx) 

Let IR. be the real interval space and IR be the set of floating point intervals, i.e. the 

real intervals with end points in R. The mapping () : IR. t-+ IR defined by 

satisfies the axioms 

()x = X when X E IR 

x c y =? ()x c VY, x,y E IR. 

(projection) 

(monotonicity) 

(2.23) 

(2.24) 
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We also have 

(antisymmetry) 

The floating point interval operations are defined by 

O(X 0 Y), X,YEIR, 0 E{+,-,--,+-,*,7} 

0( aX) , X E IR, a E R 

and can be implemented using directed roundings. 

17 

(2.25) 

(2.26) 

Definition 2.6 A floating-point interval 3 = [f, ~] is said to be a maximum quality in­
terval enclosure to a real interval X if every floating point which belongs to the interior 
of3 belongs to X as well, i.e. 

(f, ~) n R c x n R 

The rounding 0 provides a maximum quality representation of every real interval 
as well as maximum quality floating point arithmetic operations over the set of floating 
point real intervals IR. 

The problem of validation will be solved if it were possible to compute a maximum 
quality floating point approximation or interval enclosure to the exact answer of each 
mathematical problem. While this is not a reasonable goal for most of the problems there 
should be a minimum standard that is required. 

Traditionally the computer arithmetic provides maximum quality computations only 
in R which can be extended to maximum quality computations in IR as discussed above. 
However, the minimum standard set by the advanced computer arithmetic is maximum 
quality computations in the real vector (VR) and matrix (MR) spaces, the space of 
complex number C and the complex vector (ic) and matrix (NIC) space as well as the 
interval spaces over VR, MR, C, ){'., NtC denoted by IVR, IMR, E, liC, L\ltC, respec­
tively. These spaces are listed in the first column of table 2.1. The corresponding subsets 
that can be represented in the computer are denoted by the symbols listed in the second 
column. 

We will refer to the spaces R, VR, MR, C, ){'., NtC as point spaces and to IR, IVR, 
IMR, E, liC, L\ltC as interval spaces. We will need to distinguish between the above 
two sets of spaces because (as will be seen below) the ordering used in the definition of 
rounding in a point space is :S:: while the ordering used in an interval space is C. 

Let U be any of the spaces in the first column of table 2.1 and U be the corresponding 
space in the second column. Furthermore, let a rounding D : U >-+ U which satisfies the 
following axioms be given. 
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Basic Spaces of Subsets Representable 
Computation on the computer 

R R 
VR VR 
MR MR 

JR IR 
IVR IVR 
IMR !MR 

c c 
){? VG 
MC MC 

E IC 
LU:? IVG 

I.M:, IMC 

Table 2.1: Table of the spaces of computation and the corresponding subspaces repre­
sentable on a computer. 

Ox = x when x E U 

x :S: y =} Ox :S: Dy, x, y EU 

x Cy=? Ox C Dy, x,y EU 

0(-x) =-(Ox) 

(for point spaces) 

(for interval spaces) 

For an interval space U, the rounding 0 is also required to satisfy 

x C Ox, x EU 

The theory developed in [56], [57] shows that this rounding is uniquely defined. 
Maximum quality approximation (enclosure) is defined in general as follows: 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

Definition 2. 7 An element ~ E U is a maximum quality approximation (enclosure) of 
x E U if there are no other elements of U between ~ and x 1 i. e 
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• for point spaces: there is no 'f/ E U such that ~ :::; ry :::; x or x :::; 'f/ :::; ~; 

• for interval spaces: there is no 'f/ E U such that x C 'f/ C ~. 

It is shown in [57] that a rounding D satisfying (2.27)-(2.29) ( (2.27)-(2.30)) provides 
maximum quality representation of U in U. Furthermore, the operations in U, defined by 

(2.31) 

are of maximum quality in the sense that x~y is the maximum quality approximation 
(enclosure) of x 0 y. The operation ° is any operation from the set of operation specific 
for the space U. 

The cornerstone in the implementation of the advanced computer arithmetic is the 
maximum quality scalar product of real floating point vectors x, y E VR defined by 

xDy = D(x.y) = D (t,xiYi) 

The traditional implementation of the scalar product 

is with 2n - 1 roundings, while the maximum quality scalar product produces a result 
with a single rounding. On the basis of the maximum quality scalar product all operations 
in vector and matrix spaces are implemented with maximum quality. For example, the 
multiplication of two n x n matrices is equivalent to computing n 2 scalar products. 

In addition to the maximum quality representation and operations in the spaces listed 
in table 2.1, the advanced computer arithmetic requires a maximum quality evaluation 
of all standard mathematical functions (modulus, square root, exponential, logarithmic, 
trigonometric,hyperbolic function, etc.). 

At present, a large variety of software products supporting advanced computer arith­
metic exists. In [26], [27] a number of such software products are compared. Some of 
these products are ACRITH-XSC [44], [90], C-XSC [52], Fortran-XSC [91], INTLIB [51], 
INTPACK [25], PASCAL-XSC [53]. ACRITH-XSC, C-XSC and PASCAL-XSC are pro­
duction quality commercial products supporting all aspects of the advanced computer 
arithmetic. For the numerical experiments presented in the thesis we use PASCAL-XSC. 

PASCAL-XSC is a programming language providing the following features: 

• Explicit language support for directed roundings and the corresponding operations. 

• Maximum quality scalar product for vectors of arbitrary length. 

• Interval types and and interval arithmetic operations. 

• A universal operator concept. 
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• Overloading of function identifiers and operators. 

• Dynamic and structured numerical types. 

• A large number of mathematical functions with high accuracy for all numerical 
types. 

The PASCAL-XSC programming in any of the spaces listed in table 2.1 is as easy as, 
say, PASCAL programming in R. For example, the product of a matrix ME Rn and an 
interval vector VE !Rn is written in the form M * V. This operator produces a maximum 
quality result which is an interval vector. 

2.3 Initial Value Problems and Operators of Mono­
tone Type. 

In the thesis, we consider the initial value problem (IVP) for ordinary differential equations 
(ODE) and the periodic initial value problem for hyperbolic partial differential equations 
(specifically the wave equation). For both problems we consider the case of an initial 
condition which is an interval: n-dimensional real interval, or set of two interval functions 
as the case may be. The problems will be formulated in detail in the following sections. 
The numerical techniques used for these problems are quite different. However, in the 
computation of validated numerical solutions the two problems share a lot of similarities, 
particularly related to the validation of the the solution. One such similarity is the 
connection between the monotone properties of the problem, in terms of the concept 
of operators of monotone type [23] (recalled below), and the construction of interval 
enclosures for the exact solution. 

Definition 2.8 Let n and W be lattices and let '.:'.'. denote the partial ordering in each of 
them. An operator T : n >-+ W is called an operator of monotone type if 

Tu :S: Tv =?- u :S: v , u, v E !1 

An initial value problem can be formulated generally in the following way: 
Let !1 be a space of functions defined on a domain D and let IC and I be operators 

defined on !1 with ranges in some spaces Wand W0 . Then, the problem is 

where u0 E W0 is given. 

Find u E !1 such that 

/Cu= 0 

Ju= u0 

(2.32) 
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For example, if !1 = C 1 [t0 , t], W = C0 [t0 , t], W0 = R, Ju = u(t0 ) and /Cu(t) = 
d:~t) - J(t, u), where f is a given continuous function oft and u, we obtain an IVP for 

ODE. 
Taking D =Rx [t0 ,t], !1 = {u = u(x,t): Dr-+ R: u E C 2(D),u-periodicon x}, 

W = 0°( D), W0 = C2(R) x C1(R), Ju( x) = ( u(x, t0 ), u,(x, t0 )) and K.u(x, t) = uu(x, t) -
Uxx(x,t)-f(x,t,u), where f is a given continuous function oft, x and u, problem (2.32) 
becomes a periodic initial value problem for the wave equation. 

The spaces !1, W and W0 are assumed to be vector lattices and have norms so that 
the corresponding interval spaces with metric are defined. 

Operator J in the formulation of problem (2.32) represents an initial condition. In 
practical applications, very often the value of I u = u0 is not exactly known. Even in 
the rare case, when the value of u0 is known exactly, this value is not necessarily exactly 
representable on a computer using the available data types. An interval rounding will 

produce an interval 0( u0 ) and we will only know that u0 E 0( u0 ). Therefore it is 
important to consider initial conditions of the form 

Ju= u0 E U0 (2.33) 

where U0 = [1!.0 , "IT°] E 1W0 is given. 
If u(u0

; y), y ED, denotes a solution of (2.32) then the set of functions 

u(U0
) =: u(U0

; .) = {u(u0
; .) : u0 E U0

} 

is considered a solution of problem (2.32)-(2.33). In general u(U0
) is not an interval 

function in m. In interval terms (as discussed in section 2.1), 

[u(U0
; y)] = [1!.(U0

; y), u(U0
; y)], y ED. 

represents the optimal interval enclosure of u(U0
; y), y E D. 

Using the above notations, the numerical problem can be formulated as: 

Construct S E m such that 

[u(U0 ;y)] C S(y) ,y ED, and 

p([u(U0
)], S) <tolerance. 

(2.34) 

The design of methods producing enclosures S as required in (2.34) depends signif­
icantly on the structure of [u(U0 )]. When the operator T = (IC, I) is an operator of 
monotone type this structure is very simple. 

Indeed, for such an operator T, every solution u(u0
; y) of problem (2.32) such that 

u0 E U0 = [1!.0 , "IT°] satisfies 

T( u(y0
)) = (0, l!.0 ) :S (0, u0

) = T( u( u0
)) = (0, u0

) :S (0, "IT°) = T( u("U°)) 



CHAPTER 2. PRELIMINARIES 22 

Therefore 
u(y_0

; y) :S u(u0
; y) :S u(u°; y), y ED 

This implies that the optimal interval enclosure can be represented in the form 

[u(U0 ;y)] = [u(g0 ;y),u(u°;y)], y ED 

Since the end points of the optimal interval enclosure are solutions of problem (2.32), an 
enclosure S of the type required in (2.34) can be computed by computing a lower bound of 
u(g0

; y) and an upper bound of u(u°; y), y ED. This is the approach adopted in chapter 
4 for constructing tight enclosures for the solution of the wave equation. 

A major problem associated with interval methods for initial value problems is the 
wrapping effect. It is caused by the set of additional points (called wrapping excess) 
included in an interval which encloses (wraps) a noninterval set. The result may be a 
significant inflation of the computed enclosures. The wrapping effect for IVP for ODE 
is explained and studied in detail in chapter 3 and it is shown that when operator T is 
of monotone type the problem has no wrapping effect. In chapter 4, where we consider 
mainly wave equations with a differential operator T which is of monotone type, we 
observe that no wrapping effect appears. 

2.4 Initial Value Problem for ODE: Wrapping Effect. 

2.4.1 The Problem. 

We consider the initial value problem for ordinary differential equations in the form 

x=f(t,x) 
x(to) = x0 E X 0 

where t E [to,~ CR, x 0 E Rn, DC Rn is an open set, f: [to,~ X D-+ Rn and 

XO = ((£~, ~], (£g, ~}, ... ' [i1., ~])T 

(2.35) 

(2.36) 

is an n-dimensional interval vector, X° C D. We assume that a solution is sought in 
the interval [to,~· A validated numerical method, if returns an answer, produces an n­
dimensional interval function S(h; t), t E [t0 , ~ with the assurance that for every x0 E X 0 

a unique solution x(t0 ,x0 ;t) exists in [t0 ,~ and x(t0 ,x0 ;t) E S(h;t), t E [t0,n The 
parameter h is a parameter of the method. 

Our primary task is a study of the wrapping effect associated with validated (interval) 
methods for problem (2.35)-(2.36). When applying a validated method to a particular 
problem of the form (2.35)-(2.36) we do not need to make or verify any assumptions for 
f or X 0 because the existence and uniqueness of the solution is verified automatically. 
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However, here we will prove statements about the convergence (a priori) of the enclosures 
produced by a class of methods characterizing the quality of these methods rather than 
the quality of the enclosures produced for a particular problem. In order to do this, we 
need to make assumptions providing for existence and uniqueness of the solution. We will 
assume that in the region [to, t] X D the function f 

i) is bounded: lf;(t,x)l:s;miER, m=(m1,m2, ... ,mnlERn; 
ii) is continuous about t ; (2.37) 

iii) satisfies the Lipschitz condition about x: 
n 

lfi(t,y)-fi(t,z)l:s;°L\;IY;-z;I, >.i; ER, i,j=l, ... ,n. 
j=l 

We would like to note that all the proofs can be actually carried out under more gen­
eral assumptions providing only for existence and uniqueness of a solution x(t0 , x0 ; t) in 

t 
a weaker sense leading to a continuous function satisfying x( t) = x0 + J J( e, x( 0) )dO, t E 

to 

[ t0 , t]. But we feel that such assumptions will only make the proofs more technical and dif­
ficult to read without making any major contribution to the presentation and clarification 
of the main ideas. 

We will also assume that all solutions x(t0 , x0
; t), x0 E x 0

, are defined in the whole 
interval [t0 , t]. 

The set-valued function x(to,X0 ;t) = {x(to,x0;t): x0 E x 0
}, t E [to,t] is considered 

a solution to the problem (2.35)-(2.36). For every t E [to, t] by [x(t0 , X 0
; t)] we denote 

the optimal (tightest) interval containing the set x(t0 , X 0
; t) (which is not necessarily an 

interval). The interval function 

[x(to,X0
; .)] : [to, t]-+ m,n 

is called the optimal interval enclosure of the solution. Therefore a validated method 
produces interval functions S(h; t) such that [x(t 0 , x 0

; t)] c S(h; t). 

2.4.2 Historical Overview. 

The idea of solving problem (2.35)-(2.36) by constructing lower and upper approxima­
tions (bounds) for the solution x(t0 , X 0 ; t) was proposed by Chaplygin [21], [22] in 1919. 
He proposed an iterative method with quadratic convergence. See [32] for a more con­
temporary presentation. He also proved a theorem characterizing the monotonicity of 
problem (2.35)-(2.36) in the case of one equation. The monotonicity in the case of a 
system was studied by Miiller [68]. He proved that the operator of problem (2.35)-(2.36) 
is of monotone type under the assumption that the right hand side f is a quasi-isotone 
function of x. 
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Definition 2.9 A function f = (11 , Ji, ... , fnf : D --+ Rn is called quasi-isotone if for 
every i = 1, ... , n, f; = fi(x 1 , x2 , ••• , Xn) is non-decreasing with respect to all Xj, j cl i. 

His theorems were generalized by Kamke in 1932 and later by Walter [92]. 
The work of Chaplygin was further developed in the Soviet Union by Luzin and Babkin 

[17]. It is interesting to note that these mathematicians did not know the results of the 
German mathematicians Miiller and Kamke. For example, Babkin essentially formulates 
the theorem of Miiller for two equations. On the other side, Miiller and Kamke did know 
the results of Chaplygin. 

We will use the theorem of Miiller in the following form. 

Theorem 2.1 Let function f in equation (2.35) be quasi-isotone with respect to x. If 
Junctions u, v : [to, t] t-+ D are differentiable in [to, t] and satisfy the inequalities 

it(t) - f(t, u(t))::; v(t) - f(t, v(t)), t E [to, t] , 
u(to) ::; v(to) 

then u(t)::; v(t), t E [t0 ,t]. 

This theorem means that the operator T defined by T(x) = (i:- f(t,x),x(t 0 )) where 
x : [to, t] >--+ D and is differentiable in [t0 , t], is an operator of monotone type. 

As a direct consequence of theorem 2.1 we obtain 

Theorem 2.2 Let J be quasi-isotone on x and let S = [§., s] be an interval function 
defined on [to, t] such that S(t) CD, t E [t0 , t] and§., s are differentiable in [to, t]. If 

§_(t)- f(t,,,.(t))::; 0::; ~(t)-f(t,s(t)), t E [to,t], 
§.(to) ::; ;£

0
, x° ::; s( to) 

then x(t0 ,X0 ;t) C S(t), t E [t0 ,t]. 

In 1965, Moore [64] described an enclosure method for ODE using interval arithmetic 
for the first time. He used the Taylor series expansion of the solution to construct in­
terval enclosure. This approach remains the most common one until now [55], [37], [59]. 
Other methods are interval analogs of standard methods (e.g. Runge-Kutta, Adams, etc.) 
assuming that an interval function containing the error of the corresponding method is 
available [46]. Moore [65] also introduced Pickard-Lindelof iteration. Bauch and others 
[18] modified the method and suggested Newton iteration. 

In the eighties Nickel [82], Stetter [88], Bauch et al. [19], Corliss [28], Kalmykov et al. 
[46] gave surveys on interval methods available then. Corliss et al. [29] contains a very 
extensive bibliography. 

In the area of single-step methods, progress during the last decade was made mainly 
in improving the computed enclosures by using different strategies for step-size and order 
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control, defect-correction, improved provisional enclosures and others. Recent surveys are 
given in [86] and [78]. 

Every interval method has to face the wrapping effect which is a severe obstacle and 
has been a central issue in the construction of interval methods since the introduction of 
interval analysis to the numerical solution of the IVP for ODE. Moore [65], Kruckeberg 
[55], Lohner [59] present modifications of the Taylor method which can reduce the wrap­
ping effect. The method of Lohner is the most famous one. A further modification 
proposed by Rihm [86] improves the computed enclosures. In the thesis we study the 
wrapping effect associated with single-step interval methods. 

2.4.3 Wrapping Effect and Wrapping Function. 

We will consider methods that generate interval enclosure S(h; t) using a mesh 
{to, ti, ... , tP = t} where h = (h1, h2, ... , hn), hk = tk - tk-1, k = 1, ... , k. 

Naturally, convergence of the form 

lim S(h; t) = [x(t0 , X 0
; t)] 

llhll-tO 

is desirable. However, due to the wrapping effect, in most of the cases such convergence is 
not observed even when the method has very good local approximation properties. This 
is demonstrated in the following example. 

Example 2.1 Consider the problem 

±1 = -2x1 , 

X2 = 2x1 - X3, 

X3 = 2x1 - x2, 

x1(0) = x~ EX~= 1 + [-c:i,c:i], 
X2(0) = xg EX~= 1 + [-cz,cz], 

X3(0) = X~ E Xf = 1 + [-c3,c3]. 

(2.38) 

in the interval [O, l]. We apply a method based on the Taylor series of the solution 
with local approximation error O(h5). In every interval [tk, tk+1] the already computed 
enclosure S(h; tk) is considered as an initial condition and we have 

When 
c1 = 0.2, cz = c3 = 0.05 (2.39) 

the optimal interval enclosure and enclosures, computed for various values of h, are repre­
sented graphically on figure 2.1. Since the corresponding enclosures for x 2 and x3 are the 
same, they are represented by the same graphs. While the numerically computed enclo­
sures for x1 are visually indistinguishable from the optimal one, the computed enclosures 
for x2 and x3 clearly diverge from the optimal. We can see that reducing the step size 
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Figure 2.1: Problem (2.38) with c: 1 - 0.2, c: 2 = c:3 = 0.05. Optimal enclosure and 
enclosures computed numerically for various step sizes h. 

makes the matter only worse. Increasing the order of local approximation also does not 
help. 

However, when the same method is applied to the problem (2.38) with 

E1 = 0, E2 = c3 = 0.05 (2.40) 

we obtain a very good approximation of the optimal interval enclosure in all three variables 
Xi, x2 and x3 • The numerical results are graphically represented in figure 2.2. At the top 
part of the figure the optimal enclosure and the enclosures computed for various values 
of h are plotted. Since the computed enclosures are very close to the optimal enclosure, 
they are visually indistinguishable from the optimal one. In order to see their accuracy, 
the error functions 

r(Si(h;t),[xi(t0 ,X0 ;t)J), i=l,2,3 

are plotted on a logarithmic scale at the bottom part of the figure. A rate of convergence, 
consistent with the expected rate of global convergence O(h4

) is revealed. 
The divergence of the computed interval enclosures away from the optimal enclosure 

when h -+ 0 which is observed for x 2 and x 3 on figure 2.1 is due to the wrapping effect. 
While a detailed explanation of the wrapping effect will be given below, we can say 
roughly that it manifests itself as divergence of the computed enclosures away from the 
optimal enclosure when h -+ 0 irrespective of the order of local approximation. We 
can see from the numerical experiments with example 2.1 that there are problems (e.g. 
problem (2.38)-(2.40)) where the wrapping effect does not appear at all and the computed 
enclosures behave in a "regular" way, i.e. converge to the optimal enclosure when h -+ 0. 
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Figure 2.2: Problem (2.38) with e:1 = 0, e:2 = e:3 = 0.05. Optimal enclosure and enclosures 
computed numerically for various step sizes h (top) and errors of the computed enclosures 
on a logarithmic scale (bottom). 

We will explain the wrapping effect using Jackson's [45] propagate and wrap approach. 
Suppose that we can compute the optimal interval enclosure in any interval [tk, ik+1]. Then 
interval enclosures can be computed by the following procedure which we call Idealized 
Propagate and Wrap Algorithm (IPWA): 

S(h; t 0 ) = X 0 

S(h; t) = [x(tk, S(h; tk); t)], t E [tk, tk+iL k = 0, 1, ... , n - 1 (2.41) 

This method has no local error but does not always produce the optimal enclosure. 
The solution at 11 is the set x(lo, X 0 ; ti) which is not necessarily an n-dimensional interval. 
It is wrapped by an interval S(h; t 1) = [x(lo, X 0

; 11)], thereby including extra points called 
wrapping excess. In the interval [ti, t 2] all solutions starting from the points of S(h; ti) 
(including the wrapping excess) are propagated and the set x( ti, S(h; t 1); t 2) is again 
wrapped by an interval S(h; t2) = [x(ti, S(h; t1 ); t 2)] with certain wrapping excess and so 
on. The wrapping excess at the points of the mesh is what causes, in some cases, blowing 
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up of the enclosures as observed for variables x 2,3 on figure 2.1, and referred to as the 
wrapping effect. In other cases, despite the wrapping excess, the computed enclosures 
converge to the optimal one (figure 2.2), i.e. there is no wrapping effect. 

Moore [67] noticed the problems associated with the wrapping excess at the points 
of the mesh and proposed coordinate transformations to counter the wrapping effect. A 
large number of papers on validated (interval) methods for ordinary differential equations 
deal with the wrapping effect, and [55], [37], [59] mark some major developments in the 
area. See also [78] for a recent survey. 

A well known case of problems with no wrapping effect is when the function fin (2.35) 
is quasi-isotone. There is also no wrapping effect when the initial condition is a point 
X 0 = x 0 E R. However, problem (2.38)-(2.40) is of neither of those types, but there is 
still no wrapping effect. 

We study the wrapping effect by introducing a new concept of wrapping function. 
We consider single-step methods producing enclosures S(h; t) such that in every inter­

val [tk, tk+i] the interval function S(h; t) encloses all solutions propagated from the points 
of the interval S(h; tk)· We call these methods methods of propagate and wrap type. 

Definition 2.10 A function X : [to, t] -+ mn is said to satisfy a wrapping property with 
respect to equation (2.35)-(2.36) at the point(} E [t0 , t) if all solutions x(O, u; t), u E X(O), 
exist in the interval [O,t] and x(O,X(O);t) C X(t), t E [O,t]. 

Using definition 2.10 we can also define the methods of propagate and wrap type as 
follows: 

Definition 2.11 A single-step numerical method producing enclosures S(h; t) for the so­
lution of problem (2.35)-(2.36) is called a method of propagate and wrap type if the en­
closures S(h; t) satisfy the wrapping property at all points of the mesh. 

The Idealized Propagate and Wrap Algorithm (IPWA) discussed earlier is a method of 
propagate and wrap type. It produces the tightest enclosure S( h; t) that can be produced 
by a method of propagate and wrap type because its local error is zero. 

In considering methods of propagate and wrap type we will ignore the method used 
by the numerical procedure for producing enclosures (e.g. Taylor series, Runge-K utta, 
etc.). We will only discuss the convergence of the computed bounds S(h; t). In all cases 
of wrapping effect convergence of the computed enclosures (although not to the optimal 
enclosure) is observed (see the graphs for x2 ,3 in figure 2.1). Then, it is logical to ask: 

If the computed enclosures do not converge to the optimal one, what do they converge 
to? 

We prove that the enclosures computed by any method of propagate and wrap type 
converge to the wrapping function discussed below. 

Since the enclosures produced by methods of propagate and wrap type satisfy the 
wrapping property at every point of the mesh, we may expect that the limit of such 
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interval functions when h -+ 0 satisfies the wrapping property at every point of the 
interval [t0 , t]. Therefore, we define the concept of wrapping function as follows: 

Definition 2.12 A function X : [to, t] -+ mn is called wrapping function for problem 
(2.35)-(2.36) if: 

i) X(to) = X 0 ; 

ii) X satisfies the wrapping property at every point of the interval [to, t); 

iii) for every other function Y : [t0 , t] -+ mn satisfying i) and ii) we have X(t) C 

Y(t), t E [t0 , t] (i.e. the wrapping function is the optimal function with i) and ii)). 

The wrapping function of problem (2.35)-(2.36) is unique. Indeed, if Y and Z are 
wrapping functions then function X defined by X(t) = Y(t) n Z(t), t E (t0 , t] satisfies 
conditions i) and ii) of the definition and X(t) C Y(t), X(t) C Z(t), t E [to, t]. Moreover, 
the converse inclusions hold from condition iii) in the definition. Therefore X(t) = Y(t) = 
Z(t). We denote the wrapping function of problem (2.35)-(2.36) by X. 

In Chapter 3 we prove the existence and some properties of the wrapping function by 
representing it as a solution to a certain initial value problem. We also prove that, in 
general, the limit of the enclosures produced by methods of propagate and wrap type is 
the wrapping function and not the optimal interval enclosure. Therefore, the computed 
enclosures converge towards the optimal interval enclosure if and only if the wrapping 
function is equal to the optimal interval enclosure. In this way the wrapping effect can 
be considered as an inherent property of the problem and can be quantified as the dis­
tance between the wrapping function and the optimal interval enclosure. Apart from the 
theoretical value of this result in studying and understanding the wrapping effect it has 
a practical application in characterizing problems with no wrapping effect. In [30], [78] it 
is stated that a complete set of tools for validated solving of IVP for ODE should include 
software for recognizing problems with quasi-isotone right-hand side and solving them by 
a straight forward procedure instead of using complicated algorithms [37], (81], [59]. We 
prove that there is a larger class of initial value problems that have no wrapping effect 
and we believe that such software should recognize the problems with no wrapping effect 
as they are specified by the theorems proved in chapter 3. 

2.5 Wave Equation: Monotone Properties. 

2.5.1 Interval Methods for Partial Differential Equations. 

Advances in the development of interval methods for PDEs were reported as early as the 
seventies. In 1972 Appelt [15] obtained error bounds for an approximate solution of a class 
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of elliptic problems using interval methods. His approach was also discussed by Moore 
[67]. A method for construction of bounds for the characteristic initial value problem for 
hyperbolic equations is proposed in [33], [34]. The problem is formulated as a fixed-point 
equation, and bounds for the solution of this equation are obtained iteratively. Validation 
of the bounds is obtained by using the fixed-point theorem approach. 

A significant contribution to the development of validated methods for PDE is the 
introduction of the concept of functoid [49] with applications to PDE discussed in [50]. 
Particularly applicable to the wave equation is the Fourier functoid which is discussed 
later in this section. The concept is generalized to a Fourier hyper functoid in [48]. 

An important development in the last decade is the use of the method of finite elements 
for computing validated solutions of PDE [69]-[77]. The methods proposed by Nakao and 
his colleagues use a finite element solution and a computable error estimate for obtaining 
enclosures. The validation is also based on Schauder's fixed point theorem. 

In the thesis we consider the wave equation which is a hyperbolic problem. Our task 
is to establish monotone properties of the problem and construct methods based on these 
monotone properties. 

2.5.2 The Problem. 

We consider the nonlinear wave equation 

u,,(x, t) - Uxx(x, t) = J(x, t, u(x, t)), 

u(x,O) = 91(x), u,(x,O) = 92(x), 
u(-l, t) = u(l, t) , ux(-l, t) = ux(l, t) , 

-l < x < l, t > 0 

-l < x < l 
t > 0 

(2.42) 

(2.43) 

(2.44) 

Condition (2.44) implies that the solution is a function which has a smooth 21-periodical 
extension about x. The periodic boundary condition is essential for the monotone prop­
erties of the problem and the construction of numerical methods as discussed in the fol­
lowing sections. However, it is not a very restrictive assumption because a large number 
of problems can be reduced to problems with periodic boundary conditions of the form 
(2.42)-(2.44). For example if the problem is given in the more common initial boundary 
value form: 

substituting 

Utt(x, t) - Uxx(x, t) = J(x, t, u(x, t)), 
u(x, 0) = 91(x), u,(x, 0) = g2(x), 

u(O, t) = cp(t), u(l, t) = <f;(t), 

O<x<l, 
O<x<l 

t > 0 

1 
v(x, t) = u(x, t) + y((x - l)cp(t) - x<f;(t)) 

t > 0 
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we obtain a problem with zero boundary conditions 

v,,(x, t) - Vxx(x, t) = }(x, t, v(x, t)), 
v(x,O) = g1 (x), v,(x,O) = g2 (x), 

v(O, t) = v(l, t) = 0 , 

where 

31 

t>O 

' ( 1 ) 1 J(x,t,v) = f x,t,v - y((x -l)<p(t)-x</>(t)) + y((x - l)<p,,(t)- x</>u(t)) 

§1(x) = g1(x) + }((x - l)<p(O) - x</>(D)) 

§2(x) = g2(x) + }((x - l)<p,(D) - x</>,(D)) 

Defining all functions for x E (-1, 0) as odd functions of x, the zero boundary conditions 
at x = 0 and x = l can be replaced by periodic boundary conditions at x = -l and 
x = l. Problems concerning the differentiability of the solution that may arise in this 
transformation will be dealt with using a weaker formulation which is discussed in chapter 
5. Let !1[f, t] be the set of all functions u = u(x, t) : Rx [O, oo) t-+ R which are 21-periodical 
about x and have continuous second derivatives. Assuming that functions J, g1 and g2 
are extended periodically about x (period 21) we can formulate problem (2.42)-(2.44) in 
the following way: 

Find u E !1[0, t] such that 

u,,(x, t) - Uxx(x, t) = J(x, t, u(x, t)), 
u(x,O) = g1(x), u1(x,O) = g2 (x), 

xER, t>O 
x ER 

The solution of the above problem we denote by u(O,g; x, t). 
We also consider an interval initial condition of the form 

u(x, 0) 
u1(x, 0) 

gl(x) E G1(x) 

= g2(x) E G2(x) 

[,~z.1 (x),g1 (x)], 
[H,

2
(x),g2 (x)], x ER 

where G1 and G2 are given interval functions. The set-valued function 

u(O,G;x,t) = {u(O,g;x,t): g E G}, x ER, t E [D,t] 

is considered a solution of problem (2.45)-(2.47) 

(2.45) 

(2.46) 

(2.47) 

In chapter 4 we assume that f is a continuous function of all arguments, gl,2 (2
1

,
2

, !11,2) 

are differentiable and g;,2 E £ 2(-l, l) (2
1

,
2
,,9'1,2 E £ 2 (-1, l)). In addition, we also make 

the assumption that f is a non-decreasing function of u and the monotone properties of 
the problem are used in the construction of enclosures. In chapter 5 we consider means 
of dealing with discontinuities off, g1 and g2 or their derivatives. 
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2.5.3 Monotone Properties. 

The monotone properties of an initial value problem play an important role in the design 
of interval methods (as discussed in section 2.3). Let us denote the operator Utt - Uxx 
shortly by Lu, i.e. 

Lu = Utt - Uxx , U E !1[0, t] . 

and let T(ta) be an operator defined in !1[ta, t], ta E [O, t) as 

T(ta, u; x, t) = (Lu(x, t) - f(x, t, u), u(x, ta), u1(x, ta)) , x ER, t E [ta, t] . 

Then problem (2.45)-(2.46) can be written as 

In chapter 4 we prove that 

If f is a non-<lecreasing function of u then 

T( (,) is an operator of monotone type (2.48) 

Therefore, when f is non-decreasing about u, the optimal enclosure [u(O, G; x, t)] of the 
solution of problem (2.45)-(2.47) can be represented in the form 

[u(O,G;x,t)] = [u(O,,£;x,t),u(0,9;x,t)] 

and problem (2.45)-(2.47) is reduced to two problems with point initial conditions given 
by !l = (,£1 ,,£2 ) and 9 = (91 ,92 ) as follows: 

Utt(x, t) - Uxx(x, t) = f(x, t, u(x, t)), 

u(x,O) = ,£
1
(x), u1(x,O) = ,£2(x), 

Utt(x, t) - Uxx(x, t) = f(x, t, u(x, t)), 
u(x,O) = 91(x), u1(x,O) = 92(x), 

x E R , t E [O, t] 
x ER 

x E R , t E [O, t] 
x ER 

(2.49) 

(2.50) 

However, the practical application of the monotonicity of the form (2.48) to the con­
struction of enclosures has a significant shortcoming when the enclosures are constructed 
step-by-step using a mesh {to= 0, t 1, ... , tk =I} in the time dimension. When this ap­
proach is used, the numerical solution (or enclosure in our case) computed at t 1 gives the 
initial condition for the computation of a numerical solution (enclosure) in the interval 
[ti, t 2]. However, this initial condition does not have the same properties as the condition 
G at t 0 . We will explain this in more detail. 

Denote by S(h, N; x, t) = [§.(h, N; x, t), s(h, N; x, t)] the enclosures produced by a 
method using a mesh { t0 = 0, ti, ... , tk = I} in the time direction, where h = (hi, h2 , ••• , hf), 
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hk = tk - tk-I and N is another parameter of the method resulting from a discretization 
in the space dimension. Let also S(h, N) be constructed in the interval [t0 , t 1] in a such 
way that 

L§_(h, N; x, t) ::::; J(x, t, §_(h, N; x, t)) , x ER, to < t < t1 
§_(h,N;x,t0 ) =!l.1(x), §_1(h,N;x,t0 ) =!l.2(x), x ER (2.51) 

Ls(h,N;x,t) ::'.:: J(x,t,s(h,N;x,t)), x ER, i0 < t < t1 
s(h,N;x,to) =:<Ji(x), s1(h,N;x,to) =·!h(x), x ER (2.52) 

Then in the interval [t0 , ti] we have 

T(to,§_(h,N)) :::=; T(t0 ,u(O,!l.)) and T(t0 ,s(h,N)) ::'.:: T(t0 ,u(O,g)). (2.53) 

The monotone property (2.48) implies that 

§_(h, N; x, t) ::::; u(O, !l.i x, t) and s(h, N, x, t) ::'.:: u(O, !l.i x, t) , x E R, t E [to, ti] 

and therefore 

[u(O,G;x,t) = [u(O,!l.;x,t),u(O,g;x,t)] c S(h,N,x,t), x ER, t E [to,t1]. 

In the interval [ti, t2] we consider the pair of problems 

Utt(X, t) - Uxx(x, t) = J(x, t, u(x, t)), x ER, i1 < i < i2 
u(x, t1) = §_(h, N; x,t1), u1(x, t 1) = §_1(h, N; x, t1), x ER (2.54) 

Utt(x, t) - Uxx(x, t) = J(x, t, u(x, t)), x ER, i1 < t < i2 

u(x, t 1 ) = s(h, N; x, t1) , u1(x, t 1) = s1(h, N; x, t1) , x ER (2.55) 

If the interval function S(h, N) is constructed in the interval [ti, t 2] in such a way that 

L§_(h, N; x, t)::::; J(x, t,§_(h, N; x, t)), x ER, t 1 < t < t 2 

Ls(h,N;x,t):O::f(x,t,s(h,N;x,t)), xER, i1<t<i2 

and§_( h, N), s(h, N) satisfy the initial conditions of problems (2.54) and (2.55) respectively 
then the inequalities 

are not necessarily true because at t = t 1 the inequalities 
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may be violated. The above inequalities do not follow from (2.53) and the monotonicity 
of the operator T(t 0 ) and one can easily show examples where they are not true. 

In order to establish a suitable monotone property for the problem (2.45)-(2.47) we 
define a new operator associated with problem (2.45)-(2.47). Operator T(ta) is defined 
on !1[ta, t], ta E [to, t) as follows: 

T(ta,u;x,t,y,z)) = (Lu-f(x,t,u),cf)(u,t";y,z)), t E [t",t], x,y,z ER, y :S z (2.56) 

where 
cf)(u,t;y,z)=u(y,t)+u(z,t)+ 1u·u,(x,t)dx, y,zER, y'.Sz 

In Chapter 4 we prove that 

Let us note that for any u, v E !1[t0 , t] and t E [t0 , t] we have 

(2.57) 

(u(x,t):Sv(x,t), u1(x,t):Sv1(x,t), x ER) ==? (cf,J(u,t;y,z):Scf)(v,t;y,z),y,z E R,y:Sz) 
(cf,J(u,t;y,z):S<I>(v,t;y,z), y,z E R,y:S z) ==} (u(x,t):Sv(x,t), x ER) 

but the implication 

(cf,J(u,t;y,z) :S <I>(v,t;y,z), y,z E R,y :S z) ==? (u1(x,t) :S v1(x,t) x ER) 

is false. Then, it is easy to see that the operator T(ta) is an operator of monotone type 
according to the usual definition, but it is actually more then that since the inequality 
cf)(u, t) :S cf,J(v, t) contains more information then u(x, t) :S v(x, t), x ER. 

Let the enclosure S(h, N) be constructed in the interval [t0 , t1] in such a way that the 
inequalities (2.51 ), (2.52) are satisfied. Then in the interval [t0 , t 1] we have 

T(to,§.(h, N)) :S T(t0 , u(O,f!.)) and T(t0 , s(h, N))?: T(to, u(O,g)). 

The monotone property (2.57) implies not only 

§.(h, N; x, t) :S u(O,f!.; x, t) and s(h, N, x, t)?: u(O,f!.; x, t) , x ER, t E [to, ti] 

but also 

Therefore, if the interval function S(h, N) is constructed in the interval [ti, t 2 ] in such a 
way that 

L§.(h, N; x, t) :S f(x, t, §.(h, N; x, t)) , x ER, t 1 < t < t 2 

Ls(h,N;x,t)?: f(x,t,s(h,N;x,t)), x ER, t 1 < t < t 2 
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and !!.(h, N), s(h, N) satisfy the initial conditions of problems (2.54) and (2.55), respec­
tively, then 

From (2.57) we obtain 

[u(O,G;x,t) = [u(O,,'!_;x,t),u(O,g;x,t)] c S(h,N,x,t), x ER, t E [ti,t2]. 

and also 

Hence we can proceed in the same manner in the interval [t2 , t 3 ] and further along the 
mesh. 

2.6 Functoids. 

2.6.1 The Concept of Functoid. 

Functoid is a structure resulting from the ultra-arithmetical approach to the solution of 
problems in functional spaces. The aim of the ultra arithmetic is the development of 
structures, data types and operations corresponding to functions for direct digital imple­
mentation. On a digital computer equipped with ultra-arithmetic, problems associated 
with functions will be solvable, just as now we solve algebraic problems [38]. Ultra­
arithmetic is developed in analogy with the development of computer arithmetic. 

Let M be a space of functions and let M be a finite dimensional subspace spanned 
by <l>N = {'Pk}f=o· Every function f EM is approximated by TN(f) EM. The mapping 
TN is called rounding (in analogy with the rounding of numbers) and the space M is 
called a screen of M. Every rounding must satisfy the following requirement (invariance 
of rounding on the screen): 

TN(f) = f for every f E M 

N 

Every function f = 1= °'i'Pi E M can be represented by its coefficient vector v(f) -
i=O 

( a0, a 1 , ... , °'N). Therefore the approximation of the functions in M is realized through 
the mappings 

MTN MHKN+I 

where K is the scalar field of M (i.e. K = n or K = C). Since v is a bijection we can 
identify Mand KN+! and consider only the rounding TN. 
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In M we consider the operations +, -, ., /, f defined in the conventional way. By the 
semimorphism principle TN induces corresponding operations in M: 

JGg=TN(f 0 g), 0 E {+,-,x,/} 

¢f=TN(J f) 

The structure (M, EEi, B, 0, [l], ¢) is called an (ultra-arithmetical) functoid.[49] 
Let IM be the set of all linear combinations of the basis ii> N ta.ken with interval 

coefficients, i.e. 

IM= Isp(il>N) = {~ Ak\Qi: Ai E IK} 
Every F E IM can also be considered as an interval function and can be identified as 
follows 

F = ~Ak'Pi = {f EM: f(x) E ~Akcp;(x),x ED} 

where D is the domain of the functions in M. In this way IM belongs to the power set 
PM of M. A mapping iTN: PM>-+ IM is called an interval rounding if 

f E lTN(f) for every f E M 
F C lTN(F) for every FE PM 

F = iTN(F) for every FE IM 

The operations in PM are defined by 

F 0 G = {f 0 g: f E F,g E G}, F,G E PM, 0 E {+,-,.,/} 

j F = {! f : f E F} , F E PM 

Operations in IM are defined using again the semimorphism property: 

F0G = iTN(F 0 G), F,G E IM, 0 E {+,-,.,/} 

(/)F =!TN(! F) 

The structure (IM, 0, <$>, 0, 0, (/)) is called an interval functoid. 

Typically, in M we have a basis \II = { 1/Jk}k°=o and TN and iTN are linear projections. 
Let 

N 

TN( 1/ii) = L a;;\Q; 
j=O 
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00 

Then for every function f = 111 .a = L a;,P; E M we have 
i::::;:Q 

00 

TN(!)= L°'iTN(1/J;) = <I>N.(aA) 
i=D 

37 

where A is a oo X (N + 1) matrix with entries a;j, i = 0, ... , oo, j = 0, ... , N and 
a=(a0,a1 , ... ). 

Methods of approximation theory provide estimates of the form 

max 11/J; - TN(1/J;)I '.'::: 17;, i = 0, 1, ... 
xED 

for many classes of bases. From such an estimate interval rounding may be defined as 
follows 

fTN( 1/J;) = TN( 1/J;) + [-1, l ]17i , i = 0, 1, ... 
00 

!TN(!)= l:(a;TN(1/J;) + [-1, 1]17;) = <I>N.(aA) + [-1, l](a.17) 
i=O 

where 17=(170 ,1Ji, ... ). In the canonical case, where 1/J; = <p;, i = 0, 1, ... , N, the rounding 
TN is often defined by 

which is equivalent to terminating the series, i.e. 

N 

TN(!) = L °'i'Pi 
i=D 

For interval rounding in this case we have cr; = 0, i 

i = N + 1, N + 2, .... and 

= 0, 1, ... , N, max 11/J;(x)I < 17;, 
xED 

N oo 

hN(f)=l:ai'Pi+[-1,1] Law; 
i=D i=N+l 

A typical example of a functoid is the Taylor functoid where M is the set of all 
entire functions considered on some compact interval (e.g.[-1, l]) and Mis the span of 
{l, x, x2, ... , xN}. The Taylor rounding is defined by TN(xk) = xk fork= 0, 1, ... , N and 
TN(xk) = 0 fork> N. If the domain of the function is the interval [-1, l] the interval 
Taylor rounding is defined by using C!k = 0 for k = 0, 1, ... , N and 17k = 1 for k > N. 
The Taylor functoid M can also be considered as a screen for the set of all functions 
with a bounded N + 1 derivative on [-1, l]. In what follows the symbol T denotes the 
Taylor rounding if not otherwise stated. The symbol p will be used for the rounding in 
the Fourier functoid discussed in the next subsection. 
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2.6.2 Fourier Functoid. 

Let f E 1 2 ( -1, 1). The Fourier series of f can be represented as 

00 00 

J( x) ~ a0 + I;( ak cos(k7rx) +bk sin(k7rx)) = I;( ak cos(k7rx) +bk sin(k7rx )) 
k=l k=O 

where 

1 fl 
ao = ao(f) = 2 }_

1 
f(x)dx, bo = b0 (f) = 0 

ak = ak(f) = /_
1

1 
J(x)cos(k7rx)dx, bk= bk(!)= /_

1

1 
J(x)sin(k7rx)dx, k= 1,2, ... 

The complex form of the Fourier series will be used in some applications: 

00 

f ~ I: Ck eiknx 

k=-co 

where co= ao, Ck= !{ak - ibk), c_k = ~(ak + ibk) = conj(q), k = 1,2, .... 
Fourier functoid JFN is defined as the span of { cos(k7rx ), sin(k7rx )}{'=0 , i.e we have 

JFN = {E(ak cos(k7rx) +bk sin(k7rx)) : a., bk ER} 

The mapping p N : L2 ( -1, 1) >--+ JF N defined by 

N 

PN(f) = I;(ak cos(k7rx) +bk sin(k7rx)) 
k=O 

is a rounding of 1 2 (-1, 1) onto the screen JFN. Addition and multiplication by a scalar 
is implemented in JFN without rounding 

(E( a11
) cos(k7rx) + bk1

) sin(k7rx))) + (E( a121 cos(k7rx) + bk2
) sin(k7rx))) 

N 

= I;((ak1
) + a12

)) cos(k7rx) + (bk1
) + b121

) sin(k7rx)) 
k=O 

a (E( ak cos(k7rx) +bk sin(k7rx))) = (E( aak cos(k7rx) + abk sin(k7rx))) 

The product of two functions of JFN can be represented in the following way using the 
complex form of the Fourier series 
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and after rounding we have 

( 

N min{N,k+N} ) 
"'""' "'""' d iknx = L.....J L....J Ck-j je 

k=-N j=max{-N,k-N} 

This leads to the following formula for multiplication in JFN in real form 

(E(a1
1
l cos(brx) + b1

1
l sin(k7rx))) [] (E(a1

2
l cos(k7rx) + b1

2
l sin(k7rx))) 

= E ( (=~N (a1~ja)2 l - b1~jb}2l)) cos(k7rx) + (=~N (a~~jb)2 l + b1~,a)2l)) sin(k7rx)) 

where a_, = llj and b_j = -b;, j = 1, 2, ... , N. 
There is no explicit formula for division and an iterative procedure for computing 

the quotient is proposed [49]. Since division will not be used in the numerical methods 
discussed in the thesis we will omit it. 

Integration of functions f E :JFN such that [
1

1 
J(x)dx = 0 (i.e. the constant term in 

the series is zero) is implementable without rounding. 

j (~( ak cos(k7rx) +bk sin(k7rx))) dx = d0 + ~(-!; cos(k7rx) + :; sin(k7rx)) 

The integration of a constant is a problem. The set :JF N consists of periodical functions but 

a constant has no periodical (period 2) antiderivative. We have fox Id~= x, x E [-1, l]. 

Denote by s1 the periodical extension (period 2) of the function x over the whole real line, 
i.e. s1 is periodical with period 2 and s1(x) = x for x E (-1,1]. Then for any a E (-1,1] 
the function s1 (x +a) can be considered as a generalized antiderivative of 1. The value 
of a (i.e. the position of the jump) must be determined from additional conditions. This 
problem can really be resolved only by introducing the Fourier hyper functoid discussed 
in the next section. However, we can still evaluate definite integrals on [-1, 1] without 
difficulties. For example, using 

00 (-l)k-1 
s 1(x)=2{; k1T sin(k7rx) 

we have 

<P: (ao+ ~(akcos(k7r0+bksin(k7r0)) d~ 

( 

oo (-1 )k-1 N b a N b ) 
= PN 2ao L k sin(k7rx) + 2:(--kk cos(k7rx) + _kk sin(k7rx)) + L kk 

k=l 1r k=l 1r 1T k=l 1T 

N bk N ( bk ak+2ao(-l)k-l . ) 
= 2 {; k1r + {; - k1T cos(k7rx) + k1T sm(k7rx) , x E [O, 1] 
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The interval Fourier functoid is 

In order to define an interval rounding lpN we need to have an estimate of the form 

max lf(x) - PN(/)(x)I :::; rJN(f)--+ 0 when N--+ oo. 
xE[-1.1] 
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This implies that PNU) converges uniformly to f. However, in general, PN(/) converges 
to f E 1 2 ( -1, 1) only in the 1 2 norm. Therefore IJF can not be an interval screen of 
1 2 ( -1, 1) but it can be an interval screen of a subset of 1 2 ( -1, 1), consisting of functions 
with uniformly convergent Fourier series. 

If the Fourier series off E M is finite, it is easy to define interval rounding using the 
p 

general approach from the previous section. Let J(x) = L(akcos(k?rx) + bksin(brx)). 
k=O 

Then 
p 

lf(x)-pN(f)(x)I:::; L ./a%+b% 
k=N+l 

and 

P N 
lpN(f)(x) = ao + [-1, l] L ./a%+ b% + L(ak cos(k?rx) +bk sin(brx)) 

k=N+I k=O 

The above formula can be extended for rounding from I/Fp to I!FN, P > N. 

IpN (E(Ak cos(brx) +Bk sin(kirx)) 

P N 

=Ao+[-1,1] L ./A%+Bt+l:(Akcos(kirx)+Bksin(kirx)) (2.58) 
k=N+l k=O 

Addition, multiplication by interval and integration of a sum with no constant term 
are implemented without rounding using the same formulas as in :/f replacing ak by Ak, 

N 

bk by Bk and a by [g_,a]. The product of F(x) = l:(A11)cos(kirx) + Bk1)sin(kirx)) and 
k=O 

N 

G(x) = l:(A12
lcos(kirx) + Bk2)sin(kirx)) is 

k=O 

2N 
(FG)(x) = L(A13

) cos(kirx) + Bk3
) sin(kirx)) E lf2N 

k=O 
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where 

N 
A (3) ""' (A (1) A (2) - B(') B(2)) 

k L,, k- J J k-J J 
j=k-N 

N 
B(3) - ""' (A(1) B(2) + B(1) A(2)) 

k - L,, k- J J k-J J 
j=k-N 

assuming that A_k = Ak and B_k = - Bk, k = 1, 2, ... , N. Using the rounding in the 
form (2.58) we have 

(FOc) (x) = A~3) + [-1, l]aN(FG) + f(A13lcos(brx) + Bl3)sin(k7rx)) 
k=I 

2N 

where O'N(FG) = L (Ak3)r + (Bl3)r 
k=N+I 

The integral of a constant is not a function which has a uniformly convergent Fourier 
series. Therefore integration is defined in IlF only for functions with zero constant term. 
However, definite integrals in [-1, l] can still be evaluated similarly to the definite integrals 
in :Jf'. 

Determining a subset M of L2 (-1, 1) which has IlF as interval screen and extension 
of the definition of IpN over M and PM will be discussed in chapter 4. 

Let us note that the interval rounding JpN also defines directed rounding eN and PN 
in M. We have 

where 

N 

e_N(f) ao-aN(f) + L(akcos(k7rx)+bksin(k7rx)) 
k=I 
N 

PN(f) = ao + O'N(f) + L(ak cos(k7rx) +bk sin(k7rx)) 
k=I 

Using directed roundings the operations in :Jf' can also be defined with rounding to the 
left or to the right. 

2.6.3 Application to the Wave Equation. 

One of the inconveniences in using the interval Fourier functoid is that the upper and the 
lower bounds of 

N 

L (Akcos(k7rx) + Bksin(k7rx)) E IJF 
k=O 
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are not functions in Jf. In other words IlF is not the interval space over Jf. Let [, 1 E M, 
L :S:] and F = [[, ]]. Obviously, FE PM. We have 

N 

ao - aN(L) + L (!lk cos(brx) + Qk sin(brx)) 
k=l 
N 

ao + aN(]) + L (ak cos(brx) + bksin(brx)) 
k=l 

Since the inequalities fu :::; ak, k :::; bk are not necessarily true the interval function 
[e.N(L), PN(])J is not, in general, an element of IF. It is easy to see that 

[£!.N(L), PN(l)] C (!lo - aN(L)) V (ao + aN(l)) 
N 

+ L ((& Vak)cos(krrx)+ (Qk Vbk)sin(krrx)) c IpN(F) 
k=l 

We have 

N 

= a0 - Qo + aN(L) + aN(l) + L ((ak - fu) cos( krrx) + (bk - Qk) sin( krrx)) 
k=l 

while 

N 

w(IpN(F)) :'.". Jao - Qo + aN(L) + aN(])! + L (!ak - !lkil cos(krrx)I +!bk - kl! sin(krrx)I) 
k=l 

It is obvious that there is, in general, a significant difference between the width of 
[e.N(L), PN(l)] and the width of IpN(F) which increases when N increases. 

For that reason, we will not apply the interval Fourier functoid IJF for approximation 
of interval functions. Instead, we will use the directed roundings & and PN to obtain 

lower and upper bounds f!.N(L), PN(]) which are elements of Jf. 
The formulation of problem (2.45)-(2.47) as two problems (2.49) and (2.50) facilitates 

the above approach. We need to calculate a lower bound for the solution of (2.49) and an 
upper bound for the solution of (2.50). 

In chapter 4 we consider a numerical method which uses this approach for producing 
lower and upper bounds §.(h, N), s(h, N) for the solution u(O, G; x, t) in the form of Fourier 
series about x: 

§.(h, N; x, t) 

s(h, N; x, t) 

N 

L (s!k(t) cos(krrx) + Qk(t) sin(krrx)) 
k=O 
N 

L (ak(t)cos(krrx) + bk(t)sin(krrx)) 
k=D 

(2.59) 
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where the coefficients f!k, ak, h, bk are piece-wise polynomials about t. The bounds are 
constructed step by step using a mesh {t; = jh: j = 0, 1, ... ,)} in the time dimension. 

In every interval [t;, ij+1] we consider a pair of problems 

where for j = 0 

and for j ;:=: 1 

Utt(X, t) - Uxx(x, t) = j(x, t, u(x, t)), X E R, t > 0 

u(x,t;) =g;1(x), u1(x,t;) =g;2(x), x ER 

Utt(x, t) - Uxx(x, t) = ](x, t, u(x, t)), 
u(x,O) = g;1(x), u1(x,O) = g;2(x), 

x ER, 

x ER 

!l ,1 (x) = '2.(h, N; x, t;) , g;1 ( x) = s(h, N; x, t;) , 

t>O 

!JJ2(x) = '2.t(h, N; x, t;), g;2(x) = s1(h, N; x, i;), x ER 

(2.60) 

(2.61) 

assuming that the bounds '2.(h, N; x, t), s(h, N; x, t) are already computed for t :S t,. 
The functions J (x, t, u(x, t)) and f(x, t, u(x, t)) are bounds for J(x, t, u(x, t)) which are 

of the same form as the required form (2.59) for the bounds of the solution. We obtain 
j(x, t, u(x, t)) and f(x, t, u(x, t)) using directed Fourier rounding about x and then using 

directed Taylor rounding for the coefficients. 
The solutions y and ii of problems (2.60) and (2.61) are approximated by iterative 

procedures producing sequences 

y(O),y(!l,y(2), ... , ii(o),ii(1),ii(2), ... 

where y (O) and ul0l are some suitable initial approximations. For every r ;:=: 0 the functions 

y (r) and u(r) are substituted in the right hand sides of (2.60) and (2.61) respectively and 

y (r+l) and u(r+l) are the solutions of the problems obtained in this way. The practical 

implementation of this procedure involves computations in the Cartesian product of the 
Taylor Functoid and the Fourier Functoid. An essential part of the computations is the 
evaluation of integrals of the form 

ff 
r(x,Ll,t) 

0" 
I cos( k7ry )dydO 
q. and ff 

r(x,6.,t) 

0" 
I cos( krry )dydO 
q. 
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where r(x, .6., t) is the triangle with vertices (x, t + .6.), (x - .6., t) and (x + .6., t). Suitable 
formulae for the evaluation of the above integrals are derived in chapter 4. 

Using the monotone properties discussed in section 1.6 we prove that 

After a sufficient number of iterations r* we take 

;;.(h, N; x, t) = y (r•l(x, t) , s(h, N; x, t) = u(r'l(x, t) , x ER., t E [t;, t;+1]· 

An a priori estimate, although not needed to determine the accuracy of a particular 
numerical solution, characterizes the quality of the method. Using standard techniques 
one can see that the global error is 

provided Taylor rounding Tm and Fourier rounding PN are applicable and functions g1, g2, 

f have derivatives of order j in 1 2(-1, 1 ). The accuracy of the bounds obtained in the 
numerical examples is consistent with that estimate. 

2. 7 Fourier Hyper Functoid. 

We saw in the previous section that the Fourier functoid has an internal problem with 
the integration of a constant. In addition to that, the interval Fourier functoid is a screen 
only for differentiable functions and the rounding error <rN(f) converges towards zero 
very slowly when the first or second derivative is discontinuous. These problems led to 
the introduction of the Fourier hyper functoid [48]. In general, we call a functoid M a 
hyper functoid if it involves infinite series of the basis { ,P;} of M. A Fourier hyper functoid 
is defined in [48] using an ansatz for the coefficient space. Here we will apply a more direct 
approach giving the functions in the basis of M explicitly. We have already considered 
the function s 1 defined by s 1 ( x) = x for x E ( -1, 1] and s 1 periodical with period 2 on 
R.. The sequence of functions s1 , s2 , s3 , ••• is defined recursively by 

sj = s;-1, j 1
s;(x)dx=0, j = 2,3,. .. 

-1 

Since these functions are periodical and piece-wise polynomial we will refer to them as 
periodic splines. We define the screen Mas the span of {s;})=1 U{cos(krrx),sin(krrx)}f=o· 
M is a hyper functoid because s;, j = 1, ... , p have infinite Fourier series. We will refer 
to M as a Spline-Fourier functoid. The rounding PNr in M is a continuation of PN· We 
have 

PNp( sin( krrx)) = PN( sin( krrx)), PNp( cos( krrx)) = PN( cos( krrx) ), k = 0, 1, 2,. .. 
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PNp(s;(x)) = s;(x), j = 1, ... ,p 

N (-l)k-l-'i-1 
2 {; ( br )i sin( brx) , j - odd 

N (-l)k-1 . 
PNp(s;(x)) = L (k )i e'b = ' j > p 

N (-l)k-1-~ 
2 {; (k1r)J cos(hrx) , J - even 

k=-N '/, 7r 
k~o 

In chapter 5 we consider M as a screen for the space 

dPj 
M = H"(-1, 1) = {f E C"-1[-l, l]: -d E L2(-l, l)} 

xP 

If f E M this means that the function f and its first p - 1 derivatives, when extended 
periodically on (-oo, oo ), may be discontinuous only at the points 2k + 1, k E Z. The 
function f E M has a unique representation of the form 

p 00 

f(x) =ao+ L:a;s;(x)+ L(akcos(brx)+bksin(brx)) 
j=l k=l 

00 

where L(akcos(kirx) + bksin(k1rx)) E C"- 1(-oo,oo). 
k=l 

The rounding PNp : M >-+Mis defined by 

P N 
PNp(f) = ao + L a;s;( x) + L ( ak cos(kirx) +bk sin(kirx)) 

j=l k=l 

For the interval rounding lpNp we have 

P N 
lpNp(f) = ao + [-1, 1 Jo-Np(!) + L a;s;(x) + L( ak cos(k1rx) +bk sin(kirx)) 

j=l k=l 

where ONp(f) =UN ( f (akcos(k1rx) + bksin(hrx))) = o (N~-P). In chapter 5 suit­
k=N+! 

able formulae for computations in the Spline-fourier functoid are derived. 
The Fourier hyper functoid is applied to problems of the form (2.45)-(2.47) with data 

functions that either themselves, or their derivatives, have isolated discontinuities. Dis­
continuities at points other then x = 1 are represented by shifting the interval [-1, l] to 
the left or to the right. For example, s;(x + 1) will be used to represent a jump of the 
j - 1 derivative of a function at the point x = 1 - I· Lower and upper bounds for the 
solution u(O, G; x, t) are obtained in the form 

l p 1 N 

!J.(h, N; x, t) = fuJ +LL L Qi;ss;(x +St+ 11) + L(Qk cos(brx) + 2" sin(brx)) 
t=1J=lo=-1 k=l 



CHAPTER 2. PRELIMINARIES 46 

i p I N 

s(h,N;x,t) = ao +LL L a11ss1(x + 5t+11) + L(akcos(krrx) + bksin(krrx)) 
l=l j=l o=-1 k=I 

The bounds are obtained using an iteration procedure similar to the iteration procedure 
in chapter 4. In addition to the formulas in chapter 4, formulas for the integrals of the 
form ff Bqs1(Y+1+0B)dydB, o=-1,0,l, 1E(-l,l] 

r(x,A,t) 

are derived, since the integration over the characteristic triangle f(x, li., t) is an essential 
part of the implementation of this procedure. 



Chapter 3 

Wrapping Effect and Wrapping 
Function 

We consider the initial value problem for ODE as introduced in section 2.4.1, i.e. 

x = f(t,x) 
x(to) = x0 E x 0 

where t E [t0 ,t] c,R, x0 E Rn, DC Rn is an open set, J: [t0 ,t] x D-t Rn and 

X
0 

= ( [_q;_~' x'j'], [_q;_g' ~], ... ' [i:' X::l l 

(3.1) 

(3.2) 

is an n-dimensional interval vector, X° C D. We assume that f satisfies conditions (2.37). 
We consider methods of propagate and wrap type (definition 2.11) producing enclo­

sures S(h, t) for the solution x(t0, X 0; t) of problem (3.1 )-(3.2) using a mesh { t0,ti, ... , tk=t} 
where h = (h1 , h2, ... , hn), hk = tk - tk-i, k = 1, ... , k. By S we denote the enclosures 
produced by the Jackson's IPWA discussed in section 2.4.3. 

3.1 Wrapping Function. 

The wrapping function X of problem (3.1)-(3.2) was defined in section 2.4.3 as the optimal 
(tightest) interval function satisfying the wrapping property at every point of the interval 
[to, t] and the condition X(t0 ) = X 0 (definition 2.12). 

Here we will represent it as a solution of an initial value problem involving the (natural) 
interval extension of function f: 

f(t, X) = (Ji(t, X), f2(t, X), ... , fn(t, X))T 
fi(t,X) = [f(t,X),J;(t,X)] =[inf f;(t,x),supfi(t,x)], i = l,. . .,n 

-i xEX xEX 

where X EID = {XE mn : X CD}. 

47 
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Conditions (2.37) of function f imply similar properties for its interval extension. In 
the region ID the interval extension f 

i) is bounded: lfi(t,X)I :=' m; ER, m = (m,,m2 , .•• ,mn)T E Rn; 

ii) is continuous about t ; (3.3) 
iii) satisfies Lipschitz condition about X in the form: 

lf(t,Y)-- f(t,Z)l:SAIY-- ZI where A=(Ai;)ERnxn. 

We will also use the following notation. Let Y E TRn, then 

i T Y =(Yi, ... ,li-1,u_i,li+1, ... ,Yn) , 

'}? = (Y1, · · ·, Yi-1, Yi, Yi+i, · · ·, Yn)T · 

Let X : [t0 , t] --+ID be an interval function. The interval operator C is defined by 

( 

[;t,(t)-L(t,X1(t)), :f,(t)-],(t,X\t))] l 
CX(t) = [i2(t)-i_,(t,~~'.??.'. -~~~t!.~ :2 (t,~(t))J 

[in(t) - f_n(t, Xn(t)) , Xn(t) - f n(t, X (t))J 

We consider the following initial value problem 

CX=O 

X(to) = X 0 

, t E [to, t] 

(3.4) 
(3.5) 

From (3.3) it follows that this problem has a unique solution in some interval [t0 , a]. For 
simplicity we will assume that a = t 

Theorem 3.1 a) The solution of problem (3.4)-(3.5) is the wrapping function of prob-
lem (3.1)-(3.2) 

b) The interval enclosures S(h; t) produced by IPWA converge to the wrapping function 
of problem (3.1)-(3.2) when h--+ 0 i.e. Jim S(h; t) = X(t). 

h-+0 

Proof. Denote the solution of problem (3.4)-(3.5) by 

X(to, X 0
; t) = [;1'.(io, X 0

; t), x(to, x 0
; t)] 

First we will prove the following inclusions 

S(h;t) c X(t) c X(t0 ,X
0 ;t), t E [t0 , t], h > 0 (3.6) 

The first inclusion follows directly from the definition of wrapping function. We will use 
some monotone properties of the interval extension of f to show the second one. Every 
component fi(t,X) = [L(t,X),]i(t,X)] of f(t,X) satisfies 
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non-decreasing about 'Ki 
f.(t,X) = f.(t, ['!21,xi], ['f2,x2], ... , [;r,,,xn]) is . . b t , i = 1, ... ,n _, _, non-mcreasmg a ou Xi 

- non-increasing about 'Ki 
fi(t, X) = ]i(t, ['!21, x1J, ['I.;i, x2], ... , [±n, xn]) is d . b t , i = 1, ... , n non- ecreasmg a ou Xi 

Therefore function g = (g1 , g2 , ••• , g2n) defined in the region 

{(t, y) : t E [to, t], y E D x D, Y; + Yn+i :'.'.: 0, j = 1, ... , n} 

by 

gi(t, Y1, Y2, ... , Y2n) = -1,(t, Yi, ... , Yi-1, y;, Y.:+1, ... , Yn) , i = 1, ... , n 

9n+i(t,y1,y2, ... ,Y2n) = Ji(t, Yi,··., li-1,Yn+i, l'i+1,. · ·, Yn), i = 1,. ·· ,n 

where Y; = [-yj,Yn+j], j = l, ... ,n 

is a quasi-isotone function. 
Consider the equation 

y = g(t,y) (3. 7) 

A well known property of equations with a quasi-isotone right-hand side is that if y(t) 
and z(t) are two solutions of (3.7) such that y(8) :'::'. z(8) for some 8 E [t0 ,l) then y(t) :'::'. 
z(t), t E [8, t] [81]. 

Let 8 E [ t0 , t) and let x( 8, u; t) be any solution of equation (2.35) satisfying x( 8) = u E 
X(t0 , X 0

; 8). It is easy to see that the two 2n-dimensional functions (-x(I!, u; t), x(I!, u; t)) 
and (-'!2(t 0 ,X0 ;t),x(t0 ,X0 ;t)) are solutions of equation (3.7). At the point I! we have 

(-x(8,u;8),x(8,u;8)) = (-u,u) :'::'. (-'!2(t0 ,X0 ;1!),x(t0 ,X0 ;1!)) 

Therefore (-x(i!,u;t),x(i!,u;t)) :'::'. (-'!2(t0 ,X0 ;t),x(t0 ,X0 ;t)), t E [8,t] which implies 
that '!2(t 0 , X 0

; t) :'::'. x(i!, u; t) :'::'. x(t0 , X 0
; t), t E [t0 , t]. Hence 

x(l!,u;t) E ['K(t 0 ,X0 ;t),x(t0 ,X0 ;t)] = X(t 0 ,X0 ;t), t E [t0 ,t] 

Since the last inclusion is true for every u E X(t0 , X 0 ; 8) and 8 E [t0 , t] it follows that 
X(t0 , X 0 ; t) satisfies the wrapping property at every point of the interval [to, t). But the 
wrapping function is the optimal function that satisfies X(to) = X 0 and the wrapping 
property at every point of [t0 , t). Therefore X( t) C X ( t 0 , X 0

; t ), t E [to, t]. This concludes 
the proof of inclusion (3.6). 

Now we will prove that limS(h;t) = X(t0 ,X0 ;t). This together with (3.6) implies 
h-+0 

both a) and b) in the theorem. 
Let [tk, tk+iJ be an arbitrary subinterval and let t E [tk, tk+1]· Then S(h; t) is defined 

by S(h; t) = [§.(h; t), s(h; t)] = [x(tk, S(h; tk); t)] where 

!!.;(h; t) = min xi(tk, u; t) , s,(h; t) = max xi(tk, u; t) , i = 1, ... , n 
uES(h;t,) uES(h;t•) 
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Using 

it can be shown that 
IB(h; t) - - S(t; tk)I '.<::: (t - tk)m. 

Every solution x(t<o u; t) can be represented in the form 

x(tk, u; t) = u + {' J(O, x(tk, u; O))dO 
},, 

u + f' f(O, u)d(} + f' f(x(tk, u; 0) - f(O, u))d(} 
ltk ltk 

cP( u) + E 

where c;&(u) = u + f' f(O,u)d(} and J,. 

le:I 11,: f(O,x(tk,u;O)- f(O,u))dOI '.<::: 1,: Alx(tk,u;O)- uldO 

J, t 1 2 1 2 < A(ll - tk)mdll = -(t - tk) Am < -h Am. 
'• 2 2 

Therefore for every i = 1, 2, ... , n we have 
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(3.8) 

where Ai• is the ith row of matrix A. Taking the maximum over u E S(h; 0) of every part 
in the above inequality we obtain 

- 12 - 12 
c;&;(S(h; tk)) - ;;,h Ai.m '.<::: s(h; t) '.<::: c;&;(S(h; tk)) + ;;,h A;.m 

which can be also written in the form 

- - 1 2 
is;(h; t)- c;&;(S(h;tk))I::; ;;,h Ai.m. (3.9) 

Let's note that for sufficiently small h function <P = c;&( u) is such that c;&; is non-decreasing 
about Ui, i = 1, ... , n. Hence, for the interval extension of cP at S(h; tk) we have 

l t J,' . q;;(S(tk))= max {ui+ f;(O,u)dO}=s;(h;tk)+ fi(ll,S'(h;tk))dO. 
uES(hh) '• '• 

(3.10) 

Therefore inequality (3.9) can be written in the form 
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Using (3.11), (3.3) and (3.8) we obtain 

ls;(h;t)-si(h;tk)- 1,:1.re,B'(h;O))del 
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:<::: lsi(h; t)-si(h; tk)- 1,: J,( e, s' (h; tk))de)I + IJ,: (1;( e, B'(h; tk))-1;(5(h; e))) ael 

1 /,I 1~ ~ I :'::'. -h2A;,m+ A;, s (h;tk))-S (h;O) de 
2 1. 

1 2 1 2 2 :'::'. 2.h A;,m + 2.h A;.m = h A;,m . 

Let nowt E [to, t]. There exists an interval [tr, ir+iJ such that t E [tn tr+il· Applying 
the above inequality for the intervals [t0 , ti], [ti, t 2], ••• , [tri t] we have 

ls;(h;t)- s;(h;to)- J,:l;(s'(h;O))del 

r-1 I {'Hl - , I :'::'.I: si(h;tk+i)-s;(h;tk)- ;, f;(0,5(h;O))d8 
k=O tk 

+ ls;(h; t) - s;(h; tr) - 1: li(e, s'(h; O))del :<::: (r + 1) h2 A;,m 

which yields 

ls;(h;t)-s;(h;to)- J,:1;(8,s'(h;O))del :'::'. h(t-to)A;,m, i = 1, .. .,n. (3.12) 

In a similar way we obtain 

1§.;(h; t) - §.£(h; t0 ) - 1: f_;(e, Si(h; 8) )del :'::'. h(t - t0 )A;.m , i = 1, .. ., n . (3.13) 

It is easy to see that the functions in each of the sets {§.( h; . )} and {s( h; . )} are 
uniformly bounded and equicontinuous. Then the theorem of Arzela-Ascoli implies that 
{§.(h; .)} and {s(h; .)} considered as generalized sequences of h, h-+ 0, have subsequences 
{§.(h.,; .)} and {s(h0 ; .)} that are uniformly convergent to continuous functions§. ands 
respectively. Obviously§.:'::'. s. Let S = [§., s]. From (3.12) and (3.13) when h = ha -+ 0 
it follows that 

§.i(t) = §.i(to) + (1f_;(8,Si(8))d8,i=1,. . .,n 
},, 

si(t) = si(to) + f' 1;(8, 5(0))d8 , i = 1, ... , n 
},, 

which implies that S is differentiable and 

CS(t) = 0 , t E [to,t] 

S(to) = X 0
. 
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Therefore S(t) = X(ta, Xa; t), t E [ta, t]. 
Since this is true for any other convergent subsequences of {fi.( h; . )} and {s( h; . )} 

then ;r.(ta,X0
; .) is the only accumulation point of {§.(h; .)} and x(t 0 ,Xa; .) is the only 

accumulation point of {s( h; . )} . Therefore 

limS(h;t) = X(ta,Xa;t). 
h-+0 

(3.14) 

This concludes the proof because both statements of the theorem follow from (3.6) and 
(3.14). 

Theorem 3.2 Let a numerical method produce interval enclosures S(h; t) of the solution 
of problem (3.1)-(3.2) such that S(h; t) satisfy the wrapping property at the points of the 
mesh {ta, t 1 , ••• , tn} and the local error is 

IS(h;t)-- [x(tk,S(h;tk);t)JI = o(h), t E h,tk+J], k = 0,1, ... ,n-l 

then 
lim S(h; t) = X(t) , t E [ta)] . 
h-+a 

Proof. Using standard techniques one can show that the limit of S(h; t) is the same as 
the limit of S(h, t) and then the statement follows from Theorem 3.1 

Theorem 3.2 shows that, in general, the interval enclosures produced by a method of 
the considered type do not converge to the optimal interval enclosure [x(t0 , Xa; t)] of the 
solution but to the wrapping function X(t). Convergence to [x(t0 , Xa; t)] is obtained if and 
only if [x(t0 , Xa; t)] = X(t). More precise analysis can reveal that when [x(t0 , xa; t)] # 
X(t) the rate of convergence is O(h) irrespective of the rate of the local approximation 
while if [x(t0 , xa; t)] = X(t) the rate of convergence corresponds to the rate of local 
approximation. 

3.2 Quantifying the Wrapping Effect. 

Using the concept of wrapping function we can quantify the wrapping effect associated 
with problem (3.1)-(3.2) in the following way. Let S(h; t) be interval enclosures of the 
solution of (3.1)-(3.2) produced by a method of a propagate and wrap type. The limit of 
the error of approximation when h --+ 0 is 

lim p(S(h; t), [x(t0 , X 0
; t)]) = p(X(t), [x(ta, Xa; t)]). 

h-+0 

The quantity 
p(X(t), [x(to, x 0

; t)]) = 11 IX(t) -- [x(ta, x 0
; t)Jltll (3.15) 
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does not depend on the method and characterizes problem (3.1 )-(3.2) with respect to the 
occurrence of a wrapping effect and its magnitude. In this way it is a measure of the 
wrapping effect associated with problem (3.1 )-(3.2). The vector function 

IX(t)-- [x(to,X0 ;t)])I (3.16) 

provides more detailed information about the wrapping effect because its coordinates give 
the magnitude of the wrapping effect in the corresponding coordinate directions 

IX;(t)-- [xi(to,X0 ;t)])1 = r(Xi(t), [x;(to,X0 ;t)])' i = 1, ... ,n. 

Since [x(t0 ,X0 ;t)] C X(t) we have 

~ (w(X(t))-w([x(to,X0 ;t)])) < IXi(t)-- [xi(to,X0 ;t)])I 

< w(X(t))-w([x(t0 ,X0 ;t)]) 

Therefore the vector function 

w(X(t)) - w([x(t0 , X 0
; t)]) . 

provides a measure for the wrapping effect equivalent to (3.16). 

(3.17) 

Each one of the functions (3.15), (3.16) and (3.17) may be used in characterizing the 
wrapping effect associated with a particular problem. 

If x(t) = [x(to, x 0
; t)J for a problem of the form (3.1 )-(3.2) we say that this problem 

has no wrapping effect because the enclosures produced by any method of propagate and 
wrap type converge to the optimal interval enclosure with a rate corresponding to the 
rate of local approximation provided by the method. A problem with no wrapping effect 
is characterized by any of the functions (3.15), (3.16) or (3.17) being zero. 

Revisiting example 2.1 

The exact solution of the system of linear equations (2.38) is 

0 
cash t 

- sinh t 

0 
- sinh t 
cosht 

Therefore for the optimal interval enclosure [x(O, x 0
; t)] = [;r(O, X 0

; t), x(O, X 0
; t)] we have 

(3.18) 
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and 

x(t0 ,X
0 ;t)I = ( 2:tj(e-t - e-2

') ~~
2

;?sht-;r'.lsinht) . 
2x"(e-• - e-2') - x0 smh t + x" cosh t I -2 3 
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(3.19) 

The right-hand side of the equation in example 2.1 has the following interval extension 

Therefore problem (3.4)-(3.5) can be written in the form 

!rr = -~1 

±2 = 2'1:1 - X3 

b = 2'1:1 - X-2 

'1:;(0) = 1-c;, i = 1,2,3 

:i:, = -2x1 

:i:2 = 2x1 - '1:3 

:i:-3 = 2x, - '1:2 

x;(O) = 1+c;,i=1,2,3 

The above problem can be solved using standard techniques and its solution gives the 
wrapping function X = [,I, x]. We have 

i_(t) = ( (3.20) 

and 

x(t) = ( 

Using (3.18), (3.19), (3.20) and (3.21) we can obtain the measure of the wrapping 
effect (3.16) 

ix(t)-- [x(O,X 0 ;t)J! ( 
= ( 

From the above form of the wrapping effect measure we can make the following ob­
servations: 
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1. There is no wrapping effect in x 1 (see figure 2.1). This is not surprising because 
x 1 is obtained only from the first equation and the right hand side of a single equation is 
always quasi-isotone. 

2. The wrapping effect in x 2 and x3 depends only on the width of X?. Therefore there 
is no wrapping effect if w(Xf) = 0 (see figure 2.2). 

On figure 3.1, where the computed enclosures for problem (2.38)-(2.39) are plotted 
together with the wrapping function, convergence of these enclosures to the wrapping 
function can be observed. 

1.4 
x2,3 

1.3 

1.2 

1.1 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0 0.2 0.4 

t 
0.6 0.8 

wrap.{. -+---

optimal -

numeric 
h=0.25 -

h=0.125 · · 

h=0.0625 -

Figure 3.1: Problem (2.38) with c 1 = 0.2, c2 = c3 = 0.05. Wrapping function, optimal 
enclosure and enclosures computed numerically for various step sizes h. 

Moore's example. 

The following example was considered by Moore [67] and discussed in many publications 
on the wrapping effect. 

xi(O) = x~ EX? = [-o, o) (3.22) 

x2(0) = xg E X~ = [1 - o, 1 + o] 

Moore showed that at t = 27r the computed interval enclosures are inflated by a factor 
of approximately e2n ::::< 535. We will obtain this result using the wrapping function of 
problem (3.22). 

The exact solution of this problem is 

x(O, x0
; t)) = ( 

cost 
- sint 

sin t 
cost 
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Hence the optimal interval enclosure can be represented in the form 

[x(O·xo·t)J- ( (cost)Xf + (sint)Xg ) 
' ' - -(sint)Xf+(cost)Xg 

and its width is 

w([x(O; x0
; t)]) ( 

I cos tlw(Xf) +I sin tlw(Xg) ) 
I sin tlw(Xf) +I cos tlw(Xg) 

(I cos t I + I sin t I) ( ~~ ) . (3.23) 

Problem (3.4)-(3.5) for the system (3.22) can be written in the following form 

"-i = i!2l, "-i(O) = -J 
Xi =x2, Xi(O) = J 

i2 =-Xi , ;?;.2(0) = 1 - J 

X2 = -±i , x2(0) = 1 + J 

Solving this problem we obtain the wrapping function X(t) = [i_(t), x(t)] of Moore's 
example: 

i_(t) = ~ ( 
and 

- 1 ( x(t) = 2 

(cos t+cosh t);?;.~ + (cos t-cosh t)x\' + (sin t+sinh thg + (sin t-sinh t)~ 
(-sint+sinhth~ -(sint+sinht)x\' + (cost+cosht);?;.g + (cost-cosht)~ 

(cos t-cosh th~+ (cos t+cosh t)x\' + (sin t-sinh thg + (sin t+sinh t)~ 
-(sin t+sinh th~+ (-sin t+sinh t)x\' + (cos t-cosh t);?;.g + (cos t+cosh t)~ 

Therefore 

w(X(t)) i(t) - i_(t) 

( 
cosh t(x\' - "-n + sinh t(~ - ±g) ) 
sinh t(x\' - ±n + cosh t(~ - ±g) 

) 

) . 

= t ( 2J ) e 2J . (3.24) 

From (3.23) and (3.24) we have 
t 

w(X(t)) =I I e I . 
1

w([x(t0 ,x0 ;t)]). 
cost + sm t 

Since Xis the limit of the interval enclosures when h --+ 0 then these enclosures are inflated 
et 

at the point t by a factor of approximately I I I . I when h is small enough. At 
cost + smt 

t = 211" the value of this factor is e2~. 
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3.3 Problems Without Wrapping Effect 

It is clear from the previous sections that methods of propagate and wrap type can be ap­
plied successfully only to problems where no wrapping effect occurs. In this section we will 
use the concept of wrapping function to characterize such problems. Our approach is to 
find problems of the form (3.1 )-(3.2) such that the wrapping function X(t) equals the op­
timal interval enclosure [x(to, x 0

; t)) or equivalently w(X(t)) = w([x(to, X 0
; t))), t E [to, t]. 

Theorem 3.3 It a diagonal matrix Q = diag(qi,q2, ... ,qn), qi E {-1,1}, i = l, ... ,n 
exists, such that the function Qf(t,Qx) is a quasi-isotone function of x E QD = {Qd: 
d E D} then the wrapping function X of problem (3.1)-(3.2) equals the optimal interval 
enclosure [x(t0 ,X0 ; .)];i.e. there is no wrapping effect. 

Proof. Let us note that the linear transformation Q: nn--+ Rn defined by Q(x) = Qx 
preserves the intervals i.e. if XE mn then QX E mn or in general if X C Rn then 

[QX) = Q[X] 

We consider 

y=g(t,y) 

y(to) =Yo E Y 0 

(3.25) 

(3.26) 
(3.27) 

where g(y) = Qf(t, Qy), y E QD is a quasi-isotone function of y E QD and yo 
[y:0 , JJ°) = Q X 0

• For the wrapping function Y = [Q, y) of this problem we have 

~i = ,ll;( i, [i/.i' y,), · · · ' [jl,_1, Yi-1), Q,, [Qi+l' Yi+i], · · ., [Qn' Yn)) ' i = 1, · · ., n 

Yi =g,(t,[1/1,Y1),. .. ,[y,_,,yi-1),yi,[Yi+1'Yi+i), .. .,[yn,Ynll, i = l, ... ,n (3.28) 

Q(to) = y:0 

y(to) = lJ° 

Since g; is non-decreasing about Yj, j # i we have 

2;( t, [ii.1, J/,J,. · · , [Qi_,, Yi-1L Q,, [il.+" Yi+il = g,( t, i!.1,. · · , Q,_1, Q,, Q,+1" · · , i!.n) , 
9Jt, [Q,, 1/il, ... , [Q,_,, 1/,_,J, Q,, [Q,+1, 1/,+lJ = g,(t, 1/,,. .. , 1/,_1, 1/,, Yi+1' ... , Y'nl , 

i = 1, ... , n. 

Then from (3.28) it follows that fj(t) = y(t0 , y0
; t) and y(t) = y(t0 , JJ°; t) belong to the 

solution y(t0 , Y 0 ; t) of problem (3.26)-(3.TI) which implies that 

Y(t) = [y(to, Y 0
; t) , t E [to, t] . (3.29) 
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For every solution x(t0 ,x0 ;t) of equation (3.1) we have 

x(t0 , x0
; t) = Qy(t0 , Qx0

; t) . 

Therefore from (3.25) and (3.29) it follows that 

[x(t0 , X 0
; t)] = [Qy(t0 , QX0

; t)] = Q[y(t0 , Y 0
; t)] = QY(t) . (3.30) 

It remains to prove that QY is the wrapping function of Problem (3.1)-(3.2). 
At t = t0 we have QY(to) = Q2X 0 = X 0

• Let e E [t0 ,l) and let u E QY(B). 
Qu E Y(O) and 

Then 

x(B, u; t) = Qy(O, Qu; t) E QY(t), t E [Ii, t] 

i.e. QY satisfies the wrapping property every Ii E [to, t). Therefore 

[x(t0 ,X0 ;t] C X(t) C QY(t), t E [to, t]. 

Then (3.30) implies 
[x(t0 , X 0

; t] = X(t) = QY(t) , t E [t0 , t] 

which concludes the proof of the theorem. 

Considering again example 2.1 and Moore's example we can see that theorem 3.3 is 
not applicable to either of them because a matrix Q with the required properties does not 
exist. Theorem 3.3 is applicable to following example. 

Example 3.1 Consider the problem 

x1 = -2x1 , 

x2 = 2x1 - X3, 

x3 = -2x1 - x2 , 

in the interval [O, l]. Function 

x1(0) = x~ E Xf = 1 + [-c:i,c:1], 
x2(0) = x~ E xg = 1 + [-c:2, c:2] , 

X3(0) = x~ EX~ = 1 + [-c:3, c3] . 

can be transformed into a quasi-isotone function using a matrix 

( 

1 0 
Q = 0 1 

0 0 
~ ) . 

-1 

(3.31) 
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Indeed, 

Qf(t,Qx) = ( 

is quasi-isotone. Then from theorem (3.3) it follows that problem (3.31) is a problem 
with no wrapping effect for any initial condition X 0 E mn. This theoretical result is 
supported by results of numerical experiments. We consider the values of c;, i = 1, 2, 3 
given by (2.39) and apply the same method as in example 2.1. While in the case of 
example 2.1 we obtain enclosures which diverge from the optimal enclosure (figure 2.1, 
right) the enclosures produced by the method in the case of example 3.1, converge to the 
optimal one. This is demonstrated graphically on figure 3.2. Since the optimal and the 
numerically computed enclosures for x1 are the same as in example 2.1 the corresponding 
graphs are omitted. The graphs for x2 and x3 are only presented. The graphs of the 
computed enclosures are visually indistinguishable from the optimal enclosure. At the 
bottom part of the figure the error functions 

p(S;(h;t),[x;(t0,X0 ;t)J) , i = 1,2,3 

are plotted on a logarithmic scale. Convergence at a rate consistent with the expected 
rate of global convergence can be observed. 

Let us note that theorem 3.3 provides a sufficient condition for problems with no 
wrapping effect. An interesting question to consider is whether, and in what form, this 
condition is also a necessary condition for having no wrapping effect. 

3.4 Linear Systems of ODE. 

When f is a linear function of x problem (3.1 )-(3.2) can be written in the form 

( 

au(t) 
a21 t 

where A(t) = .. (.) 

an! ( t) 

x = A(t)x + b(t) 

x(to) = x0 E X 0 

a,n(t) l ( b,(t) l 
a~~~t) and b(t) = b~~~) . 

ann(t) bn(t) 

(3.32) 

(3.33) 

We assume that A and b are continuous functions of t E [to, I]. 
x(t0 , x0

; t) of equation (3.32) can be represented in the form 
Every solution 

x(to,x0 ;t) = M(A;t) (x0 + 1,: M(A;llt 1b(!l)d!I) 

where then X n matrix function M(A; t) is the matricant of A defined by 
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Figure 3.2: Problem (3.31) with c: 1 = 0.2, c: 2 = c:3 = 0.05. Optimal enclosure and 
enclosures computed numerically for various step sizes h (top) and errors of the computed 
enclosures on a logarithmic scale (bottom). 

where 

00 

M(A;t) = l:M(kl(A;t) 
k=O 

M(0 l(A; t) =I (identity matrix of order n) 

M(k+il(A; t) = f' A(fJ)M(kl(A; fJ)dfJ, k = D, 1, ... 
},, 

Using interval arithmetic the optimal interval enclosure can be represented as 

[x(to,X0 ;t)] = M(A;t) (x0 + 1: M(A;llt 1b(ll)de) 

For the width of [x(t0 , X 0
; t)] we have 

w([x(t0 ,X0 ;t)]) = w (M(A;t) (x0 + 1: M(A;fJt 1b(fJ)de)) 
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= w ( M(A; t)X0
) 

= IM(A; t)I w(X0
) • 

( 

a11(t) 

Let A+(t) denote the matrix A+(t) = la~~(.t)I 
lan1(t)I 

For the width of the wrapping function we have 

! w(X;(t)) = i,(t) - i,(t) 

= max Ai*X - min Ai*X 
xEX xEi..1 

la1n(t)I l 
la2n(t)I 

ann(t) 

= ,L la;jlw(XJ) + a;;w(X;), 
it'i 

where A;. denotes the ith row of matrix A. Therefore w(X(t)) is the solution of 

and can be represented as 

y = A+(t)y 

y(to) = w(X0
) 

w(X(t)) = M(A+;t)w(X0
). 

The wrapping effect measure (3.17) for the linear problem (3.32)-(3.33) is 
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(3.34) 

w(X(t)) - w([x(t0 , X 0
; t)]) = ( M(A+; t) - IM(A; t)I) w(X0

) • (3.35) 

Using the fact that the solution set at every t E [t0 , t] is an affine transformation of X 0 

one can easily see that 

IX(t)-- [x(to,X0 ;t)JI = ~ (w(X(t))- w([x(to,X0 ;t)])) 

Therefore functions (3.16) and (3.15) can be represented in the form 

IX(t) _- [x(to, X 0
; t)JI = ~ ( M(A+; t) - IM(A; t)I) w(X0

) 

p(X(t), [x(to, X 0
; t)]) = ~II (M(A+; t) - IM(A; t)I) w(X0 Jll . 

We can see that the linear problem (3.32)-(3.33) has no wrapping effect if and only if 

( M(A+; t) - IM(A; t)I) w(X0
) = 0, t E [to, t] (3.36) 
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Function J( t, x) = A( t )x + b( t) is quasi-isotone if and only if the nondiagonal entries of 
matrix A(t) are nonnegative for every t E [to, t], i.e. A(t) = A+(t), t E [t0 , t]. Therefore, 
when f is quasi-isotone, condition (3.36) is satisfied and the problem has no wrapping 
effect for any initial condition. 

Suppose now that the condition of theorem 3.3 is satisfied, i.e. there exists a matrix 
Q = diag(qi, ... , qn), q; E {-1, 1}, i = 1,. . ., n such that Qf(t, Qx) = QA(t)Qx + Qb(t) 
is quasi-isotone. This means that 

(3.37) 

Since function (3.35) is nonnegative for any initial condition, the matricants of A and 
A+ satisfy the inequality 

M(A+;t) 2'. IM(A;t)I, t E [to,t]. 

It is easy to prove by induction that 

Indeed, if (3.39) is true for some k then for k + 1 we have 

From (3.39) it follows that 

{'QA( B)Q M(kl( Q AQ; B)dB 
},, 

{' QA(B)QQM(kl(A; B)QdB 
},, 

Q 1: A(B)M(kl(A; B)dBQ 

QM(k+1l(A; t)Q . 

M(QAQ;t) = QM(A;t)Q. 

Therefore if (3.37) is true we have 

(3.38) 

(3.39) 

M(A+; t) = M(QAQ, t) = QM(A; t)Q ~ IQM(A; t)QI = IM(A; t)I (3.40) 

From (3.38) and (3.40) it follows that 

M(A+;t) = IM(A;t)I 

which implies that there is no wrapping effect. 
For linear systems of the form (3.32)-(3.33) Theorem 3.3 can be formulated as follows 
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Theorem 3.4 If there exists a diagonal matrix Q = diag(qi, q2, ... , qn), q; E {-1, 1}, i = 
1, ... , n such that QA(t)Q = A+(t), t E [to, t] then problem {3.32)-(3.33) has no wrapping 
effect. 

Theorem 3.4 essentially coincides with a result in [45] obtained in a different way. 
The following examples show that the requirements of this theorem are essential. 

Example 3.2 Consider the problem 

i:1 = 2(t - l)x2 

±2 = -21t - llx1 

x1(0) = x~ E [0.9,1.1] 
x2 (0) = xg E [-0.1,0.1] 

for t 2: 0. This is a linear problem of the form (3.32)-(3.33) with 

A(t)=2(-1t~ll t - 1 ) and b(t) = ( ~ ) . 0 

In the interval [O, l] using a matrix 

Q- ( 1 0 ) - 0 -1 

we have 

QA(t)Q 2 ( 
1 -~)(1~1 t~l)(~ -~) 0 

2( 0 l-t) 
1 - t 0 

2 
( It~ 11 

It~ 11 ) 

Therefore there is no wrapping effect. 
For t > 1 matrix A is 

A(t)=2( 
0 

1 - t 

A+(t) . 

and it is easy to see that a matrix Q such that QA(t)Q = A+(t) does not exist. 
We apply a method of propagate and wrap type with local error O(h5 ) using a uniform 

mesh with a step size h to the above problem. The enclosures computed for various values 
of h as well as the optimal enclosure and the wrapping function are presented in figure 
3.3. 

In the interval [O, 1] the computed enclosures are visually indistinguishable from 
[x( to, X 0

; t)] = X(t) and when the error p(S(h; t), [x(t 0 , X 0
; t)]) is plotted on a logarithmic 

scale (figure 3.4, left) a fast convergence, consistent with the expected O(h4 ) is revealed. 
In the interval [1, 2.5] where the wrapping function is wider then the optimal enclosure 
the convergence is towards the wrapping function at a rate of O(h) (see figure 3.4, right). 
On figure 3.4 we can also observe that the error of the interval enclosures approaches the 
wrapping effect measure (3.15). 
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3 
Xz wrap.f. -+---

2 -+---

optimal -

0 1 

numeric 
-1 0 h=0.25 -

-2 -1 h=0.125 ... -

-2 h=0.0625 --3 

-4 -3 

-5 t -4 t 
0 0.5 1 1.5 2 2.5 0 0.5 1.5 2 2.5 

Figure 3.3: Example 3.2. Wrapping function, optimal enclosure and enclosures computed 
numerically for various step sizes h. 

Example 3.3 Consider the problem 

i:1 = 2(t - l)x2 

i:2 = 2(t - l)x1 

x 1(0) = x~ E [0.9, 1.1] 
x2(0) = xg E [-0.1, 0.1] 

for t 2'. 0. This is a linear problem of the form (3.32)-(3.33) with 

A(t) = 2 ( t ~ 1 t ~ 1 
) and b(t) = ( ~ ) . 

In the interval [O, 1] matrix A is the same as in example 3.2 and using the same matrix 
Q we have QA(t)Q = A+(t). Therefore there is no wrapping effect. Fort> 1 we have 
A(t) = A+(t). Therefore there is also no wrapping effect. However our expectations that 
this problem has no wrapping effect for t 2'. 0 are false. 

Figure 3.5, where the enclosures computed for various values of h, as well as the 
optimal enclosure and the wrapping function are plotted, presents a similax situation as 
in example 3.2, i.e. for t > 1 the computed enclosures approach the wrapping function 
which is wider then the optimal enclosure. 

Using standard techniques we obtain the matricants of A and A+ as follows: 

M(A- t) _ ( cosh(t
2 

- 2t) 
' - sinh(t2 - 2t) 

and 
M(A+·t) = ( cosh(l +It - ll(t-1)) 

' sinh(l +It - ll(t - 1)) 

sinh(t2 
- 2t) ) 

cosh(t2 - 2t) 

sinh(l +It - ll(t - 1)) 
cosh(l +It - ll(t - 1)) ) . 
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10 

1 

0.1 wrap.eff. --e---

0.01 

0.001 numeric 

0.0001 
h=0.25 -

le-05 
h=0.125 ... -

le-06 

le-07 h=0.0625 -

le-08 

le-09 

le-10 t 
0 0.5 1.5 2 2.5 0 0.5 1 1.5 2 2.5 

Figure 3.4: Example 3.2. Wrapping effect measure p (X(t), [x(t 0 ,X0 ;t)J) and the errors 
p (S(h; t), [x(t0 , X 0

; t)]) of the enclosures S(h; t) computed numerically for various step 
sizes h on a logarithmic scale (left) and standard scale (right). 

Clearly M(A+; t) = IM(A; t)I for t E [O, l] and M(A+; t) > IM(A; t)I for t > 1. The 
wrapping effect measure (3.17) for this problem is 

w(X(t))- w([x(to,X
0

; t)]) = { 2esinh(t _ ~) 2 ( ~:; ) 

The wrapping effect occurring in the interval (1, 2.5) can not be generated in the same 
interval since, as we know from theorem 3.4, in both intervals [O, 1] and [1, oo) there is no 
wrapping effect and the wrapping function equals the optimal interval enclosure for any 
interval initial condition. At t = 1 we have 

X(l) = [x(O, x0
; l)] . 

However, for t > 1 the optimal enclosure encloses the solutions propagated from the set 
x(O, X 0

; 1) which is not necessarily an interval and we have 

[x(O, X 0
; t)] = [x(l, x(O, x 0

; l); t)] . 

The wrapping function in [1, oo) equals the optimal interval enclosure of the solutions 
propagated from the interval [x(O, X 0

; l)] and we have 

X(t) = [x(l, [x(O,X0
; l)];t)]. 

The difference between the sets [x(O,X0
; 1)] and x(O,X0

; 1) (also called wrapping excess 
[45]) is what causes the inflation of the enclosures for t > 1. Let us note that here the 
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inflation does not increase with the increase of the number of points in the mesh as usual. 
The reason is that this inflation (or wrapping effect) results from the wrapping excess at 
one point only ( t = 1) while the wrapping excess at other points has no contribution at 
all. 
6 6 

X1 X2 

5 5 
wrap.f. --

4 4 
optimal -

3 3 
numeric 

2 2 h=0.25 -

1 b;Q.125 .. 

0 0 
b;Q.0625 -

-1 -1 

-2 t -2 t 
0 0.5 1 1.5 2 2.5 0 0.5 1.5 2 2.5 

Figure 3.5: Example 3.3. Wrapping function, optimal enclosure and enclosures computed 
numerically for various step sizes h. 

We stated earlier that in the intervals where the wrapping function differs from the 
optimal interval enclosure (i.e. the case of occurrence of wrapping effect), the computed 
enclosures usually converge to the wrapping function at a rate of 0( h) irrespective of the 
local error of the method. Example 3.3 is an exception. Here the global convergence is of 
order O(h4

) in the whole interval [O, 2.5] (see figure 3.6). 

3.5 Necessary Condition for No Wrapping Effect: 
Linear Systems. 

The condition in theorem 3.4 for linear problems with no wrapping effect is only a sufficient 
condition. We showed by example 2.1 that it is not a necessary condition. However, if 
problem (3.32)-(3.33) is irreducible and the initial interval X 0 contains inner points, i.e. 
w(X0

) > 0, the condition in theorem 3.4 is also necessary. Let us recall the definition of 
irreducible systems of differential equations. 

Definition 3.1 A system of equations of the form {3.1) is called reducible if there exist 
proper subsets I and J of the set N = {1, 2, ... , n} such that 

{i) Iu J =N, 
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1 

0.1 0.1 numeric 

O.Ql 0.01 h=0.25 -

0.001 0.001 ...... 
h=0.125 .. 

0.0001 0.0001 

le-05 lc-05 
h=0.0625 -

le-06 le-06 

le-07 le-07 

le-08 le-08 

le-09 le-09 

le-10 t le-10 t 
0 0.5 1.5 2 2.5 0 0.5 1 1.5 2 2.5 

Figure 3.6: Comparing the rate of convergence of the computed enclosures towards the 
wrapping function in Example 3.2 and Example 3.3. The distance g::i(S(h; t), X(t)) zs 
plotted on logarithmic scale for Example 3.2 (left) and example 3.3 (right). 

(ii) if i E I and j E N \I then fi does not depend on x j; 

(iii) if i E J and j E N \ J then f; does not depend on x j. 

A system of equations of the form (3.1) which is not reducible is called irreducible. 

Obviously, if a system of differential equations is reducible then its solution reduces 
to the solution of two or more irreducible systems of smaller dimension. Therefore it is 
enough to formulate a necessary condition for irreducible systems of differential equations. 

In the case of linear systems definition 3.1 assumes the following form: 

Definition 3.2 A system of the form (3.32) is called reducible if there exist proper subsets 
I and :f of the set N = {1, 2, ... , n} such that 

{i) IU:f =Ni 

{ii) if i E I and j E N \I then aii ( t) = 0, t E [to, t] ; 

(iii) if i E :f and j EN\ :f then aiJ(t) = 0, t E [t0 , t] . 

A system of the form (3.32) which is not reducible is called irreducible. 

We will prove the following theorem. 

Theorem 3.5 Let system (3.32) be irreducible. If problem (3.32)-(3.33) is a prob­
lem with no wrapping effect and w( X 0 ) > 0 then there exists a diagonal matrix Q 
diag(q1,q2,. . .,qn), qi E {-1,1}, i = 1, ... ,n such that QA(t)Q = A+(t), t E [to,t]. 
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Before we discuss the proof we will consider some preliminary results. In analogy with 
definition 3.2 we define reducible and irreducible matrices. 

Definition 3.3 A real matrix P = (Pij) is called reducible if there exist proper subsets I 
and J of the set N = {l, 2, ... , n} such that 

(i) Lu :r = N; 

(ii) if i E I and j E N \I then Pi; = 0; 

(iii) if i E :r and j E N \ J then Pi; = 0. 

A matrix which is not reducible is called irreducible. 

Lemma 3.1 If a real matrix P = (Pij ), Pij E {O, 1 }, i, j E {l, ... , n} is irreducible then 

contains a row in which none of the entries is zero. 

Proof. We consider matrix P as an adjacency matrix of an oriented graph, i.e. Pi; = 1 
implies that there is an arc which issues from the ith vertex and enters the jth vertex of 
the graph, Pij = 0 implies that there is no such arc. 

First we will prove that the graph has a vertex connected to any other vertex, i.e. 
there exist oriented paths from this vertex to any other vertex. Assume the oposite, i.e. 
every vertex is connected to no more than k - 1, k < n, verteces and let the vertex i 1 be 
conected to the verteces i2, i3, ... , ik. Denote 

N {1,2, ... ,n} 
I {ii,i2, ... ,ik}, 

J { i E N : there exists a vertex l E N \I which is connected to vertex i} 

If i1 E J then there exist a vertex l E N \I connected to i 1 and therefore connected to 
the verteces i 1, i 2 , ..• , ik. This contradicts the assumption that every vertex is connected 
to no more than k- 1 verteces. Therefore i1 1. J and both I and J are proper subsets of 
N. Now we can see that the sets I and :f satisfy conditions (i), (ii) and (iii) in definition 
3.3. 

(i): Since N \IC J we have that I U J = N. 
(ii): Let i EI and j EN\ I. If Pij = 1 then vertex i 1 is connected to vertex j 1. I 

which is a contradiction. Therefore Pij = 0. 
(iii): Let i E J and j EN\ :f. If Pij = 1 the definition of the set J implies that if 

i E :r then j E :r. But j 1. :r. Therefore Pij = 0. 
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This shows that matrix P is reducible. Since we are given that P is irreducible the 
assumption that every vertex is connected to no more than k - 1 verteces, k < n, is false. 
Therefore, there exist a vertex connected to any other vertex of the graph. 

Let vertex l be connected to any other vertex of the graph. We will show that the Ith 
row of matrix exp(P) does not contain zeros. For any j EN\{!} there exist an oriented 
path from vertex l to vertex j. Denote by k; the length of this path. Since P is the 

adjacency matrix of the graph, (pk) lj equals to the number of arc sequences beginning 

from vertex l and ending at vertex j [42]. This implies 

Using that the entries of all matrices in the sum 

are nonnegative, we have 

1 2 1 3 
exp(P)=I+P+1P +1P + ... 

2. 3. 

(exp(P))1; > k~! (Pk1
)

1
; > 0, j EN\ {I}, 

(exp(P)) 11 > (1) 11 = 1 

which shows that all entries in the Ith row of exp( P) are strictly positive. 

Lemma 3.2 If an irreducible real matrix P =(Pi;), Pi; E {-1,0,1}, i,j E {1,. .. ,n} is 
such that !exp(P)! = exp(!P!) then there exists a diagonal matrix Q = diag(qi,q2 ,. •• ,qn), 
q; E {-1, 1}, i = 1, ... , n such that QPQ =IP!. 

Proof. It is easy to see that the following sequence of inequalities holds true: 

Since I exp(P)! =exp( IP!) all of the above inequalities are satisfied as equalities. This is 
true if and only if 

for every i, j E {l, ... , n} the sign of (pk) ij, if not zero, 

is the same for all k = 0, 1, 2, ... (3.41) 

(3.42) 

Denote V = exp(P). Since matrix P is irreducible matrix !Pl is also irreducible and 
lemma 3.1 implies that matrix !VI = I exp(P)! = exp( IP!) has a row which does not 
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contain zeros. Let this be the Ith row. Then the Ith row of matrix V also does not 
contain zeros. Denote qi= sgn(vii) = IV/ii. We will prove that Q = diag(qi, q2, ... , qn) is 

Vti 
the required matrix. 

Let us consider the matrix 

VP= f ~pk+i. 
k=O k. 

From conditions (3.41) and (3.42) it follows that 

Therefore 

If V1iPijl = f lv1iPij1, j = 1, ... , n 
k=O k=O 

This implies that for every j = 1, ... , n the products V1iPii, i = 1, ... , n, if not zero, 
have all the same sign, equal to the sign of (VP) Ii' Furthermore, both V and VP are 
obtained as sum of powers of P with positive coefficients. Then, from condition (3.41) we 
can see that the entries of VP, if not zero, have the same sign as the entries of matrix V. 
Therefore the products V/iPij, i,j = 1, ... ,n, if not zero, have the same sign as V/j· This 
means that 

V/iPijV/j 2: 0 , i,j = 1, ... , n. 

Hence 
VtiPijVlj 

(QPQ)ij = qiPiiq; = lv1illv1;I = 

which conludes the proof of the lemma. 

lv1iPijV1jl I I .. 
I 11 I 

= Pii , i, J = 1, ... , n 
V[i Vtj 

Lemma 3.3 If matrix A in the system (3.32) is such that IM(A;t)I = M(IAl;t), t E [to,t] 
then there exists a diagonal matrix Q = diag(q1 ,q2 , ••• ,qn), qi E {-1,1}, i = l, ... ,n 
such that QA(t)Q = IA(t)I, t E [to,t]. 

Proof. It is easy to see that the following sequence of inequalities holds true 

IM(A;t)I = IEM(k)(A;t)I 

00 

< L IM(k)(A; t)I 
k=O 

(3.43) 

00 

< L Af(k)(IAI; t) M(IAl;t). 
k=O 
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Since IM(A; t)I = M(IAI; t), t E [to, t], all inequalities in (3.43) are equalities for every 
t E [t0 , t]. In particular, we have 

(3.44) 

and 
IM(k)(A;t)I = M(k)(IAl;t)' k = 1,2, .... (3.45) 

From (3.45), when k = 1, it follows that 

which implies that the entries a;; of matrix A do not change sign in the interval [to, t], i.e. 
for every i,j E {l, ... , n} 

either a;J(t) ::; 0, t E [t0 , t] or a;;(t) 2: 0 , t E [to, t] . (3.46) 

Let</; be a real function in the interval [t0 , t]. Then sgnef; is defined (when possible) as 

{ 

1 if ef;(t) 2: 0 for every t E [t0 , t] and ef;(t) > 0 for some i E [t0 , t] 
sgnef; = -1 if ef;(t) ::; 0 for every t E [to, t] and ef;(t) < 0 for some i E [to, t] 

0 if ef;(t) = 0 for every t E [t0 ,t] 

Condition (3.46) implies that sgna;j is well defined for every i, j E {1, ... , n }. 

From (3.44) it follows that for any i,j = 1,. . .,n all functions (M(k)(A;t));;' k = 

0, 1, 2, .. ., if not constant zero, have the same sign which does not change when t varies 
in the interval [to, t]. Therefore sgn ( Af(k) (A; . ) ) ij is well defined and 

for every i, j E {l, .. ., n} sgn ( M(k)(A;.)) ij, if not zero, (3.47) 

is the same for all k = 1, 2, ... 

Denote P = sgnA = (sgna;j)· Since the system (3.32) is irreducible then matrix P 
is also irreducible. Furthermore, it is easy to see that sgn(Pk) = sgn(Af(k)(A; .)). Then 
from (3.47) and (3.45) we obtain that the powers of P satisfy conditions (3.41) and (3.42) 
which implies that lexp(P)I = exp(IPI). Using lemma 3.2 we obtain that there exists a 
matrix Q = diag(q1,. .. ,qn), q; E {±1}, i = l,. . .,n such that QPQ = IPI· For every 
i,j = l, ... ,n we have 

(QA(t)Q);J q;a;J(t)qJ = q;sgn(a;J)la;J(t)lqJ 

q;p;jq;la;;(t)I = IPiilla;J(t)I = la;j(t)I, t E [t0 ,t] 
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Therefore QA(t)Q = IA(t)I, t E [to, I]. 
Proof of theorem 3.5. Since all entries of the matrix M(A+;t)- IM(A;t)I are 

nonnegative and w(X0
) > 0 condition (3.36) implies that 

Let 

M(A+;t) = IM(A;t)I , t E [to,t]. 

a= .max max aii(t) . 
i=l) ... ,n tE[to,t) 

Then the diagonal entries of matrix C(t) = A(t)+aI are all nonnegative and IC(t) I = c+(t). 
We have 

IM(C;t)I IM(A + aI; t)I = I eat M(A; t)I = e'"IM(A; t)I 
eCT' M(A+; t) = M(A+ + aI; t) = M(C+; t) = M(ICI; t). 

Considering a system of the form (3.32) with a matrix C, from lemma 3.3 we obtain 
that there exists a matrix Q = diag(q1 , ... ,qn), q; E {±1}, i E {1, ... ,n} such that 
QC(t)Q = IC(t)I, t E [to, I]. Then 

QA(t)Q Q(C(t) - al)Q = QC(t)Q- aI 

= c+(t) - al = A+(t) , t E [to, I] 

which proves the theorem. 

3.6 Necessary Condition for No Wrapping Effect: 
General Case. 

In order to prove a theorem similar to theorem 3.5 in the general case of nonlinear problems 
of the form (3.1)-(3.2) we will make some additional assumptions for function f. We will 

assume that function f is differentiable about x and its Jacobian ix 
(i) is bounded, i.e. there exists a constant n x n matrix A such that 

l

df(t,x)I dx ~A, t E [to, I], x E D and (3.48) 

(ii) satisfies a Lipschitz condition of the form 

l

df(t,e) - df(t,,P)I ~ llt_.1.11r t [t fl t .1. D 
dx dx <, 'Y ' E 0 ''J' "''YE (3.49) 

where r is a constant n x n matrix. 
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The Jacobian df, unlike the linear case, depends not only on t but on x as well. 
dx 

Therefore, it does not seem possible to obtain results about the monotonicity off, given 
that the problem has no wrapping effect only for a fixed initial condition. We shall require 
that the problem has no wrapping effect for all initial conditions X 0 within a certain given 
interval G C D. We will assume that all solutions x(t0 , x0 ; t), x0 E G, exist in the interval 
[t0 , t]. Obviously, we can derive properties off only in the area 

Q = {(t, x(t0 , x0
; t)): x0 E G} C [to, t] X D 

spanned by the solutions of (3.1) when the initial condition is in G. 
The following inequalities 

w([x(t0 ,X
0 ;t)]) ::; w(X(t)) ::; M(A;t)w(X0

) , t E [t0 ,t] 

are easy to prove and will be used below. 

(3.50) 

Theorem 3.6 Let system (3.1) be irreducible. Let also function f be differentiable about 
x and let its Jacobian satisfy conditions (3.48) and (3.49). If problem (3.1}-(3.2} has no 
wrapping effect for every initial condition X° C G then there exist subsets z(lJ, Z(2), •.• , z(k) 

of G such that 

(i) z(IJ u z(2J u ... u z(kJ = G and 

(ii) for every j = 1,. .. , k there exists a matrix QU) = diag( qlj), .. ., q~l), q)j) E { ±1}, 
i = 1, ... , n, such that the function QU) f(t, QUlx) is quasi-isotone about x in any 
convex subset of zUJ = {(t, QUlx(to, x0 ; t)): x0 E zUJ}. 

Proof. Let u be any interior point of G and let e = (1, 1, ... , 1) E Rn. Let J be small 
enough positive real number so that the interval vector 

x 0 = [u - Je, u + Je] (3.51) 

is in G. We consider problem (3.1)-(3.2) with initial condition X 0 given by (3.51). 
df 

Let J(u;t) dx(t,x(t0 ,u;t)) and b(t,x) = f(t,x) - J(u;t)x. Function f can be 

represented as 
f(t,x) = J(u;t)x+b(t,x). 

Considering the interval extension of b we have the following estimate for every t E [t0 , t] 
and interval X CD such that x(t0 , u; t) EX. 

w(b(t, X)) max(f(t, ~) - f(t, ry) - J(u; t)(~ - ry)) 
f,,nEX 

< max ((df(t,,P) _ df(t,x(to,u;t)) (~ -ry)) 
f,,n,,PEX dx dx 

< max 11.P - x(to, u; t)llf(~ - ry) 
~,ri,1/.iEX 

< llw(X)llfw(X) 
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From the above inequality, using (3.50) we have 

w(b(t, [x(to, x0
; t)])) < llw([x(t0 , x0

; t)]) llfw([x(t0 , x0
; t)]) 

< llM(A; t)w(X0 )11f M(A; t)w(X0
) 
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< 4J2 llM(A; t)llf M(A; t)e. (3.52) 

In the same way 

w(b(t,X(t))) < llw(X(t))llfw(X(t)) 
< 4J2 llM(A; t)llf M(A; t)e. 

Problem (3.1)-(3.2) can be written as 

x = J(u; t)x + b(t, x) 

x(to) = x0 E X 0 

Every solution x( t0 , x0
; t) is represented in the form 

x(to, x0
; t) = M( J; t)x0 + M( J; t) 1' ( M( J; Ii) t 1b(li, x(t0 , x0

; Ii) )dli . 
to 

Therefore the optimal interval enclosure [x(t0 , X 0 ; t)] satisfies the inclusion 

[x(to, X 0
; t)] C M( J; t)X0 + M( J; t) 1' (M( J; 11))-'b( Ii, [x(t0 , X 0

; li)])dli . 
to 

Hence, using (3.52), we obtain 

w ([x(to, X 0
; t)J) 

< IM( J; t) lw(X0
) + IM( J; t) 11: I( M( J; Ii) i-1 I w (b( Ii, [x(to, X 0

; 11)])) dli 

< 2JIM(J; t)le + 4J2 IM(J; t)l 1: l(M(J; ll)t'l llM(A; ll)llf M(A; li)edll 

(3.53) 

(3.54) 
(3.55) 

= 2JIM(J; t)le + 4J2¢(t) (3.56) 

where 

4>( t) = IM( J; t) 1 J,: l(M( J; ll)t 1 I llM(A; 11) llf M(A; B)dB e 

is a continuous function oft which does not depend on J. 
In section 3.4 we obtained the width of the wrapping function in an explicit form 

(3.34). The same method, when applied to problem (3.54)-(3.55) produces a differential 
inequality of form 

d~ (w(X(t))) 2: J+(u; t)w(X(t)) -w(b(t,X(t)). 
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Using (3.53) we obtain 

d - -dx(w(X(t))) ?: J+(u;t)w(X(t))-482 llM(A;t)llfM(A;t)e. (3.57) 

Let us note that the modified Jacobian of the form J+ is used in [88] where the stability 
of interval methods is studied using a different approach. 

The solution of the linear problem 

y = J+(u;t)y-482 llM(A;t)llfM(A;t)e 
y(to) = w(X0

) 

can be represented as 

where 

y(t) = 28M(J+;t)e -482cp(t) 

cp(t) = llM(A;t)ll [' (M(J+;B))-I rM(A;B)dBe 
},, 

is a continuous function oft which does not depend on 8. 

(3.58) 

(3.59) 

Since the right-hand side in the system (3.58) is a function which is quasi-isotone 
about y the differential inequality (3.57) implies that the width of the wrapping function 
is greater than or equal to the solution of (3.58)-(3.59) for every t E [to, t]. Hence 

w(X(t))?: 28M(J+;t)-482cp(t). (3.60) 

Since problem (3.1)-(3.2) is without wrapping effect we have 

w(X(t)) = w([x(t0 , X 0
; t)]) , t E [t0 , t] . 

From (3.56) and (3.60) it follows that 

28M(J+;t)e-482cp(t) :s;w(X(t)) - w([x(t0 ,X0 ;t)]) :s;28IM(J;t)le+482ef>(t). 

Using also (3.38) we obtain 

o:::; 28(M(J+;t)-IM(J;t)i)e < 482(ef>(t)+cp(t)) 

and dividing by 28 

O:::; (M(J+;t)-IM(J;t)i)e < 28(ef>(t)+'P(t)). 

Since 8 is arbitrary small positive it follows that 

(M(J+;t)-IM(J;t)i)e = 0, tE[to,t]. 
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The coordinates of e are all positive and the entries of M(J+; t) - IM(J;t)i are all non­
negative. Therefore 

M(J+; t) = IM(J; t)I , t E [to, t]. 

This implies that a linear system of the form (3.32)-(3.33) with a matrix A = J has no 
wrapping effect. Then from theorem 3.5 it follows that there exists a matrix 

Q = diag( qi, q2, . .. , qn), qi E {-1, 1 }, i = 1, ... , n (3.61) 

such that QJ(u; t)Q = J+(u; t), t E [to, t]. 
Thus, we proved that 

for every u E G there exists a matrix Q = Q( u) 
of the form (3.61) such that QJ(u; t)Q = J+(u;t). (3.62) 

Let Q be the set of all matrices of the form (3.61). Obviously, Q is a finite set. For every 
matrix Q we can consider the set 

Z(Q) = {u E G: QJ(u; t)Q = J+(u; t), t E [to, t]}. 

It follows from (3.62) that 
LJ Z(Q) = G. 

QEQ 

Excluding from the above union these sets which are empty, we obtain a finite number of 
sets z(i), z(2), ••. , Z(k) such that for every set z(j) there exists a matrix QU) of the form 
(3.61) such that 

QUldf~~x)QU) = (df~~x)) + , (t,x) E {(t,x(t0 ,u;t)): u E zU)}. 

This implies that QU) f(t, QU)x) is quasi-isotone about x in any convex subset of z(j) 
which concludes the proof. 
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Example 3.4 Consider the problem 

X1 = -X1X2 
• 2 

X2 = -Xl 

x1(0) = x~ EX~ 
x2(0) = xg E X~ 
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fort 2 0 where X° CG= ([-0.5,0.5],[0.5,l.5]f. The exact solution x(O,x0;t) of the 
above system for a given x0 E X 0 is 

x1 (0, x0
; t) sgn( x~)µ( x0 )cosech(µ( x0 )t + 17( x0

)) 

x2(0, x0
; t) µ( x0

) coth(µ( x0 )t + 17( x0
)) if x~ # 0 

and (3.63) 

x1(0, x0
; t) = 0 

x2 (0, x0
; t) XO 

2 if x~ = 0 

where 

0 (x~ + j(xg)2 - (xn2) 
µ(x 0

) = j(xg)2 - (x~)2 and 17(x ) =In lx~I . 

Using (3.63) to obtain the optimal interval enclosure [x(O, X 0
; t)] and problem (3.4)­

(3.5) to obtain the wrapping function X(t) we can see that they are equal for any X° C G 
Therefore the problem in this example is with no wrapping effect for every X° C G. 

The Jacobian of the right-hand side of the system is 

Therefore in { x E '!<} : x1 ::; O} function f is quasi-isotone while in { x E R.2 : x1 2 0} it 
can be transformed into a quasi-isotone function using matrix Q = diag(-1, 1). 

Let Z(l) = ([-0.5, OJ, [0.5, 1.5Jf and z(2l = ([O, 0.5], [0.5, 1.5])r. Since 

x(O, z(ll; t) c { x E R.2 
: X1 ::; O} ' t 2 0 and 

x(O, z(2l; t) c { x E R.2 
: X1 2 O} ' t 2 0 

z(ll and Z(2) are the subsets of G that exist according to theorem 3.6. 
The necessary condition for no wrapping effect stated in theorem 3.6 is not the same 

as the sufficient condition in theorem 3.3. Nevertheless, they are quite close. In fact, 
theorem 3.6 implies that if a problem has no wrapping effect for every initial condition 
X° C G, the area g spanned by the solutions can be subdivided into areas where the 
monotonicity off does not change (i.e. for every i,j E {1, ... ,n}, i # j function fi is 
either increasing or decreasing about XJ) and the solutions do not leave or enter any of 
those areas when t propagates from t 0 tot. If we can make such a subdivision beforehand 
we can apply the following theorem which follows directly from theorems 3.3 and 3.6. 
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Theorem 3. 7 Let a function f be such that f is differentiable about x, its Jacobian 
satisfies conditions (3.48)-(3.49) and for every i,j E {1, ... , n}, i =I j function fi is 
either increasing or decreasing about x j in the area 

Q = {(t, x(to, u; t)): u E G} C [to,I] X D 

where G C D is a given interval. 
Then problem (3.1)-(3.2) is a problem with no wrapping effect if and only if there 

exists a matrix Q = diag(qi, ... ,qn), qi E {±1}, i = 1, ... ,n, such that Qf(t,Qx) is 
quasi-isotone about x in {(t,x): (t,Qx) E Q}. 



Chapter 4 

Validated Solution of the Wave 
Equation. 

We consider the nonlinear wave equation 

Utt(x, t) - Uxx(x, t) = J(x, t, u(x, t)), 

u(x, 0) = g1(x), u,(x, 0) = g2(x), 

u(-l, t) = u(l, t) , ux(-l, t) = Ux(l, t), 

-I < x < l , t > 0 , 

-l < x < l 
t > 0 

( 4.1) 

(4.2) 
(4.3) 

Condition ( 4.3) implies that the solution is a function which has a smooth 21-periodical 
extension about x. A periodic boundary condition is essential for the monotone properties 
of the problem and the construction of numerical methods discussed in the following 
sections. However, it is not a very restrictive assumption because a large number of 
problems can be reduced to problems with periodic boundary conditions of the form 
(4.1)-(4.3) (see section 2.5.2). 

Let i1[:t, t] be the set of all functions u = u(x, t) : Rx [t, t] >--+ R which are 21-periodical 
about x and have continuous second derivatives. Assuming that functions f, g, and g2 
are extended periodically about x (period 21) we can formulate problem (4.1)-(4.3) in the 
following way: 

Find u E i1[0, t] such that 

Utt(x, t) - Uxx(x, t) = J(x, t, u(x, t)), 
u(x,O) = g1(x), u,(x,O) = gz(x), 

x E R, t E [O, t] , 
xER 

The solution of the above problem we denote by u(O,g; x, t). 
We also consider an interval initial condition of the form 

u(x,O) 

u,(x,O) 
g1(x) E G1 (x) 
g2(x) E G2(x) 
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[,iz_
1
(x),!Ji(x)], 

[,iz_
2
(x),g2 (x)J, x ER 

( 4.4) 

( 4.5) 

(4.6) 
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where G1 and G 2 are given interval functions. The set-valued function 

u(O,G;x,t) = {u(0,9;x,t) :9 E G} 

is considered a solution of problem ( 4.4)-( 4.6). 
In this chapter we assume that f is a continuous function of all arguments, 91,2 

(H_
1

,2,g1,2 ) are differentiable and 9;,2 E L2(-l,l) (H_
1

,
2
,g'1,2 E L2(-l,l)). In addition we 

also make the assumption that f is a non-decreasing function of u which implies mono­
tone properties of the problem used in the construction of enclosures. 

4.1 Monotone Properties 

The importance of the monotone properties of a problem for the design of validated 
methods was discussed in section 2.3. Here we will establish monotone properties of 
problem (4.4)-(4.5) which will lead to a representation of the problem as an operator 
equation involving a suitable operator of monotone type. 

Denote by L and <!> the following operators in !1 [i, t] 

L(u; x, t) = Utt(X, t) - Uxx(x, t), 

<l>(u, t; y, z) = u(y, t) + u(z, t) + 1z u,(x, t)dx, y :'S: z. 

Theorem 4.1 Let u, v E !1[i, t]. If L(u) :'S: L(v) and <l>(u,:t) :'S: <l>(v,:t) then u :'S: v and 
<!>( u, t) :'S: <!>( v, t) fort E [i, t]. 

Proof. Denote w = v - u. Since L and <!> are linear operators we have 

L(w) 

<l>(w,t) 
L(v) - L(u) 2': 0, 

<!>( v, t) - <!>( u, t) 2': 0 . 

Let y, z E R, y :::; z, t E [i, t] and let us integrate L(w) over a trapeze r with vertices 
M(y, t), N(z, t), P(z + t - t,t) and Q(y - t + t,t). We have 

I= J £(wtt - Wxx) dxdt 2': 0. 

A simple application of Green's theorem gives 
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1: w,dx+ lN(wxdx+w,dt)- 1: w,dx+ lM(wxdx+w,dt) 

= fuz w,(x, t)dx + w(z, t) - w(z + t - :t., :t.) 

1
z+t-t 

- - w,(x,t)dx + w(y, t) - w(y - t + f, i) 
y-t+! 

<li(w, t; y, z) - .P(w,:t; y - t + :t, z + t - f). 

Therefore 
.P(w,t;y,z)?: .P(w,:t;y-t+:t,z + t-t_)?: 0. 

Hence 
.P(u, t) ~ .P(v, t), t E [:t, t]. 

We also have 
1 

w(x,t) = '2.P(w,t;x,x)?: 0 

which implies 
u(x,t) ~ v(x,t), x ER, t E [t,t]. 
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Theorem 4.2 Let f(x, t, u) be Lipschitzian and monotonically increasing about the last 
argument and let u, v E 11[.t., t]. If L( u )- f( ·,-, u) ~ L( v )- f(.,., v) and <Ii( u, t) ~ <Ii( v,.t) 
then u ~ v and .P(u, t) ~ .P(v, t), t E [.t, t] 

Proof. Let f be Lipschitzian with a coefficient k and a be such that a 2 > k. Let E: be 
any positive number. Denote w = v - u + Ee"(t-l). We have 

.P(w,.t;y,z) = .P(v,t;y,z)- .P(u,.t;y,z) + 2c: + c:a(z -y)?: 2c: > 0. 

Therefore w(x,.t.) = ~.P(w,:t;x,x)?: c; > 0 
We wish to show that w(x, t) > 0, x E R, t E [i, t]. To do this we assume, to the 

contrary, that w( x, t) ~ 0 for some x E R, t E [:t, t]. Denote 

t' = inf{t: w(x, t) ~ 0 for some x ER}. 

Then 
w(x, t) = v(x, t) - u(x, t) + c:e"(t-l) > 0, x E R, t E [i, t') 

and there exists x' E R such that w( x', t') = 0. 
For (x, t) E R x [:t., t') we have 

L(w; x, t) - L(v; x, t) - L(u; x, t) + c;a2e"(t-l) 

> f(x, t, v(x, t)) - J(x, t, u(x, t)) + c:a2e"(t-!) 

> f(x, t, u(x, t) - c:e"('-ll) - f(x, t, u(x, t)) + c:a2e"(t-l) 

> -kc:e"(t-l) + c:a2 e"(t-l) 

c:( a 2 - k) e"(t-l) > 0 . 
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Let us integrate L( w) over a triangle r with vertices A( x' - t' + f, t) , B( x' + t' - t, 1) and 
C(x', t'). We have 

I= J J(wtt - Wxx)dxdt > 0 

Applying Green's theorem we obtain 

I J (-wxdt - Wtdx) 
fer 

le ( Wxdt + Wtdx) - lse ( Wxdt + WtdX) - LB WtdX 

le (wxdx + Wtdt) + fse (wxdx + w1dt) - LB w1dx 

x 1 +t' -t 
2w( x', t') - w( x' - t' + t, 1) - w( x' + t' - f, t) - { - Wt( x, 1)dx 

lx1-t1+f 

= 2w( x', t') - <Ii ( w, 1; x' - t' + t, x' + t' - t) . 

Therefore w(x',t') > !<li(w,t;x'-t'+t,x'+t'-t) > 0. But w(x',t') 0, a 
contradiction. This implies that w( x, t) > 0, x E R, t E [t, t]. Hence 

v(x, t)- u(x, t) > Ee'>(t-t), x E R, t E [t, t] 

for any positive E. Letting E --+ 0 we conclude that 

u(x,t) :=:; v(x,t), x ER, t E [t,t]. 

Using this inequality we have 

L( v) - L( u) ;::: f(., ., v) - f(., ., u) ;::: 0 

Then theorem 4.1 implies 
<li(u,t) :=:; <li(v,t), t E [t,t] 

which concludes the proof. 
An obvious way of writing problem ( 4.4)-( 4.5) in an operator form is by using operator 

T(ic,) defined in n[ta, t], ta E [O, t) as 

T(ta, u; x, t) = (Lu(x, t) - f(x, t, u), u(x, (,), u1(x, (,)), x ER, t E [ta, t]. 

Then problem (4.4)-(4.5) can be written as 

T(O,u) = (O,g1,g2). 

Theorem 4.3 If f is a non-decreasing function of u then T(ic,) is an operator of mono­
tone type. 
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Proof. Let u, v E !1[ta, t] and let T(ta, u) ~ T(ta, v). Then we have 

L(u; x, t) - J(x, t, u(x, t)) ~ L(v; x, t) - J(x, t, v(x, t)), x ER, t E [ta, t] (4.7) 

and 

u(x, ta) ~ v(x, ta) , x ER 
u,(x, ta) ~ v,(x, ta) , x ER. 

From the above two inequalities we obtain 

<I>(u, ta; y, z) u(y, ta)+ u(z, ta)+ J.2 

u,(~, ta)d~ 

< v(y, ta)+ v(z, ta)+ J.z v,(e, ta)de 

<I>(v,ta;y,z), y,zER,y~z. 

Using theorem 4.2 from (4.7) and (4.8) it follows that 

<I>(u,t;y,z) ~ <I>(v,t;y,z), t E [ta,t], y,z ER, y ~ z. 

Taking y = z = x we have 

1 1 
u(x, t) = 2<I>(u, t; x, x) ~ 2<I>(v, t; x, x) = v(x, t), x ER, t E [ta, t] 

which concludes the proof. 

(4.8) 

Theorem 4.3 implies that when J is non-decreasing about u the optimal enclosure 
[u(O, G; x, t)] of the solution of problem (4.4)-(4.6) can be represented in the form 

[u(O,G; x, t)] = [u(0,,2_; x, t),u(O,g; x, t)J 

and problem ( 4.4)-( 4.6) is reduced to two problems with point initial conditions given by 
,2. = (,2_

1
,,2_

2
) and g= (g1,g2) as follows: 

Utt(X, t) - Uxx(x, t) = J(x, t, u(x, t)) , x ER, t > 0 
u(x,O) = ,2_

1
(x), u,(x,O) = ,2_

2
(x), x ER (4.9) 

Utt(x, t) - Uxx(x, t) = J(x, t, u(x, t)), x ER, t > 0 

u(x,O) = g1(x), u,(x,O) = g2(x), x ER (4.10) 

However, as was shown in the preliminaries (section 2.5.3), the practical application 
of monotonicity of the form provided by theorem 4.3 to the construction of enclosures has 
a significant shortcoming when the enclosures are constructed step-by-step using a mesh 
{ t0 = 0, ti, ... , ty = t} in the time dimension. 

Operator T(ta) is defined on !1[ta, t], t,, E [t0 , t) as follows: 

T(ta,u;x,t,y,z))=(Lu-J(x,t,u),<I>(u,ta;Y,z)), tE [ta,t], x,y,zER, y~z. 
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Theorem 4.4 For every u, v E !![t.,, t] we have 

T(t,,,u)"S,,T(t.,,v) ===} <I>(u,t)"S,,<I>(v,t), ta<t<l. 

Proof. The inequality T(t.,, u) "S,, T(t 0 , v) implies that 

L(u;x,t)- f(x,t,u(x,t)) "S,, L(v;x,t)- f(x,t,v(x,t)), x E 'R, t E [t,,,t], 
<I>(u, t.,; y, z) "S,, <I>(v, ta; y, z), y, z E 'R, y "S,, z. 

Then the inequality 
<I>( u, t) "S,, <I>( v, t) , y E [t 0 , t] 

follows from theorem 4.2. 
Let us note that for any u, v E !1[t0 , t] and t E [t0 , t] we have 
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(u(x,t)"S,,v(x,t), u1(x,t)"S,,v1(x,t), x E 'R) ===} (<I>(u,t;y,z)"S,,<I>(v,t;y,z), y,z E 'R,y"S,,z) 
(<I>(u,t;y,z)"S,,<I>(v,t;y,z), y,z E 'R,y"S,, z) ===} (u(x,t)"S,,v(x,t), x E 'R) 

but the implication 

(<I>(u,t;y,z) "S,, <I>(v,t;y,z), y,z E 'R,y "S,, z) ===} (u,(x,t) "S,, v1(x,t) x E 'R) 

is false. Then, it is easy to see that the operator T(t 0 ) is an operator of monotone type 
according to the usual definition, but it is actually more than that since the inequality 
<I>(u, t)-:;,, <I>(v, t) contains more information than u(x, t)-:;_ v(x, t), x E 'R. 

Let us define a partial ordering ::S in !![f, t] as 

u::Sv def <I>(u,t)"S,,<I>(v,t), fE[f,t]. 

Then theorem 4.4 implies that operator T( ta) is an operator of monotone type with 
regard to the partial ordering ::S in !![t.,, t]. Using operator T problem ( 4.4)-( 4.5) can be 
written as 

T(O,u;x,t,y,z)= (o,g1(y)+g1 (z)+ 1zg2(0d~), tE[O,t], x,y,zE'R, y"S,,z. 

Why the monotone property provided by operator T is applicable to construction of 
bounds for the solution step-by-step in the time dimension, can be explained as follows. 
In constructing a lower bound !i.(h, N; x, t) in the interval [t0 , ti] we use 

!i.(h,N;x,0)=9_1 "S,,u(O,g;x,O), !i.1(h,N;x,0)=9_
2

"S,,u1(0,g;x,O), xE'R, gEG 

and therefore 
<I>(!i.(h,N),to) "S,, <I>(u(0,9_),to), g E G. 
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In order to use an already computed bound J?.(h, N; x, t), x E R, t E [to, t;] as an initial 
condition in the next interval [t;, i;+il it needs to satisfy 

<Ii(J?.(h, N), t;) ~ <Ii(u(O,g), t;) , g E G. ( 4.11) 

If J?.(h, N) is constructed in the interval [to, ti] in such a way that LJ?.(h, N) ~ 0, then at 
t = t1 we have 

<Ii(J?.(h, N), t1 ) ~ <Ii(u(O,g), t1 ), g E G. 

Therefore the condition ( 4.11) is "self-generating" along the mesh. This is not true for 
the conditions 

!?.(h, N; x, t1) ~ u(O, g, x, t;) , J?.,(h, N; x, t;) ~ u,(O, g; x, i;) , x ER, g E G 

which would be required if the monotone property of the operator T was applied. Similar 
statements hold true for the construction of an upper bound s( h, N). 

4.2 General Outline of the Method 

The main idea is to construct lower and upper bounds as solutions of initial value problems 
derived from (4.4)-(4.5). We consider a mesh {t; = jh : j = 0, 1,. .. ,)} in the time 
dimension. In every interval [t;, t;+il we consider a pair of problems 

where 

uu(x, t) - uxx(x, t) = j(x, t, u(x, t)), x ER, t E [t;, t;+il 

u(x,t;) = !J; 1(x), u1(x,t;) = !JJ2 (x), x ER 

uu(x, t) - Uxx(x, t) = ](x, t, u(x, t)), 
u(x,O) = 9,1(x), u,(x,O) = 9J2(x), 

x E R, t E [t;, t;+i] 

xER 

(4.12) 

(4.13) 

• functions j and J are lower and upper bounds of suitable form for f, i.e. we have 

j(x, t, u) ~ f(x, t, u) ~ f (x, t, u), x, u E R, t E [t;, t;+i] , ( 4.14) 

• functions []01, []02 are lower bounds of suitable form for [J_
1 

and [J_
2 

and 901, 902 are 

upper bounds of suitable form for 91 and 92 respectively, i.e. we have 

(4.15) 
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• for j ?: 1 

[!i 1(x) = ;;_(h,N;x,t;), g;1(x) = s(h,N;x,t;), 

9;2(x) = ;;_,(h,N;x,t;), g; 2 (x) = s,(h,N;x,t;), x ER 

assuming that the bounds !J.(h, N; x, t), s(h, N; x, t) are already computed fort:<::; t; 
and satisfy conditions 

( 4.16) 

Denote by y and ii the solutions of problems (4.12) and (4.13), respectively. Using the 

inequalities (4.15) (when j = 0) and the inequalities (4.16) (when j?: 1) we obtain that 
at the initial point ti of the interval [t;, ij+i] functions y and ii satisfy 

<I>(y,t;) :<::; <I>(u(O,g),ti) :<::; <I>(u,ti), g E G. 

From (4.14) we also obtain 

Ly -j(.,.,y) :<::;Ly -j(.,.,y) = 0 = Lu(O,g)-f(.,.,u(O,g)), 

Lu- f(-,.,u)?: Lu -](.,.,ii)= o = Lu(O,g)-f(.,.,u(O,g)). 

( 4.17) 

( 4.18) 

Then theorem 4.2 and inequalities (4.17), (4.18) imply that the solutions y and ii of 

problems (4.12) and (4.13) are lower and upper bounds for every solution u(O,g), g E G 
of problem ( 4.4 )-( 4.5). 

In addition, from Theorem 4.2, we also have 

<I>(y, t) :<::; <I>(u(O,g), t) :<::; <I>(ii, t), t E [t;, ti+iJ. 

Lower and upper bounds for u(O, G) can be obtained from (4.12) and (4.13), provided 
those problems can be solved in some constructive way. In general, we can obtain only 
approximations y (•), fi(•) to the solutions y, ii of ( 4.12) and ( 4.13) using certain numerical 

procedures. In doing so, we must ensure that yH :<::; u(O,g) :<::; uH, g E G is satisfied. We 

solve (4.12) and (4.13) iteratively. Given some suitable initial bounds y M, uM E !1[0, t], 

sequences {y (r)}, {fi(r)} C !1[0, t] are defined recursively with y (r+i) being a solution of 

u,,(x, t) - Uxx(x, t) = j(x, t, y (r)(x, t)) 

u(x, ti)= 9;1(x), u,(x, t;) = 9;2(x) ( 4.19) 
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and iiJr+i) a solution of 

uu(x, t) - Uxx(x, t) = }(x, t, iiJrl(x, t)) 
u(x, 0) = gj1(x), u,(x, 0) = gj2(x) 

Provided the initial functions y (o), u(o) satisfy the following conditions 

L(y (o)) < j(., ., y (o)) 

L( u(o)) > ](.,., -u(0 l) 

<I>(y(o),t;)::; <I>(u(O,g),tj)::; <P(u(0l,tj), g E G 

it can be proved inductively that 

y (r) :S u(O, g) :S iJ(r) ' g E G, r = 0, 1, 2, ... 

87 

( 4.20) 

<P(y.(rl,t) :S <I>(u(O,g),t) :S <P(u(rl,t), t E [lj,lj+l], g E G, r = 0,1,2,. ... (4.21) 

Indeed, for r=O, using 

L(y <0l) - J(-,., y <0l) :S L(y (o)) - j(.,., y (o)) :S 0 , 

L( u(o)) - f(., "iJ(O)) ?: L( iJ(O)) - Jc" iJ(O)) ?: 0 ' 

<P(y.<0l,tj)::; <I>(u(O,g),tj)::; <P(u<0 l,tj), 

from Theorem 4.2 we obtain y (o) ::; u(O, g) ::; u<0J and <I>(y 0 , t) ::; <P( u(O, g), t) ::; <I>( u(o), t), 

t E [ti, tj+i]· 
Let (4.21) be true for some r. Since y.(r+l) and iJ(r+l) are solutions to (4.19) and (4.20) 

we have 

L(y(r+l)) = j(-,.,y(r)) :<::'. j(.,.,y.(r)) :<::'. J(-,.,u(O,g)) = Lu(O,g) 

L(u(r+l)) = ](.,., iJ(r))?: J(.,., iJ(r))?: J(.,., u(O,g)) = Lu(O,g) 

<P(y.(r+il,o)::; <I>(u(O,g),O)::; <P(u(r+il,o) 

Then Theorem 4.1 implies y.(r+i) :S u(O,g) :S iJ(r+l) and <I>(y.(r+l),t) :S <P(u(O,g),t) :S 

<I>(ii(r+ll,t), t E [lj,lj+il· Therefore inequalities (4.21) are true for any r = 0,1,2,. ... 
Using similar arguments it can be also proved that if j and j are increasing about 

u (this may be expected because f is increasing about u) then {y (r)} is an increasing 

sequence and { fi(r)} is a decreasing sequence, i.e. 

y.(O) :<::'. y.(1) :<::'. ... :<::'. y.(r) :<::'. ..• :<::'. u(O,g) :<::'. ... :<::'. ii(r) :<::'. .•. :<::'. u(l) :<::'. u(o). 
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After a sufficient number r• of iterations we take §.(h, N) = y (r') and s(h, N) = fi(r') 

as approximate solutions to (4.12) and (4.13). 
Problems ( 4.19) and ( 4.20) are solved by computations in the Cartesian product of the 

Taylor functoid and the Fourier functoid. The solutions of problems (4.19) and (4.20) are 
obtained as Fourier series of x with coefficients that are polynomials oft. Since functions 
fl ;1, fl j2, !'JJ1 and gj2, representing the initial conditions in problems (4.19) and (4.20), 

when j :::0: 1, result from computations in the previous time interval, they are already 
functions in the Fourier functoid. Functions flo1, flo2, ?101, ?102 are obtained from [!_

1
, [!_

2
, 91 , 

92 by using directed Fourier roundings. For functions J and J it will be difficult to produce 

a suitable definition for every x, u E R, t E [tj, tj+i] . However, for the implementation 
of the iterative procedure we need only expressions for j(x, t, u(x, t)) and f(x, t, u(x, t)) 

where u is a given function. Such expressions are obtained using directed Fourier and 
Taylor roundings. In the next section we will revisit the Fourier functoid, particularly 
considering the directed roundings. In order to simplify the presentation we will consider 
periodical functions with period 2, i.e. following the notations adopted in this section we 
take l = 1. 

4.3 Fourier Functoid: Interval and Directed 
Roundings. 

The Fourier functoid JFN is defined as the span of {cos(brx),sin(brx)}f=o' i.e we have 

JFN = {E(ak cos(brx) +bk sin(brx)): ak, bk ER} . 

The functoid lf'N is a screen of 1 2 (-1, 1). Let f E L2 (-1, 1) have a Fourie series of the 
form 

00 

J(x) = L;(akcos(kirx)+bksin(brx)) 
k=O 

The mapping PN : 1 2(-1, 1) >-+ :Jf'N defined by 

N 

PN(f) = L;(akcos(kirx) + bksin(kirx)) 
k=O 

is a rounding from 1 2(-1, 1) into JFN. The arithmetical operations and integration in 
JF N are discussed in the preliminaries (see section 2.6.2). 

The interval Fourier functoid is 

IJFN = {E(Ak cos(kirx) +Bk sin(krrx)) : Ak, Bk E 7R.} 
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Using the general approach described in section 2.6.1 the interval round of f is defined by 

oo N 

Ip(!)= a0 +[-1,1] I: Jaz + b~ + I;(ak cos(brx) +bk sin(brx)). 
k=N+l k=l 

This definition is really applicable only when the Fourier series of f is finite. Since the 
operations in IlF considered in the introduction require rounding only from U 2N onto 
I!FN, this definition (extended for interval functions) was applied. However, in general, 
we have at least two problems with that definition: 

• Is the series f J a% + b% convergent? 
k=N+t 

00 

• If the series I: J az + b% is convergent, how can this sum be obtained construc­
k=N+l 

tively? 

In order to define an interval rounding IpN for a function f E £ 2 (-1, 1) we need to 
have an estimate of the form 

max IJ(x) - PN(f)(x)I ::; aN(f)--+ 0 when N--+ oo. 
xE[-1,1] 

This implies that PN(f) converges uniformly to f. In general, PN(f) converges to f E 
L2(-l, 1) only in the £ 2 norm. Therefore U can not be an interval screen of £2(-1, 1) 
but it can be an interval screen of a subset of £ 2 (-1, 1) consisting of functions for which 
the Fourier series converges uniformly. 

The Sobolev space Hm(a,b) is defined by 

where the derivatives are considered in the generalized sense of distributions [4], [31 ]. Due 
to the Sobolev lmbedding Theorems this space can also be represented as 

where only the last derivative is in the sense of distributions. In the analysis of Fourier 
methods, the natural Sobolev spaces are those of periodic functions: 

{ 
dkf } H;r(a,b) = J E L2(a,b): dxk E L2(a,b) for 0::; k::; m 

{f E cm-1[a,b]: f-periodic (period b- a) on R, d~fm-l E L2(a,b)} 
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where the derivative is in the sense of periodic distribution (period b - a) [20]. Obviously 
we have 

H;:,(a,b) C Hm(a,b). 

We will show that rtF is an interval screen of H;"(-1, 1), i.e. we consider M -
Hier(-1, 1). Let f EM. Then 

00 

J(x) = 2.:)akcos(brx)+bksin(k?rx)) 
k=O 

for every x E R and 

1
1 00 

_
1 

(f'(x))
2 

dx = {; k2 7r 2 (a% + b%}. 

We can estimate lf(x) - PN(f)(x)I as follows 

lf(x) - PN(f)(x)I = 

< 

< 

< 

00 

L (ak cos(k7rx) +bk sin(k7rx)) 
k=N+! 

00 

L lakcos(k7rx)+bksin(k7rx)I 
k=N+l 

00 00 1 
I: )at+ b% = I: -Jk2a~ + k2bz 

k=N+l k=N+! k 

( f ~) t ( f (k2 a% + k2b%)) t 
k=N+! k k=N+l 

1 

< .;., (~11 

(f'(x))
2
dx-t(k2a%+k2bkJ)

2 

v N 7r -1 k=O 

Therefore 

max lf(x) - PN(f)(x)I '.S €N(f) = ;., (~11 
(f'(x))

2 
dx - f,(k 2 a% + k2 b%)) t 

xE[-1,1] y N 7r -1 k=O 
( 4.22) 

The estimate €N has two important characteristics: 
1. It is easily computable. Since ak, bk, k = 0, 1, ... , N are already computed with the 

computation of PN(f) we only need j_1

1 
(f'(x)) 2 dx. 

2. The order of convergence of c:N(f) towards zero adjusts automatically according 
to the properties off. For example, if f has a jth derivative in L2 (-1, 1) then €N(f) = 
o ( N-j+t). 
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If the Fourier series off E M is finite, we do not need to use C:N. Since the arithmetical 
operations considered in the introduction involve only rounding of functions in 'I!F2N, in 
order to have uniformity, we define lpN : M >--+ 'I!FN in the following way: 

N 

IpN(f) = ao + [-1, 1 ]aN(/) + L( ak cos(brx) +bk sin(brx)) 
k=I 

2N 

where aN(f) = L J a%+ b% + e2N(f). The definition of IpN can be extended over PM 
N+I 

in a natural way. Let F E PM. 

where 

N 

IpN(F) =Ao+ [-1, l]aN(F) + L(Ak cos(brx) +Bk sin(brx)) 

2N 

k=I 

Ao= [{ao(f): f E F}], Bo= 0, 
Ak = [{ak(f): f E F}], Bk= [{bk(!): f E F}], k = 1,2,. .. , 
aN(F) = [{aN(f): f E F}] . 

When F = 2::(Akcos(k1rx) +Bk sin(brx) E JF2N we have 
k=O 

N 

IpN(F) =Ao+ [-1, l]aN(F) + L(Ak cos(brx) +Bk sin(brx)) (4.23) 
k=l 

where 
2N 

a( F) = L J A% + Bi . 
k=N+I 

The interval rounding lpN also defines directed rounding e_N and PN in M. We have 

where 

N 

e_N(f) - ao - O"N(/) + 2::(ak cos(brx) +bk sin(brx)), 
k=I 
N 

PN(f) ao + aN(f) + L(ak cos(brx) +bk sin(brx)). 
k=l 
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Using directed roundings the operations in JI' can also be defined with rounding to the 
left or to the right. In analogy with the advanced computer arithmetic we will denote the 
operations in JI' with rounding to the left by 

'Cl, o E{+,-,x,/}, 1 
and the operations in JI' with rounding to the right by 

/S., o E{+,-,x,/}, 4. 
4.4 Some Aspects of the Numerical Implementation 

of the Method 

4.4.1 Formulation of the Pair of Problems (4.12), (4.13). 

One of the inconveniences in using the interval Fourier functoid is that the upper and the 
lower bounds of 

N 

L (Ak cos(k1rx) +Bk sin(brx)) E IJF 
k=O 

are not functions in JI'. In other words I1F is not the interval space over JI'. Let [, 1 E M, 
j_ ~ 1 and F = [i_, 1]. Obviously, FE PM. We have 

N 

£-N(j_) ao - !7N([) + L (g_k cos( brx) + ~ sin( brx)) 
k=l 
N 

PN(]) - ao + !7N(]) + L (ak cos(k7rx) +bk sin(brx)) 
k=l 

Since the inequalities f!k ~ ak, Qk ~ bk are not necessarily true, the interval function 
[eN(j_), PN(1)] is not, in general, an element of I!F. It is easy to see that 

[&([), PN(])] C (f!o - 17N([)) V (ao + 17N(1)) 
N 

+ L ((ih V ak) cos(k7rx) +(!!.kV bk) sin(k7rx)) C IpN(F). 
k=l 

We have 

N 

= ao -Qo +!7N([) +!7N(1) + L ((ak -f!k)cos(k7rx) +(bk -!!.k)sin(k7rx)) 
k=l 
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while 

N 

w(IpN( F)) :::0: lao - Qo + O'N([) + aN(]) I+ I; (lak - !!.kl I cos(brx) I + lbk - hi I sin(brx) 1) 
k;l 

It is obvious that there is, in general, a significant difference between the width of 
[&,,(L), PN(])] and the width of IpN(F), which increases when N increases. 

For that reason we will not apply the interval Fourier functoid 'Ilf' for approximation 
of the solution u(O, G; x, t) of problem ( 4.4)-( 4.6). Instead, we will use the directed 
roundings e_N and PN to obtain lower and upper bounds 12.(h, N), sN(h, N) such that for 
every t E [O, t] 

12.(h, N; ., t) E :Jf , sN(h, N; ., t) E :Jf. 

Remark: Strictly speaking the coefficients of e_N (L) and p N(]) will also be intervals 
when they are represented on a computer, which makes e_N(L) and PN(1) elements of 
'I!f'. However in order to simplify the presentation, we will consider the coefficients 
as real numbers and use point (noninterval) notations, assuming that in the practical 
computations they will be represented as narrow intervals according to the advanced 
computer arithmetic discussed in section 2.2. 

The formulation of problem (4.4)-(4.6) on every interval [t;, t;+i] as two problems, 
(4.12) and (4.13), facilitates the above approach. We need to calculate a lower bound for 
the solution of (4.12) and an upper bound for the solution of (4.13). 

Since we will use computations in the Fourier functoid, the 'suitable form' of 9 01 , 901 

and [!02, 902 are lower and upper Fourier approximations of g_1, g1 and g_
2

, g2 , respectively, 

Le. 

Since the bounds 12.(h, N), s(h, N) are obtained as Fourier series about x and for every 
t E [O, t] 

we also have 

12.(h, N; x, t), s(h, N; x, t) E :Jf 

[!;1=12.(h,N;x,t;) E :JP, 9J1 = s(h,N;x,t;) E :JP, 

[!;2 = 12.1(h, N; x, t;) E :Jf, 9;2 = s,(h, N; x, t;) E :Jf 

for j 2': 0. Therefore for every j = 0, 1, ... ,J-1 functions[! ;1, 9;1, [! ; 2 , 9;2 are represented 

in the following form: 

N 

9;1(x) - Q'.10 +I; (rr1k cos(brx) + (}_1k sin(brx)) 
k;l 
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N 

Q 20 +I:: (Qzk cos(brx) + ~2k sin(brxJ) 
k=I 
N 

9j1(x) = a10+ I:: (alkcos(krrx)+;@lksin(brx)) 
k=I 
N 

9j2(x) = a20+ I:: (a2kcos(krrx)+;@2ksin(krrx)) 
k=l 

94 

Functions j (x, t, u(x, t)) and }(x, t, u(x, t)) are represented as Fourier series of x 

with coefficients that are polynomials of t. Using directed Fourier and Taylor round­
ings j(x, t, u(x, t)) and }(x, t, u(x, t)) can be described as follows: 

Let 

N 

IpN(f (.,., u) )(x, t) = a0 (t) + [-1, l ]o-N(f; t) + I:: ( ak(t) cos(krrx) + bk(t) sin(krrx)) 

and let 

Then 

k=O 

N 

j(x, t, u(x, t)) = Lm(a0 - o-N(f)) - I:: Ja!(ak) + 0-!(bk) 

f(x, t, u(x, t)) 

k=l 
N 

+I:: (rm(ak)(t)cos(krrx) + Tm(bk)(t)sin(krrx)) 
k=O 

N 

7m(ao + o-N(f)) +I:: Ja!(ak) + 0-!(bk) 
k=l 

N 

+I:: (rm(ak)(t) cos(krrx) + Tm(bk)(t) sin(krrx)) . 
k=O 

( 4.24) 

This is possible under the additional assumption that f has m+ 1 bounded derivatives 
about t and u. All numerical experiments are performed with the same m (m = 3). That 
is why m is not included in the list of parameters of the method. 

For computational reasons, in the interval [tj, t;+1J, it is more convenient to present 
the coefficients in ( 4.24) in the form of polynomials of~ = t - tj rather then t. More 
precisely, functions j( x, t, y (r)( x, t)) and /( x, t, ft(r)( x, t)) in ( 4.19) and ( 4.20) respectively 
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are represented as follows: 

j(x,t,y(r)(x,t)) 

f(x,t,uVi(x,t)) 

4.4.2 Implementation of the Iterative Procedure 

The implementation of the iterative procedure defined by ( 4.19) and ( 4.20) requires solving 
problems of the form 

uu(x, t) - Uxx(x, t) = ,P(x, 6.) 
u(x,t1) = g11(x), u,(x,tJ) = gJ2(x) 

where fl= t - t1 and functions ,P, g11 , g12 are of the form 

N 

g11(x) a10 + L (alk cos(hrx) + ,@lksin(brx)) , 
k=l 

N 

gj2 ( x) a20 + L ( a 2k cos( hrx) + ,62k sin( brx)) , 
k=l 

m Llq N m ( Llq Llq ) 
,P(x,t.) = [;aoqqr+ {;{; akqq!cos(k7rx)+bkqq!sin(k7rx) 

( 4.25) 

( 4.26) 

( 4.27) 

( 4.28) 

Let f(x, t., t) be the triangle with vertices (x, t + t.), (x - fl, t) and (x + t., t). Using 
Green's theorem we have 

J J 1/J(y,B))dyd(} = J J (utt(y,0)- Uxx(y,O))dyd(} 
r(x,6.,tJ·) r{x,6.,tj) 

f (-ux(Y, O)dll - u,(y, ll)dy 
Br(x,t.,t,) 

x+t. 

= 2u(x, t1 + t.) - u(x - t., 0) - u(x +fl, 0) - J u,(y, O)dy 
x-t. 

x+t. 

= 2u(x, t) - g11(x - fl) - g;1(x +fl) - J g12(y)dy. 
x-t. 

Therefore, we have 

u(x, t) = ~ J J ,P(y, ll)dydll + <fi(x, ll) 
r(x,a,tj) 

( 4.29) 
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where 
1 ( •+" ) ¢(x,6) = 2 9j1(x + 6) + 9J1(x-6) + /,_,, 9j2(y)dy 

and 6=t-tj. 
Using the fact that 9Ji and gj2 have the form (4.26) and (4.27), the function ¢(x,6) 

can be simplified in the following way: 

1 2 (g;1(x + 6) + g;1(x - 6)) = a 10 

1 N 
+2 L (et1k(cos krr(x+6) +cos krr(x-6)) + ;'./1k(sinkrr(x+6) + sinkrr(x-6))) 

k=l 
N 

= et10 + L ( Ct1k cos( krrx) cos( krr 6) + ;'./1k sin( krrx) cos( krr 6)) 
k=l 
N 

= et10 + L cos(krr6)(a1kcos(krrx) + ;'./!ksin(krrx)), 
k=l 

1 x+~ 

2 /,_,,. 9j2 (y )dy = Ct206 

+~ ~ ( ~~(sinkrr(x+6)-sinkrr(x-6))- ~~(coskrr(x+6)- coskrr(x-6))) 

= et206 + ~ ( ~~ cos(krrx) sin(krr 6) + ~~ sin(krrx) sin(krr 6)) 

= et206 + ~sin( krr 6) ( ~~ cos( krrx) + ~~ sin( kJr:x)) , 

¢(x, 6) 
N 

et10 + et206 + {; ( ( a 1k cos(krr6) + ~~ sin(k1r6J) cos(krrx) 

+(;'.Ilk cos(krr6) + ~~ sin(krr6)) sin(kirx)) 

The coefficients in the above Fourier sum are not polynomials. Because 

cos(kir6) E 
m' (-l)"(kir6)2q (kir6)2m'+2 
~ (2q)! + [-l, l] (2m' + 2)! ' 

sin(kir6) E 
m" (-l)q-l(krr6)2q-1 (kir6)2m"+l 
~ (2q - 1)! + [-l, l] (2m" + 1)! ' 



CHAPTER 4. VALIDATED SOLUTION OF THE WAVE EQUATION. 97 

where m' is the largest integer not greater then ; and m" is the largest integer not greater 

then m; 1 
, we obtain the following inclusion 

(
(brh)2m'+2 N 2 2 (k7rh)2m"+l N V°'~k + f3?k) 

</;(x, L'-..) E a10 + [-1, l] (2m' + 2)! {; V°'1k + f31k + (2m" + l)! {; k7r 

N (( m' (k7rL'-..)2q CXzk m" (k7rL'-..)2q-1) 
+ a20L'-.. + L °'lk L (2 )! + k7r I:; (2 - l)! cos(k7rx) 

k=l q=O q q=l q 

( 

m' ( k7r t-,_ )2q f3zk m" ( k7r t-,_ )2q-l) . ) 
+ f31k ~ (2q)! + k7r ~ (2q -1)! sm(k7rx) 

In order to obtain a lower bound for the solution of ( 4.25) we use in ( 4.29) the lower bound 
of the above interval function, and in order to obtain an upper bound for the solution of 
( 4.25) we use in ( 4.29) the upper bound of this interval function. 

Since ,Pis a sum of the form (4.28) the double integral in (4.29) is a sum of integrals 
of the form 

j j :; dydO , j j :; cos( k7ry )dydO , j j :; sin( k7ry )dydO . 
r(x,A,tj) r(3:,A,tj) r(x,A,tj) 

For the evaluation of the above integrals we will derive explicit formulae. We have 
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[ 
q eq-l ( eih(x+Ll.-0) l eib(x-L>+o)) l Li. 

- - {; (q-1)! (ibr)l+2 + (-1) (ik7r)1+2 o 

eikn(x+L>) eikn(,,...Li.) q (1 + (-1)1) fiq-l . 
== . + _ L eiknx 

(ibr)q+2 (-ibr)q+Z l=D (ibr)1+2 (q-1)! 

.eiknx (eihL> + (-l)qe-iknL> - t ((ibr!i)I + (-1)"(-ibr!i)I)) 
( zkrr )q+Z l=D l! I! 

eibx •+i ( f 1 (krrfi)2l) 
2(krr)q+2(-1)2 cos(krr6)- {;(-1) (2I)! , q-even 

eik1rx +i ( ~ (kn6)21-1) 
2(krr)q+2(-l)T sin(krr6)- ~(-1)1- 1 

(2l- l)! , q-odd 

= 

00 Li 21 
2 L (-l)1-t+1(krr)2l-q-2 __ 

1
eiknx 

l=f+I (21). 
, q-even 

00 1 ei21-1 
2 L (-l)l-T-(krr)2l-q-3 eiknx ' q-odd 

-tl'. (21 - 1 )! 
/_ 2 

Therefore 

Re ( 1/j;I :~ eiknydyd(}) 

00 q ei21 
-2 I; (-1)1-2(krr) 21_"_2-

1 
cos(krrx) 

/-· (21). -2+1 
00 q+l fi21-1 

2 I; (-l)I--, (krr) 2l-q-3 sin(krrx) 
1-tl'. (21-1)! 
- 2 

, q - even 

, q - odd 

j j :; sin( krry )dyd(} 
r'(x,A,tJ) 

_ 1 m ( j j :>ikny dyde) 
r(x,..::i.,t1 ) 

00 fi21 
-2 I; (-1) 1-~(krr) 21-q-2-1 sin(krrx) 

~1+1 (21). 
, q - even 

00 fi21-i 
2 I; (-1) 1-~(krr) 21-q-3 cos(krrx) 

+3 (21 - 1)! t=T 
, q - odd 

The coefficients of cos(krrx) and sin(krrx) in the above expressions need to be rounded to 
polynomials of degree at most m. We have the following inclusions 

r<//I :~ cos(krry)dyd(} E [r<al :~ cos(krry)dyd(} ,r<ff,l :~ cos(krry)dyde] 
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(krrh)2m'+2 m' tJ.21 
[-2 2] -2 L (-l/-~(krr) 21-q-2 --cos(krrx) , q- even 

' (2m' + 2)! 1_, 1 (21)! 
-,+ 

(krrh)2m"+1 m" +i tJ.21-1 
[-2 2] + 2 '\""' (-1)1-T(krr)21-q-3 sin(krrx) , q - odd 

' (2m"+l)! 1~, (21-1)! --, 
( 4.30) 

r/j;I :~ sin(k1ry)dyd0 E [rly;I :~ sin(krry)dydO ~lfil :~ sin(krry)dydO] 

(krrh)2m'+2 m' tJ.21 
[-2,2] ( 1 )I -2 L (-1) 1-~(krr) 21-q- 2 (2l)I sin(krrx) 

2m + 2 . l=~+i . 
, q - even 

(k7rh)2m 11+I m
11 

_ 1 ~21-1 

[-2, 2] (2m" + 1 )! + 2 ~ (-1)
1-9- (krr )21

-o-
3 

(
2
I _ 1 )! cos(krrx) 

l= 2 

, q - odd 

The lower (upper) bound of the above interval functions is used in ( 4.29) for computing 
a lower (upper) bound for the solution of (4.25). 

Then, given it (rJ and u(r), we have 

where 

,P(y, 0) 

,P(y,O) 

<f!_(x, ti.) 

-:f,(x, ti.) 

it (r+l)(x, t) ~ tf ,P(y, O)dydO + <f!_(x, ti.) , 
r(x,d,tj) 

~ # "1jj(y, O)dydO + -:f,(x, ti.) , 
r(x,ti.,tj) 

= j(y, fj + 0, it (rl(y, fj + 0)) 1 

f(y, tj + (}, u(rl(y, tj + 0))' 

(krrh)2m'+2 N 2 2 (krrh)2m"+1 N Jg_~k + (}_~k 
Qio - (2m' + 2)! {; Jg_,k + {}_,k - (2m" + l)! {; krr 

N (( m' (krrtJ.)2' Q2k m" (krrtJ.)2q-1) 
+ Qiotl. + L Qlk L (2 )I. + k~ L (2 _ l)! cos(krrx) 

k=I q=O q " q=I q 

( 4.31) 

( 

m' (k7rtJ.)2q (}_2k m" (krrtJ.)2q-1) . ) 
+ (}_lk L (2 )I + -k L (2 _ l)I sm(krrx) , 

q=O q · 7r q=l q · 
---

(krrh)2m'+2 N -2 (k7rh)2m"+l N Ja2 + (J2 
= Zi10 + (2m' + 2)! {; yafk + f31k + (2m" + l)! {; 2%rr 2k 
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N ((- m' (k7rfi.)2q z;;2k m" (k7rfi.)2q-l) 
+ ~ °'lk?; (2q)! + k7r ~ (2q _ l)! cos(k7rx) 

(

- m' (k7rfi.)2q 7J2k m" (k7rfi.)2q-l) . ) 
+ /)lk?; (2q)! + krr ~ (2q -1)! sm(k7rx) 

and m' is the largest integer not greater then ; , m" is the largest integer not greater 

m+l 
then -

2
-. 

Let us note that the functions <£.and ({> are computed once for the interval [tj, tj+l], 
since they do not change during the iteration process. 

An essential part of the computations in ( 4.31) is the evaluation of the double integrals 
with directed rounding which is reduced to evaluating integrals of the form 

Suitable formulae for evaluation of the above integrals a.re provided by ( 4.30). 

4.5 Accuracy 

As in all validating methods, the bounds §.(h, N), s(h, N) produced by this method carry 
within themselves an assurance of their quality. 

In the case of a point (not interval) initial condition, i.e. G(x) = g(x) E R, x ER, 
the width 

w(S(h, N)) = s(h, N) - ,,_(h, N) 

results only from computational errors of different sorts. If the computed bounds are 
too wide the parameters of the method N, h, m can be adjusted accordingly. If a certain 
accuracy is given in advance this adjustment can be made automatically by the computer 
program. 

In the case of an interval initial condition we have [u(O, G)] C S(h, N) where 
w[u(O, G)] > 0. Then the function 

w(S(h, N)) - w([u(O, G)]) 

is an estimate for the total computational error. However, this function is unknown and 
although the bounds §.( h, N), s( h, N) a.re guaranteed we don't know how close they are 
to the optimal enclosure [u(O, G)] of the solution set u(O, G). The formulation of problem 
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(4.4)-(4.6) as two problems (4.9) and (4.10) allows us to rectify this situation. We caJJ. 
simply solve problems ( 4.9) and ( 4.10) (which are problems with a point initial condition) 
separately obtaining lower and upper bounds for the solution of each of them and also 
controlling the accuracy. Then the lower bound for the solution of ( 4.9) and the upper 
bound for the solution of (4.10) are the bounds for u(O, G). 

An a priori estimate, although not needed to determine the accuracy of a particular 
numerical solution, can generally characterize the quality of the method. From the form 
in which the bounds are computed one caJJ. easily see that the global error is 

( 4.32) 

provided 91, 92 have j derivatives about x in 1 2(-1, 1 ), f has j derivatives about x and 
u in L2 ( -1, 1), f has bounded m + 1 derivatives about t and u and N h < const. 

4.6 Numerical Examples 

The numerical results presented in this section are produced by a Pascal-XSC program 
which implements the method described in the previous sections. The maximum degree 
m of the polynomials of t is 3 for all examples. Therefore the accuracy is 

( 4.33) 

All examples are periodical with period 2 initial value problems for the wave equation. 
Graphs of solutions, enclosures and errors are plotted for x E [-1, l]. 

Example 4.1 We consider the p~riodi~ p(o~lem fo~ th\ equation 

Utt Uxx - 11" + ( t + l )2) U 

with three different initial conditions. 

A. Noninterval Initial Condition in the Fourier Functoid. 

We consider equation ( 4.34) with an initial condition 

u(x,O) = sin(7rx), u,(x,O) = 2sin(7rx) 

( 4.34) 

( 4.35) 

The functions prescribed as values of both u(x, 0) and u,(x, 0) are trigonometric polyno­
mials so that no rounding of these functions is required. The only function which needs 
to be rounded is the coefficient of u in the equation ( 4.34) and this is done in every in­
terval [t;, t;+1]· The exact solution to the problem is u = (t + 1)2 sin(7rx). On figure 4.1 
where the solution and the enclosure computed with N = 5 and h = 2-5 are plotted, the 
solution and the enclosure are visually undistinguishable. Values of the solution aJJ.d the 
computed bounds at some points are presented in table 4.1. 
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Since the solution is a trigonometric polynomial about x we need a relatively small 
number N of spectral functions (N = 5) and further increase of N will not improve the 
accuracy. The leading term of the error is O(h4 ). On figure 4.2 the maximum norm in x of 
the error of approximation is plotted against the time variable on a logarithmic scale. The 
obtained numerical results are consistent with the expected rate O(h4 ) of convergence. 

5 

0 

-5 

2 
1.5 

-1 1 
0 0.5 

0.5 0 
Figure 4.1: Problem (4.34), (4-35). Exact sotution and enclosure computed with N = 5 
and h = 2-5 • 

N = 5 h = 2-5 , 
x=O x = 0.5 

t solution bounds radius solution bounds radius 

0.5 0.0000 +0.0001 2.3E-5 2.2500 501 2.3E-5 -0.0001 2·2499 

1.0 0.0000 +0.0002 l.9E-4 4.0000 4.0002 l.9E-4 
-0.0002 3.9988 

1.5 0.0000 +0.0011 l.lE-3 6.2500 511 l.lE-3 -0.0011 6·2490 

2.0 0.0000 +0.0053 5.3E-3 9.0000 9.0052 5.3E-3 -0.0053 8.9948 

Table 4.1: Problem (4.34), (4.35). Values of the solution and the computed enclosures at 
some points. 
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Figure 4.2: Problem (4.34), (4.35). Maximum norm in x of the radius of the enclosures 
computed for various step sizes h (logarithmic scale). 

B. Noninterval Initial Condition Which Needs Rounding. 

We consider equation ( 4.34) with an initial condition of the form 

{ 
x(l - x) , 0 :::; x :::; 1 

u(x,O) = ( ) , u,(x,O) = 0 
x 1 + x , -1::::: x::::: 0 

( 4.36) 

Since the function prescribed as the value of u(x, 0) is not in the Fourier functoid it needs 
to be rounded, i.e. lower and upper bounds in the form of trigonometric polynomials are 
computed. Therefore a larger number of spectral functions will be required to achieve 
accuracy similar to the accuracy of the enclosures obtained for the solution of problem 
(4.34), (4.35) with only N = 5. Figures 4.3, 4.4 and 4.5 present the enclosures computed 
with N = 10, N = 20 and N = 40 respectively. Let us note that we may not allow 
N-+ oo while his fixed because Nh < canst. In the presented numerical experiments we 
double N and reduce the step size h twice. Numerical values of the enclosures at some 
points are presented in table 4.2 
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1 
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0 
-0.5 
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2 
1.5 

1 
0.5 

Figure 4.3: Problem (4.34), (4.36). Enclosure computed with N = 10 and h = 2-6 

0.5 

0 

-0.5 

-1 
-0.5 
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2 
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0.5 

Figure 4.4: Problem (4-34), (4-36). Enclosure computed with N = 20 and h = 2-7 
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0.5 

0 

-0.5 

-1 
0.5 

0 

2 
1.5 

1 

Figure 4.5: Problem (4.34), (4.36}. Enclosure computed with N = 40 and h = 2-8 

N = 10,h = 2-6 N = 20 h = 2-7 
' 

N = 40 h = 2-s 
' 

x = 0.5 x = 0.5 x = 0.5 
t bounds radius bounds radius bounds radius 

1.0 5078 
0.4 2189 1.5E-2 4011 

0.43284 3.7E-3 737 
0.43 555 9.2E-4 

2.0 1.1836 3.6E-1 91801 9.0E-2 5105 2.3E-2 0.4794 0.73932 0·8o630 

105 

Table 4.2: Problem (4.34}, (4.36). Values of the computed enclosures at some points . 

Since the initial function is differentiable only twice, the estimate ( 4.32) gives a rate 
of convergence o(N-~) + O(h4

) where o(N-~) is the dominating term. On figure 4.6 the 
maximum norm in x of the radius of the enclosures computed for various values of N and 
h are plotted against the time variable. The numerical results are consistent with the 
expected o( N- ~) rate of convergence. 
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Figure 4.6: Problem (4.34), (4.36). Maximum norm in x of the radius of the enclosures 
computed for various values of N and h (logarithmic scale). 

C. Interval Initial Condition. 

We consider equation (4.34) with an initial conditions of the form 

{ 
x(l-x), O:<:::x:<:::l 

u(x,O) E G1(x) = [-0.001,0.001] + ( ) 
x l+x, -l:<:::x:<:::O 

, u,(x,0) = 0 ( 4.37) 

In this case we compute bounds for a set of solutions 

u(O,G;x,t) = {u(O,g;x,t): g E G} 

where G = ( G1 , 0) and [u(O, G; x, t)] denotes its optimal interval enclosure. Since the 
right-hand side of the equation is an increasing function of u, the corresponding differential 
operator is an operator of monotone type. In section 4.1 it was shown that 

u(O,G) = [u(O,G)] = [u(0,2:),u(O,g)]. 

The lower and upper bounds prescribed for u(x, 0) are not in the Fourier functoid. 
Therefore they are rounded and lower and upper bounds in the form of trigonometric 
polynomials are computed with a certain error of approximation. While this error de­
creases when N increases, the total width of these bounds remains greater then 0.002 
which is the width of G1 . Since the solutions diverge from each other when t increases, 
this results in a larger width of the bounds at t = 2. On figure 4. 7 and figure 4.8, where 
the enclosures computed with N = 20 and N = 40 respectively are presented, the above 
phenomenon can be observed. In general, when the initial condition involves interval 
functions, a large enclosure width does not necessarily indicate poor accuracy because it 
may result from a large width of the solution set which is being enclosed. 
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Figure 4.7: Problem (4.34), (4.31). Enclosure computed with N = 20 and h = 2-1
. 
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Figure 4.8: Problem (4.34), (4.31). Enclosure computed with N = 40 and h = 2-s 
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In this case, it is important to know how close is the computed enclosure to the 
set of solutions or, more precisely, how close is the computed enclosure to the optimal 
interval enclosure of the solution set. The method which we consider allows us not only 
to compute enclosures but to compute their accuracy as well. We can compute a lower 
bound for the upper bound of [u(O, G; x, t)] and an upper bound for the lower bound of 
[u(O, G; x, t)] (see section 4.5). The enclosure S(h, N; x, t) computed with N = 20 and 
h = 2-7 together with the bounds discussed above are presented on figure 4.9. The 
interval function presented by the two outside surfaces (extreme top and bottom) is the 
enclosure S(h, N; x, t) of [u(O, G; x, t)] while the two surfaces inside presented an interval 
function S(h, N; x, t) which is enclosed by [u(O, G; x, t)], i.e. we have 

S(h, N; x, t) c [u(O, G; x, t)] c S(h, N; x, t) 

Therefore 
IS(h, N; x, t) - - S(h, N; x, t)I ( 4.38) 

is an estimate for the accuracy of the enclosure S(h, N; x, t). On figure 4.10 the maximum 
norm in x of the estimate ( 4.38) for various values of N and h is plotted on a logarithmic 
scale against the time variable. The graphs are similar to the graphs on figure 4.6 and 
are consistent with the expected rate of convergence o(N-~). 
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1.5 

1 
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Figure 4.9: Problem (4.34), (4.37). Enclosure S(h, N) of the solution set u(O, G) and 
inner approximation S(h, N) of the solution set u(O, G), both computed with N = 20 and 
h = 2-1 . 
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0.1 

N = 10 h = 2-6 
-

' 7 N = 20 h = 2- · · · · 
' 8 N = 40, h = 2- -

0.01 

0.001 .. 
. . 

0.00011o--

le-05 ~~-~~---'--"-----'--~-~~--'--'t 
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Figure 4.10: Pmblem (4-34), (4.37). Maximum norm in x of the estimate (4-38) for the 
accuracy of the enclosures computed for various values of N and h (logarithmic scale). 

Example 4.2 We consider the following periodic initial value problem: 

8 3 2 2 sin(37rx) 
Utt - Uxx = 3u + 71" U + 3(f + l) 3 

u(x, 0) = sin(7rx), ut(x, 0) = - sin(7rx) ( 4.39) 

The exact solution of this problem is 

sin( 1l"X) 
u= 

t+l 

The exact solution and bounds computed with N = 5 and h = 2-5 are graphically 
represented on figure 4.11. The solution and the bounds are visually indistinguishable. 
Numerical values at some points of the exact solution and the bounds computed with 
N = 5 and several different values of h are presented in table 4.3. Since the exact solution 
is a trigonometric polynomial of x further increase in the number of spectral functions has 
little influence on the accuracy of the bounds. In the estimate ( 4.33) the dominating term 
is O(h4

). It suggests that if the step size his halved at least one more correct digit of the 
solution is obtained. This agrees with the numerical results in table 4.3. The errors of 
approximation are also represented graphically on figure 4.12 where the maximum norm in 
x of the radius of the bounds computed for several values of h is plotted on a logarithmic 
scale against the time variable. 
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Figure 4.11: Problem (4.39). Exact solution and enclosure computed with N = 5 and 
h = 2-5 • 

N = 5 h = 2-5 , N = 5, h = 2-6 N = 5 h = 2-7 , 
x = 0.5 x = 0.5 x = 0.5 

t solution bounds radius bounds radius bounds radius 

1.0 0.5000 50017 
o.49982 l.7E-4 50001 

0.49999 8.7E-6 50001 0-49999 5.2E-7 

2.0 0.3333 3795 
0.3 2871 4.6E-3 56 

0.33310 2.3E-4 5 
0.33332 1.4E-5 

Table 4.3: Problem (4.39). Values of the solution and the computed enclosures at some 
points. 
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Figure 4.12: Problem (f.39). Maximum norm in x of the radius of the enclosures computed 
for various step sizes h (logarithmic scale). 

Example 4.3 We consider an equation similar to the equation in example 2, but with an 
initial condition which is not in the Fourier functoid and requires rounding. We consider 
cases of noninterval and interval initial conditions. 

3 
Utt - Uxx = U 

A. Noninterval Initial Condition. 

u(x,O)={x(l-x),O::;x:=;l , u,(x,0)=0 
x(l + x) , -1 :::; x :::; 0 

( 4.40) 

( 4.41) 

As in example 4.1, case B, the prescribed value of u(x, 0) needs to be rounded and a 
larger number of spectral functions is required to achieve accuracy similar to the accuracy 
of the enclosures obtained in example 4.2. Figure 4.13 presents the enclosures computed 
with N = 5. The solutions of equation (4.40), unlike example 4.1, case B, do not diverge 
from each other. That is why the upper and lower bound remain close over the whole 
domain of the solution and the distance between them can not be observed visually on 
figure 4.13 (compare with figure 4.3). 

We compute also bounds for the solution using N = 10 and N = 20 respectively. Since 
N h < canst, in the numerical experiments we double N and reduce the step size h twice. 
Numerical values of the enclosures at some points are presented in table 4.4. As in example 
4.1, case B, the rate of convergence is o(N-t) + O(h4 ) where the first term is dominating. 
It suggests that at least one more correct digit of the solution is obtained when N is 
increased by a factor of four. The numerical results presented in table 4.4 support that. 
In addition, on figure 4.14 the error of approximation is represented graphically. The 
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maximum norm in x of the radius of the enclosures computed for various values of N and 
h is plotted on a logarithmic scale against the time variable. 
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1 0 

Figure 4.13: Problem (4.40), (4.41). Enclosure computed with N = 5 and h = 2-5 

N = 5 h = 2-5 

' 
N = 10 h = 2-5 

' 
N = 20 h = 2 7 

' 
x = 0.5 x = 0.5 x = 0.5 

t bounds radius bounds radius bounds radius 

1.0 4729 
-0·2 5374 3.2E-3 4904 

-0·2 5119 l.lE-3 4971 
-0.2 5025 2.7E-4 

2.0 5403 o.2 4697 3.5E-3 5126 o.2 4894 l.2E-3 5025 o.2 4967 2.9E-4 

Table 4.4: Problem (4.40), (4.41). Values of the computed enclosures at some points . 
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Figure 4.14: Problem (4.40), (4.41). Maximum norm in x of the radius of the enclosures 
computed for various values of N and h (logarithmic scale). 

B. Interval Initial Condition. 

{ 
x(l - x) 0 < x < 1 

u(x,O)EG1(x)=[-0.05,0.05]+ ( ) ' - -
0 x 1 + x ' -1::; x::; 

, u1(x,O) = 0 (4.42) 

Similar to example 4.1, case C, here we compute bounds for a set of solutions 

u(O,G;x,t) = {u(O,g;x,t): g E G} 

where G = ( G1 , 0). Since B_
1 

and g1 are not in the Fourier functoid, they are rounded and 
lower and upper bounds in the form of trigonometric polynomials are computed with a 
certain error of approximation. While this error decreases when N increases, the total 
width of these bounds remains greater then 0.1 which is the width of G1 . On figure 4.15 
the enclosure of the solution is computed with N = 5 and h = 2-5

• Unlike example 4.1, 
case C, the solutions do not diverge from each other when t increases and the width of the 
enclosures remains of more or less the same magnitude on the whole domain. However, 
this width does not decrease significantly when N increases and h decreases because it 
results mainly from the width of the set u(O, G; x, t). Using the same approach as in 
example 4.1. case C, we can compute an estimate for the accuracy of the computed 
enclosures. On figure 4.16, the maximum norm in x of this error estimate for enclosures 
computed with different values of N and h is plotted on a logarithmic scale against the 
time variable. The graphs are similar to the graphs on figure 4.14 which shows that the 
method works equally well with interval and noninterval initial conditions. 
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Figure 4.15: Problem (,f.40), (4.42). Enclosure computed with N = 5 and h = 2-5 • 

0.01 ~-,--,--~ ,-,---,-,---,-~ ,-,-~ N = 5 h = 2-5 -, 6 
N = 10 h = 2- · · · · 
N = 20' h = 2-7 -, 

0.001 w .. 
. . . . . . . . . 

0.0001 L__J_' __ L_, _ _J__ '__J' __ _[__ '_J_' __ L_' _ _J__ '__J'_t"-J 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Figure 4.16: Problem (4.40), (4.42). Maximum norm in x of estimate (4.38) for the 
accuracy of the enclosures computed for various values of N and h (logarithmic scale). 



Chapter 5 

Spline-Fourier Approximations 

5.1 The Concept of Hyper Functoid. 

Let M be a separable and arithmetical Hilbert space with a basis {'Pk : k = 0, 1, ... }. 
The space 

with operations as discussed in section 2.6.1 is called a functoid. In general, a hyper 
functoid is obtained when infinite series are involved. Since infinitely many coefficients 
can not be stored individually, the coefficients have to be represented as a function of a 
coefficient index in a finite dimensional way. 

A function f E M can be represented as 

In a functoid the sequence (ck) representing f is cut off at some k = N. In hyper functoid 
theory the approach is different. The coefficients Ck = c( k) are considered as functions of 
the coefficient index k E D = NU {0}. Let K denote the number set of the coefficients, 
i.e. K = R or K = C. Then the space of functions K(D) = {c: D >--+ K} is called a 
coefficient space. Let {d0 ,d1 , • •• } be a basis in K(D). Then a rounding can be declared 
in K(D) by 

TN(c) =TN (~b;d;) = ~b;d;. 
This rounding maps the space K(D) onto the screen 

K(D) = {~b;d;: b; EK} 
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This will induce a rounding on M of the form 

The resulting structure 

M = {E c(k)'{Jk: c(k) = ~bidi(k), b; E JC} 

with operations induced by the rounding TN (as in a functoid) is called a hyper functoid.[48] 

5.2 Fourier Hyper Functoid. 

A function f E L2 ( -1, 1) has a Fourier series of the form 

N 
J(x) ~ L c(k)eiku 

k=-N 

where c(k) = conj(c(-k)) EC. Therefore the domain of the coefficient index is D = Z 
and the coefficient space is 

JC(D) = { c: D f-t C: c(k) = conj(c(-k)), E lc(k)l 2 < oo}. 

In [48] the following screen K(D) of JC(D) is considered: 

K(D) = ttN bidi + ~ ajdN+i : b; = conj(b_i) EC, a; ER} 

where 

d;( k) {
1 if k=i 

= 0 if koli fori=0,±1, ... ,±N and 

{ 

0 if lkl :S: N 
(-l)k "f lkl N forj=l, ... ,p. 
(ik)j I > 

The corresponding Fourier hyper functoid is 

lfs = {k~oo c(k)eiknx: c E K(D)}. 
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The coefficient functions c( k) can also be presented in the form 

! bk 

c(k) = (-l)k ~ ._1_ 
L.., a, (ik); 
J=l 

where bk= conj(b-k) EC and a; E R.[48] 
00 

Let f(x) = L c(k)eiknx E J/i;. Then we have 
k=-oo 

f(x) 

if 

for 

lkl ~ N 

lkl > N 
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P (-l)k a; . 
where f3o = bo, f3k =bk - La;-(. ). , k = ±1,±2, ... ,±N and °'i = ~, J = 1,2, ... ,p. 

j=I zk J 7r1 

Let s;(x) = f; ~:---l))keihx, x ER. Then J/i; can be represented in the form 
k=-oo zk7r J 

In the following sections we will use the above representation of the Fourier hyper functoid 
for the approximation of periodic functions and solving the wave equation in the case 
when some of the data functions or their derivatives have discontinuities. We will see 
later that the functions { s; : j = 1, 2, ... } are in fact polynomials on the interval ( -1, 1) 
and therefore they are splines when produced periodically over (-oo, oo ). That is why 
we refer to the Fourier hyper functoid :/Ts defined above as a Spline-Fourier functoid and 
we will call the approximations with this functoid Spline-Fourier approximations. We 
believe that the explicit use of the periodic splines gives some advantages in defining 
the roundings (left, right, interval), deriving formulas for the operations in the functoid 
and in the computation of a validated solution of the wave equation. Let us note that 
the Spline-Fourier functoid is a Fourier hyper functoid but not the only Fourier hyper 
functoid. Other hyper functoids can be derived using a different basis in the coefficient 
space. 

In the next section we will give a new definition of the periodic splines { s; : j = 1, 2, ... } 
and discuss their properties. 
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5.3 Definition and Properties of the Periodic Splines. 

We consider a set of splines { s; : j = 0, 1, ... } satisfying the following conditions 

(i) s; is a polynomial of degree j on (-1, 1),j = 0, 1, ... 

(ii) s; is periodical with a period 2,j = 0, 1, ... 

(iii) s; E ci-2(-00, oo ), j = 2, 3, ... 

(iv) ds;~~(x) = s;(x), x E (-1, 1), j = 0, 1, ... 

(v) so(x) = 1, x E (-00,00) 

We can construct the elements of the set inductively using 

s;+i(x)= js;(x)dx+c 

and determining the value of the constant of integration c from 

/_

1

1 
s;+i(x)dx = s;+2 (1) - s;+2 (-1) = 0 

We find the splines in the form 
x2m x2m-2 x2 

S2m = Co {2m)! + C1 {2m-2)! + .. •+Cm-I 2f +Cm ' xE(-1,1) 
x2mtl x2m-1 x3 ( 1 1) Szm+i = Co (Zm+I)! + C1 (Zm-I)! + ... + Cm-1 3! + CmX, X E - , 

where the coefficients c0 , Ci, c2 , ... are obtained from the following linear system 

Co = 1 

(5.2) 

(5.3) 

(5.4) 

Co C1 Cm-1 
( )I+( ) 1 + ... +-

31
_ +cm=O,m=l,2,... (5.5) 

2m + 1. 2m -1. 

The splines constructed in this way obviously satisfy conditions (i),(ii),(iv),(v) in (5.2). 
We only need to prove (iii). Relations (5.3) and (5.4) imply that s; are continuous for 
j 2': 2. Therefore, for j 2': 2 (iv) is satisfied on the interval (-oo, oo ). Differentiating j - 2 

times we have d'~::;\x) = s2(x). Hences; E Ci-2(-00,00). 
The first few splines in the considered set are listed below 

s1(x)=x, 

s2 (x) = ; - i, 
( ) 

x 3 1 
83 X = 3f - 5X, 

() 
x 4 lx2 7 

S4 x = 4T - 62! + 360 ' 

() 
x 5 lx3 7 

8 5 x = 5! - 6 3! + 36Dx ' 

( ) 
x6 1 x 4 1 x2 31 

8 6 x = 6! - 6 4! + 360 2T - 15120 ' 

xE(-1,1) 

x E [-1, 1] 

xE[-1,l] 

x E [-1,1] 

xE[-1,1] 

x E [-1,l] 

Some properties of the periodic splines are presented in the following theorem. 
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Theorem 5.1 

(i) SJ(-x) = (-l)isJ(x) , Sj(l + x) = (-l)isj(l - x) , j;:: 0 

(ii) S2m+i(-l) = S2m+1(0) = S2m+i(l), m;:: Q 

( · ··) ( ) 1 ~ (-l)k iku . > l 
HZ Sj X = --(, )' L.J --.-e , ) _ 

t'IT J k=-= kl 

(. Ji' ( ( ) ( ) _1 ( ) { 0 , p 't q(mod 2) 
iv sp x )s, x dx = -1 ' 2sr+q 1 = (- ) _12 ( ) = ( d 2) 

-1 1 ' Sp+q 1 , p _ q mo 
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We assume that s 1 (1) = s 1 (-1) = 0 to ensure that (iii) is satisfied for any x when j = 1. 
Remark. The periodic splines described in this section are closely related to the 

monosplines, which are well-known in spline theory, as well as the Bernoulli polynomials. 
In fact n!sn and the nth monospline differ by a constant and sn(x) = ~~Bn(x~'), x E 
(-1, 1), where Bn is the nth Bernoulli polynomial. 

5.4 Spline-Fourier Expansion of Real Functions. 

In section 4.3 we discussed the Sobolev spaces HP(-1, 1) and H%er(-1, 1). The estimate 
(4.22) shows that the Fourier series of any function f E H%er(-1,l), p;:: 1 converges 

1 

uniformly on [-1, l] to fat a rate of o(N>-"). This is not true for the space HP(-1, 1). 
We have 

H%er(-1, 1) C HP(-1, 1) 

and the essential difference between the two spaces is that the periodical extensions of the 
functions in HP(-1, 1) and their first p -1 derivatives may be discontinuous at the end 
points of the interval [-1, l ]. If the periodical extension off E HP(-1, 1) is discontinuous 
at x = ±1 then the Fourier series off does not converge uniformly and we have the Gibbs 
phenomenon. If f E HP(-1, 1) and its first j - 1 (j < p) derivatives have continuous 
periodical extensions the Fourier series of f converges to f uniformly on [1, 1] at a rate of 

1 ' 

o(N>-'), i.e. at a rate slower then the rate of convergence for functions in H%er(-1, 1). 
In this section we will consider the use of periodic splines in the Fourier series which 
leads to a series expansion (Spline-Fourier series) of the functions in HP(-1, 1) with the 
same qualities (e.g. rate of uniform convergence) as the Fourier series of the functions in 
H%er(-l, 1). 

Theorem 5.2 Every function f E HP(-1, 1) has a unique representation in the form 

where 

00 

f(x) = aoso(x) + a1s1(x) + ... + aPsP(x) + L bkeihx (5.6) 

00 

L bkeihx E H;,r(-1,1). 
k=-oo 
k~o 

k=-co 
k~O 
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The coefficients in (5.6) can be obtained as follows 

1 (di-I j di-I j ) 11I di f(x) . 
ai = - -d . 1 (1 - 0) - -d . 1 (1+0) = - d . dx, J = 1,. . .,p 

2 xJ- xJ- 2 -I xJ 

111 ao = - J(x)dx 
2 -1 

(5.7) 

b 1 11 dPf(x) -iknd k 
k= ('k) d e x, =±1,±2, ... 2 ! 7r p -1 XP 

Proof. Uniqueness. If the representation (5.6) exists then 

00 

g(x) = J(x)- aoso(x)- aisI(x)- ". - apsp(x) = L bkeihx E CP-1(-00,00) 
k=-= 
k~O 

Integrating the above two expressions for g we obtain a0 = ~ [1 J(x)dx. 
2 J_I 

The (j - 1 )st derivative of g is 

S. . . ( ) h d;-1 f(x) ( ) t b 1 ince so, s2, ... , Sp-J+l are continuous 1n -oo, oo t en dxJ 1 - a3s1 x mus e a so 
continuous in (-oo, oo ). Therefore 

dj-1 j di-I j 
-d . I (1- 0) - a;sI(l - 0) = -d . 1 (1+0) - ais 1(1+0) 

xJ- xJ-

which implies 

1 (di-I j di-I j ) . 
ai=- -d. 

1
(1-0)--d. 1 (1+0) ,J=l,2,. . .,p. 2 xJ- xJ-

We also have 
dPg(x)_dPJ(x) - ~ ('k )Pb iknx 

- - ap - L.J i 7r ke 
dxP dxP k=-= 

Using the formula for the coefficients of the Fourier series expansion of d,P :( x) we obtain 
XP 

( 'k )"b 11I dPg(x) -ihxd 11I dPJ(x) -ibxd 
i 7r k=- e x=- e x 

2 -1 dxP 2 -1 dxP 

which implies 

b 1 11 dP J(x) -ikKd 
k = e x 

2( ikn )P -1 dxP 
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We proved that if the representation (5.6) exists then the coefficients are obtained accord­
ing to (5.7). This implies that the representation is unique. 

Existence. Let 

g(x) = J(x) - a0 s0 (x)- a1s1(x)- ... - apsp(x) 

where a0 , a,, ... , ap are given by ( 5. 7). From the formula for a0 we obtain that /_
1

1 
g( x )dx = 

0. Therefore g can be expanded in a Fourier series 

00 

g(x) = L bkeiku 

k=-oo 

with bo = 0. What we have to prove is that g E Hger(-1,1). Since g E H"(-1,1) we 
only need to prove that g and its first p - 1 derivatives are continuous at x = 1 (when 
produced periodically). Note that the only spline that is discontinuous at x = 1 is s1 • We 
have 

g(l - 0) - g(l + 0) J(l - 0) - J(l + 0) - a1(s1(1 - 0) - s1(1+0)) 
J(l - 0) - J(l + 0) - 2a1 = 0 

Therefore g is continuous at x = 1. In a similar way, for the jth derivative of g we have 

~g ~g ~f ~f . 
-d (1-0)--d (1+0)=-d .(1-0)--d .(l+0)-2aj+i,J=l,2, ... ,p-1 

xJ xJ xJ xJ 

and using (5. 7) for aj+l we obtain 

dj g dig 
dxJ (1 - 0) - dxj (1 + 0) = 0 

This completes the proof. 

5.5 Spline-Fourier Functoid. 

In this section we will consider the Spline-Fourier functoid JFs and the interval Spline­
Fourier Functoid IJ!i; as a screen and interval screen respectively of the space M = 
H"(-1, 1). We will also derive suitable formulas for the roundings and the operations in 
these functoids. 

We define in M a rounding PNp in the following way. Let J E M and let J be 
represented in the form (5.6). Then 

N 

PNp(J; x) = aoso(x) + ais1(x) + ... + aPsP(x) + L bkeiknx (5.8) 
k=-N 

k#O 
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The rounding error can be estimated as follows 

ll(x)-PNp(f;x)I = 
lkl>N 

< I: (br)2p lbkl2 I: i 2 ( ) ~ ( )! 
- lkl>N /k/>N (kn:) P 

(
lfl(dPl(x))

2 
N )~( 2 )! ::; 2 l-1 dxP dx - a;- 2 {;(kn:)2p lhl2 (2p - l)n:2PN2p-1 

( 1 ) - 0 --- NP-! 

The rounding PNp maps M on to the screen 

M { ±i-rrx ±2irrx ±Ninx} = span so, s 1 , ... , sp, e , e , ... , e 

In M we consider the operations w = {+,-,.,/,J} defined in the conventional way. 
By the semimorphism principle PNp induces corresponding operations in M: 

lfilg=pNp(fog), o E{+,-,x,/} 

¢1 = PNp (! l) 
The structure :fFs = (M, EEi, 8, D, 0, ¢) is called a Spline-Fourier functoid of M. In 
order to use this functoid in approximations, e.g. deriving approximate solutions of math­
ematical problems, we need constructive methods for implementation of the operations. 
Since :fFs is a linear space then it is closed with respect to the operations addition and 
scalar multiplication. Those operations a.re performed by adding the coefficient vectors 
or multiplying them by a scalar. Other operations in w may produce a result outside :/Fs 
that has to be rounded. We will consider them one by one. 

Multiplication. Let l 1 , h EM be given in the form 

P N 
fi(x) = 2:a1jSJ(x) + L blkeikn 

j=O k=-N 
k~O 

P N 
h(x) - 2:a2jSJ(x)+ L b2keikn 

j=O k=-N 
k~O 

Their product can be written as 

l1(x)f2(x) = E,, + Eee + E,e 
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where 

We will consider separately each of the above sums which, for convenience, we will 
call splines product (E,,), exponents product (E,,) and mixed product (Ese)· 

The splines product. Let g(x) = sm(x)sq(x) EM, m, q ;::>: 1. Function g is a spline of 
degree m + q and can be represented as a linear combination of s0 , si, ... , Sm+q: 

m+q 
g(x) = L a;s;(x) 

j=O 

1 (dj-1 di-1 ) 
From theorem 5.2 we have a; = - d . g

1 
(1 - 0) - d . g

1 
(1 + 0) where 2 x1- x1-

di-lg(x) 
dxi-1 L J - Sm-r(x)s 0-j+r+i(x) 

min{j-1,m} ( · l) 
r=max{O,j-q-1} r 

Using the fact that s 1 is the only discontinuous function that may appear in the above 
expression and s 1(1- 0)- s1(1+0) = 2 we obtain the following values for the coefficients 
a; (assuming m '.::'. q): 

O'.j = 0 for 0'.::'.j'.::'.m-1 

°'i (~-::_~)so+m-;(1) for m'.::'.j'.::'.q-1 (5.9) 

a· J ((~-::_11 ) + (~:::)) Sq+m-j(l) for q'.::'.j'.::'.q+m 

Hence 

m+q ( j _ 1 ) m+q (j -1) 
sm(x)s,(x) = L m - l Sm+o-J(l)s;(x) + L - l Sm+q-;(l)s;(x) 

J=m J~q q 

Now the splines product can be written in the form 

p p 

E,, = L l:a1ma2,sm(x)s,(x) 
m=O q=O 
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The above sum essentially consists of scalar products and can be conveniently represented 
in a matrix form. Let 

and let Mj be a matrix of type (p + 1, p + 1) defined by 

if 1 :::; m :::; j :::; m + q 
, m,q= 0,1, ... ,p 

otherwise 

Then the splines sum is 

or 
2p 

E,, = a10a20so(x) + L,af Mj')a2sj(x) (5.10) 
j=l 

where Mjs) = Mj + MJ. Using the Fourier series of the splines Sp+ 1 , ••• , s 2p we obtain 
the Spline-Fourier expansion of Ess in the form 
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where 
2p ( l)k-1 

M(s) = """" - M(s) 
k . L, (ik7r)i J 

J=p+l 

Exponents product. Combining the equal powers of e we have 

Using the following notations 

b1 = (b1-N, ... ,b1-1,0,bu, ... ,b1N? 

b2 = (b2-N, ... ,b2-i,O,b2i, ... ,b2N)T 

the coefficients in the above expression can be presented in a matrix form as follows 

2N 
2;" = (bf Eob2) so( x) + L (bf Ekb2) eikTI-x 

k=-2N 
k~O 

where Ek, k = 0, ±1, ... , ±2N are matrices of type (2N + 1, 2N + 1) defined by 

if q + r = 2N + 2 + k 
, q,r = 1,2, ... ,2N + 1 

otherwise 

Mixed product. We will use again Theorem 5.2 to obtain the coefficients in the expan-
SIOn 

p 00 

g(x) = sm(x)eiqn = L°'mq;s;(x) + L f3mqkeiknx 
j=O k=-oo 

k~O 

Since So ( x) eiq'Trx = eiq'lrx then 

O'.oqj = 0 and f3oqk = { 
1 

0 k # q 

k=q 
( 5.11) 

For m ~ 1 we have 

min{m,j-1} ( · l) 
~ J ~ Sm-r(x)(iq7r)j-r-leiqnx 
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Hence 
Cimqj = 0 for 0 ::; j ::; m - 1 (5.12) 

and 

(
j-1)(· )j-m iq~ ( l)q(j-1)(· )j-m Cimqj = iq'lr e = - iq'lr 
m-1 m-1 

for m ::; j ::; p (5.13) 

The coefficients of the exponents in the expansion of g we obtain from its pth derivative 

The term in the above sum corresponding to l = -q is 

Therefore 

/3mqk 

/3mqq 

(-l)q-t(iq7r)p-m}; (:) (-1r-r 

(-l)"(iq7r)p-m(-1r-1
}; (:) (-1)" 

(-l)q(iq7r)P-m(p- l) =Cip 
m-1 

(5.14) 
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Then the mixed product is 

Let matrices Mj"'1, j = 1, ... ,p and Mf3l, k = 0, ±1, ±2, ... of type (p + 1, 2N + 1) 
be defined by 

(M(/3l) = f3m,; 
J mq 

where m = 0, 1, ... ,p , q = -N, -N + 1, ... , N. Note that for convenience in the 
matrix multiplication the rows of the above matrices are indexed from - N to N as the 
components of b1 and b2 while their columns are indexed from 0 to p as the components 
of a1 and ai. Now the mixed product can be written in the following matrix form: 

or 

p 00 

E,e = I:(afMja)b2)s;(x)+ L (afMY1b2)eikn 
j=l k=-= 

k,!O 

p 00 

+ L (af Mj 01 b1) s;(x) + L (af Mk/3)b1) eihx 
j=l k=-= .,, 

p 00 

E,e = L ( af Mj"1b2 + af Mja)b1) s;(x) + L ( af Mk/3)b2 + af Mk/3)b1) eikn 
j=l k=-= .,, 

Adding E,,, Eee and Ese we obtain the following Spline-Fourier expansion of f 1h: 

f1(x)h(x) (a10a20 +bf Eob2)so(x) 

+ t ( af M}'1a2 + af M}"1b2 + af Mj"1b,) s;(x) 
j=l 

2N 

+ L ( af Mk') a2 +bf Ekb2 + af Mk/3)b2 + af Mk/3)b1) eikn 
k=-2N ••o 

+ L ( af Mk') a2 + af Mk/3)b2 + af Mk/3)b1) eiku 
\k\>2N 

Therefore 

fi(x)[2Jh(x) 
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p 

+ L (a'f M}'1a2 + a'[Mj")b2 + af M}")b1) s;(x) 
j=l 

N 

+ L (a'[ Mk') a2 + bf Ekb2 + a'[ Mkfl) bz + af Mf3l b1) eihx 
k=-N 

k#O 
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If M is a matrix, denote by IMI a matrix of the same type with entries equal to the 
modules of the corresponding entries of M. Using this notation, the rounding error can 
be estimated as follows 

2N 

IErrorl < 2 L ia'fMk')a2+b'[Ekb2+a'fMY)b2+afMY)b1I 
k=N+l 

+ la1IT L IMk')l la2I 
lkl>2N 

+ la1IT L IMY)l lb2I + la2IT L IMkll)l lbil 
lkl>2N lkl>2N 

For the infinite sums in the above expression we have 

< I= f k~ j IMJ'll 
j=p+l k=2N +1 ( ) 

2p 1 
< ~ IM(s)I 

. L.. (J. - l)7ri(2N)i-1 3 
J=P+l 

Therefore 
L I Mk') I < M(s) 

lkl>2N 

where 
2p 1 

M(s) = ~ IM(s)I 
. L.. (J. - l)7ri(2N)i-1 3 

We also have 

L l/Joqkl = o 
lkl>2N 

J=p+I 
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Therefore 

where 

Hence 

L I Mk/l) I < M(/l) 

ikl>2N 

( M(/l)) Oq = 0 

(M(/l))mq = (p-l~~:~~N)p-1 ~ (:) ( (2Jqlq)m-r + (2Jq~q)m-r) 
for m =f 0 

2N 

IErrorl < 2 L laf Mk')a2 +bf Ekb2 + af Ml!l)b2 + af Mt1b1I 
k=N+I 

+ la1lr M(sJ la2I + la1lr M(ilJ lb2I + la2lr M(ilJ lb1I 
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Note that matricesM}8J, j = 1, ... ,p; Mka), Mfl, Mk'), k = ±1, ... ,±2NandM(•J, Af./lJ 
used in the evaluation of the product of f 1 and h and in the estimation of the error do not 
depend on Ji and f,, so that they can be calculated in advance and used in all products 
in a certain numerical procedure. 

Integration. Let f E M and let 

Then 

Therefore 

P N 
f(x) = LOjSj(x) + L bkeihx 

j=l k=-N 

"" 

f, ( ) ;., (bk (-l)kap) iknx '°"' (-l)k-l ihx 
L... Oj-JSj x + L... -;---k - ( .k )P+l e + L... ( .k )P+I e 
·=2 k=-N z 7r z 7r ikl>N z 7r 

J k-:;6.0 

~f(x)dx f, ( ) ;., (bk (-l)kap) iknx 
L.., Oj-JSj X + L.., -;---k - ( .k )P+I e 
j=2 k=-N t 7r ?, 1T 

k~o 

with rounding error 

IErrorl = '°"' (-l)k-1 ikn < 
L... ( 'k ) +1 e iki>N Z 7r P 
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The integration of so(x), when it arises in a particular practical problem, must be handled 
with special care because J s0 ( x )dx = s1 ( x) is true only in ( -1, 1). 

Remark. (Subtraction and Division) While subtraction is easy to implement by 
f1 - h = f1 + ( -1) h, division could be complicated. It is defined only if the divisor does 
not change its sign and then, the quotient g = f 1 7 h can be obtained as a solution to 
gh = f1. 

5.6 Approximations of functions with multiple dis­
continuities 

The set M defined in the beginning of this chapter contains functions that may be discon­
tinuous at the points x = 2k + 1, k E Z, i.e. one discontinuity in an interval of length 2 is 
allowed. However, using the same approach an expansion of the type (5.6) can be derived 
also in the case when the functions have more then one discontinuity or the discontinuity 
is not at x = 2k + 1. 

Let f and its first p-1 derivatives be allowed to be discontinuous at x = 2k+ 1-ci, k E 
Z, l = 1, ... , l (but not at any other points). Then f can be represented in the form 

where 

I p oo 

f(x)=ao+LLaJ/Sj(x+ci)+ L bkeihx 
l=l j=l k=-oo 

k#O 

00 

'\"""' b eihx E HP (-1 1) 
~ k per ' 

k=-oo 
k¢o 

The coefficients are obtained similarly to the coefficients in (5.6): 

111 - J(x)dx 
2 -1 

1 ( dj-I dj-I ) 
- -.-(1 +Ci - 0) - -.-(1+Ci+0) 2 dx1- 1 dx1- 1 

j = 1, ... ,p 
, l = 1, ... ,l 

1 11 dP j( X) -ik.-xd k ±1 ±2 
( 'k ) d e x , = , , ... 2 Z 7r p -I xP 

The above statement generalizes theorem 5.2 and the proof is conducted in a similar way. 
Function f is approximated by 

l p N 

PNp(f;x) = ao + LLajiSj(x +ci) + L bkeiku (5.15) 
l=l j=l k=-N 

k#O 



CHAPTER 5. SPLINE-FOURIER APPROXIMATIONS 131 

with a rounding error 

IJ(x)-PNp(f;x)I L bkeiknx :S L lbkl 
/k/>N /k/>N 

Addition and multiplication by a number of expressions of the form (5.15) is obviously 
not a problem. Integration is performed without any serious difficulties. Let 

1 p N 

f(x) = PNp(f;x) = LLaj/Sj(x + q) + L bkeiknx 

Then 

Therefore 

where the rounding error is 

IErrorl :S 

l=l j=l k=-N 
k#O 
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With more points of discontinuity, multiplication becomes technically more compli­
cated to implement. Using 

a product of the form 

can be presented as 

where 

2p 

= L (af,Mj(ct,-ci,)a12 )si(x + ci,) 
j=l 

2p 

+ L (aT,Mj(ct,-ci2 )a1,)si(x +ct,) 
j=l 

( _ J { (~-::_Dsm+o-j(l - y) , 
M(y) = 

J mq 
0 

m,q=l, ... ,p m'.Sj'.Sm+q 

otherwise 

and be processed further as E,, in the previous section. 
Using the substitution y = x + c1, a mixed product of the form 

can be represented as 

and be dealt with as E,e in the previous section. 
Therefore, the process of multiplication, although technically complicated, can be 

easily algorithmized and implemented on a computer. Note also that p usually does not 
need to be very large, e.g. p = 5 will be probably satisfactory for most of the problems. 
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5. 7 Integral Form of the Wave Equation. 

In this section we will consider the wave equation ( 4.4)-( 4.5) when some of the functions 
gi, g2, f or their derivatives have discontinuities. In this case the solution may also be 
discontinuous and may not be defined by the equation in its standard form ( 4.4)-( 4.5). 
We will transform this equation in an integral form. Let f(x, t) be a triangle with vertices 
(x - t, 0), (x + t, 0) and (x, t). 

r(x,t) 

x-t,O x+t,O x 

Using Green's theorem we have 

/ / J(y, 0, u(y, O))dydl} = / / ( Utt(Y, (}) - Uxx(Y, 0) )dydl} 
I'(x,t) I'(x,t) 

= f (-ux(Y, l:l)dO - Ut(Y, f:l)dy 
ill'(x,t) 

x+t 

= 2u(x, t) - u(x - t, 0) - u(x + t, 0) - j u,(y, O)dy 
x-t 

x+t 

= 2u(x, t) - gi(x - t) - g1(x + t) - J g2(y)dy 
x-t 

Therefore, we have 

where 

u(x, t) ~ I J f(y, e, u(y, O))dydO + g(x, t) 
I'(x,t) 

1 ( •+• ) g(x, t) = - gi(x + t) + g1 (x - t) + j g2(y)dy 
2 ·-· 

(5.16) 

We consider problem (4.4)-(4.5) in the form (5.16) which defines a solution also in the 
case when some of the functions are discontinuous. We use periodic splines to represent 
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functions with discontinuities. In the following examples some functions that are often 
considered as initial conditions are presented. 

Examples 

{ 
1 x E (-a, a) 

1.¢(x)= 0 xE(-1,-a)U(a,1) 

{ 

-1- x 

2. ¢(x) = x 
1-x 

-1 -a 0 a 

x E (-1, -0.5) 
x E ( -0.5, 0.5) 
x E (0.5, 1) 

-1 

¢(x) = s2(x + 0.5) - s2(x - 0.5) 

3. ¢(x) = { 
2x(l+x) xE(-1,0) 
2x(l- x) x E (0,1) 

x 
1 

x 
1 

-0 .5 l__l_2od._Jo::::._[___J _ _j__.l__.L__[__ 

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 

¢(x) = 4s3 (x + 1) - 4s3(x) 
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4. ef>(x) = { -0.5 + sin(7rx) x E (-1, 0) 
0.5+sin(7rx) xE(0,1) 

1.5 ~~~-~~-~~-~~-~~ 

1 

0.5 
x 0 .____ ______ __,_ ______ _____, 

-0.5 

-1 
-1. 5 L__j__.::ob_L__j__J____Jc___L__J____J__J 

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 

5.8 General Outline of the Method 

Numerical solution of the wave equation is sought in the form 

M p I 

u(x, t) = ao(t) + L L L am;i(t)s;(x+Jt+a;,.) 
m=l j=l 0=-1 

00 

+ L bk(t)eihx 
k=-oo 
k~O 
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(5.17) 

where a;,. = 1 - °'m and O'.m, m = 1, ... , M are points in (-1, 1] where the data 
functions or some of their first p-1 derivatives may be discontinuous. 

The following Newton Type iterative procedure is applied 

u(l+l)(x, t) = (1 - A)uUl(x, t) + >, (~ j j J(y, 8, uUl(y, 8))dyd8 + g(x, t)) 
I'(x.t) 

The essential part of each iteration is the evaluation of the integral. This can be 
done successfully for a number of functions f using the arithmetic in the Spline-Fourier 
functoid. For example, if J(x, t, u) = c(t)uP + ef>(x, t) we can obtain an expansion of 
J(x, t, u(ll(x, t)) in the form 5.17 and then integrate. It is particularly easy to do that 
in the case of linear equations. We also have to chose some form of representation of 
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the coefficients amj{t), bk(t). In this chapter we carry out the computations representing 
those coefficients as polynomials of t. Assuming that f can be represented in the form 

M p 1 

J(x,t,uUl(x,t)) = C-O(t) + LL L cm;s(t)s;(x+St+a:,,) 
m.:::;l j=l J=-1 

00 

+ L dk(t)eikrcx 
k=-oo 
k~O 

where Cm;s(t) and dk(t) are polynomials oft, in each iteration we have to integrate terms 
of the form 

(}' . (}' 
-e•hy and -s ·(y + Jt +a) 
q! q! 3 

These terms can be integrated as follows: 

1 s;(y)dyd(} = 1 s;(y)dyd(} [J (}q In' 1x+t-B (}q 

q. 0 x-t+e q. r <) 

In
t (}" 

= I (s;+1(x + t - 0) - s;+i(x - t + 0)) d(} 
0 q. 

[ 
q (}q-l ]' 

= - L ( -l)I (s;+1+2(x + t - 0) + (-l)1s;+1+2(x - t +OJ) 
l=O q . O 

q (1 + (-l)1)tq-l 
= s;+,+2 (x+t) + (-l)'s;+,+2(x-t)- L ( -I)' Sj+1+2(x) 

l=O q ' 
q tl 

= S;+q+2(x+t) + (-l)'s;+,+2(x-t)- t;(l + (-l)'- 1)Tfsi+q-l+2(x) 

[ J(}: s;(y+O)dyd(} =lo' 1x+t-B (}: s;(Y + O)dyd(} 
r <) q. 0 x-t+B q. 

= r' (0
:S;+1(x + t) -

0
:S;+i(X - t + w)) d(} Jo q. q. 

[ 
l)q+l q+l ( 1) I (}q+l-l ] t 

= (q+l)!S;+1(x+t)+~ -2 (q+l-l)!Sj+i+!(x-t+W) 0 

( 
1)'+1 ( 1)'+1 

q ( 1)1 tq+l-1 
= -2 s;+,+2(x+t)- - 2 s;+,+2(x-t) + t; -2 (q+l-l)!s;+1+1 (x+t) 

( 
1)'+1 ( 1)'+1 q+l ( l)q-1+1 tl 

= -2 s;+,+2(x+t)- - 2 S;+q+2(x-t) + ~ - 2 TfS;+q-1+ 2(x+t) 
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lJ(}: s;(y-O)dyd(} = 1' 1x+t-O (}: s;(Y - O)dyd(} 
r t) q · 0 x-t+o q. 

= {' ((}>j+i(X + f - 20) - (}>j+I(x - t)) d(} h q. q. 

[ 
(}O+l o+l ( 1) I (}o+l-l ] t 

=- (q+l)!s;+i(x-t)+~ "2 (q+l-l)!s;+1+1(x+t-W) 
0 

(
1)0+1 (1)0+1 0 (l)l t'+l-1 

= 2 SJ+o+ 2(x+t)- "2 s;+0+2(x-t)- ~ \2 (q+l-l)!s;+i+i(x-t) 

(l)q+l (l)O+l q+l (l)o-l+I ti 
= 2 s;+,+2(x+t) - "2 s;+0+2(x-t) - ~ \2 Ifsi+o-1+2(x-t) 

lf (}O {' 1x+t-O (}O 

1 eiknydyd(} =Jn 1 eiknydyd(} 
r <) q. 0 x-t+O q. 

- - - d(} 
_ 1, (}' ( eikn(x+t-8) eikn(x-t+O)) 

0 q! ikn: ikn: 

_ [- o (}o-l ( eikn(x+t-8) _ 1 eikn(x-t+o)) l t 
- ~ (q-l)! (ikn:) 1+2 + ( l) (ikn:)l+2 0 

eikn(x+t) eikK(x-<) o (1 + (-1)1) to-l . 
= + - L: eiknx 

( ikn: )o+2 ( -ikn: )0+2 1=0 ( ikn: )1+2 ( q-l) ! 

= .eiknx (eiknt + (-l)oe-iknt - ~ ((ikn:t)l + (-1)'(-ikn:t)l)) 
(zkn:)o+2 ~ I! l! 

00 ti 
= L (1 + (-l)l-q)(ikn:)l-o-2leikn 

l=q+2 l. 

Then for the corresponding sums we have 

r[/ ~ ~ a;,o :~ s; (y )dyd(} 

p q p q 

=I; I; a;,os;+,+2(x+t) +I; I; a;,o(-1)0s;+0+2(x-t) 
j=lq=O j=l q=O 
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rllt ~ a;q1 :; s;(Y + O)dydO 

p q ( 1) q+I p q ( 1) q+I 
=I; I; ajql 2 Sj+q+2(x+t) - I; I; a;q1 2 Sj+q+2(x-t) 

J=lq=O 3=lq=O 

p q q+I ( 1 )q-l+I ti - I: I; I; ajql -2 Tisj+q-1+2(x+t) 
j=l q=O l=l ' 

p+q (min{q,j-1} ( l) q+I ) p+q (minfq,j-1} ( 1) q+I ) 
= ~ {;, -2 a;_,, 1 s;+2(x+t) - ~ {;, -2 a;_, q 1 s;+2(x-t) 

p+qq+I ( min{q,j+q-1} ( 1 )l-q+l ) t' 
- I; I; I: -2 a;+,-111 1 sj+2(x + t) 

j=I q=l l=max{q-1,j+q-p} q. 

ff " ' oq LL a; q -1 lsj(Y - O)dydO 
r(x,t) J=l q;;O q 

p q (l)q+I p q (l)q+I 
= ~ {;, aj q -i 2 s;+,+2(x+t) - ~ {;, aj q -1 2 S;+q+2(x-t) 

p q q+I (l)q-1+1 ti 
-I;I;I;ajq-1 2 71sj+q-1+2(x-t) 

j=lq=Ol=I ' 

p+q (min{q,j-1} (l)q+l ) p+q (min{q,j-1} (l)q+l ) 
= ~ {;, 2 a;-q q -1 Sj+2(x+t) - ~ {;, 2 aj-q q -1 s;+2(x-t) 

v+H+I ( min{q,j+q-1} ( 1) 1-q+l ) t' . 
-I:I: I: - a;+q-ll-1 1s3+2(x-t) 

j=I q=I l=max{q-1,j+q-p} 2 q. 

The integration over r(x, t) produces splines with larger indices. The rounding of the 
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splines s; that are sufficiently smooth (e.g. j ::'.'. p) is done as discussed in the previous 
chapter, i.e. they are replaced by their Fourier series and the error is O(N1-i). 

5.9 Numerical Examples. 

The numerical results presented in this section are produced by a procedure implementing 
the method discussed in the previous section. Since the purpose of these examples is only 
to demonstrate the applicability and some advantages of the proposed Spline-Fourier 
approach, the procedure is implemented without directed roundings and produces only 
an approximate solution. Naturally, a procedure, producing validated enclosure can also 
be developed, but it will require more programming time and effort. We feel that, at this 
stage, this work should be preceded by further research on the Spline-Fourier functoid, its 
application to the wave equation and, maybe, the development of user-friendly software 
for computations in this functoid. 

Example 5.1 We consider an initial boundary value problem for the equation: 

where ¢(x, t) is a piece-wise con-
stant function defined in [O, 1] x 
[O, oo) as shown on the sketch (to 
the right) and the boundary and 
initial conditions are given in the 
following form: 

u(O,t) 
u(l,t) 

u(x,O) 
u,(x, 0) 

0 

O,t::'.'.0 

9sin(7rx) + 18,P(x) 

- 6sin(7rx) + 12,P(x) 

t 

-2 

2 0 0 

2 

1 0 0 

-2 

0 0 0 1 x 

(5.18) 

(5.19) 
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where 

1/J(x) = { 
x 

1-x 
0 :S: x :S: 0.5 
0.5 :S: x :S: 1 

0.5 

0 

140 

x 

1 

Using the method described in section 2.5.2 and the periodic splines, problem (5.18), 
(5.19) can be written as a periodic (period 2) initial value problem of the form 

Utt-Uxx = (t:
3

)2 u+n2(t+3) 2 sin( nx) +2(t+3)(s1(x+t+0.5) 

-s 1 ( x -t+ 0.5 )-s1( x +t-0.5) + s1( x -t-0.5)) 

u(x,O) = 9sin(nx) + l8(s2 (x+0.5)- s2(x-0.5)) 

u,(x,O) = 6sin(nx) + 12(s2 (x+0.5)- s2 (x-0.5)) 

The exact solution of this problem is 

u(x, t) = (t+3) 2 (sin(nx) + s2(x+t+0.5) + s2(x-t+0.5) 

-s2(x+t-0.5) - s2(x-t-0.5)) . 

In table 5.1 the values of the numerical solution and the exact solution at some points 
are presented. A high accuracy of the numerical solution is obtained because the exact 
solution belongs to the Spline-Fourier functoid in which the computations are performed. 
All data functions in the problem, except for the coefficient of u, are exactly representable 
through the adopted data types. The only error in representing the problem on a computer 

is in representing the function (t: 
3

)
2

• However, it is represented by a Taylor polynomial 

of degree 10 and this error is very small. 
Let us note that, in general, for problems with discontinuous data functions, we can 

not apply the method considered in chapter 4 because Fourier series of discontinuous 
functions are not uniformly convergent. In this particular example it is still possible 
to apply this method (at least theoretically) because the integral over the characteristic 
triangle f(x, t) of function </>is a continuous function. However, the rate of convergence 
is only o(N-t). This implies that a very large N is required. Due to the large number 
of computations involved and the accumulated rounding error we were not able to obtain 
any meaningful results, at least not on the PC on which all other numerical experiments 
are performed. 
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x; t Numerical Solution Exact Solution 
p = 5, N =5 

0.5; 0.5 l.2250E+Ol l.2250E+Ol 

0.5; 1.0 -7.5921E-11 0.0000 

0.5; 1.5 2.0250E+Ol 2.0250E+Ol 

0.5; 2.0 5.0000E+Ol 5.0000E+Ol 

0.0; 1.0 -4.0128E-24 0.0000 

0.0; 2.0 -5.3254E-21 0.00000 

Table 5.1: Problem (5.18), (5.19): Values of the numerical solution and the exact solution 
at various points (x, t). 

Example 5.2 We consider the problem 

Utt - Uxx = (71" 2 + (t: 3)2 ) U 

u(x,O) = 2(s3(x + 1)- s3(x)) 

u,(x, 0) = 0 

(5.20) 

This problem is formulated directly as a periodic problem and the data functions, where 
necessary (in this case - in the initial condition), are expressed in terms of periodic splines. 
The equation is similar to (5.18) but the exact solution is not available. The method 
discussed in chapter 4 is also applicable to this problem because the function, prescribed 
as a value of u(x, 0), is a function in H;er(-1, 1). Since the exact solution is not known, 
the numerical solution produced by the method discussed in section 5.8 is compared with 
the validated numerical solution obtained by the method from chapter 4. Values at some 
points of both solutions a.re presented in table 5.2. Since both methods are applicable, the 
advantage of using the Spline-Fourier functoid and the method from the previous section 
is mainly in the smaller computational effort required to achieve similar accuracy. 
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x; t Numerical Solution Verified Bounds for the 
p=7, N=5 Solution, N =40 

0.0; 0.0 0.25000 
5007 

0·
2 

4993 

0.5; 1.0 0.29016 
9018 

0·2 8702 

0.5; 2.0 0.33727 
5932 

0·3 1847 

0.0; 0.0 2.39E-13 6.58 E-05 
-6.58 

0.0; 1.0 -4.79E-10 8.62 E-04 
-8.62 

0.0; 2.0 -2.33E-10 2.04 E-02 
-2.04 

Table 5.2: Problem (5.20): Values of the numerical solution and a validated solution 
obtained by a different method at various points (x, t). 



Chapter 6 

Conclusion 

In the thesis we consider the following aspects of the construction of interval enclosures 
for the solutions of Initial Value Problems for 

Ordinary Differential Equations: 

• the wrapping effect and its implications for the convergence of interval enclosures 
produced by methods of propagate and wrap type; 

• quantifying the wrapping effect; 

• necessary and sufficient conditions for no wrapping effect; 

Hyperbolic Partial Differential Equations: 

• monotone properties of the periodic problem for the wave equation; 

• using monotone properties in constructing interval enclosures for the solution (in 
the case of a point ( noninterval) initial condition) or the set of solutions (in the case 
of an interval initial condition); 

• constructing interval enclosures for the solutions of the wave equation in the Carte­
sian product of a Taylor functoid and a Fourier functoid; 

• spline-Fourier approximations (Fourier hyper functoid); 

• using Spline-Fourier approximations in representing and propagating discontinuities 
of the data function of the problem or their derivatives. 

The main result with regard to the wrapping effect associated with the construction of 
interval enclosures of IVP for ODE concerns the convergence of the enclosures produced 
by methods of propagate and wrap type. We prove (chapter 3) that such enclosures 
converge to a wrapping function associated with the particular problem. This allows us 
to quantify the wrapping effect associated with the problem and consider the problems 

143 
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with no wrapping effect as problems for which the wrapping function equals the optimal 
interval enclosure of the solutions. The significance of the results obtained in chapter 3 is 
m 

• providing a better understanding of the wrapping effect and the behavior of the 
computed interval enclosures for a set of solutions; 

• characterization of problems with no wrapping effect. 

In [30], [78] it is stated that a complete set of tools for validated solving of IVP for 
ODE should include software for recognizing problems with quasi-isotone right-hand side 
and solving them by a straightforward procedure instead of using complicated algorithms 
[37], [81], [59]. In fact such software should recognize the larger class of problems with no 
wrapping effect as they are specified by the theorems proved in chapter 3. 

The central concept in the study of the wrapping effect is the concept of wrapping 
function. This concept is not associated with a particular method but with the problem 
to be solved. We believe that this approach can be used in studying the wrapping effect 
for other IVP. The results in chapter 3 will be a methodological base for such research. 

The starting point of our research on validated solutions of the wave equation is the 
monotone properties of the problem. This is also a new element of our research compared 
to the existing literature on validated solution of Hyperbolic PDEs. We established in 
chapter 4 conditions providing for the operator of the Periodic Initial Value Problem for 
the wave equation to be an operator of monotone type and we also establish monotone 
properties which facilitate a step-by-step construction of interval enclosures of the solu­
tions. These properties provide a theoretical base for the design of validated methods 
suitable for both point (noninterval) and interval initial conditions. In support of this 
statement we propose a method which uses the established monotone properties. The 
bounds for the solution( s) are computed in the form of Fourier series of the space variable 
with coefficients which are polynomials of the time variable using a mesh in the time 
dimension. The implementation of the method requires computations in the Cartesian 
product of the Taylor functoid and the Fourier functoid. In addition to the roundings 
and operations discussed in [49] we introduced a new way of rounding the data functions 
as well as integration over the characteristic triangle. The quality of the enclosures is 
demonstrated in numerical examples. 

Discontinuities are very common particularly in the periodic formulation of the IVP for 
the wave equation. In order to be able to deal with discontinuities of the data functions we 
considered in chapter 5 Spline-Fourier approximations which are in fact approximations 
in the Fourier hyper functoid [48]. We feel that, at least for the problems considered, the 
explicit use of splines (instead of their Fourier series) simplifies the computations. The 
proposed approach enlarges the area of applicability of the method discussed in chapter 4 
with problems having discontinuous data functions and reduces the computational effort 
in the case when only derivatives of the data functions are discontinuous. This is also 
demonstrated in examples. 
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We think that the results presented m the thesis provide a foundation for future 
research in the following areas: 

• Studying the wrapping effect in the validated solution of PDE using the concept of 
wrapping function. 

• Monotone properties of the wave equation with multidimensional space variable. 
Using the approach in chapter 4 it is easy to find conditions for the operator of the 
problem to be an operator of monotone type. However, how to obtain monotone 
properties suitable for step-by-step construction of enclosures, is not obvious. 

• Modification of the method using Spline-Fourier series so that it can be applied on 
a mesh in the time dimension. If it is applied in the present form the number of 
discontinuities we have to make provision for will increase at every step. A suitable 
criterion is to be found for an automatic elimination of some of them. 

• Using Hausdorff approximations in computing enclosures of discontinuous functions. 
For example, we can show that the Fourier series of the jump function converges 
to its Hausdorff limit at a rate of O(N-~) and enclosures with the same order of 
approximation can be constructed. 
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